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REVIEW

Promising animal models for amyotrophic lateral sclerosis drug discovery: 
a comprehensive update
Léa Lescouzèresa,b and Shunmoogum A. Pattena,c

aINRS - Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada; bEarly Drug Discovery Unit, Montreal Neurological Institute-Hospital, 
McGill University, Montreal, Canada; cDepartement de Neurosciences, Université de Montréal, Montreal, Canada

ABSTRACT
Introduction: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by 
the progressive loss of motor neurons. Several animal models have been generated to understand ALS 
pathogenesis. They have provided valuable insight into disease mechanisms and the development of 
therapeutic strategies.
Areas covered: In this review, the authors provide a concise overview of simple genetic model 
organisms, including C. elegans, Drosophila, zebrafish, and mouse genetic models that have been 
generated to study ALS. They emphasize the benefits of each model and their application in transla
tional research for discovering new chemicals, gene therapy approaches, and antibody-based strategies 
for treating ALS.
Expert opinion: Significant progress is being made in identifying new therapeutic targets for ALS. This 
progress is being enabled by promising animal models of the disease using increasingly effective 
genetic and pharmacological strategies. There are still challenges to be overcome in order to achieve 
improved success rates for translating drugs from animal models to clinics for treating ALS. Several 
promising future directions include the establishment of novel preclinical protocol standards, as well as 
the combination of animal models with human induced pluripotent stem cells (iPSCs).
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1. Introduction

Amyotrophic lateral sclerosis (ALS) is the most common motor 
neuron disorder affecting approximately 4–6 persons per 100 
000 worldwide, with only 20% of patients living for five years 
or more after diagnosis [1,2]. ALS is characterized by 
a progressive degeneration of motor neurons in the spinal 
cord and the brain [3]. These clinical manifestations lead to 
progressive muscle denervation, muscle weakness, muscle 
atrophy, paralysis and ultimately death. Considerable diversity 
exists within the disease, with heterogeneity of initial presen
tation, spreading of disease, progression rates, and survival [4]. 
Indeed, in addition to motor symptoms, ALS patients can also 
experience non-motor symptoms including cognitive and/or 
behavioral impairment, including degeneration in the brain 
extending to interneurons in frontotemporal lobar degenera
tion (FTLD) [5,6]. The initial manifestation of ALS varies; some 
patients present symptoms originating in the spinal region, 
such as muscular weakness of the limbs (limb onset), while 
others present symptoms originating in the bulbar region 
(bulbar onset), characterized by difficulties in speaking and 
swallowing, known as dysarthria and dysphagia.

The majority of ALS cases (approximately 90%) are sporadic 
(sALS), and the remaining 10% of cases are familial (fALS). 
Mutations in more than 40 of them have been associated 
with ALS and the most common mutated genes are super
oxide dismutase-1 (SOD1), chromosome 9 open reading frame 

72 (C9ORF72), fused in sarcoma (FUS), and TAR DNA-binding 
protein (TARDBP) (see reviews [7,8]). Several animals have 
been used to model the major genetic cases of ALS, and 
they have been instrumental in our mechanistic understand
ing of ALS and for drug discovery. There are several pathologic 
mechanisms such as excitotoxicity, oxidative stress, protein 
misfolding and aggregation, axonal transport dysfunction 
and degeneration, neuroinflammation, mitochondrial dysfunc
tion, altered RNA processing, endoplasmic reticulum stress 
and dysregulated nucleocytoplasmic transport that have 
been associated with ALS onset and progression. 
Interestingly, at the cellular level, the cytoplasmic mislocaliza
tion and aggregation of TAR DNA-binding protein 43 (TDP-43) 
has been reported in 98% of all ALS cases. Abnormal TDP-43 
aggregation results in proteasomal dysfunction, stress granule 
formation, cryptic splicing, mitochondrial dysfunction and 
altered RNA metabolism including cryptic splicing- 
polyadenylation.

Out of over 80 human clinical trials, only riluzole [9], edar
avone [10] and more recently Sodium phenylbutyrate and 
taurursodiol combination [11] modestly slowed disease pro
gression. Moreover, oxidative stress and excitotoxicity are the 
only two nonspecific pathways targeted by these FDA- 
approved drugs. Since 2023, the FDA-approved Tofersen 
(also known as BIIB067, QALSODY), an antisense oligonucleo
tide (ASO) drug, is indicated for the treatment of ALS in adults 
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who have the mutation in SOD1 and proved to reduce the 
amount of SOD1 protein [12,13]. The success of Tofersen 
suggests that this therapeutic strategy holds great promise, 
particularly for correcting other ALS-related mutations ([14] for 
review). Given the rarity of each genetic variant and the 
unknown causes of most ALS cases, there is still an urgent 
need to identify disease-causing pathways to develop better 
treatment targets for this complex motor neuron (MN) 
disorder.

Translation of findings from animal models to therapy have 
largely been focused on the discovery of small molecules 
targeting pathogenic pathways in ALS, such as excitotoxicity, 
oxidative stress, mitochondrial function and neuroinflamma
tion. However, over the past decade, novel techniques, such as 
ASOs, have been developed to target disease-causing muta
tions and/or restore gene expression (e.g. STMN2). In this 
review, we will focus on the animal models created over the 
years by the scientific community to study ALS and for drug 
discovery. We will highlight how the so-called simple models, 
and more complex models, have been a springboard toward 
the identification of several drugs with therapeutic potential 
for this complex disease.

2. Genetics of ALS

Most ALS cases (90%) are of sporadic origin (sALS), appearing 
spontaneously with no family history, while the remaining 
10% are familial (fALS) involving causative genetic mutations. 
The study of these familial forms has revealed numerous 
mutations, mainly transmitted in an autosomal dominant 
mode, and affecting more than 50 genes, involved in the 
triggering of ALS [2]. In this review, we will focus on the four 
causative gene responsible for the majority of fALS cases: 
SOD1, TARDBP, FUS and C9ORF72. Apart from those genes 
that have been clearly implicated in ALS, there are other 
potentially causative and susceptibility genes that we will 
not discuss further (see [15] for review).

The GGGGCC hexanucleotide repeat expansion (HRE) muta
tion in the 5’ non-coding region of C9ORF72 (encoding chro
mosome 9 open reading frame 72) is responsible for most ALS 
cases, as it has been identified in ~ 40% and ~ 5% of familial 
and sporadic cases respectively [16,17]. This HRE comprises 2– 
20 tandem copies in healthy conditions but is expanded to 

hundreds or thousands copies in C9ORF72 patients. Repeat 
expansion was first associated with reduced C9ORF72 gene 
expression [18], suggesting a haploinsufficiency mechanism. 
Two other disease mechanisms of toxic gain-of-function were 
then proposed [19,20], associated with 1) toxicity from aggre
gation-prone dipeptide-repeat proteins (DPRs) translated from 
the GGGGCC repeat region in by a start codon-independent 
RAN translation manner and 2) neurotoxic RNA foci nucleated 
by the GGGGCC repeat. The function of C9ORF72 protein is 
still unknown, but a role in autophagy and vesicular trafficking 
has been proposed based on sequence homology with the 
DENN family of regulators of endocytosis [21,22].

A toxic gain-of-function mutation in the Superoxide dismu
tase 1 (SOD1) gene was found in ~ 20% of fALS and ~ 1–7% of 
sALS [23]. Most of SOD1 mutations are missense mutations, 
but deletions and insertions have also been reported. The 
main physiological function of SOD1 is to protect cells against 
oxidative damage [24,25]. To date, it is still unclear how muta
tions in SOD1 lead to ALS. It has been proposed that SOD1 
mutations can result in either a detrimental loss of its enzy
matic activity or gain of toxic function due to protein misfold
ing and aggregation. Mechanistically, excitotoxicity, 
mitochondrial dysfunction, axonopathy, apoptosis, microglial 
activation and endosomal trafficking have been reported in 
ALS SOD1 models [26–29].

