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SCIENCEFORSOCIETY Soil pH is a critical factor in sustaining species growth and survival on Earth, yet with
ongoing climate warming, it is difficult to predict the soil pH changes due to the complexity of soil systems.
Moreover, the soil pH generally maintains a relatively stable state in response to external disturbances due to
its buffering capacity (e.g., excess ions can be adsorbed byminerals or organic compounds). Soil microbiota
are highly correlated with soil pH and quickly respond to climate warming, bridging climates and soil sys-
tems; thus, they are good bioindicators of soil pH changes. According to the developed microbe-central
model, the grassland soils will become more alkaline in future climate change scenarios, as evidenced by
14 field warming simulation experiments and featured in northeastern Asia, Africa, and Oceania. The hotspot
regions and predicted results by this microbial model could be considered in future decision-making strate-
gies and policies in facing climate change.
SUMMARY
Soil microbes regulate various biogeochemical cycles onEarth and respond rapidly to climate change,which is
accompanied by changes in soil pH. However, the long-term patterns of these changes under future climate
scenarios remain unclear. We propose a core-bacteria-forecast model (CoBacFM) to model soil pH changes
by shifts of core bacterial groups under future scenarios using a curated soilmicrobiotadataset of global grass-
lands. Our model estimates that soil pH will increase in 63.8%–67.0% of grassland regions and decrease in
10.1%–12.4%of regions.Approximately 32.5%–32.9%of regionswill becomemorealkalineby5.6%,and these
areas expand in all future scenarios. These results were supported by 14 warming simulation experiments. Us-
ingbacterial responsesasbioindicatorsof soil pH, theCoBacFMmethodcanaccurately forecastpHchanges in
future scenarios, and the changing global climate is likely to result in the alkalization of grasslands.
INTRODUCTION

Soil, as the foundation of the worldwide terrestrial ecosystem,

provides life-sustaining resources and harbors immense biodi-
One Earth 7, 1275–1287, J
This is an open access article under the
versity on Earth.1 Ongoing climate changes, characterized by

warmer conditions, accelerate organic matter decline and biodi-

versity loss. These shifts threaten global soil functions and pro-

cesses.2 However, predicting how soil processes will change
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CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.oneear.2024.06.002&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Songsong Gu,1,2 Tong Li,1,2 Xingsheng Yang,1,2 Wenli Shen,1 Ziyan Wei,1,12 Qiulong Hu,13 Pengfei Li,14 Yanmei Zhu,14

Guangxin Lu,10 Clara Qin,15 Gengxin Zhang,16 Chunwang Xiao,17 Yunfeng Yang,18 Jizhong Zhou,19,20 and Ye Deng1,2,21,*
8College of Tropical Crops, Hainan University, Haikou, China
9Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory ofWatershed Ecology, Institute of Urban

Environment, Chinese Academy of Sciences, Xiamen, China
10College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
11Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
12State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
13College of Horticulture, Hunan Agricultural University, Changsha, China
14Wenshan Tobacco Company of Yunnan Province, Wenshan, Yunnan, China
15Department of Environmental Studies, University of California, Santa Cruz, Santa Cruz, CA, USA
16Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
17College of Life and Environmental Sciences, Minzu University of China, Beijing, China
18Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
19Institute for Environmental Genomics, Department of Microbiology and Plant Biology, School of Civil Engineering and Environmental

Sciences, and School of Computer Science, University of Oklahoma, Norman, OK, USA
20Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
21Lead contact

*Correspondence: yedeng@rcees.ac.cn

https://doi.org/10.1016/j.oneear.2024.06.002

ll
OPEN ACCESS Article
under future climate scenarios remains challenging due to the

inherent complexity of soils. Climate-driven changes in matter,

energy, and biodiversity interact in complex ways with soil func-

tions, thus hindering efforts to accurately predict changes in soil

functioning under future climate changes.

Soil pH, as one of the significant variables for soil chemistry,

regulates biochemical processes and the capacity of available

nutrients to organisms in terrestrial ecosystems1 and is a good

predictor of the extent to which climate change will affect the

Earth. A specific range of soil pH conditions is one of the critical

environmental factors in the colonization and growth of plants,

animals, and microbes in ecosystems, influencing biodiversity

and ecosystem functions, such as carbon storage and emis-

sion.3 Generally, soil buffering effects maintain a relatively stable

state of soil pH, with aluminum compounds at low pH and car-

bonates at high pH immediately consuming excess ions.1 How-

ever, the equilibrium of acid and nonacid cations in soils may be

disrupted by various climatic conditions, for example, alkaline

soils in arid regions and acid soils in wet areas.1 Microorganisms

involved in biogeochemical processes may change soil pH by

generating protons and hydroxyl ions.4 Therefore, soil pH could

be altered by external disturbances. For instance, changing pre-

cipitation regimes and the decomposition of soil organic matter

via microbial activities in response to climate change alter the

profile of organic acid compounds in soils,5,6 thus altering soil

pH. Organic acid metabolisms such as oxalate catabolism by

bacteria could increase the soil pH by up to 2.5 units.7 Themicro-

bial metabolic processes in nitrogen cycles, such as ammonifi-

cation releasing hydroxyl ions and denitrification consuming pro-

tons, could also increase soil pH.4 Subsequently, the soil pH

changes, in turn, drive the succession and assembly of microbial

community structure.8,9 Therefore, soil pH and the microbial

community are intertwined in response to climate change.

Following changes within a microbial community, the soil pH is

expected to change accordingly, but the magnitude and direc-

tion of future soil pH changes remain unclear.

Soil microbiota are sensitive to changes in annual temperature

and annual precipitation,10–13 exhibiting essentially non-linear

correlations and time-dependent dynamics.14 Owing to those
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complexities, terrestrial models for predicting soil pH changes

usually neglect microbial communities.15 Soil microorganisms

are the most diverse lives in the soil biosphere,16 demonstrating

keystone roles in sustaining ecosystem functions and potential

mitigation of global climate change.17,18 Numerous studies

demonstrate that the soil microbiota drive the biogeochemical

processes through metabolic activities,18,19 regulate soil carbon

storage20 and greenhouse gases,21 and facilitate soil nutrition

transformations for plant productivity.22 The changes in soil mi-

crobiota intertwine with ecosystem functions. Under the current

global climate change background, the biodiversity, species

turnover rate, and community stability of soil microbiota are

changed accordingly,10,23,24 suggesting the responses of micro-

bial communities to climate change should be considered in

climate adaptation planning. However, we still lack an integrated

framework to depict the responses of soil microbiota to climate

change and its downstream effects, such as soil pH changes.

Due to the high diversity of microbial species in terrestrial eco-

systems (e.g., decades of the order of magnitude of species rich-

ness),25 it is challenging to directly include microbial species as

individual variables in prediction models. Instead, microbial spe-

cies can be grouped into ecological clusters (eco-clusters),

which refer to specific microbial groups that potentially share

similar functions. The eco-cluster framework offers new insights

into linking terrestrial ecosystems and climate change sce-

narios.26 Specifically, eco-clusters reduce the complexity of mi-

crobial communities but retain information on microbial species’

responses to environmental perturbations, making them both in-

dicators and predictors of environmental change.26,27

Here, we propose a core-bacteria-forecast model (CoBacFM)

(Figure 1) to investigate the biogeography of core soil microbiota

under current and future climate conditions in global grasslands.

