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ABSTRACT 

Whilst the 1.1 Ga North American Midcontinent Rift (MCR) system is formed in association with the 
Keweenaw mantle plume, the absence of a northern third rift arm or aulacogen (a general characteristic of 
mantle plumes) has previously not been well understood. To help clarify this unusual plume–rift 
relationship and to better establish the region affected by the Keweenaw mantle plume, we present the first 
electrical resistivity model of the MCR derived from 3D inversion of EarthScope USArray and Lithoprobe 
magnetotelluric (MT) data, extending northwards into the Archean Superior Province. Our model shows a 
prominent highly conductive anomaly trending NW-SE at the base of Western Superior’s cratonic 
lithospheric mantle, cross-cutting and extending for over 300 km on both sides of the western rift branch. 
We propose that this anomaly reflects the ancient signature of a plume trail, resulting from metasomatism 

and/or partial melting of the sulfide-rich basal lithospheric mantle during impingement of the Keweenaw 

mantle plume. 

Keywords: magnetotelluric, Midcontinent Rift, Keweenaw mantle plume, Superior Province, North 
America 
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Whether and to what extent the Superior craton was 
affected by the MCR plume northwards of the inter- 
preted plume center has met with some controversy. 
The 1117–1106 Ma mafic to ultramafic intrusions and 
1114–1110 Ma Nipigon diabase si l ls (where the Nip- 
igon embayment is underlain by low velocity litho- 
spheric mantle [12 ]) overlap with the early stages 
of the MCR. However, older faults control emplace- 
ment of Keweenawan Supergroup intrusions and ex- 
tensional features [13 ] and the absence of a velocity 
anomaly associated with underplating [14 ] provides 
little evidence for a third arm/aulacogen, and no 
deep third arm is shown by Bouguer gravity [3 ]. 

The electrical resistivity (or its reciprocal, con- 
ductivity) structure derived from magnetotelluric 
(MT) investigations has been widely used to study 
the structure and evolution of the tectonically stable 
cratons [15 ], including the MCR area where data 
from the EarthScope MT array [16 ] have pro- 
vided quasi-uniform coverage of the well-established 
arms of the MCR [17 –19 ]. In particular, a promi- 
nent northwest elongated conductive feature at the 
base of lithosphere near western Lake Superior was 
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NTRODUCTION 

he Midcontinent Rift (MCR), or Keweenawan
ift, one of the prominent Precambrian geologic
eatures of central North America, is a failed 1110–
085 Ma rift formed within the Archean Superior
rovince of Laurentia (Fig. 1 ). The MCR, which
ontains enormous volumes of igneous rocks out-
ropping and in the subsurface near Lake Superior,
as been explained by a combination of reactivation
f pre-existing structures and the upwelling and de-
ompression melting associated with the Keweenaw
antle plume [1 ,2 ], or possibly by anomalously hot
r fertile upper mantle upwelling [3 ]. Its surface
eometry, interpreted from potential field data and
egional geology [4 ], portrays two intersecting rift
rms that cut across Archean and Paleoproterozoic
errains; the west arm extends southwestwards for
a. 20 0 0 km and the east arm is truncated by the
renvi l le orogen [5 –10 ]. 
The MCR contrasts with the classical, intersect-

ng three-arm model of continental rifting above a
antle plume, where even if not fully developed, an

ulacogen or failed rift constitutes a third arm [11 ]. 
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Figure 1. (a) Simplified tectonic map of central North America [5 ] with the red box in- 
dicating our study area, as shown in (b) with more detail. The light steel blue and dark 
slate gray thick dashed lines represent the Great Meteor hotspot track inferred by kim- 
berlite occurrences [6 ] and seismic evidence at a depth of 200 km [7 ], respectively. The 
red star represents the interpreted Keweenaw mantle plume center [8 ]. (b) Regional ge- 
ological map of the study area with white lines showing the terrane boundaries [9 ,10 ] 
as well as MCR-related intrusions. The red and blue triangles represent the EarthScope 
and Lithoprobe MT stations used in this study, respectively. Abbreviations: MCR = Mid- 
continent Rift (purple shaded area); NS = Nipigon Sill; THO = Trans-Hudson Orogen; 
PP = Penokean Province; YP = Yavapai Province; MP = Mazatzal Province; KU = Ka- 
puskasing Uplift; IL = Island Lake; NC = North Caribou; U = Uchi; ER = English 
River; WR = Winnipeg River; WW = West Wabigoon; M = Marion; Q = Quetico; 