Mutations in TAR-DNA Binding Protein (TARDBP) are respon
sible for ~ 4–6% of fALS and ~ 1.5% of sALS cases [30]. This gene 
encodes for TDP-43, a highly conserved and ubiquitously 
expressed DNA/RNA-binding protein [31]. TDP-43 is involved in 
many steps of RNA processing, including transcription, splicing, 
transport, translation and stress granules formation [32]. Over 50 
different dominant heterozygous mutations have been found, 
mainly affecting the C-terminal domain containing the nuclear 
localization signal sequence. Mutations in TARDBP result in ubi
quitin-positive inclusions of TDP-43 protein, predominantly 
observed in the cytoplasm of neurons and glial cells, and corre
late with nuclear depletion of TDP-43 [33,34]. To date, it remains 
unclear whether loss or gain of function, or a combination of 
both, is responsible for the pathophysiology of TDP-43.

Finally, mutations in the Fused in Sarcoma (FUS) gene 
account for around 5% of fALS and < 1% of sALS [35,36]. Like 
TDP-43, FUS is an DNA/RNA binding protein. Mutations in FUS, 
mostly located in the exon 15 which encodes for the nuclear 
localization signal at the C-terminal region of the protein, are 
known to cause its redistribution in the cytoplasm and accu
mulation of protein inclusions [37–40]. ALS-associated FUS 
mutations have been reported to cause defective DNA 
damage repair and RNA splicing [41,42].

The identification of these mutations has led to the devel
opment of animal models of ALS, with the aim of understand
ing the physiological and molecular mechanisms underlying 
the disease.

3. Simple model organisms of ALS

Simple animal models such as worms (Caenorhabditis elegans), 
fruit flies (Drosophila melanogaster), and zebrafish (Danio rerio) 
offer several advantages. They have relatively simple genomes 
compared to mammals, making them highly amenable to 

Article highlights

● Simple models C. elegans, Drosophila and zebrafish are powerful 
genetic models for the ALS disease.

● Simple and more complex in vivo models provide new insights into 
ALS pathogenesis.

● The synergistic potential of combining multiple ALS models has 
proven highly effective in identifying new therapeutic targets cur
rently in the clinic.

● The use of multiple simple animal models in conjunction with more 
patient-relevant models has an immense potential in providing 
insights in ALS pathogenesis and therapeutic targets.

● Translational research using animal and other pathology relevant ALS 
models has enabled the discovery of new therapeutics addressing 
different pathophysiological aspects of the disease.
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genetic manipulation. Their short generation times, small size 
and cost-effectiveness facilitates their maintenance. Simple 
model organisms are particularly suited for high-throughput 
screening of chemical libraries, as embryos and larvae can be 
accommodated in 96-well microplates, and drugs can be 
easily administered at appropriate developmental stages. 
Overall, simple animal models offer valuable tools for studying 
basic biological processes, modeling human diseases, and 
identifying potential therapeutic.

3.1. C. elegans ALS models

Caenorhabditis elegans (C. elegans) is a non-parasitic nematode 
that is approximately one millimeter long in the adult, with an 
average lifespan of 2–3 weeks. The nervous system of the 
worm consists of 302 neurons in the hermaphrodite, and 
neuronal connectivity has been well mapped and described 
[43–45]. Indeed, neurons have been found to communicate via 
approximately 6400 chemical synapses, 900 gap junctions, and 
1500 neuromuscular junctions [46] and use most of the known 
neurotransmitters in the mammalian nervous system. Full 
genomic sequence comparisons have shown that approxi
mately 35% of the C. elegans genome has an orthologous 
equivalent in humans [47]. C. elegans is a valuable genetic 
model because it is amenable to a wide range of genetic 
manipulations including forward genetic screens, reverse 
genetic RNAi screens, rapid mutation mapping, and transgen
esis. C. elegans assays are fast, low cost, suitable for high- 
throughput analysis, and genetically tractable with a fully 
sequenced genome, making the worm an excellent model to 
study ALS and other neurological diseases [48] (Figure 1).

Human SOD1 and C. elegans sod-1 are highly homologous, 
sharing 71% protein similarity [49]. The toxic gain-of-function 
have first been observed in transgenic C. elegans by introdu
cing human wild-type and ALS-related mutant forms. 
Overexpression of disease-associated SOD1 mutations (A4V, 
G73R and G93A) under the control of a muscle promoter 
(unc-54) in C. elegans resulted in low toxicity, including mild 
cellular dysfunction and protein aggregates with distinct mor
phological characteristics [50]. Another overexpression 
C. elegans model with pan-neuronal expression of SOD1G85R 

(from the snb-1 promoter) display insoluble SOD1 aggregates 
in neurons which are associated with locomotor defects, 
reduced axonal length and impaired neuronal transmission 
[51,52]. More recently, overexpression of human SOD1G93A 

(from the unc-25 promoter) in the worm’s motor neurons 
also leads to SOD1 aggregates, axon guidance failure, and 
motor defects [53,54]. Later, another SOD1G93A model was 
described as associated with the same motor deficits, in addi
tion to a reduced lifespan [55].

The only model of sod-1 deletion in C. elegans reports no effect 
on survival, only on fertility and resistance to oxidative stress [56]. 
Recently, single-copy ALS SOD1 knock-in models in C. elegans 
have been used as a different genetic approach. Besides modeling 
the main characteristics of ALS, these models enabled discrimina
tion between the effect of gain and loss of SOD1 function on 
cholinergic and glutamatergic degeneration [49].

Human TDP-43 and C. elegans tdp-1 share 57% protein similar
ity. C. elegans with pan-neuronal expression of TARDP mutants 

(G290A, A315T, Q331K, M337V) exhibit neurotoxic features includ
ing uncoordinated locomotor phenotypes and abnormal motor 
neuron synapses including defasciculation of GABAergic motor 
neurons [57,58]. These phenotypes were particularly correlated 
with the identification of calcineurin-dependent phosphorylated 
protein accumulation [59]. Interestingly, loss-of-function muta
tions in the C. elegans TDP-43 homolog tdp-1 (tdp-1(ok803) or 
tdp-1(ok781)) do not induce motor and neurodegenerative phe
notypes, but rather increase sensitivity to DNA damage and oxi
dative stress [60–63]. The expression of the mutant TDP-43A315T in 
GABAergic motor neurons results in age-dependent motility 
defects, cytoplasmic insoluble aggregates, neurodegeneration 
and increased endoplasmic reticulum (ER) stress. These findings 
recapitulate important features of ALS pathogenesis [64–66].

C. elegans models have also been used to study ALS-asso
ciated mutations. fust-1 shares 38% identity and 56% similarity 
with human FUS. Pan-neuronal overexpression of human FUS 
mutations (S57Δ, R514G, R521G, R522G, R524S and P525L) in 
C. elegans results in cytosolic FUS aggregates, locomotor impair
ment, synaptic dysfunction, reduced lifespan [65,67]. FUS 
C-terminal pathological form (FUS501) overexpression in worm 
also leads to impaired synaptic ultrastructure of GABAergic 
motor neurons and neuromuscular junction (NMJ) vesicles, 
reduced postsynaptic currents [68]. This elegant study done in 
C. elegans implicates a role of FUS in the organization of synaptic 
vesicles and synaptic transmission at the NMJ. The first single- 
copy transgenic human FUS nematode (S57∆) results in age- 
dependent paralysis and hypersensitivity to acetylcholinesterase 
inhibitor, treatment suggesting dysfunction in the GABAergic 
system [69]. A more recent study reported the creation of 
a novel knock-in model in worm (R524S and P525L mutations). 
These mutations are associated with stress-induced locomotor 
defects, impaired neuronal and muscle autophagy and neuro
muscular dysfunction [70]. A deletion model fust-1 (tm4439) has 
also been described. It is characterized by motor deficits and 
GABAergic motor neuron degeneration [71].