Grasslands, covering over 40%of the global land area, represent

the largest terrestrial ecosystem.28,29 To date, it remains chal-

lenging to find common response patterns by grasslands to

climate change (e.g., acidification, alkalization) in local- or

regional-scale field experiments.29 In this study, three shared so-

cioeconomic pathways, namely, SSP126 (sustainable way, 2�C
to end of 2100), SSP370 (moderate scenario), and SSP585

mailto:yedeng@rcees.ac.cn
https://doi.org/10.1016/j.oneear.2024.06.002


Figure 1. Schematic approaches forCoBacFM leveraging the bacteria dynamics to project the soil pH change under future climate scenarios

By filtering the global microbial dataset and using random forest to explain species distribution based on multiple environmental variables, the core microbiota

(e.g., bacteria) and, subsequently, eco-clusters were assigned. Eco-clusters are a group of core microbial taxa with a similar response to specific environmental

dynamics (e.g., the eco-cluster of low-pH may prefer acidic conditions). Then, the relative abundance of each eco-cluster was predicted by multiple environ-

mental variables with the Cubist model, including climate (current scenario to build model and future scenario for predictions), soil, and plants. Considering

microbial activities in biogeochemical processes, the shifts of eco-clusters can be used by Cubist models to predict soil pH changes in current and future

scenarios. After comparing the current and future soil pH shifts, the model can generate the global soil pH shifting maps under multiple climate scenarios at

different periods. For each Cubist model, a 10-fold cross-validation approach was used to evaluate themodel performance with correlation coefficient and RMSE

value. Details are described in Experimental procedures.
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(upper boundary) for 4 periods (2021–2040, 2041–2060, 2061–

2080, and 2081–2100) were chosen to model future climate con-

ditions. This core bacteria-driven model links changes in eco-

clusters to changes in climate conditions and soil functioning

features such as soil pH. To this end, we analyzed high-

throughput sequencing datasets of the 16S rRNA gene from

3,703 samples across 1,251 grassland sites located around

the world (Figure 2A; Table S1), including natural grasslands

from tropical, temperate, and tundra regions.28 Our main objec-

tives were to depict the future biogeographical distributions of

grassland core microbiota and to forecast dynamic changes in

soil pH under future climate change via changes in bacterial

eco-clusters. Specifically, this CoBacFM model estimated that

soil pHwill increase in 63.8%–67.0%of grassland regions, espe-

cially in northeastern Asia, Africa, and Oceania grasslands.

Moreover, 10.1%–12.4% of grassland regions will experience

a decrease in soil pH, including in central North America, south-

ern Africa, and eastern Asia. Approximately one-third of regions

will become more alkaline by 5.6%, and the area of alkaline soils

expand in all future scenarios. More important, the 14 indepen-

dent warming simulation field experiments support the model

forecasted results (i.e., the soil pH of 4 sites increased signifi-

cantly under warming conditions and 9 sites became more alka-

line as predicted by the model). Using bacterial responses as
bioindicators of soil pH, our model forecasted the potential var-

iabilities of soil pH under future climate changes, and identified

hotspot regions could be considered in future decision-making

strategies and policies for mitigating future climate warming.

RESULTS AND DISCUSSION

Identification of grassland core microbiota and
classification of eco-clusters
The curated soil microbiome dataset covered multiple types

of grasslands distributed across all continents except for

Antarctica (Figure 2A), and only 989 phylotypes (amplicon

sequence variants, occupancy of 40% within each continent,

and a total relative abundance of 29.4%) were selected as the

core microbiota (globally prevalent and abundant species) for

the global grassland ecosystem (Figure S1; Data S1). Among

the environmental variables significantly correlated to biodiversity

(Table S2), climatic factors such as mean annual temperature

(MAT), the maximum temperature of the warmest month

(MaxTWarmM), mean annual precipitation (MAP), and precipita-

tion of the wettest month (PWetM), as well as some soil physio-

chemical parameters, such as soil pH, soil organic carbon

(SOC), and total nitrogen (TN) content, were directly associated

with the a-diversity and b-diversity of the core microbiota
One Earth 7, 1275–1287, July 19, 2024 1277
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(Figures 2B and S2). After evaluating the coverage of each envi-

ronmental variable to the remaining regions of the global grass-

lands, these environmental variables could individually cover

87.9%–100% of grasslands and together cover more than

94.7% of the grasslands if only a single variable was missing (Fig-

ure S3). Subsequently, a total of 625 phylotypes possessing sig-

nificant semi-partial correlations with environmental variables

(p < 0.001) were categorized into 10 eco-clusters (Figure 2C)—

(1) high-pH, (2) low-pH, (3) high-SOC, (4) low-SOC, (5) high-pH

and TN with low-SOC, (6) low-pH-high-SOC, (7) low-pH-low-

MAT, (8) high-PWetM, (9) high-MaxTWarmM, and (10) high-

NDVI (normalized difference vegetation index)—according to mi-

crobial preference to specific environmental factors (Figure S4).

For example, taxa of the high-pH eco-cluster showed higher rela-

tive abundance under alkaline soil conditions (pH >7) and those of

the low-pH eco-cluster preferred acidic soil conditions (pH <7)

(Figure S5). In addition, the taxonomic groups differed between

eco-clusters; for example, Actinobacteria sp. wasmore abundant

in the cluster of low-SOC and less abundant at high-SOC

(Figures 2C and S6). The high relative abundance of Actinobacte-

ria in the low-SOC cluster might relate to their ability to decom-

pose recalcitrant carbon under nutrient-poor conditions,30 while

copiotrophic-associated Alphaproteobacteria and Gammapro-

teobacteria showed higher relative abundances in nutrient-rich

conditions (Figure S6).

Because the relative abundances of the eco-clusters were

significantly associated with specific environmental condi-

tions, we established the biogeographic distributions of the

eco-clusters at a global scale, using the Cubist model with

10-fold cross-validation (Figure 1). Our analysis resulted in

0.786–0.928 correlations for training datasets and 0.810–

0.922 correlations in test datasets (p < 0.001; Table S3), indi-

cating the comparable and reliable performance of this Cubist

forecast model. The global biogeographic distributions of the

10 eco-clusters were interpolated, and the maps clearly

showed a dominance of specific clusters in certain regions

(i.e., hotspot regions) (Figures 2D, 2E, and S7). In particular,

the eco-clusters of high-pH (alkaline skewed) and low-pH

(acid skewed) occupied contrasting hotspot regions (e.g. the

relative abundance of the high-pH cluster was higher in cen-

tral Asia [Figure 2D], while the low-pH cluster was lower [Fig-

ure 2E]). This region-specific distribution of eco-clusters may

be related to microbial adaptations to the local environmental

features, suggesting environmental selection of eco-clusters.