Figure 1. ( Continued ) WA = Wawa-Abitibi; MRV = Min- 
nesota River Valley. IRF = Isle Royale Fault; DF = Dou- 
glas Fault; KF = Keweenaw Fault; GLTZ = Great Lakes Tec- 
tonic Zone; NFZ = Niagara Fault Zone. LS = Lake Superior; 
LM = Lake Michigan; LH = Lake Huron. 
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previously identified and related to the Keweenaw 

mantle plume [19 ]. In order to seek a potential 
northern rift arm and better constrain and map the 
continuation of this conductive feature outside of the 
area covered by EarthScope MT data, Lithoprobe 
MT data in Canada were also used in the present 
study (red and blue triangles in Fig. 1 b). Depth 
slices and a 3D electrical resistivity model beneath 
the North American Midcontinent were constructed 
(Figs 1 and 2 ) using both the EarthScope and Litho-
probe MT data to better understand the structure 
and origin of the MCR and related features. As we 
wi l l show, our model i l lustrates that the prominent
high conductivity anomaly previously identified fur- 
ther south [19 ] continues beneath the southwest- 
ern Superior Province from the upper mantle to the 
lower crust, which is interpreted to relate to its south-
wards passage over the Keweenaw mantle plume. 

GEOLOGICAL SETTING 

The MCR and most of our study area to the north
lies within the Superior Province (Fig. 1 ), on whose 
southeastern boundary accretion of the Penokean 
Province along the Niagara Fault zone took place at 
1.9–1.8 Ga [10 ]; accretion of the Yavapai Province 
at 1.8–1.7 Ga and the Mazatzal Province at 1.7–
1.6 Ga [5 ] followed. The final, collisional stage of 
the Grenvi l le orogeny between 1.08 and 0.98 Ga in
the adjoining Grenvi l le Province is thought to have 
stopped the active phase of rifting of the MCR due to 
the compressional stress produced (although other 
explanations have also been proposed [4 ]). Nev- 
ertheless, no significant post-Grenvi l lian tectonic 
events affected the MCR, making it possible to ex- 
plore its older signature(s). 

The traditional model for the western Superior 
Province [20 ] posits the north to south assembly 
of generally east-west trending ribbon terranes (in- 
cluding Eoarchean to Mesoarchean fragments) and 
subduction-related arcs and back arc basins, pro- 
gressively accreted to the Hudson Bay Terrane (the 
southern portion of the Eoarchean to Mesoarchean 
northern Superior proto-craton). In this actualis- 
tic plate tectonic model, the final event was the 
accretion of the southernmost, Minnesota Valley 
River terrane along the Great Lakes Suture Zone 
[9 ,20 ] (Fig. 1 ). Other, non-plate tectonic models 
for Archean tectonics [21 ] applied to the Superior 
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Figure 2. Preferred resistivity model derived from MT 3D inversion. (a–c) Horizontal slices at depths of 33–38 km, 89–102 km 

and 179–206 km. Black circles denote MT stations, the MCR is outlined by a thick black solid line and subprovince boundaries 
are shown as white lines (c.f. Fig. 1 ). The black dashed line in (c) illustrates the western boundary of the East Superior low- 
velocity zone [29 ,30 ]. (d and e) Vertical cross-sections A–A’ and B–B’, whose locations are shown in (b). The dashed white lines 
show the estimated seismic Moho and LAB [25 ,26 ], which are in good agreement with our established electrical structure. 
PP = Penokean Province; MRV = Minnesota River Valley; WA = Wawa-Abitibi; WW = Western Wabigoon; WR = Winnipeg 
River; NFZ = Niagara Fault Zone; GLTZ = Great Lakes Tectonic Zone; M = Marmion. (f) A perspective view of low resistivity 
anomalies ( ≤10 � m) below 20 km depth. The location of cross-sections A–A’ and C–C’ are shown in (b). C denotes a 
conductive body and R denotes a resistive body. 
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rovince [22 –24 ] involve rifting and fragmentation
f the Hudson Bay Terrane and subsequent closure
nd regional shortening due to the southwards dis-
lacement of the northern Superior proto-craton,
riven by mantle flow against its deep lithospheric
eel. Whether or not fossil subduction zones and su-
ures were present in the two tectonic models respec-
ively has implications for interpreting the source(s)
f MT anomalies in our study areas, which are dis-
ussed later. 
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RESULTS 

Details of the MT data and inverse modeling are 
given in the Methods section below, while related 
phase tensor analysis is shown in the supplementary 
data ( Fig. S1). Figure 2 presents map views of the 3D
resistivity model at selected representative depths, 
vertical cross-sections across notable features, and a 
3D view of the high conductivity zone within our 
preferred inversion model. These results show: 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae239#supplementary-data
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(i) Scattered low and high resistivity anomalies at
lower crustal (33 km to 38 km) depths, includ-
ing conductive anomalies C2 and C3, which are
roughly aligned N-S and E-W, except for the
SE area of the map where they trend NW-SE
(Fig. 2 a). 