Finally, alfa-1, the conserved homolog of C9ORF72 in 
C. elegans, allowed the research community to model all 
three pathways caused by the repeat expansion in the gene. 
Deletion mutations in alfa-1 result in motility defects leading 
to an age-dependent paralysis, impaired nuclear transport, 
increased stress sensitivity, degeneration of motor neurons 
[72] and dysregulation in endolysosomal homeostasis [73]. 
From a translational perspective, this result is important 
because it confirms the functional similarity of alfa-1 to its 
human counterpart C9ORF72 [74] and thus the model’s rele
vance. In addition to modeling C9ORF72 loss-of-function, the 
introduction of C9ORF72 hexanucleotide repeats or DPRs also 
cause neurotoxicity and motor impairments. For instance, the 
transgenic C. elegans expressing 75 G4C2 repeats developed 
a shortened lifespan, locomotor defects and distinct dipeptide 
repeat protein aggregates [75]. Muscle expression of G4C2 

repeats (from 5 to 120) under the myo-3 promoter [76] in 
worms leads to the formation of RNA foci. Similarly, pan- 
muscular expression of certain DPRs accelerates paralysis [77].

Overall, the C. elegans model offers a wide variety of 
genetic tools that can be adapted to the genetic diversity of 
ALS pathology. However, it has several limitations, especially 
in phenotype analysis related to ALS pathophysiology. The 
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short life cycle of C. elegans allows for large-scale, high- 
throughput in vivo drug screening studies – as discussed in 
the next section. However, it does not permit to reproduce the 
progression of neurodegenerative symptoms that characterize 
ALS disease, in particular the degeneration of motor neurons 
leading to progressive motor phenotypes, and the slow onset 
of abnormal protein conformations and inclusions. 
Neurotransmission is simplified, and the worms lack 
a conserved neuroinflammatory system. The model cannot 
be used to study neuroinflammation, which is a major con
tributor to ALS disease.

3.2. Drosophila ALS models

The fruit fly Drosophila was introduced as an animal model in 
the early 20th century and has since become one of the most 
widely used models in biology ever since [78]. Its small size, 
ease of breeding, short life cycle (10 days from fertilized 
embryo to adult fly), and the power of available genetic 
tools [79] make it an ideal model for studies in biology. 
Complete genome sequence comparisons have shown that 
around 75% of the Drosophila genome has an orthologous 
equivalent in humans [80–82]. Its nervous system contains 
approximately 100,000 neurons [83], whose synaptic trans
mission uses mechanisms similar to those found in humans 
[84]. Among the genetic tools most commonly used in 
Drosophila, the most important are: chemical and insertional 
mutagenesis, the inducible UAS/GAL4 system [85], the tem
poral and regional gene expression targeting (TARGET) 
method, allowing precise control of Gal4 system [86]. 
A genomic-comprehensive transgenic RNA interference 
(RNAi) library has been successfully used to identify genetic 
modifiers associated with human disease [87]. More recently, 
zinc-finger nucleases (ZFNs), transcription activator-like effec
tor nucleases (TALENs) and Clustered Regularly Interspaced 
Short Palindromic Repeats with associated Cas 9 protein 
(CRISPR/Cas9) have been successfully employed in 
Drosophila. Several fly models have provided new insights 
into the cellular and molecular pathways underlying ALS 
progression (see [88,89] for review) (Figure 1).

The first Drosophila models of ALS were created shortly 
after the identification of SOD1 as the main causative gene. 
The first study reported shortened lifespans and infertility in 
Drosophila SOD1 (dSod1)-null animals [90]. This phenotype is 
notably rescued by overexpression of human SOD1 in adult 
motor neurons [91]. Later, flies expressing the human SOD1 
mutation (A4V or G85R) [92] exhibit motor impairment, synap
tic dysfunction and accumulation of human SOD1 protein in 
motor neurons, as well as increased heat shock proteins (HSP) 
in glial cells. Interestingly, expression of the human SOD1G85R 

in specific cell types, either motor neurons or glia, shortened 
Drosophila longevity when exposed to ALS-linked environ
mental insults [93,94]. Interestingly, the expression of 
SOD1G93A in Drosophila thoracic muscles causes ALS pheno
type comprising motor behavior defects, decreased lifespan, 
and causes mitochondrial pathology [95].

The knock-in Drosophila model for SOD1 (G37R, H48R, 
H71Y, and G85R) results in a strong lethality [96]. Escaper 

adult flies show severe locomotion defect, muscle atrophy 
and denervation [96]. At the NMJ level, dSod1G85R adult 
mutants are characterized by BMP ligand-dependent reduc
tion in bouton number, mEPSP frequency, and muscle capaci
tance and locomotion defect [97].

Deletion mutations in the fly TARDBP ortholog TBPH results 
in larval lethality and reduced lifespan in adults escapers, as 
well as locomotion impairment [98–102]. At the level of the 
NMJs, some groups observed a reduction in the number of 
axonal branching and synaptic boutons [98,103], or an 
increase in synaptic boutons [100], and impaired synaptic 
transmission [101]. Overexpression of both TBPH and TDP-43 
in Drosophila results in toxic phenotypes with a reduced life
span and age-progressive locomotor defects and NMJ degen
eration [99,101,104–110].

Similarly to TDP-43, expression of wild-type and mutant 
human FUS (R524S or P525L) in eyes results in progressive 
retinal degeneration, associated with axonal loss [111–113]. 
Gain-of-function mutants have been shown to be either lethal 
when FUS is ubiquitously expressed [114,115], or associated 
with reduced lifespan when pan-neuronal [112,113]. At the 
NMJ synaptic level, few phenotypes have been described in 
flies : a reduction in the number of synaptic boutons, asso
ciated with functional deficits, increased apoptosis in motor 
neurons, synaptic transmission impairment and disturbed 
locomotion [111,114,116,117]. Several studies have hypothe
sized a role for FUS in degeneration, notably through reduced 
mitochondrial transport [118,119]. Characterization of cabeza 
(caz) mutant, the fly homolog of FUS, reveals a key function for 
the gene in neuronal development, which is not responsible 
for maintaining adult neuronal function [120–122].

The study of the C9orf72 gene in Drosophila model has 
focused on gain-of-function models, due to the absence of an 
ortholog. The toxicity of RNA foci nucleated by the GGGGCC 
repeat has first been modeled in Drosophila. These studies 
showed that the expression of expanded repeat RNA is suffi
cient to cause neurodegeneration in the eye and motor neu
rons [123]. For instance, the expression of a (G4C2)48 RNA 
repeat in Drosophila recapitulates ALS-associated phenotypes 
such as locomotion defect and branching defects [124]. 
Interestingly, a Drosophila model expressing 160 G4C2 repeats 
flanked by human intronic and exonic sequences formed 
nuclear RNA foci in glia and neurons [125].

Since then, the Drosophila model has been used extensively 
to assess the pathogenicity of C9ORF72-associated ALS (see [126] 
for review). C9ORF72 DPRs toxicity has also been studied in 
Drosophila. Flies expressing arginine-rich dipeptide-repeats 
[127], specifically in glutamatergic neurons [128], shows toxi
city-related phenotypes and severe neurodegeneration, whose 
underlying mechanisms have been investigated in several stu
dies [129–134]. Pan-neuronal expression of DPRs leads to neuro
degeneration and cell death in the Drosophila central brain, and 
causes age-related motor impairment and neurodegeneration 
[135]. At the synaptic level, the expression of arginine-rich dipep
tide-repeats leads to a decrease in the number and function of 
neuromuscular synapses, associated with reduced muscle size, 
and locomotion defects [136,137]. Even more recently, the spe
cific expression of polyGR in Drosophila muscle [138] resulted in 
morphological and functional mitochondrial defect.
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Drosophila has played a key role in the modeling of ALS. 
However, as with C. elegans, the progressive onset of different 
motor phenotypes or pathophysiological markers of the dis
ease cannot be accurately described due to the relatively short 
life cycle. In the absence of a C9ORF72 ortholog, current fly 
models are limited to the analysis of HRE-induced toxicity 
gain. The limited selection of motor and behavioral tests is 
another limitation. As a result, eye degeneration has been and 
is still commonly utilized as a phenotypic marker in the model. 
We want to stress the importance of thoroughly confirming 
the specificity of this phenotype in genetic analysis to avoid 
misleadingly suggestive induced toxicity.