Similar to animals and plants, the abundant core microorgan-

isms are reported to be essential drivers of the energy flow

and biogeochemical processes in ecosystems.18,31 Therefore,

the shifts among the core bacteria could, to some extent,
Figure 2. Global distribution of grassland microbiome dataset and rela

the relative abundance of eco-clusters (e.g., low-pH and high-pH) in g

(A) The distribution of unique samples from the curated grassland microbiome d

(B) SEM shows the relationship between the core microbiota community and en

a-diversity were included with explained proportions in the box, and blue and

respectively, for the first principal component and components. The first principa

PD, Faith’s phylogenetic diversity.

(C) Relative abundance of species within the 10 eco-clusters at the phylum level

(D and E) The relative abundance for high-pH (D) and low-pH (E) in global grasslan

ratio of SD to mean values with 10-fold cross-validation results.
serve as bioindicators for macroscopic ecosystem function

changes under future climate scenarios.

Core microbiota projections under future climate
change scenarios
By focusing on the predominant eco-clusters and their environ-

mental drivers, we next examined the temporal responses

of eco-clusters to future climate conditions (Figure 1). The

PiecewiseSEM models showed that climatic variables, mainly

MAT, MaxTWarmM, MAP, and PWetM, made large contributions

to explaining the relative abundances of the 10 eco-clusters

(Figures S8 and S9). The relative abundances of the 10 eco-clus-

ters under future climate scenarios were determined by changing

the 4 climatic variables in the Cubist prediction models. Here, we

mainly considered 3 climatic scenarios, SSP126, SSP370, and

SSP585, for 4 time periods (2021–2040, 2041–2060, 2061–2080,

and 2081–2100) (Figure S10; Video S1). The predicted spatiotem-

poral distributions of the eco-clusters showed great differences

worldwide, especially with different scenarios. For example, the

cluster low-pH-low-MAT, which was mainly dominated by Verru-

comicrobiota (Figure 2C), showed a tendency to decrease in the

low latitudes and temperate regions under all climate change sce-

narios, with large variations in the amount of change in central and

northeastern Asia, central North America, and southern Africa,

indicating a change of soil pH in these regions (Figure S11). There-

fore, based on the futuredistributions of eco-clusters, it is possible

to assign the hotspot regions for global grasslands, where the mi-

crobial activities and soil properties are sensitive to future climate

change.

To validate themodel predictions,we curated grassland soil mi-

crobiota datasets from 14 globally distributed field experiments

that simulated climate change, with a focus on simulatedwarming

vs. ambient conditions (Table S4). The experiment sites were

distributed in Asia (11 sites), Europe (1 site), and North America

(2 sites), the majority simulating elevated temperatures of

1.5�C –2.0�C. We used soil microbiota results from these 14 sites

to validate the observed dynamics of eco-clusters under future

climate warming conditions. Taking the eco-cluster low-pH-low-

MAT, which showed a direct preference for temperature, as an

example,most sites in Iceland and on theQinghai-Tibetan Plateau

in Asia showed an abundance increase under warming compared

to ambient conditions (the response ratio with a 90% confidence

interval) (Figure S12). This experimental result was in line with the

model predictions, which showed that the relative abundance of

low-pH-low-MAT would increase in approximately 78.6% of the

sites until 2100 (Figure S13). Therefore, the temporal dynamics

of eco-clusters could be projected from their biogeographical dis-

tribution in global grasslands and the variance of climate-relevant
tionships between core microbiota and environmental variables, and

lobal grasslands

ataset.

vironmental variables. The first principal component axes of climate, soil, and

red arrows within the box indicate the positive and negative correlations,

l coordinate axis of weighted Unifrac distance was used to indicate b-diversity.

.

ds, respectively (left) and their uncertainty values (right) were calculated by the
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Figure 3. The differences of projected edaphic pH to current pH under future climate scenarios (SSP126, SSP370, and SSP585) over 4 time

periods (2021–2040, 2041–2060, 2061–2080, 2081–2100)

The blue and red values indicate increased and decreased pH, respectively.
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clusters could be demonstrated by simulated warming experi-

ments in natural grasslands.

Soil pH change under future climate change
Many studies have shown that microbial activities can alter the

surrounding pH conditions.32,33 In line with these studies, our re-

sults showed that the relative abundance of eco-clusters was a

better predictor of soil pH compared to SOC (Figures S8 and

S14). In addition, the Cubist model for current grassland soil pH

(Figure 1) had high confidences of 0.940 ± 0.000 and 0.928 ±

0.016 for both the training and test datasets, respectively

(Table S5). Biogeographic dynamics of edaphic pH in global

grasslands showed a large variability in response to future climate

change under three scenarios (SSP126, SSP370, and SSP585).

The soil pH in central North America, southern Africa, and eastern

Asia decreased, whereas that in northeastern Asia, Africa, and

Oceania increased (Figure 3). Moreover, at the grid-point level

(0.1� resolution), 10.1%–12.4% of the regions with a significant

decreasing pH trend shrank with time (4.3%–4.9%, p < 0.001)

(Figures 4A and S15). A total of 5.5%, 5.4%, and 5.5% of total

grassland regions trended to being more acidic, with decreasing

magnitudes of 5.7%, 5.6%, and 5.6% under SSP126, SSP370,

and SSP585 scenarios, respectively (Figures 4B and S15). Never-

theless, the soil pH of 63.8%–67.0%of grassland regions showed
1280 One Earth 7, 1275–1287, July 19, 2024
a significantly enhanced tendency to increase (10.8%–11.0%,

p < 0.001) under future temporal dynamics (Figures 4C and

S15). Importantly, approximately 32.5%, 32.6%, and 32.9% of

grassland soils would become more alkaline under the three sce-

narios by 5.6%, 5.6%, and 5.6%, respectively (Figures 4D and

S15). These results were verified by another climate model,

IPSL-CM6A-LR, which showed that about one-third of grassland

regions becamemore alkaline, and the areas expanded with time

(Figure S16). Additionally, there was an inflection point under

SSP126 indicating the resilience of soil pH by the end of 2100,

which may support sustainable development by mitigation pol-

icies to climate change.

Soil pH changes from the 14 warming experiments showed

different responses under warming conditions (Figure 5;

Table S4). Four experimental sites from Asia (Haibei1, Tiebujia,

Hulun, and Siziwang) showed significant edaphic pH increases

under warming conditions, while most other sites showed high

variance without significant change (Figure 5A). This was consis-

tent with the predictions from the modeling, that more than 30%

of areas will become more alkaline under future climate change

scenarios (Figure 4). Moreover, the predictions showed that pH

for most of the field sites tended to increase (11 of 14 sites)

and become more alkaline (9 of 14 sites) under future climate

change scenarios, while only the two sites from North America



Figure 4. Proportion of grassland areas

related to pH change in the future under 3

scenarios (SSP126, SSP370, and SSP585)

compared to the current scenario

(A–D) The soil pH values in the grassland regions

were significantly changed, including decreasing

(A), acidic tendency (B), increasing (C), and alkaline

tendency (D).
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and one site from Asia showed acidic conditions with compara-

ble stability in pH and little variability (Figure 5B). By contrast, the

field regions from the Qinghai-Tibetan Plateau in Asia showed

high variability, especially under higher emission scenarios

(SSP585), indicating large uncertainties in soil responses to

future climate change. In addition, based on a smaller coefficient

of variance for pH values (Figure S17), most field regions showed

less variability of soil pH under a lower SSP scenario (SSP126)

compared to a higher SSP scenario (SSP585) (Figure 5B), which

was further cross-validated by the IPSL-CM6A-LR climate

change model (Figures S18 and S19).