ii) N-S trending anomalies at upper- to mid-
lithospheric mantle depths of 89–102 km in
the central to NW regions, N of the Quetico
Subprovince, and the isolated C3 conductive
anomaly close to the NE shore of Lake Superior.

iii) A NW-SE trending high conductivity anomaly
(MC) at depths of 179–206 km is shown in
Fig. 2 c. A detailed study shows lithospheric
mantle thickness (i.e. ‘LAB depth’) in this part
of the Superior Province ranges between 140
and 180 km (increasing to between 200 and
220 km in the northernmost part) [25 ]. Other
more regional seismic LAB estimates are 150–
190 ± 7 km [26 ] and 185–220 km [27 ], and
the petrological-based LAB depth has been
calculated as being between 150 and 175 km
[28 ]. Slices through a 3D model [23 ] show
that our study area is situated in a wide sub-
continental lithospheric mantle (SCLM) rift be-
tween two older terrains with deep lithospheric
keels (viz. the Hudson Bay and Minnesota River
Valley subprovinces). Therefore, these anoma-
lies shown on this depth slice have, for all or
for the most part, a source beneath the SCLM.
The linear, higher conductivity NW-SE trend-
ing portion of anomaly MC is a continuation of
the aforementioned feature shown in [19 ], and
passes beneath the west arm of the MCR in the
southwestern narrow part of Lake Superior, ca.
400 km from its intersection with the east MCR
arm. A broader and more diffuse extension of
this anomaly follows the NW shore of Lake Su-
perior from which two short, eastern apophyses
extend in a more northerly direction. 

iv) In 3D, two stem-shaped, sub-vertical con-
ductors (DC1 and DC2) rise through the
SCLM from ∼150 km depth to the Moho,
beneath which conductor DC1 forms a broad
arch (Fig. 2 d) or directly upon which a sub-
horizontal conductive anomaly occurs (DC2,
Fig. 2 e). Two shallow high conductivity bodies
(C1 and C2) rise from anomalies DC1 and
DC2 in the deep crust. Importantly, these
features are not largely affected by various
inversion parameters ( Figs S4–S8) and were
well tested ( Figs S9–S11), suggesting the ro-
bustness of these high conductivity bodies. The
deepest mantle anomalies in Fig. 2 c terminate
at approximately the same position within the
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Western Wabigoon subprovince from which the 
89–102 km deep anomalies in Fig. 2 b rise. 

The prominent high N-S conductivity anoma- 
lies within the lower crust and upper mantle are 
unusual in the stable cratonic area characterized by 
high-velocity anomalies [29 –31 ] as well as relatively 
thick lithosphere [25 ,26 ] (although shallower than 
in the northern Superior proto-craton/Hudson Bay 
Terrane further north). The geoelectric strike direc- 
tion obtained from MT data ( Fig. S1) above the con- 
ductive features (Fig. 2 b) revealed an obvious N-S 
trend, especially at periods centered near 528 s that 
are sensitive to the depth of the lithospheric man- 
tle. The somewhat greater variabi lity of stri ke direc- 
tions at short periods might be related to the com- 
plexity of shallow structures (e.g. Fig. 2 a), and the 
northwestern trend at longer periods (e.g. centered 
near 4673 s in Fig. S1) correlates with the structure at
great depth. The MT responses calculated from the 
preferred model (full-impedance tensors and tipper 
vectors) fit the observed data well, with a normalized 
root-mean-square misfit of 2.33 for a 5% error floor 
for impedance and a constant 0.05 for tippers. We 
thus conclude that N-S alignment of the conductive 
features is a robust feature of the data set. 

The 400 km long and 50 km wide arch-shaped 
highly conductive N-S feature (C1-DC1) in the 
SCLM along profile A–A’ has an extremely low resis- 
tivity of ∼1 �m. Given the possible screening effect 
of the shallow high conductivity features, we carried 
out a model sensitivity test of DC1 ( Fig. S10) that 
confirmed its validity. Other conductive features of 
similar geometry but smaller size (C2 in the lower 
crust and possibly uppermost mantle and DC2 in 
SCLM) are shown in section B–B’. The conductivity 
of DC1 is higher than that of DC2. 