3.3. Zebrafish ALS models

Zebrafish have become increasingly popular as a simple verte
brate model organism for studying vertebrate biology, phy
siology and human disease due to several advantages it offers 
[139–142]. Zebrafish shares approximately 70% of human 
genes, with a high degree of identity conservation [143,144]. 
Zebrafish embryos develop ex utero, so rapidly that at 3 days 
post fertilization (dpf), embryogenesis is complete, reaching 
adulthood at 3 months post fertilization (mpf). The transpar
ency of zebrafish embryos facilitates imaging and makes 
observation of organ development, cell migration, and ALS- 
relevant pathology possible. Zebrafish stereotypes movement 
patterns enable behavioral tests to examine changes in motor 
activity. In particular, it offers many advantages for the study 
of neuromuscular diseases [141], with the increasing develop
ment of new methods for pharmacological screening and 
quantitative analysis of the neuromuscular junction [145,146].

Finally, one of the main advantages of the zebrafish model 
is the ease of genetic modification, fostered by the sequencing 
of the entire zebrafish genome in 2013. The genetic loss-of- 
function includes the expression of dominant negative con
structs by (i) antisense morpholino oligonucleotides (AMO) 
transient knockdown of gene expression [147] or (ii) knockout 
using several genome editing methods such as ZFNs, TALENs 
and CRISPR-Cas9 (see [140,148] for review). The genetic gain- 
of-function includes (i) injecting blastocysts with mRNA for 
global expression or (ii) by driving expression in small sets of 
neurons from DNA constructs using neural-specific or induci
ble genomic regulatory elements (e.g. the UAS/Gal4 system) 
[149]or (iii) by CRISPR/Cas9 knock-in of point mutations [150– 
152] and more recently by using CRISPR-based cytosine base 
editors [153]. Several ALS-causing genes have been studied in 
zebrafish using loss- or gain-of-function approaches (Figure 1).

Transgenic sod1 zebrafish larvae expressing mutants (G93R, 
G93A) exhibit abnormal NMJ and mitochondrial dysfunction, 
while adults show a progressive locomotor decline, altered mus
cle respond and motor neuron loss [154,155]. Co-injection of 
three SOD1 mutants (G93A,G37R,A4V) induces a motor axono
pathy specific for motor neurons in zebrafish larvae [156]. 
Another group reported comparable results, including increased 
sensitivity to oxidative stress, in a transgenic zebrafish line 
expressing the missense T70I sod1 mutation [157]. At the func
tional level, a study conducted on the transgenic SOD1G93R 

zebrafish model has allowed elucidating the role of interneuron 
dysfunction in the early stages of ALS [158]. In addition to an NMJ 
loss, the group described a reduced glycinergic transmission 
(spontaneous miniature glycinergic excitatory postsynaptic cur
rents (mEPSCs)) onto motor neurons of sod1 zebrafish larvae.In 
zebrafish embryos, overexpression of either wild-type or mutant 
(A315T, G348C, A382T) human TARDBP with mRNA injection led 

Figure 1. Overview of simple genetic models (zebrafish, C. elegans and Drosophila) and rodent models that recapitulate ALS pathology. Abbreviations: LOF, loss of 
function; GOF, gain of function.
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to motor axonopathy and locomotor defects [159,160]. At NMJ 
level, expression of TARDBPG348C mRNA resulted in impaired 
neuromuscular synaptic transmission, reduced frequency of 
mEPCs, reduced quantal transmission and orphaned presynaptic 
and postsynaptic structures. Interestingly, similar phenotypes 
were observed upon zebrafish tardbp knockdown with an anti
sense morpholino oligonucleotide, suggesting that both loss- 
and toxic gain-of-function might be involved in the molecular 
mechanism of pathogenesis [160]. As for C. elegans model, motor 
impairments in zebrafish expressing mutant TDP-43 (G348C) 
were partially ameliorated by compounds that mitigate endo
plasmic reticulum stress, such as methylene blue and salubrinal 
[66]. Zebrafish knockout models were then created for the two 
orthologous TARDBP genes (tardbp and tardbpl) [161,162]. 
Interestingly, reduced survival, motor and axonal defects 
described in double knockouts can be compensated with 
a novel tardbpl splice form (Tardbpl-FL). To date, only one 
CRISPR/Cas9-based knock-in of FUS- and TARDBP-related mis
sense mutation has been created in zebrafish [151].

The overexpression of human FUS mutants (R495X or 
G515X) leads to disrupted transportin-mediated nuclear 
import and accumulation in cytosolic stress granules 
[37,163]. Cytosolic mislocalization and accumulation in stress 
granules has been also described in cultured zebrafish cells 
from larvae expressing mutant FUS (R521C) [164].

Transient knockdown of zebrafish fus with an AMO were 
shown to have impairments in locomotor activity with abnor
mal motor axon projections [165]. Functionally, this model 
shows increased motoneuron excitability, reduced fidelity of 
synaptic transmission and quantal content and abnormal NMJ 
structure [166]. However, the first CRISPR-Cas9-based fus 
knockout zebrafish lack motoneuronal and locomotor defects 
[167]. Another mutagenesis-generated fus knock-out model, 
summarizes ALS-associated phenotypes such as behavioral 
deficits, NMJ defects including reduced motor neurons axonal 
length, and altered tau transcription [168]. Overall, despite 
these conflicting results, mechanisms involving loss of func
tion or haploinsufficiency are likely relevant to FUS- associated 
pathology in zebrafish model.

Different zebrafish models that have been developed to 
study the pathological mechanisms of ALS related to the 
C9orf72 gene (see [169] for review). Expression of G4C2 repeats 
in c9orf72 with DNA constructs injections results in toxic RNA 
foci formation and apoptotic cell death [170]. Sense and anti
sense RNA repeats induce motor axonopathy in zebrafish 
larvae [171]. This C9orf72 zebrafish model permitted to deci
pher a new potential pathogenic mechanism by demonstrat
ing that RNA toxicity and RNA cytoplasmic formation can 
contribute to the pathogenesis of C9orf72-associated ALS/FTD.

The role of DPR protein toxicity in C9ORF72 ALS has also 
been demonstrated in the zebrafish using transgenic UAS 
responder lines forcing the translation of poly-GA or poly-GR 
protein [172,173]. The sustained expression of G4C2-linked DPR 
proteins increases mortality, impairs locomotion, leads to 
motor axonopathy, and promotes DPR protein aggregation 
in zebrafish larvae. Similarly, a stable transgenic zebrafish line 
expressing C9ORF72-related hexanucleotide repeats recapitu
late the motor behavioral deficits, muscle atrophy, motor 
neuron loss and early mortality [174].

Models of C9ORF72 loss of function or haploinsufficiency 
have also been established in zebrafish. The transient knock
down with AMO injection [175] or overexpression of 
a nonfunctional mutant [176] results in motor axonopathy, 
increased apoptotic death and abnormalities of spontaneous 
and evoked swimming. Our group recently developed a new 
loss-of-function zebrafish line using the stable expression of 
a specific miRNA targeting the 3’-UTR region of C9orf72 gene 
[177]. C9-miR fish replicates the hallmarks of ALS as it causes 
locomotor deficits, motor neuron axonopathy and degenera
tion, muscle atrophy and TDP-43 mislocalization. At NMJ level, 
this model showed reduced mEPCs frequency and impaired 
release of quantal synaptic vesicles. Lastly, a new loss of func
tion zebrafish line was generated by targeting exon 2 using 
CRISPR/Cas9 [178]. The model lacks a neurogenerative pheno
type in the spinal cord but is characterized by neuronal loss in 
the retina.