The biogeographic distribution of predicted grassland soil

pH showed pronounced temporal dynamic changes. Greater

changes in soil pH under future climate scenarios were found

in northeastern Asia, Africa, and Oceania, but fewer changes

were found in central North America, southern Africa, and

eastern Asia (Figure 3). Therefore, the former regions should be

given special consideration in future policy decisions, as large

changesmay have significant feedback on plant growth and pro-

ductivity.34 It was reported that the abundance of plants can be

reduced due to increased soil alkaloid concentrations.35

Although soil buffering systems maintain equilibriums of anion

and cation concentrations in response to disturbances,1 micro-

bial activities are essential for maintaining soil pH. The metabolic

pathway processes related to proton and hydroxyl ion genera-

tion and consumption could affect pH conditions, such as

ammonification and denitrification. Similarly, the 10 identified

eco-clusters, characterized by the CorBacFM framework to be

functionally associated with nitrogen cycling and carbon degra-

dation processes, potentially influence soil pH changes

(Table S6). For example, the functions related to denitrification

and respiration that could raise soil pH were significantly

different than other functions in the eco-cluster of high-pH.

Through these biogeochemical processes (Table S6), microbial

activities and their enzymesmay regulate soil pH via acid or alka-

line substrates under warming conditions.5 For example, it has

been shown that ammonia concentration increased under

warming treatment in a temperate grassland,36 and long-term

warming may enrich some microbially produced alkaline bio-

chemicals, including saccharides and amino acids.33 Moreover,
molecular experiments have shown that

bacteria may decrease environmental pH

by glucose metabolism to regulate their

swarming motility,32 supporting the micro-

bial regulation of surrounding pH condi-

tions. In addition to microbial functions,

other factors may contribute to the in-

crease in soil pH, including nutrient uptake

by plants, water content under warming
conditions, and formation of carbonates due to a lower partial

pressure of CO2.
34 These cautious implications support soil

ecological forecasts mediated by microbial functions.

Our prediction via the CoBacFM framework (Figure 1) and field

validation (Figure 5) depicted the dynamic soil pH changes in

global grasslands under future climate change, but some limita-

tions remain. The relationships between soil pH and soil microbi-

al communities are complex, and it remains difficult to quantita-

tively estimate the causal relationships of soil bacteria and soil

pH changes in response to climate warming. PiecewiseSEM

estimated the path sizes between soil pH and eco-clusters

(Figures S8 and S14) and found that the bi-directed paths

changed for different eco-clusters and that it is unclear for soil

bacterial community. This is consistent with the traditional view-

point that soil pH is generally a primary driver of bacterial

community composition and microbial activities. Meanwhile, mi-

crobial activities can further alter soil pH, and vice versa (e.g., mi-

crobial nitrification is amajor driver of soil acidification). Thus, the

soil pH and soil microbial communities are correlated, which is

also a prerequisite of the CoBacFM framework to predict soil

pH changes in grasslands throughmicrobial eco-clusters as bio-

indicators in response to climate change. Another limitation is

that the CoBacFM only presented potential consequences at

the shallow surface of grassland soils in natural ecosystems,

while the soil pH and microbial responses to climate change

may vary with soil depth37 and anthropogenic effects23 (e.g.,

fertilization, mowing, grazing). The integration of multiple factors,

including soil depth, soil topography, and parent material,38 as

well as other terrestrial ecosystem types and land use changes,

might contribute to more comprehensive insights into global soil

pH functions under future climate change. Moreover, other mi-

crobial communities, such as fungal communities involved in

nutrient cycling, play important roles in soil functioning,4 and

should be considered in future model predictions. Considering

the biases of the curated datasets, a global standardized survey

campaign with uniform grids may improve the predictions as

well, and future studies should try to cover understudied regions

such as northeastern Asia and Africa. In addition, integrating

genomic and metagenomic data, and thus potential microbial

functions,39 can provide more information about biological
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Figure 5. Soil pH changes in 14 global grassland sites at simulated warming in current and future scenarios

(A) Response ratio for the soil pH in warming conditions compared to control conditions in different experimental sites. The different numbers next to each site

name indicate different sampling times.

(B) Global distribution of the 14 experimental sites related to simulated warming in grasslands, and the shifts of their edaphic pHwith the predicted values under 3

future scenarios (BCC-CSM2-MR model) compared to the current values. Data are shown as mean ± SD, and the significance was tested using a 1-sample

Student’s t test for different levels (*p < 0.05; **p < 0.01; ***p < 0.001).
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pathways with directed or undirected effects of ecological con-

sequences and then strengthen the microbial predictions with

16S rRNA dataset to macro-scale ecosystem functions. Inte-

grating and developing more robust methodology techniques

for Earth systems models may improve the forecasts of future

climate and find potential mitigation strategies, thus helping hu-

man society.14 Specifically, expanding to less-studied grassland

regions (Figure 5), long-term ecological surveys and simulation

experiments are needed to better understand microbial states

and future ecosystem functions.40

Conclusion
Our proposed CoBacFM framework enables the prediction of

soil pH in global grassland regions via microbial responses to

climate change, as done here to forecast the dynamic temporal

changes of soil pH until 2100 under various climate change sce-

narios. Soil pH would increase in over 60% of grassland regions,

almost half of which would be more alkaline under future climate

change, with the area of alkaline soils expanding over time. This

is important for designing future grassland management strate-

gies, especially for regions in northeastern Asia, Africa, and Oce-

ania, as soil pH determines the ecological niches of organisms

and grass productivity.1,41 Moreover, these results were sup-

ported by our cross-validation data from 14 warming experi-

ments that showed that soil pH was affected by warming,

including a significant increase in two sites, and the predicted

soil changes at most sites also showed alkalization tendency un-
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der future climate scenarios. However, the traditional view holds

that soil pH is less affected by external environmental distur-

bances,1 and that chronic changes in soil features urgently

require long-term monitoring systems. The validation by field ex-

periments bridges the ecological model prediction and the ob-

servatory monitoring of terrestrial ecosystems, promoting the

ecological modeling development, and demonstrating insights

into decision-making strategies in response to climate change

for ecosystem functioning and sustainable stability. In addition,

the present study focused only on the soil pH across global

grasslands because of less artificial intervention and more

sensitivity to large-scale climate changes than farmlands and for-

ests. However, with the accumulation of soil microbiome and hu-

man activity data, we believe our microbe-central model could

be extended to other global ecosystems focusing on more

microbe-relevant parameters, such as SOCs and storage,42

because we are all living on a microbe-dominated Earth.
EXPERIMENTAL PROCEDURES
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Global grassland microbiome data collection and processing