DISCUSSION 

Timing and significance of MT anomalies 
Although cutting the western arm of the MCR, 
ca. 400 km SW of the intersection of the rift’s two
arms, the long NW-SE trending, highest conduc- 
tivity section of anomaly MC directly underlies the 
interpreted Keweenaw mantle plume center [8 ] 
(red star in Fig. 1 b). This anomaly also underlies: 
(i) mafic-ultramafic and anorthosite intrusions of 
the 50 0 0 km2 , 1096 Ma Duluth intrusive complex 
(one of the largest on Earth), (ii) similar mafic intru- 
sions such as the Mellen Complex on the opposite, 
SE side of Lake Superior, and (iii) coeval flows of the 
North Shore Volcanic Group (Fig. 1 b), which are all 
attributed to multiple magmatic pulses associated 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae239#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae239#supplementary-data
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https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae239#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae239#supplementary-data
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Figure 3. Possible model for the formation of the conductive anomalies at the base of 
the lithosphere around Lake Superior. Volcanics are shown in green. (a) A segment of 
the Superior Province has sulfide-rich lithosphere [19 ]. The Keweenaw mantle plume’s 
impingement on the SCLM around Lake Superior provides a potential mechanism to 
form interconnections between sulfidic films, yielding the observed highly conductive 
features at great depths. Pre-existing rift regions [3 ] are reactivated during plume im- 
pingement, localizing flood basalt magmatism, underplating, mafic-ultramafic intru- 
sions and sulfide-rich mineral deposits around Lake Superior. Several MT anomalies 
within the Superior are likely due to Archean hydrothermal fluid flow and magma em- 
placement. (b) The > 20 cm/yr southward (in today’s orientation) rapid motion of Lau- 
rentia during the period of MCR formation [38 ] severed the connection to the plume, 
leaving the regional NW-SE trending conductive trail. 
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ith lithospheric extension and decompression
elting above a zone of mantle upwelling [32 ,33 ].
long its SE continuation [19 ], the 12-km-long
ound Lake mafic–ultramafic intrusion, mafic
ikes of a 1.0 Ga swarm, and anorogenic granitoids
nd volcanics closer to Lake Michigan occur. The
errogabbro Logan si l ls and the 1105.6 ± 1.2 Ma,
i–Cu–PGE sulfide-bear ing Tamarack intrusive
omplex [34 ] are both situated in a broader ex-
ension of this anomaly along the shore of Lake
uperior and 75 km west of Duluth, respectively
Page 5 of 11
(Fig. 1 b). The 1.1 Ga Heaven Lake mafic-ultramafic 
intrusion, which hosts Ni–Cu–Co–PGE mineraliza- 
tion, occurs in the easternmost of the two additional 
diffuse conductive anomalies arising from the broad 
portion of the MC anomaly. Previous geophysical 
[35 ] and thermochronological [36 ] studies support 
that the high conductivity anomaly MC lies within 
the footprint of the area which was influenced by 
the Keweenaw mantle plume. 

When rotated to match the orientation of the 
MCR within Laurentia at 1108 Ma [37 ], this lin-
ear, NW-SE MC conductive anomaly at the base of 
the lithosphere parallels the direction of Laurentia’s 
rapid southward displacement (exceeding 20 cm/yr) 
determined from paleomagnetic data [38 ]. As inter- 
preted from thermobarometric models, the magma 
generation mechanism for MCR basalt changed 
from early mantle plume-related melting to subse- 
quent decompressional melting controlled by man- 
tle convection [39 ], implying that this rapid plate 
motion may have broken the connection to the man- 
tle plume beneath the pre-existing structures which 
created the initial MCR (Fig. 3 b), only leaving a resis-
tive trail with little evidence for magmatism and vol- 
canism NW of the MCR. That the MT anomaly does
not extend fur ther nor thwestwards than the Western 
Wabigoon subprovince may be due to a difference in 
the composition of SCLM (such as a higher sulfide 
content), commensurate with a change in age from 

late Paleoarchean to Mesoarchean to the north, to 
late Mesoarchean to Neoarchean to the south [40 ] 
of this lithospheric-scale boundary. The concentra- 
tion of magmatic sulfide deposits and occurrences in 
the area traversed by this anomaly and its SE termi-
nation at the Superior-Yavapai contact likely reflects 
a unique, sulfide-rich composition of this segment of 
the Superior Province. 

Interpretation of other conductive MT anomalies 
is less straightforward, and there are three possible 
options: 

Option 1 . In this first option, all MT anoma-
lies in our study area are due to a regional, up-
to-10 0 0-km-diameter thermal footprint about the 
Keweenaw mantle plume center [36 ,41 ] (including 
that of a suggested older, 1150 to 1140 Ma precur-
sor event [41 ]). The subvertical conductors DC1 
and DC2 (Fig. 2 ) are here thought to represent
the fossil signatures of the ascending channels that 
transported the fluids from the asthenosphere into 
the SCLM and lower to mid-crust, forming anoma- 
lies C1 and C2. This requires the presence of pre-
existing structures at a high angle to those mapped 
at the surface, where only few ca. N-S structures are
present. 

