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Abstract: Industrial evolution and agricultural expansion, explained by continuing population
growth, have rendered enormous problems for the world throughout the past few decades, primarily
because of waste generation. To reduce environmental impact and dependence on fossil fuels,
scientists have explored replacing synthetic polymers with environmentally friendly and sustainable
alternatives in many emergent applications. In this regard, microbial biopolymers have gained special
attention. Many biopolymers originating from various strains of bacteria, fungi, and algae have
been reported and their possible applications have increased rapidly. This review focuses on the
wide range of microbial biopolymers, their characteristics, and factors influencing their production.
The present study also describes the environmental applications of microbial biopolymers. The use
of these biopolymers is very attractive as a value-added and sustainable approach to wastewater
treatment. By acting as adsorbents, coagulants, and flocculants as well as filters in membrane
processes, microbial biopolymers shine as promising solutions beyond conventional methods. They
can be integrated into various stages of the treatment process, further enhancing the efficiency
of wastewater treatment methods. Microbial biopolymer applications in bioremediation and soil
stabilization are also reviewed. Several studies have demonstrated the strong potential of biopolymers
in soil improvement due to their ability to minimize permeability, eliminate heavy metals, stabilize
soil, and limit erosion. Challenges related to scaling up and the downstream processing of microbial
biopolymers, as well as its future perspectives in environmental applications, are also discussed.

Keywords: microbial biopolymers; production; characteristics; environmental applications

1. Introduction

The worldwide population is consistently expanding, necessitating the expansion
of the food supply and putting pressure on the limited available natural resources. This
shift has ushered the agricultural sector into forming a noteworthy amount of waste. The
environment is frequently being polluted due to rapid industrialization and the shift of
populations to urban areas, leading to several concerns such as water pollution, waste
expulsion in the surroundings, and environmental deprivation [1,2].

Faced with this significant increase in the global population, modern agriculture is
proving to be an advantageous solution since it offers the opportunity to upsurge crop yield.
However, it also led to an increase in the global carbon footprint, and the generation of waste
from farming impacts the economic and social sectors. As per [3], agriculture comprises
around 38% of the terrestrial surface area on Earth. The Food and Agricultural Organization
(FAO) stated that the amount of food wasted annually during farming, post-harvesting,
and agriculture processing was 1.3 billion tons [4]. The utilization of agricultural residues
and their transformation into biopolymers presents a great opportunity to reduce the global
carbon footprint, considering that the landfilling of residue promotes global warming.

The increasing concern for diverse environmental problems has led to the develop-
ment of new approaches to diminish its deteriorated effects. Amidst various approaches,
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the formation of microbial biopolymers is a method that has earned great engagement due
to its superiority over synthetic biopolymers in terms of sustainability, biodegradability,
cost-effectiveness, structural diversity, non-toxicity nature, and bioactivity. This is due to a
customized range of functional groups with defined molecular weights. Biodegradability
relies on its chemical network so that it can be debased by biological attack. Moreover, the
approach to the degradation of biopolymers relies on factors such as dampness, tempera-
ture, and pH. However, various functional, thermal, morphological, and rheological tests
are usually executed to check its capability [5].

Nowadays, many synthetic polymers are more admissible and have become a regular
part of our lives, including dyes, Teflon, plastic polyester, etc. Biopolymers are described
as a considerable group of molecules separated from their cell walls and based on re-
peated functional units at a specific level. Microbes are cell-forming manufactories that
can transform carbon and nitrogen into extensive amounts of extracellular, intracellular,
and capsular biopolymers. Based on chemical configurations, microbial biopolymers are
classified into polyphosphates, nucleotides, polysaccharides, polyamides, and polyesters.
Among all polyesters, biopolymers are widely adequate and are manufactured through
metabolic pathways [6]. Some microbial biopolymers have drawbacks such as poor func-
tional and mechanical attributes and sensitivity towards chemicals; these can be mitigated
by developing hybrids or nanobiocomposites using nanofillers.