We systematically searched for peer-reviewed articles that were published

from 2006 to 2020 (accessed on October 10, 2020) and focused on microbial

community analysis in natural grassland fields in the Web of Science by using

keyword combinations such as environment (soil), organism (microb* ormicro-

organism*), techniques (OTU* or ASV* or phylotypes* or bacteria* or archae*

or fung* or 16S or 18S or ITS), habitat (grassland or steppe* or meadow* or

savanna* or prairie*), and excluded some words (DGGE or PLFA or spp. or

microcosm* or enzyme* activit*). After including some manually curated pa-

pers, the final total was 6,159 articles. We then filtered each article manually

using the following criteria: (1) the samples were collected from topsoil

(0–20 cm) within natural grassland fields, excluded lab-cultured samples; (2)

the raw sequences were obtained using the Illumina platform, and covered

the V4 region of the 16S rRNA gene; and (3) the raw sequencing reads of the

research were complete, without data missing, and could be downloaded

from public repositories. The final dataset retained 3,703 samples from 63

studies, covering 1,251 grassland sites across all continents except for

Antarctica (Figure 2, listed in Table S1).

After obtaining the raw sequencing datasets, the processing of sequences

was conducted on an in-house pipeline,43 the detailed workflow of which

has been previously described.26 Briefly, the FLASH program was used to

merge the pair-end sequencing reads,44 and the primer set of 515F/806R

was used to extract the targeted V4 region of 16S rRNA gene amplicons.45

Btrim was used to filter for high-quality reads,46 retaining only the non-N

base reads within the range of 245–260 bps, resulting in 259,719,239 clean

reads. The amplicon sequence variants (ASVs) table was generated based

on UNOISE using Vsearch after removing chimeras de novo,47 resulting in

the creation of nearly 1.26 million ASVs. After assigning the taxonomy of

each ASV against the SILVA database (version 138.1)48 and retaining only

‘‘bacteria’’ sequences, we merged samples from within the same sites and

rarefied the ASV table with the 20,000 reads per site. MAFFT49 and

FastTree50 were used to align the representative sequences and construct a

phylogenetic tree for the ASVs.

The soil features of each sample were collected from the published

articles, including soil pH, SOC, and TN. The current climatic variables and

NDVI were extracted fromWorldClim (version 2.1)51 and NASA Earth observa-

tions (https://neo.gsfc.nasa.gov/) according to the geographic locations,

respectively.

CoBacFM

Core grassland microbiota and biodiversity analysis

The core grassland microbiota was identified according to the prevalence of

ASVs—in other words, the ASVs that occurred in more than 40% of the sites

within a continent26 and were observed on more than 3 continents—resulting

in a total of 989 ASVs (Figure 1). The core community comprised 29.4% of all

sequence reads in the global dataset (relative to 20,000 reads per sample) and

its relative sequence abundance varied from 20.0% to 36.8% within each

continent (Figure S1). Representing the soil microbiota with a fraction of all se-

quences is a necessary trade-off for using dimension-reduced groups of spe-

cies.27 The a-diversity (Shannon, Richness, and Phylogenetic diversity) and

b-diversity (weighted UniFrac distance) were calculated to measure the biodi-

versity profiles of the core bacterial community. Structural equation models

(SEMs) andMantel tests were used to explore the relationships between biodi-

versity and environmental variables for the core bacterial community. The first

axis of the principal-component analyses of climate, soil, and a-diversity fea-

tures was included in the SEManalysis, and the Pearson correlation coefficient

was used to show the correlations between each variable and its respective

principal component.

Eco-cluster assignments

The core microbiota were clustered into 10 eco-clusters (specific microbial

groups potentially sharing similar functions) using the following steps with

similar workflows26,27 (Figure 1; Data S1): (1) 8 environmental variables

were selected for this analysis, including MAT, MaxTWarmM, MAP and

PWetM, soil pH, SOC, TN, and NDVI; (2) random forest modeling was used

to predict the ASV relative abundance by the selected environmental vari-

ables, retaining only the ASVs with more than 30% explanations; (3) semi-par-

tial correlation coefficients were calculated between ASV relative abundance

and each variable; and (4) ASVs with significant environmental associations
(p < 0.001) were assigned to eco-clusters using cluster analysis based on

Euclidean distance with the ward.D algorithm, which resulted in 10 eco-clus-

ters associated with high-pH, low-pH, high-SOC, low-SOC, high-pH and TN

with low-SOC, low-pH-high-SOC, low-pH-low-MAT, high-PWetM, high-

MaxTWarmM, and high-NDVI. Piecewise SEM52 was used to evaluate the re-

lationships between environmental variables and eco-cluster relative abun-

dances, and then to quantify the contribution of each eco-cluster relative

abundance to infer soil parameters (e.g., soil pH [Figure S8]). The best model

of PiecewiseSEM was determined by backward selection with the lowest

Akaike information criterion values. The relative abundances of the assigned

10 clusters showed linear or unimodal patterns with the preferred environ-

mental variables (Figure S5), and each eco-cluster contained certain taxo-

nomic groups (Figures 2 and S6). The relationship between soil parameters

and the relative abundance of eco-clusters was bi-directionality; in other

words, soil parameters, such as soil pH, showed directed paths to eco-clus-

ters, and there were paths from eco-clusters to soil pH (Figure S8). The stan-

dardized total effects for each environmental variable to explain eco-clusters

and for eco-clusters to predict soil parameters were estimated (Figures S9

and S13). To further explore the functional potentials of the eco-clusters,

Functional Annotation of Prokaryotic Taxa (FAPROTAX) (version 1.2.7)53

was used to link each eco-cluster to different ecological processes

(Table S6). The Fisher’s exact test or chi-square with Yates’ correction test

was used to test whether the assigned function potential to each eco-cluster

was significantly different from other functions. The analyses and plots were

conducted in R (version 4.1.1) with ‘‘vegan’’ (version 2.5–7), ‘‘randomforest’’

(version 4.7–1), ‘‘piecewiseSEM’’ (version 2.1.2), ‘‘ppcor’’ (version 1.1),

‘‘pheatmap’’ (version 1.0.12), ‘‘parallel’’ (version 4.1.1) and ‘‘ggplot2’’ (version

3.3.5) packages.

Geospatial modeling

A gridded grassland map with a resolution of 0.1� 3 0.1� was extracted from

the 2020 version of GlobeLand30,54 containing 284,756 gridded points.

For each point, three groups of environmental variables—climate (MAT,

MaxTWarmM, MAP, PWetM), soil (pH, SOC, TN) and plant (NDVI)—were ex-

tracted from the public databases of WorldClim 2.1,51 SoilGrid 2.0,15 and

NASA, respectively, and considered as an environmental variable dataset for

the current scenario. Furthermore, the extent of extrapolation of the collected

grassland dataset was calculated using a convex hull approach to evaluate the

global-scale environmental variables based on the above training dataset.55

Based on the prediction methods for eco-cluster relative abundances and

soil pH below, each gridded point was assigned a predicted value, and subse-

quently, the prediction was mapped to a finer grassland map using an auto-

matic kriging approach from the ‘‘automap’’ (version 1.0-14) package.