In the conventional plate-tectonic model for the 
Superior Province, seismic reflection, refraction and 
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ravity models suggest the presence of a preserved
lab of accreted oceanic crust and upper mantle
ubducted northwards from beneath the central
abigoon subprovince (Fig. 1 b) [42 ,43 ]. Such su-

ures elsewhere are most often imaged as conductive
nomalies on MT surveys due to graphite having
een carried deep into the Earth during subduction
nd transported by fluids into associated crustal
hear zones during orogenesis [18 ,44 ,45 ]. Although
n cross-section, anomaly C1 is coincident with the
nterpreted fossil subduction zone in this model,
n plan and 3D view anomalies C1 and C2 cut
cross the interpreted sutures corresponding to sub-
rovince boundaries (Figs 1 b and 2 ). Whilst direct
maging of an Archean subducted slab is not tenable,
uids or melts that ascended along DC1 may have
een impeded by the subducted depleted mantle
nterface and moved laterally along the remnant slab,
ising where breached by deep transverse N-S faults.
uring this time, at least some hydrothermal fluids
r melt, or mixtures thereof, with sulfide-enriched
ontent were left behind, or host rocks were meta-
omatized to form the prominent high conductivity
ones. 
In this model, the NW-SE trending conductive

nomaly beneath or in the lowermost of the SCLM
ntersecting the two arms of the MCR near the
orthern extremity of Lake Superior (Fig. 2 ) may
epresent an incipient, third arm of a classic plume-
elated failed rift/aulacogen [11 ]. This would, how-
ver, require that either the uppermost plume head
omprised two lobes or that magma migrated later-
lly into pre-existing structures [46 ,47 ]. 
Option 2. In this second option, only the NW-

E conductive anomaly at the base of the litho-
phere and its broader extent on the NW margin
f Lake Superior, anomaly MC, formed during dis-
lacement of the Superior Province over the Ke-
eenaw mantle plume (given the arguments pre-
ented in detail above for a mantle plume-related
rigin), but the anomalies higher in the SCLM and
rustal anomalies instead formed in the Archean and
ere not modified (or at least not substantially) by
he thermal effects of the Keweenaw mantle plume.
lthough sti l l plausible in the context of subduction-
ccretion tectonics conventionally ascribed to the
uperior Province, this model can be best explained
y the fragmentation and reassembly interpretation
or the Superior Prov ince w ithout modern plate tec-
onics [22 –24 ] (i.e. a model without fossil subduc-
ion zones that may contribute to the formation of
nomalies described above for Option 1 , but with-
ut the orientation constraints). In this model, as
uggested based on a preliminary analysis of only
art of Lithoprobe MT data in the northern part
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of the present study area [48 ], pre-existing struc- 
tures at a high angle to the generally E-W sub- 
province boundaries in the Western Superior, i.e. 
akin to those in the NE Superior Province, preserved 
in Paleo- to Mesoarchean SCLM (especially north 
of the Western Wabigoon and Quetico subprovinces 
[40 ]), may have controlled circulation of hydrother- 
mal fluids and possibly magma, giving rise to the 
N-S conductive anomalies DC1 and DC2 in the 
SCLM (Fig. 2 b). From these broad N-S conductive 
anomalies in SCLM, fingers (C2 and smaller anoma- 
lies west of it aligned N-S) have risen through the 
crust (Fig. 2 a) similar to the ‘Fingers of God’ in the
Gawler Craton of South Australia [49 ]. Indeed, sim- 
ilar zones of attenuation on reflection seismic (a.k.a. 
‘bland zones’) that are comparable to MT ‘Fingers’ 
mentioned in the article on the Gawler Craton [49 ] 
have been identified in the NW Superior Province 
[48 ]. 

Other isolated anomalies such as C3 that rise 
from the SCLM into the crust may be due to more lo-
cal controls of Archean structures; although located 
close to the MCR, anomaly C3 is sti l l a considerable
distance from the interpreted plume center and NW- 
SE interpreted trail left by passage over the man- 
tle plume. The central to eastern Superior Craton 
is interpreted to have transited over a Great Meteor 
hotspot during the Jurassic and Early Cretaceous 
[6 ] (although such a hotspot model is contested 
[50 ]). Figure 1 a shows the track of this hotspot at
the surface inferred from kimberlite pipes [6 ] and at 
a depth of 200 km from seismic evidence [7 ]. Both
tracks are outside of our study area, suggesting this 
hotspot has no significant influence on the main con- 
ductors we focus on, which thus preserved the tec- 
tonic footprint of the MCR. However, the conduc- 
tor C3 at the western end of the track (dark slate
gray) might be associated with this hotspot, which 
is consistent with an observed low-velocity anomaly 
[5 ,7 ,29 ]. 