Many researchers have recently concentrated on the utilization of biopolymers and
their potential as biomaterials. Microbial biopolymers have applications in the food, textile,
agriculture, and pharmaceutical industries due to their unique characteristics. Environmen-
tal applications of microbial biopolymers have grown in popularity during the last decade.
Biopolymers could be generated in large quantities for cutting-edge applications such
as biofilm matrices, bio-flocculants, heavy metal adsorption, bioremediation, etc. [7–10].
This review focuses on microbial biopolymers, their classifications and characteristics, the
factors influencing their production, and their emerging environmental applications.

2. Microbial Polymers

Based on origin, microbial biopolymers are categorized into three categories: (i) From
bacteria, (ii) From fungi, and (iii) From algae. Bacteria are capable of producing both
intracellular and extracellular biopolymers. In bacterial metabolic synthesis, polysaccha-
rides, polyamides, polyesters, and polyphosphates are originated as metabolites [11,12].
Biopolymers produced from different bacterial strains are represented in Table 1.

Table 1. Fabrication of biopolymers from Bacteria.

Biopolymer Category Bacterial Strain References

Laminaria digitata spp., Macrocystis pyrifera [13]Alginate Polysaccharide
Pseudomonas spp. [14]

Bacterial Cellulose Polysaccharide
Komagataeibacter saccharivorans [15]

Komagataeibacter spp. FXV3, Komagataeibacter spp. NFXK3, and
K. intermedius LMG 18909 [16]

Bacillus subtilis [17]
β-glucan Polysaccharide

Xanthomonas campestris, Bacillus natto [18]

Hyaluronic acid Polysaccharide Mytilus galloprovincialis [19]
Streptococcus zooepidemicus [20]

Bacillus megaterium OUAT 016 [21]Polyhydroxyalkanoates Polyester
Bacillus cereus RBL6 and Pseudomonas pseudoalcaligens RBL7 [22]

Poly (γ-glutamic acid) Polyamide B. megaterium WH320 [23]
B. licheniformis 9945a and B. subtilis natto [24]

Xanthomonas campestris bacterium [25]Xanthan gum Polysaccharide
Xanthomonas campestris WXLB-006 [26]

Biopolymers produced from both fungi and algae are represented in Tables 2 and 3.
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Table 2. Fabrication of biopolymers from Fungi.

Biopolymer Category Fungal Strain References

Pullulan Polysaccharide

Aureobasidium pullulans ATCC 15233 [27]
Aureobasidium pullulans MTCC 1991 [28]
Aureobasidium pullulans HIT-LCY3 [29]

Aureobasidium pullulans ATCC 15233 [30]

β-glucan Polysaccharide

Saccharomyces cerevisiae [31]
Lasiodiplodia theobromae CCT 3966 [32]

Aureobasidium thailandense NRRL 58543 [33]
Saccharomyces cerevisiae, Aspergillus oryzae [18]

Chitosan Polysaccharide

Rhizopus stolonifera [34]
Mucorales [35]

Roccella montagnei. [36]
Absidia coerulea and Gongronella butleri [37]

Table 3. Fabrication of biopolymers from Algae.

Biopolymer Category Algae Species References

Sargassum cristaefolium [38]Alginate Polysaccharide
Nizimuddinia zanardini [39]

Polyhydroxyalkanoates Polyester
Synechococcus subsalsus [40]

Chlorella minutissima [40]
Spirulina spp. [41]

Polyhydroxybutyrate Polyester

Stigeoclonium spp. B23 [42]
Chlorella fusca [43]
Chlorella spp. [44]

Microcystis spp. [45]

Polylactide Polyester Corallina elongata [46]
Scenedesmus abundans [47]

The array of biopolymers that fungi effectively create possesses a characteristic of
numerous interests, which renders them beneficial assets for broad-spectrum environmental
applications, including as biosurfactant agents [48] and in soil carbon sequestration [49],
enzyme immobilization [50], the biosorption of heavy metals, and soil emendation [51].
Algae are photosynthetic microbes that can be grown on wastewater and are not only reliant
upon pure water. Among all biopolymers, polysaccharides and polyesters have significant
importance from an environmental perspective. A general overview of the production
of several microbial biopolymer studies through fermentation is provided in Table 4. It
illustrates the microbial biopolymers synthesized from various carbon and nitrogen sources,
the nutrients used in fermentation, and the yields produced under ideal fermentation
conditions, as well as emerging environmental applications. In the subsequent segment,
significant microbial biopolymers and their environmental applications are reviewed.
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Table 4. Overview of the production of microbial biopolymers by fermentation and its environmental applications.