An automatically determined semivariogram model was used for spatial

interpolation. The geospatial modeling and map plots were conducted by

‘‘gstat’’ (version 2.0-7), ‘‘maptools’’ (version 1.1-1), ‘‘raster’’ (version 3.4-13),

and ‘‘ggplot2’’ (version 3.3.5) packages in R.

Cubist models for current eco-clusters

The Cubist model is a decision-based regression tree to estimate target variable

values from the explanatory variables, and the model attempts to minimize the

biased predictions by using committee models and nearest-neighbor models.56

The Cubistmodel iswidely used in geospatial analysis.26,27 To simplify, the data-

set used to build the Cubist model for eco-clusters was randomly divided into 10

sub-datasets—9 as training datasets and 1 as a test dataset—and then the

Cubist committee model was constructed according to Equations 1–4 based

on the training datasets (Figure 1). In Equation 1, the subscript i indicates the

10 assigned eco-clusters, and the function is built by the Cubist method. The

environmental variables under the current scenario, indicated by the subscript

‘‘current,’’ were extracted from the public databases.

EcoclusterabundanceðiÞcurrent = fCubistðClimatecurrent ;Soilcurrent ;PlantcurrentÞ
(Equation 1)

Climatecurrent � fðMATcurrent ;MaxTWarmMcurrent ;MAPcurrent ;PWetMcurrentÞ
(Equation 2)

Soilcurrent � fðpHcurrent ;SOCcurrent ;TNcurrentÞ (Equation 3)

Plantcurrent � fðNDVIcurrentÞ (Equation 4)
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Once the Cubist model was constructed, the average error and correlation

coefficient were used to evaluate model performance on the training datasets,

and the root-mean-square error (RMSE, Equation 5) and correlation coefficient

were used to evaluate model performance on the test dataset.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
j = 1 ðpredictedj � originaljÞ2

m

s
(Equation 5)

Them indicates the total number of data records used in the Cubist models,

and j belongs to the range of 1–m. Using this constructed Cubist model, the

relative abundance of each eco-cluster was predicted for the grassland grid-

ded points (284,756 points). The analysis was conducted using the ‘‘Cubist’’

(version 0.4.0) package in R.

The 10-fold cross-validation of cubist models

Wecreated the global distributionmap for each eco-cluster using an ensemble

approach, by taking average values from the 10-fold cross-validated Cubist

models (Figure 1). The grassland soil microbiota dataset was randomly divided

into 10 sub-datasets. Then, 9 sub-datasets were included as a training data-

set, and the remaining sub-dataset was used as a test dataset for the Cubist

model. Subsequently, the Cubist model was constructed as outlined above

and was used to predict the grassland gridded points globally at the current

climatic scenario. This step was repeated 10 times by selecting different com-

binations of sub-datasets as the training dataset. The final predicted value

(relative abundance) for each eco-cluster was averaged from the 10 prediction

results (Equation 6), and the coefficient of variation was used to indicate the

uncertainty of the predicted values following Equations 7 and 8.
pHcurrent =

P10
k = 1 fCubist;k

�
Ecoclusterabundanceð1Þcurrent; :::;EcoclusterabundanceðiÞcurrent

�
10

(Equation 11)

pHfuture =

P10
k = 1 fCubist;k

�
Ecoclusterabundanceð1Þfuture; :::;EcoclusterabundanceðiÞfuture

�
10

(Equation 12)
EcoclusterabundanceðiÞ =

 Xn
k = 1

Ecoclusterabundancek

!,
n; n = 10

(Equation 6)
StandarddeviationEcoclusterabundanceðiÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP10
k = 1 ðEcoclusterabundancek � EcoclusterabundanceðiÞÞ2

n � 1

s
; n = 10 (Equation 7)

Uncertainty10foldcrossvalidation = StandarddeviationEcoclusterabundanceðiÞ
�
EcoclusterabundanceðiÞ (Equation 8)
n indicates the number of cross-validations (10 in this case), and k belongs to

the range of 1–n.
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Cubist models for future eco-clusters

The climatic variables under future climate scenarios for the grassland gridded

points were extracted separately from the WorldClim 2.1 database51 for spe-

cific scenarios (SSP126, SSP370, and SSP585), specific periods (2021–2040,

2041–2060, 2061–2080, and 2081–2100), and climatic models (BCC-CSM2-

MR from Beijing Climate Center57 and IPSL-CM6A-LR from Institut Pierre-

Simon Laplace58). The selected three climate scenarios estimated different

air temperature increments—0.6�C–1.8�C for SSP126, 3.0�C–6.5�C for

SSP370, and 3.8�C–8.6�C for SSP585 by the end of 2100.59We then predicted

the distribution of eco-cluster relative abundances under future climate sce-

narios using Equations 9 and 10 with an approach similar to that used for cur-

rent conditions. The subscript ‘‘future’’ in the equations indicates all combina-

tions of the three SSP scenarios, four time periods, and two climatic models,

and each case was conducted separately.

EcoclusterabundanceðiÞfuture = fCubistðClimatefuture;Soilcurrent ;PlantcurrentÞ
(Equation 9)

Climatefuture � fðMATfuture;MaxTWarmMfuture;MAPfuture;PWetMfutureÞ
(Equation 10)

Cubist models for soil pH

Using the assigned eco-cluster relative abundances at current conditions, the

Cubist model for soil pHwas built (Equation 11) andwas used to predict soil pH

under future climate change in grassland ecosystems using Equation 12. Also,

the Cubist model performance was evaluated using the correlation coefficient

based on the 10-fold cross-validated results.
The areas of pH-changed regions were summarized based on predicted

pixel-gridded points, and the significance of the soil pH change was

evaluated using the paired Student’s t test corrected with the Bonferroni

method.
Cross-validation of field experiments

In addition to the cross-validation of statistical strategies with the ensemble

approach, we included 14 warming experiments (1�C–6�C increasing
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temperature versus ambient condition) carried out on grasslands (Table S4) to

validate model predictions. These 14 experimental sites were collected and

filtered out following the same procedure and data inclusion criterion in the

above section ‘‘Global grassland microbiome data collection and processing’’

(updated October 5, 2023), mainly distributed in Asia, Europe, and North

America. Within each site, the response ratio was used to show whether sig-

nificant differences existed in eco-clusters and soil pH features under warming

versus ambient conditions (at a 90% confidence level). In addition, the pre-

dicted soil pH for each experimental site was an average of modeling results

based on the specific geographic location of each site and its surrounding re-

gions (0.1� 3 0.1�), and the significance levels were determined using the one-

sample Student’s t test.

DATA AND CODE AVAILABILITY

The raw dataset was downloaded from public repositories of

published articles (Table S1). The dynamic change of images,

scripts and relevant datasets are accessible on the download

page (https://denglab.org.cn) and publicly archived repository

(https://doi.org/10.5281/zenodo.8004812).
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Supplemental information can be found online at https://doi.org/10.1016/j.
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Figure S1 Relative abundance of the core community across six continents. The values are mean 

±SD. 