Option 3. A third alternative is that all the MT 

anomalies in the study area formed in the Archaean 
and that either no anomalies were created by the Ke- 
weenaw mantle plume or that there was no plume 
and that magmatism in the MCR was controlled 
solely by asthenospheric uplift during rifting. Whilst 
sti l l possible, solid arguments were presented un- 
der Option 1 , above, for the formation of the con-
ductive anomaly in the basal SCLM or underlying 
it during southward displacement of the Superior 
Province (as part of Laurentia) over a mantle plume. 
That there was no mantle plume is far less likely 
(and is noted here solely for completeness), given 
the aforementioned conjuncture between the intru- 
sion of large mafic bodies, extensive volcanism and 
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oth radial and circumferential dikes characteristic
f a mantle plume [8 ]. 

rigins of conductivity anomalies 
ighly conductive zones within the lithosphere are
enerally explained by the presence of partial melt
r saline fluid, by interconnected graphitic or sul-
de mineral-bearing zones, or by the presence of
ydrogen in mantle oliv ine, which along w ith py-
oxene and garnet accommodates water in the up-
er mantle. Considering the stable Precambrian ge-
logical setting along with the low heat flow of our
tudy area [51 ], extant partial melt and saline fluid
re unlikely to explain these prominent high conduc-
ivity anomalies [15 ]. Therefore, hydrous minerals
nd/or sulfide-bearing minerals are the more likely
ause of the highly conductive asthenospheric and
ithospheric features in this study. Additionally, con-
uctivity anomalies in the stable lithosphere above
50 km deep may possibly be explained by grain
oundary graphite films [52 ,53 ]. 
For the extremely high conductors C1, C2 and
C1 within the SCLM, the inferred water content
rom any law of hydrous olivine electrical measure-
ents in the laboratory [54 ] would induce melt-

ng in the lithospheric mantle [55 ]. The implausibly
igh water content of ∼800 ppm is required to ex-
lain DC2 (ca. 10 � m) using the unified electrical
onductivity law [54 ], a level that could also induce
elting [55 ], yet we cannot rule out more typical lev-
ls of mantle hydration (50–200 ppm) [55 ]. Never-
heless, even for such levels of hydration, other con-
ected conductive phases must also be present. 
Interconnected graphite films along mineral grain

oundaries have been widely used to explain the
igh conductivity in the stable cratonic lithosphere,
articularly along sutures and terrane boundaries
15 ,44 ,45 ]. If the conductive anomalies are domi-
ated by the interconnected graphite with a typi-
al resistivity of 0.1 � m, an unlikely large amount
f graphite > 10 vol% is required to explain the ex-
remely high conductivity (i.e. 1 � m), while for a
esistivity of 10 �m, the graphite required would be
educed to 1 or 1.5 vol% ( Fig. S12). A similar content
f graphite was used to explain the observed highly
onductive anomaly in an adjacent region [45 ]. 
It is important to note that the resistivity of

raphite could be very low (e.g. 5 × 10−6 � m, i.e.
 × 105 S/m) yet capable of producing the bulk re-
istivity of 10−3 � m with a volume of 1 vol% pro-
ided the graphite films have bulk interconnections
long grain boundaries [52 ]. This might be the rea-
on that various studies attribute high conductivity
ithospheric anomalies (e.g. 1 �m) to graphite with-
ut considering its content. For the depths and pres-
Page 7 of 11
sures associated with the deep lithospheric anoma- 
lies in our preferred model, graphite is unstable and 
transforms into highly electrically resistive diamond 
structure at sub-cratonic depths of ∼150 km [53 ], 
suggesting that the presence of interconnected sul- 
fides is a more likely cause of enhanced conductivity, 
particularly for the deep part of DC1. 