Among the three simple animal models selected for this 
review, the zebrafish stands out as the sole vertebrate and 
therefore the most complex organism. However, it is impor
tant to acknowledge that there are some limitations asso
ciated with this model. First, the zebrafish lineage 
experienced a complete duplication of the genome, making 
it challenging to model gene silencing due to the presence of 
multiple orthologs for some human genes. It is necessary to 
consider the genetic interactions between duplicated genes, 
as has been shown for the tardbp genes [161,162].

4. Rodent models of ALS

Prior to the development of simple models, mouse and rat 
models have been important tools to better understand the 
early and late physiological mechanisms of ALS-associated and 
to evaluate potential therapeutic strategies ([179] for review) 
(Figure 1).

The first ALS mouse model was created shortly after the 
discovery of the first SOD1 causative gene [23]. The dominant 
gain-of-function mutation SOD1-G93A causes motor neuron 
disease in transgenic mice [24], which has since been widely 
used, notably to identify ALS-related cellular changes [180– 
184]. Symptoms include loss of spinal motor neuron, paralysis, 
and early death. The different models created express 
a varying number of copies of the transgene, and the time 
of onset of symptoms is variable [185–187]. Other mouse 
models were then developed with human SOD1 mutation 
overexpression: G85R [188], G37R [189], G86R [190], D90A 
[191], H46R [192] and D83G [193]. These mice develop pro
gressive degeneration of lower and upper motor neurons, 
distal axonopathy, intraneuronal and glial inclusions and mus
cle wasting and atrophy, sometimes leading to paralysis.

Early descriptions of the first SOD1 KO mouse indicated an 
absence of motor phenotype. Further studies showed this to 
be a model of chronic oxidative stress [194]. SOD1 null mouse 
models are much rarer, but those described later also show 
progressive and oxidative stress-mediated distal motor axono
pathy [195], reduction in muscle mass and oxidative damage 
in skeletal muscle leading to reduced motor performance 
[196]. Importantly, rat models overexpressing human SOD1 
mutant (hSOD1G93A) also display pathological features such 
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as motor neuron axonal loss, muscle wasting and paralysis of 
both hindlimbs and one forelimb [197,198].

Many murine models of TDP-43 mutations have been gener
ated. The first models were created by ubiquitous overexpres
sion, under the control of the Prnp promoter, of wild-type and 
mutant (A315T, M337V, Q331K) human cDNA [199–202]. This 
method has proven to be very severe, with early onset of the 
motor phenotype, aggregates of ubiquitinylated proteins and 
premature death, but no or very few TDP-43 inclusions. 
Conversely, expression of TDP-43 mutants (A315T and G298S) 
under the control of an endogenous TDP-43 promoter [203] 
results in ubiquitinylated TDP-43 inclusions, but no paralysis- 
inducing motor phenotype or reduced life span. The same BAC 
transgenic approach was used in rats, which rapidly developed 
paralysis and died after a month [204]. To limit the extremely 
severe effect, probably due to peripheral toxic effects of the 
ubiquitous expression, other models of neuronal TDP-43 over
expression driven by the Thy1.2 promoter have been established 
[205–207]. The results show a toxic effect of wild-type human 
protein in phenotypic mice, which is exacerbated by mutant 
overexpression. Different groups have used an inducible over
expression model at different developmental stages, using the 
CaMK2 promoter [208–210]. The mice are characterized by mod
erate motor neuron loss, progressive motor and cognitive 
impairment, and slightly earlier death. Finally, conditional 
expression of the TDP-43 mutant in the brain and spinal cord, 
through the NEFH (neurofilament heavy chain) promoter, results 
in an ALS-specific neurodegenerative phenotype with loss of 
motor neurons, denervation in the NMJ and TDP-43 mislocaliza
tion in mice [211] and motor neuron loss, loss of hindlimb grip 
strength and paralysis in rats [212]. Although rarer, TDP-43 
knockout models also exist in murine models. Because complete 
loss of function is lethal, two groups created a model knocking 
out TDP-43 specifically in the postmitotic motor neurons 
[213,214]. This model results in modest loss of motor neurons, 
astrogliosis and accumulation of ubiquitinated material in motor 
neurons. The knock-in method has also been used for the Tardbp 
gene, in particular for the M323K mutation, which causes motor 
neuron death [215], the Q331K mutation which causes cognitive 
deficits [216], the M337V and G298S mutations, which specifically 
affect neuromuscular junctions without overt neurodegenera
tion [217], and the N390D mutation which covers several impor
tant phenotypes including TDP-43 aggregation and motor 
neuron degeneration [218].

TDP-43 plays a crucial role in mRNA splicing of many tran
scripts and mislocalization of TDP-43 in ALS leads to aberrant 
splicing of transcripts, foremost Stathmin2 (STMN2). Cryptic exon 
inclusion in STMN2 mRNAs results in a decreased STMN2 protein 
level in many patients with ALS. Interestingly, Stmn2± mice dis
play NMJ denervation and motor deficits [219]. Recently, Baughn 
and colleagues [220] engineered mice to carry a Stmn2 gene 
partially humanized by insertion of the human STMN2 cryptic 
splice and polyadenylation sequences but without TDP-43 bind
ing. Using this mouse model, they showed the efficacy of ASOs to 
correct Stmn2 pre-mRNA misprocessing and restored its protein 
levels. However, the effects of these ASOs have yet to be tested 

on functional/behavioral outcomes in animal models. 
Nevertheless, restoration of STMN2 expression using an ASO 
(QRL-201) is currently a strategy being tested in a Phase 1 clinical 
trial (NCT05633459).

As in the case of TDP-43, many FUS mouse models have 
been designed [221]. Interestingly, only a gain-of-function of 
the mutated protein (conditional knock-in mutation) mimics 
ALS phenotypes, with progressive motor neuron degenera
tion, neuromuscular junction defects, and FUS mislocalization 
without aggregation [222–225]. Mice with ubiquitous over
expression of human wild-type FUS [226], truncated variant 
FUS 1–359 under control of the prion Thy1 promotor [227], 
and FUS R521C mutation [41] develop such a severe motor 
and neuroinflammatory phenotypes that premature death 
generally occurs between 3 and 4 months of age. 
Overexpression of the FUS R521C mutation also leads to 
ALS-like phenotypes in rats with motor neuron degeneration, 
denervation atrophy of skeletal muscle and progressive 
paralysis [228]. Loss of FUS function, conversely, leads to 
a pathological and behavioral phenotype that is not charac
teristic of ALS [229].

Most C9ORF72 knockdown [230] and knockout [231–237] in 
mice mainly develop an inflammatory phenotype, sometimes 
associated with a reduced lifespan, but no locomotor deficits or 
motor neuron degeneration. A more recent study has shown 
that knockdown of C9ORF72 in mice, using a miR-RNAi sequence 
targeting a region located in exon 8 of the gene, causes mild 
strength loss and deficits in the neuromuscular junction and 
impaired social interaction, but still no motor neuron disease 
[238]. Interestingly, several studies in mice [239,240] and rats 
[241] support the hypothesis of a synergistic effect of c9orf72 
loss- and gain-of-function mechanisms in promoting ALS pathol
ogy. In this sense [239], have shown that loss of C9orf72 and 
haploinsufficiency exacerbate motor behavior deficits in a dose- 
dependent manner. Viral G4C2 repeat expansion mouse models 
recapitulate hallmark features including motor and cognitive 
deficits, TDP-43 inclusions, cortical neuron loss [242,243] and 
NMJ abnormalities [244]. DPR formation has been described in 
an inducible gain-of-function model that exhibits locomotor 
phenotype and muscular dystrophy [245].