 

 

Figure S2 Standardized effects of structure equation models for core community analysis. 



 

Figure S3 Percentage of interpolation environmental variable ranges within global grassland 

using the collected dataset at global scale (a), for the grid-based points of each variable (b), and 

the grid-based points summary (c).  

 



 

Figure S4 Clustering analysis of semi-partial correlations of ASV relative abundance and 

environmental variables. Red and blue colors indicate positive and negative correlation 

coefficients, respectively.  

 

 



 

Figure S5 Relationships between relative abundance of core eco-clusters and their preferred 

environmental variables. 

 

 

 

Figure S6 Taxonomic information of eco-clusters at the class level.  

 



 

 

Figure S7 The biogeographic distributions for assigned eco-clusters of the core microbiota for 

global grasslands: (a) High SOC, (b) Low SOC, (c) Low pH and TN with low SOC, (d) Low pH 

high SOC, (e) Low pH low MAT, (f) High PWetM, (g) High MaxTWarmM, (h) High NDVI. 

 

 

 

 



 

Figure S8 Piecewise structure equation models (PiecewiseSEMs) to show the relationships 

between environmental features and relative abundance of eco-clusters. The four climate variables 

(MAT, MaxTWarmM, MAP, and PWetM), three edaphic variables (pH, SOC, and TN), and plant 

index (NDVI) were included.  

 

 



 

Figure S9 Standardized total effects of each environmental variable to the relative abundance of 

eco-clusters by using piecewise structure equation models (PiecewiseSEMs). 

 

 

 



 

Figure S10 The predicted biogeographic distributions for assigned eco-clusters of the core 

microbiota for global grasslands with SSP126, SSP370 and SSP585 scenarios of temporal 

dynamics (2021-2040, 2041-2060, 2061-2080, 2081-2100) of the BCC-CSM2-MR climate model. 

The dynamics of the pictures can be viewed at https://denglab.org.cn/index.php/download/.  

https://denglab.org.cn/index.php/download/


 

Figure S11 The differences of projected relative abundance to current abundance for the low pH 

low MAT eco-cluster under future climate scenarios (SSP126, SSP370, and SSP585) during four 

time periods. The blue and red values indicate increased and decreased relative abundances, 

respectively.  

 

 

 

 

 

 



 

Figure S12 Response ratios for the relative abundance of low pH low MAT eco-cluster under 

warming condition compared to control condition within ten simulated warming sites. W, 

warming; CK, non-warming; VW, variable warming; SW, stable warming. The colors indicate 

different geographic regions. 



 

Figure S13 The relative abundance shifts for the low pH low MAT eco-cluster with the predicted 

values under three future scenarios (SSP126, SSP370, and SSP585) compared to the current 

values at fourteen simulated warming sites. The significance was tested using a one-sample 

Student’s t-test for different levels. 

 



 

Figure S14 Standardized total effects of the assigned clusters to predict soil pH and SOC features 

based on piecewise structure equation models. 

 

Figure S15 Proportion of average pH change in future under three scenarios (SSP126, SSP370, 

and SSP585) compared to current scenario in global grassland soils. (a) Extent of pH increase and 

decrease. (b) Tendency of pH to be acid and alkaline.  

 

 



 

Figure S16 Proportion of gridded grassland areas related to pH change in future under three 

scenarios (SSP126, SSP370, and SSP585 within the IPSL-CM6A-LR climate model) compared to 

current scenario. (a) The gridded points related to increasing and decreasing pH. (b) The gridded 

points related to pH change of acidic and alkaline conditions. (c) Extent of pH increase and 

decrease. (d) Tendency of pH to be acid and alkaline.  



 

Figure S17 The coefficient of variance (CV) for predicted future pH changes under SSP126 and 

SSP585 (BCC-CSM2-MR model) in ten simulated warming sites. The stars indicate that the CV 

values under SSP126 were larger than SSP585. 

 

Figure S18 The shifts of edaphic pH with the predicted values under three future scenarios (IPSL-

CM6A-LR model) compared to the current values at ten simulated warming sites. The 

significance was tested using a one-sample Student’s t-test for different levels (***, P < 0.001; **, 

P < 0.01; *, P < 0.05). 



 

Figure S19 The coefficient of variance (CV) for predicted future pH changes under SSP126 and 

SSP585 (IPSL-CM6A-LR model) in ten simulated warming sites. The star indicates that the CV 

value under SSP126 was larger than SSP585. 

 

  



Table S1. (separate file) 

List of collected dataset for soil microbiome in grasslands 

 

 

Table S2 Mantel test for the relationships between the core community and environmental factors 

Envs Full names r
Bray-Curtis

 r
Jaccard

 

pH Soil pH 0.306*** 0.323*** 

SOC Soil organic carbon 0.087*** 0.016 

TN Total nitrogen 0.096*** 0.164*** 

MAT Mean Annual Temperature 0.078*** -0.015 

MDR Mean Diurnal Range 0.109*** 0.153*** 

Isothermality Isothermality -0.043 0.007 

TempSeason Temperature Seasonality -0.155 -0.153 

MaxTWarmM Max Temperature of Warmest Month 0.157*** 0.071*** 

MinTColdM Min Temperature of Coldest Month -0.100 -0.184 

TAR Temperature Annual Range -0.167 -0.112 

MeanTWetQ Mean Temperature of Wettest Quarter 0.163*** 0.113*** 

MeanTDryQ Mean Temperature of Driest Quarter -0.106 -0.176 

MeanTWarmQ Mean Temperature of Warmest Quarter 0.190*** 0.086*** 

MeanTColdQ Mean Temperature of Coldest Quarter -0.078 -0.151 

MAP Mean Annual Precipitation 0.096*** 0.083*** 

PWetM Precipitation of Wettest Month 0.105*** 0.130*** 

PDryM Precipitation of Driest Month 0.019 0.032 

PrecSeason Precipitation Seasonality 0.018* -0.091 

PWetQ Precipitation of Wettest Quarter 0.076*** 0.120*** 

PDryQ Precipitation of Driest Quarter 0.035** 0.030 

PWarmQ Precipitation of Warmest Quarter 0.157*** 0.167*** 

PColdQ Precipitation of Coldest Quarter -0.122 -0.132 

NDVI Normalized Difference Vegetation Index 0.174*** 0.147*** 

***, P < 0.001; **, P < 0.01; *, P < 0.05 

  



Table S3 Cubist model performance summary of 10-fold cross validations for each eco-

clusters 

 Training dataset Test dataset 

 Average error 
Correlation 

coefficient (r) 
RMSE 

Correlation 

coefficient (r) 