Massive sulfide deposits in the Lake Superior 
region [56 ,57 ] occur within mafic-ultramafic in- 
trusions with an SCLM source [58 ]. Sulfide was 
suggested to be able to enhance conductivity by 
laboratory measurements [59 ,60 ]. It was used to 
interpret the high conductivity anomaly in cratonic 
environments such as in the mantle beneath the 
Kaapvaal craton [61 ]. The conductivity of the solid 
sulfides is very high (103 –105 S/m) [62 ,63 ], and at
most 0.1 vol% sulfide would account for the bulk 
conductivity of 1 S/m ( Fig. S12), providing it forms
a well-interconnected network. Such a scenario is 
not typical, however, because of the small fraction of 
sulfides in the mantle, i.e. typically 0.06 wt% [64 ]. 

As shown in Fig. 2 , our model reveals widespread
conductors (MC) with upper boundaries of ∼150–
180 km, i.e. immediately below or at the base of
the SCLM. Previous studies using EarthScope MT 

data alone also showed similar conductive features 
[18 ,19 ], although with limited data coverage. The 
presence of elevated conductivities across a wide 
area at the base of the lithospheric mantle that are
comparable to conductor MC in our study has been 
previously noted elsewhere [65 ]; establishing their 
origin, however, remains problematic [66 ]. In partic- 
ular, this elongated MC conductive feature was fur- 
ther tested before, with resistivity of ∼1–3 �m [19 ]. 
Similar sensitivity tests i l lustrate that MC starts from 

the asthenosphere ( Fig. S11) with unresolved verti- 
cal extension ( Fig. S9) due to the limitation of the
data set. 

Partial melting of the basal lithospheric mantle 
over a mantle plume with metasomatism by fluids 
or melts enriched in incompatible elements [15 ] is 
applicable to the regional context proposed for pas- 
sage of the MCR over the Keweenaw mantle plume. 
Such metasomatic processes and refertilization of 
the lower lithospheric mantle above a subducting 
slab are also postulated to explain a regional deep 
SCLM conductive anomaly in the SW Gawler Cra- 
ton of South Australia [66 ]. This anomaly’s orien- 
tation at a high angle to the interpreted subduc- 
tion zone makes a subduction-related origin unlikely, 
whereas metasomatism due to mantle dripping, with 
commensurate multiple zones of asthenospheric up- 
welling, also proposed for the Gawler Craton [67 ] 
following subduction, would provide a more likely 
mechanism, and be akin to displacement over a 
mantle plume. To interpret this high conductivity, 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae239#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae239#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae239#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae239#supplementary-data
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t least 20 0 0 ppm water content [68 ] that would
nduce melt, or 2% melt [69 ] are required, as have
een discussed before [70 ]. This high melt fraction
s not supported by the seismic results [29 ,31 ]. In ad-
ition, a much smaller carbonate melt would account
or this anomaly [71 ]. However, during the plume
r other large-scale melting events, carbonate melt
ould not always be well connected when both sil-
cate and carbonate melts are present because the sil-
cate melt preferentially wets the solid mantle matrix
72 ]. Importantly, partial melt would not be sustain-
ble because of heat loss over such a long geological
ime within the craton. 
The Keweenaw mantle plume’s impingement on

he SCLM around Lake Superior provides a poten-
ial mechanism to form bulk interconnections be-
ween sulfidic films, yielding the observed highly
onductive features at great depths (Fig. 3 a). Fur-
hermore, Ni and Cu sulfides are most likely, due to
he presence of Ni-Cu orebodies in the study area
34 ]. Evidence for the mantle plume is supported
y other geophysical, geochemical and petrological
tudies [2 ,11 ,73 ]. Seismic studies observed a low-
elocity channel down to ca. 250 km that is similar
n geometry and near (but southwest) of the high-
st high conductivity of MC (Fig. 2 c and f) [30 ],
hich may be related to the preserved track of a
antle plume [30 ]. A recent geodynamic model also
emonstrated that a mantle plume is required to pro-
uce a large volume of flood basalt in the MCR [46 ].

ONCLUSION 

he first electrical resistivity model of the MCR
erived from 3D inversion of both USArray and
ithoprobe MT data, extending northwards into
he Archean Superior Province, shows a prominent
ighly conductive anomaly trending NW-SE at the
ase of the western Superior’s cratonic lithospheric
antle, cross-cutting and extending for over 300 km
n both sides of the west rift branch, and continu-
ng on strike direction into an area of previously pro-
essed EarthScope MT data. The Keweenaw plume
enter interpreted in earlier studies, the penecon-
emporaneous Duluth and other layered mafic in-
rusive complexes hosting massive sulfide deposits,
ows of the North Shore Volcanics, and a cluster of
afic dikes overlie different parts of this continu-
us conductive anomaly. We hence propose that the
otal, ca. 600-km-long anomaly, starting at a litho-
pheric boundary within the Superior province and
erminating at the Superior-Yavapai Province bound-
ry, reflects the upper mantle signature (i.e. ‘plume
rail’) associated with Laurentia’s rapid southwards
otion over the Keweenaw mantle plume, as de-
Page 8 of 11
duced from paleomagnetic studies. The high con- 
ductivity of only this segment of the plume trail is 
thought to result from metasomatism and/or partial 
melting of the sulfide-rich basal lithospheric man- 
tle, melting of which is the source for magmatic sul- 
fide deposits in this part of the Superior Province. 
In supporting the position of the previously inter- 
preted plume center, our interpretation concurs with 
previous research where an early formed rift geome- 
try controlled by pre-existing Archean structures ex- 
plains the lack of a classical three arm, solely plume- 
re lated rift configuration. 