Here, we provide a brief overview of the large number of 
mouse models that have been developed for ALS. This hetero
geneity in the phenotypes described, and their onset compli
cates the selection of the most appropriate model for 
subsequent translational studies. For instance, the use of the 
SOD1 model predominates in mouse preclinical studies. It has 
led to significant progress in describing some of the cellular 
mechanisms leading to selective MN degeneration. However, 
these animals do not reproduce an essential marker of pathol
ogy, namely TDP-43 inclusions, and show a rapid progression 
of the disease. These characteristics question their relevance in 
a preclinical study. Moreover, the development of new knock- 
in models including humanized mouse, in which the mouse 
locus is replaced by the human orthologous sequence, is 
increasingly being used to study ALS. This strategy can gen
erate clinically relevant animal models. However, a humanized 
mouse gene can have undesirable effect on splicing and 
phenotypic data must be analyzed with caution.
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5. Translational value of ALS animal models for 
therapy

5.1. Small molecules

In addition to provide a better comprehension of pathogenic 
mechanisms, the simple ALS models have been used to screen 
therapeutic compounds [246] (Figure 2). An in vivo chemical 
screening platform for ALS genes, conducted in worms and fish, 
revealed that methylene blue efficiently attenuated the TDP-43 
and FUS phenotypes, notably motor impairments, by promoting 
a protective ER stress response [64,66]. The efficacy of this com
pound has since been demonstrated in a mouse model of ALS 
[247]. Interestingly, methylene blue has been shown to be an 
effective inhibitor of TDP-43 aggregation in a human cell model. 
In addition, Vaccaro and colleagues showed that compounds 
structurally related to methylene blue, such as salubrinal, guana
benz and phenazine, also exhibited potent suppression of mutant 
TDP-43 protein proteotoxicity [66].

A drug screening in both C. elegans and zebrafish models 
(TARDBPA315T and TARDBPG348C, respectively) identified 
a potential therapeutic compound, pimozide, which, after valida
tion in SOD1G37R mice, is currently in clinical trial (NCT03272503) 
[248]. The pimozide, a derivative-TRVA242 T-type calcium channel 
antagonist, was shown to increase synaptic transmission at the 
NMJ, reduce motor defect and rescue pathological phenotypes at 
the NMJ [248]. Later, another high-throughput screen reported 
a novel molecule, TRVA242 as effective in restoring motor pheno
types in worms and zebrafish [249]. Additionally, the compound 
TRVA242 was found to ameliorate morphological and synaptic 
abnormalities of NMJ in zebrafish and mouse ALS models [249].

The ease of pharmacological phenotype analyses in the 
TARDBPA315T worm model allowed the selection of the com
pound α-methyl-α-phenylsuccinimide (MPS) as an effective neu
roprotector to ameliorate locomotor defects and reduce 
GABAergic motor neurons loss [250]. The same worm model 
TARDBPA315T [65], together with the model FUSS57Δ [69] also 
allowed the repositioning of the probiotic Lacticaseibacillus rham
nosus HA-114 as a neuroprotector restoring motor defects by 
promoting mitochondrial β-oxidation [251]. The same group 
proposes an interesting regenerative approach to rescue axonal 
abnormalities using the poly (ADP-ribose) (PAR) polymerases 
(PARP) PARP-1 and PARP-2 in the mFUSS57∆ worm model [252]. 
A screening strategy using the SOD1G93A C. elegans model iden
tified novel genetic modifiers that prevent SOD1 protein aggre
gation and suppress toxicity [253]. The SOD1G93A worm model 
was pharmacologically studied with the diabetes drug metfor
min. It proved effective in reducing neurodegeneration and 
extending life expectancy by upregulating autophagy [55]. 
Finally, the C. elegans model has also been used to validate hits 
from cell-based screens, such as the compounds LDN-0130436 
[254] and PROTAC2 [255], which decreases GABAergic motor 
neuron degeneration and decrease TDP-43 aggregation, 
respectively.

A behavior-based drug screening system indiscriminately 
identified 12 compounds in another C. elegans TDP-43 toxicity 
model not described in the review, dnc-1/dynactin 1 knockdown 
[256]. This study provides strong support for the use of simple 
organisms, as among the compounds that improved the motor 

defects and axonopathy were two FDA-approved drugs for ALS : 
riluzole and nifedipine [257].

Finally, McGown and colleagues created a neuronal stress 
reporter line, lying on the increased expression of the fluor
escent heat shock stress protein hsp70 following neuronal 
stress (hsp70-DsRed) [158]. This model was used as an addi
tional in vivo model to validate the efficacy of the FDA- 
approved ALS drug riluzole in stabilizing sodium channels 
and reducing excitotoxicity, hence providing new insight 
into a novel mechanism of this treatment [258]. After report
ing a new zebrafish model expressing C9orf72 HRE that reca
pitulates ALS phenotypes, the same group described for the 
first time and in several other C9orf72 expansion models an 
abnormal activation of the heat shock response (HSR) that 
correlates with disease progression. Importantly, ivermectin, 
like riluzole, reduced HSR activation in both C9orf72 and 
SOD1 zebrafish models, offering new therapeutic perspectives 
[174].

The Drosophila ALS model was also subjected to pharma
cological screening, leading to the identification of the PPARγ 
agonist pioglitazone as a neuroprotective compound improv
ing locomotor function but not the lifespan of TDP-43-expres
sing flies [259]. This new compound was then tested in 
a phase II clinical trial [260]. The results showed that pioglita
zone did not produce any significant improvements in terms 
of slowing the progression of the disease. More recently, α- 
Lipoic acid was shown to attenuate oxidative stress, neuro
toxicity and improve motor activity in the hSOD1G85R fly 
model [261]. In a recent study using LDS-(G4C2)44 and (G4C2) 
30 transgene constructs in flies, the authors evaluated the 
ability of three compounds (TMPyP4, PJ34 and KPT-276) to 
reduce G4C2 toxicity which is manifested by reduced lifespan, 
eye degeneration and motor defects [262]. TMPyP4 and PJ34 
are the most potent compounds and ameliorate the disease 
phenotype by extending lifespan and improving climbing 
ability. It has previously been reported that TMPyP4 attenuates 
G4C2 repeat-dependent neurotoxicity in Drosophila by sup
pressing hexanucleotide repeat-mediated nuclear import def
icits by modifying the structure of the repetitive RNA. These 
results represent a major breakthrough in the therapeutic 
potential of this compound [263].

Mouse model remains one of the most widely used ALS animal 
models, especially for the preclinical studies. There have been as 
many preclinical studies on mouse models as there are potential 
pathophysiological mechanisms for this complex pathology ([264] 
for review). Here, we review the most significant translational 
studies resulting from work done on mouse models of ALS 
(Figure 2).

Shortly after its creation, the mSOD1 model was the subject of 
a study aimed at reducing oxidative stress using vitamin E (α- 
tocopherol) [265], which failed to show clinical efficacy [266]. The 
same conclusion has been reached for other compounds with 
antioxidant and anti-inflammatory properties [267,268]. More 
recently, vitamin B12 (methylcobalamin) has been reevaluated 
for its antiglutamatergic and neuroprotective properties in mice 
[269]. Its clinical study is still underway and shows promising 
results in early stage ALS ([270]. The motor performance of 
SOD1-G93A mouse model was evaluated to assess the effect of 
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Figure 2. Translational value of ALS animal models for therapy. Summary of small compounds and other therapeutic strategies that have been identified in various 
animal models of ALS and are currently in clinical trials, with the corresponding phase of development.
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the main FDA-approved drugs : riluzole [271] and edavarone [272], 
together with the rat SOD1- H46R model [273]. In the light of 
riluzole, other compounds aimed at modulating the glutamatergic 
pathway have been tested in the clinic without much success. 
A very recent study, partially conducted in the SOD1G93A mouse 
model, used a recent pharmacological principle that, in contrast to 
classical NMDA receptor (NMDAR) pharmacology, allows selective 
elimination of extra-synaptic NMDAR-mediated sensing without 
disrupting synaptic function [274]. The compound, named FP802, 
which thus selectively inhibits the TwinF interface, is a very promis
ing new therapeutic avenue as it improves motor performance, 
extends lifespan, and prevents motor neuron loss in SOD1G93A 

mouse model.
Some autophagic enhancers are currently being developed 

in the clinic, after being validated in mouse models of ALS. We 
can notably cite the example of Tamoxifen, which has been 
shown to reduce TDP43 protein aggregation in motor neurons 
of the FTLD-U mouse model [275].