P 

value 

Low pH 0.780±0.022 0.786±0.014 1.281±0.275 0.825±0.048 <0.001 

High pH and 

TN with low 

SOC 

0.435±0.005 0.928±0.004 0.649±0.042 0.922±0.016 <0.001 

Low SOC 0.195±0.003 0.863±0.005 0.293±0.048 0.862±0.035 <0.001 

High SOC 0.222±0.003 0.908±0.004 0.329±0.044 0.900±0.024 <0.001 

High PWetM 0.364±0.005 0.871±0.003 0.557±0.038 0.853±0.020 <0.001 

Low pH high 

SOC 
0.307±0.004 0.890±0.005 0.469±0.046 0.890±0.026 <0.001 

High 

MaxTWarmM 
0.461±0.005 0.807±0.005 0.701±0.097 0.810±0.039 <0.001 

Low pH low 

MAT 
1.242±0.018 0.916±0.005 2.098±0.150 0.910±0.024 <0.001 

High pH 0.745±0.004 0.909±0.003 1.050±0.100 0.899±0.022 <0.001 

High NDVI 0.361±0.008 0.876±0.011 1.120±0.438 0.893±0.076 <0.001 

 

 



Table S4 Fourteen simulated warming sites across global grasslands 

Locations Full names Longitude Latitude 
Continents 

(regions) 

Plot 

information 

Temperature 

increment 

Warming 

Samples 

Control 

Samples 

Bange 

Bange county, Nagqu Prefecture of 

the Tibetan Autonomous Region, 

China 

92.03 31.39 

Asia 

(Qinghai-Tibetan 

Plateau) 

Open-top 

chamber 
1.5~2℃ 18 9 

ForHot ForHot experiment, Iceland -21.19 64.00 Europe Geothermal heat 3℃, 6℃ 10 5 

Haibei1 
Haibei Alpine Meadow Ecosystem 

Research Station, China 
101.20 37.61 

Asia 

(Qinghai-Tibetan 

Plateau) 

Infrared radiator 

1.2~1.7℃ (growth 

season) 

1.5~2℃ (non-

growth season) 

4 4 

Haibei2 
Haibei Alpine Grassland 

Ecosystem Research Station, China 
101.20 37.50 

Asia 

(Qinghai-Tibetan 

Plateau) 

Infrared heater 2℃ 6 6 

Hulun 
Hulun Lake Reserve of Inner 

Mongolia, China 
113.21 48.75 

Asia (Other 

region) 

Open-top 

chamber 
1.8~2.1℃ 15 15 

JRGCE 
Jasper Ridge Global Change 

Experiment, USA 
-122.23 37.40 North America 

Infrared heat 

lamp 
1~2℃ 8 16 

KAEFS 
Kessler Atmospheric and 

Ecological Field Station, USA 
-97.52 34.98 North America Infrared radiator 3℃ 28 28 

NamCo Nam Co Station, China 90.99 30.77 

Asia 

(Qinghai-Tibetan 

Plateau) 

Infrared lamp 2℃ 4 4 

Naqu 

Nagqu county, Nagqu Prefecture of 

the Tibetan Autonomous Region, 

China 

92.02 31.44 

Asia 

(Qinghai-Tibetan 

Plateau) 

Open-top 

chamber 
1.5~2℃ 18 9 



SJY 

Sanjiangyuan Alpine Grassland 

Ecosystem Field Observation 

Station, China 

97.30 33.41 

Asia 

(Qinghai-Tibetan 

Plateau) 

Open-top 

chamber 
2.00±0.24℃ 3 3 

Naiman 
Naiman Desertification Research 

Station, China 
120.70 42.93 

Asia (Other 

region) 

Open-top 

chamber 
1.33-4.8℃ 3 3 

Yulong Yulong Snow Mountain, China 100.17 27.00 
Asia (Other 

region) 

Open-top 

chamber 

1.15℃, 1.28℃, 

1.92℃ 
17 18 

Siziwang Siziwang Banner County, China 111.88 41.77 
Asia (Other 

region) 
Infrared heater 1℃ 15 15 

Tiebujia 
Tiebujia Town of Gonghe County, 

China 
99.58 37.03 

Asia (Qinghai-

Tibetan Plateau) 

Open-top 

chamber 
2℃ 3 3 

 



Table S5 Cubist model performance summary of 10-fold cross validations for predicting soil 

pH with eco-clusters 

 Items Values with Standard Deviation# 

Training dataset 

Average error 0.252±0.003 

Correlation coefficient (r) 0.940±0.000 

Test dataset 

RMSE 0.416±0.043 

Correlation coefficient (r) 0.928±0.016 

P value <0.001 

# The average values and deviations were obtained by 10-fold cross-validation. 

 

 



Table S6 Functional potentials of the ten eco-cluster groups predicted by FAPROTAX 

Functional potential 
Influence on 

pH 

High 

MaxTW

armM 

High 

NDVI 

High 

pH 

High pH and 

TN with low 

SOC 

High 

PWetM 

High 

SOC 

Low 

pH 

Low pH 

high 

SOC 

Low pH 

low 

MAT 

Low 

SOC 

Aerobic chemoheterotrophy Undetermined *** c * c *** c ** c *** c NS c *** c *** c *** c ** c 

Aromatic compound degradation Undetermined  NS f     NS f NS f NS f NS f 

Chemoheterotrophy Undetermined *** c ** c *** c *** c *** c *** c *** c *** c *** c *** c 

Denitrification Increase   *** f  * f  NS f NS f NS f  

Nitrate denitrification Increase   *** f  * f  NS f NS f   

Nitrate reduction Increase/None * f NS f * c NS f ** f  NS c NS f   

Nitrate respiration Increase   *** f  * f  NS f NS f   

Nitrite denitrification Increase   *** f  * f  NS f NS f   

Nitrite respiration Increase   *** f  * f  NS f NS f   

Nitrogen fixation Undetermined  NS f NS f  NS f NS f NS f NS f NS f  

Nitrogen respiration Increase/None   *** f  * f  NS f NS f NS f  

Nitrous oxide denitrification Increase   *** f  * f  NS f NS f   

Ureolysis Increase  NS f NS f   NS f NS f    

Anoxygenic photoautotrophy None   *** f  * f  NS f NS f   

Anoxygenic photoautotrophy S oxidizing None   *** f  * f  NS f NS f   

Photoautotrophy None   *** f  * f  NS f NS f   

Photoheterotrophy Undetermined   *** f  * f  NS f NS f   

Phototrophy Undetermined   *** f  * f  NS f NS f   

 The Fisher’s exact test (f) or Chi-square with Yates’ correction test (c) was used to test whether the assigned function potential to each eco-cluster was significantly 

different to other functions. The chosen method depended on the expected value for each cell of the contingency table, i.e., Fisher’ exact test was used when 

minimum expected value less than 1, and Chi-square with Yates’ correction test for the remaining condition. 

***: P < 0.001, **: P < 0.01, *: P < 0.05, NS: non-significance. 



 

Movie S1. (separate file) 

Dynamic version of Fig. S10. The predicted biogeographic distributions for assigned 

eco-clusters of the core microbiota for global grasslands with SSP126, SSP370 and 

SSP585 scenarios of temporal dynamics (2021-2040, 2041-2060, 2061-2080, 2081-

2100) of the BCC-CSM2-MR climate model. 

 

 

Data S1. (separate file) 

Relative abundances, taxonomy, preferences to environmental factors and eco-clusters 

of core bacterial species of global soil grasslands. 
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