However, the origin of the N-S trending conduc- 
tive anomaly in the lithospheric mantle, and overly- 
ing scattered elliptical crustal anomalies, as well as 
the comparable isolated conductive anomalies in the 
central east parts of the study area is debatable based 
on the available data. Although they similarly may 
represent (at least in part) regional effects of the Ke- 
weenaw mantle plume localized by basement struc- 
tures, hydrothermal fluid flow and magma emplace- 
ment into the crust in the Archean is proposed as a
more likely alternative origin. 

METHODS 

The magnetotelluric method 

The MT methodology uses measurements of time- 
varying and mutually orthogonal components of 
electromagnetic (EM) fields at the Earth’s surface 
to image the subsurface resistivity structure [52 ,53 ]. 
Penetration depths of the EM fields increase with the 
increasing resistivity of the Earth and the period of 
EM field variations. The MT data used in this study 
were collected in the 1994–20 0 0 Lithoprobe West- 
ern Superior Transect project in Canada [74 ] and 
the EarthScope USArray MT Program (2006–2018) 
in the United States [16 ]. As shown in Fig. 1 , the
EarthScope USArray MT data were acquired on a 
quasi-regular grid, while those of Lithoprobe were 
collected along several transects. Based on the spa- 
tial distribution and data quality, data from 169 long- 
period MT sites with periods of ∼10–20 0 0 0 s were
selected, which is sufficient to probe the resistivity 
structure of the entire lithosphere [52 ,53 ,70 ]. 

Inversion 

3D MT inversions were carried out using ModEM 

[75 ,76 ] to fit the full impedance tensor ( Z ) and ver-
tical magnetic field transfer functions (VTFs), also 
known as ‘tippers’. For the impedance, a full range of 
periods from 10–20 0 0 0 s were used, while for the
VTFs, long periods of data ( > 7300 s) are excluded
due to possible external source bias [77 ]. To reduce 
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he calculation time and simultaneously ensure the
odel resolution, five periods per decade were used.
o further reduce the calculation time and consider
he possible influences from external structures (e.g.
he oceans) that cannot be constrained by our data
et, the nested model grid approach was used follow-
ng previous studies [70 ]. Data of poor quality were
xcluded from the inversion. 
The fine model embedded in the multi-gridded

oarse model is of dimension 116 × 106 × 60 in x, y
nd z directions with a uniform grid-cell size of 8 km
orizontally. The vertical grid-cell size is 50 m in the
rst layer and increases logarithmically by a factor of
.15 to 1400 km, which is also the grid setting for the
oarse model of the nested approach. The horizon-
al grid size in the coarse model in the multi-grid is
2 km, and it is padded logarithmically at the data
oundary by a factor of 1.3, resulting in 1500 km
etween the model boundary and data boundary in
ach direction. For each model, 12 air layers were
dded to provide the upper boundary condition. 
A series of inversions were conducted using dif-

erent data sets, ‘error floors’, model smoothing fac-
ors, and starting and prior model resistiv ity, w ith the
etails shown in the supplementary data ( Figs S5–
8). For the preferred model, the parameters are
s follows. The resistivity of the starting and prior
odel is 100 � m; Atlantic Ocean and Hudson’s
ay in the coarse model were set to be 0.3 � m.
or the error floors, |Zxy × Zyx |1/2 × 5% was set
or all impedance components and a constant value
f 0.05 was chosen for VTFs. The model smooth-
ng was set to 0.2 with two passes in each direc-
ion. The impedance data were inverted first and a
odel was obtained with 218 iterations. Using this as
he starting model, the inversion was restarted and
he impedance and VTFs were jointly fitted. The
referred solution was obtained after an additional
46 iterations with a normalized root-mean-square
nRMS) misfit of 2.33. The good data fit of phase
nd apparent resistivity is shown in Figs S3 and S4,
espectively. 

UPPLEMENTARY DATA 

upplementary data are available at NSR online. 
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