A very important part of current translational research is 
focused on the inflammatory component of the pathology 
[276]. Much of this development involves mouse models of 
ALS, particularly to test the efficacy of anti-inflammatory treat
ments such as pioglitazone [277–279]. For example, Pelaez 
and colleagues show that inhibiting the NF-κB pathway with 
IMS-088, derived from withaferin A (ImStar Therapeutics Inc.) 
improves cognitive and motor function, increases motor neu
ron dendritic branching and restores synapses in a newly 
generated mouse model hFUSR521G/Syn1 [280]. Another anti- 
inflammatory compound, MN-166 (ibudilast), targets several 
phosphodiesterases and macrophage migration inhibitory fac
tor and is currently in clinical trials (NCT02238626 and 
a biomarker study NCT02714036). An in vitro study has 
shown that an ibudilast treatment could clear TDP-43 and 
SOD1 aggregates and prevent TDP-43-induced neurotoxicity 
in cells [281]. Its efficacy has been demonstrated, particularly 
in the SOD1G93A and FUSR521C mouse models, in prolonging 
survival, reducing spinal glial neuroinflammation and MN 
degeneration [282].

In a recent study, a high-throughput pharmacological 
screen using human induced motor neurons (hiMNs) identi
fied a compound (F6260933) that inhibits MAP4 kinases 
(MAP4ks), previously implicated in neurodegeneration in ALS 
[283], and is able to improve the survival of ALS hiMNs and 
their ability to form NMJs [284]. Importantly, a neuroprotective 
effect was observed in vivo in SOD1G93A mice after MAPK4 
inhibition, with prolonged survival, an increase in the number 
of motor neurons compared to untreated control mice, and 
a significant decrease in nuclear mislocalization of TDP-43 
protein [284]. A clinical study is currently underway for 
a similar compound, a MAP4k inhibitor named Prosetin and 
Phase 1 has been completed (NCT05279755). There are many 
other examples of therapeutics identified in the ALS rodent 
models that are currently in clinical trials. Among these, the 
tyrosine kinase inhibitor masitinib (AB1010), now in clinical 
study (NCT03127267), has emerged as a promising compound 
in the SOD1G93A rat model, preventing microglia-associated 
inflammation, particularly the number of aberrant glial cells, 
in the degenerating spinal cord, extending lifespan and 
improving motor neuron pathology [285]. Similarly, the 

compound SAR443820, an inhibitor of receptor-interacting 
serine/threonine protein kinase 1 (RIPK1), which is involved 
in neuroinflammation [286], was found to be beneficial in both 
SOD1G93A mice and Optn−/− mice (Yuan et al., 2019), prevent
ing oligodendrocyte loss, glial inflammation and axonal 
degeneration of motor neurons [287]. A phase 2 clinical trial 
is currently ongoing (NCT05237284).

Pridopidine, a sigma-1 receptor (S1R) agonist, in addition to 
promoting autophagy, would be able to compensate for TFEB 
nucleoplasmic transport deficiency in C9orf72-associated 
pathology [288]. It reduces SOD1 aggregation and ameliorates 
muscle fiber atrophy in the SOD1G93A mouse model [289], 
making it a pharmacological compound of choice, now in 
clinical study (NCT06069934).

5.2. ASOs and other gene therapy approaches

Mouse and rat models have played a decisive role in preclini
cal efforts to develop new therapeutic strategies based on 
gene therapy, particularly ASO knockdown of SOD1 [290,291] 
and C9orf72 [292,293]. Among these studies, preclinical data 
obtained in SOD1G93A mouse and rat models provide a strong 
rationale for SOD1 reduction as a therapeutic approach. 
Indeed, novel SOD1 ASOs reduced mRNA and protein, 
extended survival and preserved neuromuscular innervation 
in treated animals [291]. Following a clinical trial [12], the 
antisense oligonucleotide tofersen was approved by the FDA 
in 2023 for the treatment of ALS patients with SOD1 muta
tions. Encouraged by this success, ASO ION-363 is currently 
being evaluated in a phase III trial (NCT04768972), for instance 
for FUS mutations, based on its efficacy in the mouse 
model [294].

TDP-43 plays a key role in RNA metabolism and other 
cellular functions. Targeting TDP-43 toxicity as a therapeutic 
approach is increasingly being explored, including in transla
tional studies using the mouse model. A very recent study 
shows that genetic expression of a fragment of RGNEF (NF242) 
or injection of AAV9/NF242 into a TDP-43 overexpressing fruit 
fly ALS model and a TDP-43 mouse model (rNLS8), respec
tively, improved lifespan and motor phenotype and reduced 
neuroinflammation markers. These are promising results for 
a protein that directly interacts with TDP-43 and acts as 
a modifier of TDP-43 toxicity in vivo [295].

Additionally, depletion of ataxin-2 in animal models, via 
genetic approaches, reduces TDP-43 toxicity. For instance, 
inhibition of ataxin-2 in a mouse TARDBP model using ASOs 
improves motor function and prolongs survival [296]. Recently, 
it was reported that targeting ataxin-2 using the CRISPR-Cas13 
system in a mouse model of TDP-43 proteinopathy signifi
cantly improved motor deficits and neuronal survival, 
increased survival and reduced abnormal TDP-43 pathology 
[297]. Consequently, ataxin-2 has received much attention as 
a potential therapeutic target for treating ALS. Currently, 
BIIB105, an ASO targeting ATAXIN-2 gene to lower its protein 
levels, is in a phase I clinical trial for ALS (NCT04494256).

Viral vectors derived from adeno-associated virus (AAV) has 
emerged as the lead vector for CNS gene therapy delivery 
tool. However, to address the limitations of mRNA- and RNA- 
based drugs in practice, including those associated with 
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safety, efficacy, and bioavailability, various non-viral vectors 
are being investigated for drug delivery in ALS therapies 
[298]. This research focuses on improving the pharmacokinetic 
profiles of individual drugs, using physical or chemical systems 
such as nanoparticles, to overcome the clinical failure of some 
ALS therapies. For instance, Chen and colleagues developed 
an innovative way of delivering ASO encapsulated in calcium 
phosphate (CaP) lipid nanoparticles [299]. This alternative 
approach improves the delivery of the gene construct com
pared with the free form of ASO and reduces SOD1 levels in 
HEK293 cells. In vivo, the lipid encapsulation improves bioa
vailability in the zebrafish bloodstream, for better diffusion 
into the brain and spinal cord after direct injection. These 
encapsulation approaches could offer a considerable improve
ment in gene therapy for ALS in the future.

5.3. Antibody-based therapy approached

The use of antibodies targeting misfolded proteins is 
a promising approach for the treatment of ALS. Among the 
large number of antibody-based interventions tested for fALS 
(see [300] for review), a few stand out. For instance, 
Minamiyama and colleagues designed a new monoclonal anti
body targeting misfolded SOD1 (D3–1) [301] which delayed 
disease onset and extended lifespan in treated-SOD1H46R rats. 
Others stand out for their anti-protein aggregation mechan
ism. One example is the AP-101 antibody (NI005) directed 
against SOD1 protein, currently in Phase IIa clinical trials 
(NCT05039099). It has been found to attenuate motor symp
toms and increase overall survival in mouse models 
(Neurimmune).

Tegoprubart (AT-1501) is an antibody that targets the CD40 
ligand (CD40L), previously shown to be upregulated in the 
blood of ALS patients. Inhibition of CD40L delayed paralysis 
and prolonged survival in the SOD1G93A mouse model [302]. 
Tegoprubart is now in Phase II clinical trial (NCT04322149). 
Finally, a Phase IIa study is underway evaluating ANX005 
(NCT04569435), a recombinant anti-C1q antibody capable of 
preserving NMJs in SOD1G93A ALS mice [303].

6. Conclusion

As ALS research continues to evolve, the model organisms 
presented here are valuable assets as versatile genetic models 
to study the pathogenesis of ALS and to identify new disease- 
modifying drugs to treat this devastating neurodegenerative 
disease. There is currently no sufficiently effective treatment to 
slow the progression of the disease or to compensate for the 
pathophysiological defects that have been identified and are 
yet to be discovered.

7. Expert opinion

Over the past decade, there has been a marked increase in 
interest in using simple organisms (C. elegans, Drosophila and 
zebrafish) to model ALS. Due to the key advantages of the 
simple models (Figure 3), such as their relatively short lifespan, 
low cost, ease of genetic manipulation and assay throughput, 
they have provided important insights into the understanding 

of ALS pathogenesis. Simple models stood out, offering the 
possibility of developing new tools for translational research. 
Their ease of use, small size and, in some cases, transparency 
have led to the development of new techniques for in vivo 
imaging, automated low to high-throughput screening of 
small molecules and genetic screening for human mutations. 
These developments have been instrumental in therapeutic 
discovery with the identification of lead compounds such as 
pimozide, α-lipoic acid and HA-114, which are currently being 
tested in ALS clinics.

Admittedly, the motor behavior and organization of the 
neuromuscular system are simplified in these animals. 
However, this is a real advantage in quickly and easily 
identifying new therapeutic targets before confirmation in 
larger animal models or cellular models. Translational stu
dies in simple models have so far focused on the identifica
tion of small molecules, particularly as part of a drug 
repositioning strategy. However, we expect to see emerging 
proposals for new gene therapies. In zebrafish, ASOs can be 
administered to the embryo by microinjection or immersion 
in embryonic water or directly to the brain in adult fish. 
Moreover, CRISPR-based and cytosine base editing [153], is 
a powerful method for efficient and rapid insertion of ALS- 
associated mutations. Compared with traditional genome- 
editing methods, it can faithfully reproduce the exact point 
mutations found in ALS patients and could improve model 
reliability without double-strand DNA cleavage or a donor 
DNA template.

Likewise, several mouse models have been developed to 
study the different genetic forms of ALS, and they have pro
vided key insights into pathological pathways implicated in 
ALS. They have also allowed the development of therapeutic 
strategies for ALS. The strength of the mouse model lies in its 
ability to provide multiple therapeutic strategies, ranging from 
small molecules to antibodies, gene therapy approaches and 
ASOs. Unlike simple models, the rodent model offers a wide 
range of behavioral and cognitive tests that allow for a more 
detailed assessment of the safety and efficacy of a therapeutic 
intervention.

However, preclinical studies using mouse models face 
a number of difficulties due to the cost of raising animals 
and the difficulty of obtaining animal models reflecting critical 
ALS pathophysiology [304]. As a result, most of the com
pounds identified in these models have unfortunately failed 
in the clinic [305]. Some translability issues seem inherent to 
the model. For example, we can question the robustness of 
the SOD1G93A mouse model or other commonly used precli
nical mouse models that do not exhibit TDP-43 pathology.

But also, the design of preclinical experimental therapy, which 
now lacks sufficient protocol uniformity, requires improvement. It 
is crucial to clarify if the experimental drug or therapy was given 
during the pre-symptomatic or symptomatic stage. The develop
ment of symptoms in mouse and rat models varies significantly, 
with a delayed and progressive pattern. This variability must be 
carefully taken into consideration for all in vivo models. This allows 
for the distinction between prospective disease-modifying thera
pies and those that will have a preventative impact.

Some therapeutic compounds have failed in clinical trials 
likely due to their inability to cross the blood-brain barrier 
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(BBB), as well as their poor pharmacokinetic profiles (includ
ing absorption, bioavailability and metabolism). Research 
efforts are aimed at overcoming these challenges, notably 
by developing new strategies for delivery of therapeutics 
using nanotechnologies [298]. For example, the encapsula
tion of a therapeutic cocktail composed of Leptin and 
Pioglitazone (already successfully tested in mice [277– 
279]) in a mesoporous silica nanoparticles (MSNs) has 
been explored to optimize the cocktail’s in vivo delivery 
[306]. Moreover, recently, the formulation of intranasal 
edaravone-loaded poly(lactic-co-glycolic acid)-poly(ethy
lene glycol) PLGA-PEG polymeric nanoparticles improved 
the biodistribution of the preexisting pharmacological com
pound [307]. In addition, chronic treatment of SOD1G93A 

mice with the retinoid adapalene encapsulated in similar 
PLA-PEG nanoparticles has a neuroprotective effect, 
improving motor performance and prolonging life
span [308].

Liposomes have the potential to cross the BBB due to their 
lipophilic properties, and guarantee good bioavailability in the 
CNS. They are an excellent ally for neurodegenerative diseases. 
One study showed that they improved the therapeutic poten
tial of steroid compounds methylprednisolone. When intrave
nously injected in SOD1G93A mice, the anti-inflammatory 
compound encapsulated in PEGylated liposomes (2B3–201) 

significantly improves histopathological outcomes in brain
stem motor nuclei, resulting in reduced gliosis and reduced 
neuronal loss [309]. Similarly, the anti-inflammatory agent 
minocycline, when contained in modified lipopolysaccharide 
liposomes, has better bioavailability and can ameliorate micro
glia-dependent neuroinflammation [310]. Thus, the develop
ment of new delivery and administration options offers 
a promising prospect to address the inefficiency of some 
chemicals in the clinic. Importantly, animal ALS models are 
essential for testing novel drug delivery approaches in precli
nical studies.

Furthermore, it is important to highlight the significant 
contribution of animal models in the identification of bio
markers for ALS [179]. The exploration of novel biomarkers 
is widely encouraged. This might enhance our comprehen
sion of the heterogeneity of the disease. Effective biomar
kers can also function as surrogate endpoints in clinical 
trials, offering early indicators of the efficacy of 
a treatment.

A common constraint in the ALS field is that research is 
focused on developing animal models of the familial form of 
the disease, omitting most cases which are sporadic. 
Developing non-genetic animal models of ALS is one of 
the major current challenges in the field. Our current knowl
edge of environmental and genetic ALS risk factors is 

Figure 3. Advantages and limitations of simple models (zebrafish, C. elegans and Drosophila) and rodent models for the translational research of new therapeutics 
for ALS.
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limited [311]. The disease exhibits significant genetic het
erogeneity, with over 150 genes that have been identified 
as either linked or associated with ALS [8]. This diversity is 
also reflected in the diversity of pathophysiological mechan
isms, for which we have yet to identify the main cellular 
pathway responsible for the progression, severity and onset 
of the disease. In this sense, much of the fundamental 
biology of ALS is still not understood. Consequently, many 
pathophysiological pathways remain unknown, and we are 
probably overlooking many therapeutic targets. It is there
fore important to focus efforts on a convergent pathway, 
which remains one of the biggest challenges to be over
come by the community toward developing an effective 
treatment.

As with many of the examples discussed earlier in this 
review, the strategy of combining in vivo and in vitro mod
els has been very successful in moving promising com
pounds along the translational pathway. The modeling of 
ALS motor neuron phenotypes using human induced plur
ipotent stem cells (iPSCs) is rapidly expanding [312], and 
has the advantage of covering both major familial and 
sporadic forms [313] of the disease. The iPSC motor neuron 
model, for example, is proving very effective in combination 
with simple organisms for identifying new compounds and 
new genetic targets in high-throughput screening studies. 
We believe that the combination of these two models could 
be a real asset in overcoming the challenges that remain for 
the translatability of therapeutic interventions for ALS.
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