Biopolymer Microbial Strains
Carbon

/Nitrogen Source
Nutrient Used

Duration of
Fermentation

Type of
Fermentation

Fermentation
Conditions

(Temperature, pH, etc.)

Maximum
Yield (g/L)

Environmental Application References

Bacillus subtilis NG05 Sugarcane Molasses
(Maltose) Beef extract, Peptone 18 h Batch pH = 7, 30 ◦C 4.94 Waste utilization and development of

Bioplastic [52]
Polyhydroxybutyrate

Ralstonia eutropha
ATCC 17,699 Glycerol NaH2PO4, (NH4)2SO4,

MgSO4·7H2O, K2HPO4
62 h Fed-batch pH = 10, 60 ◦C 68 Potential as biodegradable material [53]

Chitosan

Penicillium citrinum Rice Straw Potato dextrose 10 days Solid State pH = 6.5–7.5, 30 ◦C 7 Heavy metal removal [54]
Rhizopus oryzae, Mucor sp.

(MTCC 3340), Absidia
coerulea (MTCC 1335)

Tannery fleshing
waste Yeast extract

70 h
140 h
200 h

Submerged pH = 8.5, 25 ◦C
1.53
2.74
2.05

Utilization of leather flesh waste [55]

Bacterial Cellulose
Gluconacetobacter xylinus Glucose Yeast extract, Peptone 10 days Static pH = 5; 30 ◦C - Detection of Staphylococcus aureus [56]

Gluconacetobacter sp. Apple waste 2% Fructose 7 days Static pH = 6.4; 28 ◦C - Removal of chromium ions [57]
Gluconacetobacter xylinus Orange peel Yeast/Peptone extract 8 days Static pH = 4.75; 30 ◦C 6.13 Waste reduction [58]

Hyaluronic Acid Streptococcus zooepidemicus Cheese whey Yeast extract 2 days Batch pH = 6.7; 37 ◦C 3.37 70 % cost reduction as compared to
synthetic media [59]

Xanthan Gum
Xanthomonas campestris Wastewater, Malt Yeast broth 72 h Batch pH = 7;

28 ◦C 15.56 Improved oil recovery [60]

Xanthomonas campestris Wastewater, Malt Yeast broth 120 h Batch pH = 7; 28 ◦C - Enhanced oil recovery [61]

β-glucan
Lasiodiplodia theobromae

CCT 3966 Sugarcane straw Yeast extract, malt extract,
peptone 72 h Batch pH = 7; 30 ◦C 3.28 Waste utilization: conversion of

cellulose to glucose [32]

Xylaria sp. BCC 1067 Glucose Malt extract, peptone 28 days Batch pH = 7; 25 ◦C 0.115 Antifungal activity [62]

Alginate
Azotobacter vinelandii Sucrose

K2HPO4·3H2O,
CaSO4·2H2O, NaCl,

MgSO4·7H2O,
Na2MoO4·2H2O,

FeSO4·7H2O

20 h Batch pH = 7; 30 ◦C 3.06 Nitrogen fixation [63]

Azotobacter vinelandii
ATCC 9046

Sugar beet mo-
lasses/maltose/starch Yeast extract, 72 h Batch pH = 7.2; 30 ◦C 5.44 Adsorbent for heavy metals [64]

γ-PGA Bacillus subtilis Sago and Soyabean Yeast Extract 5 days Batch pH = 6.5; 37 ◦C 35.32 Act as a Bio flocculant [65]

Bacillus subtilis Glucose Beef extract, Yeast extract,
Peptone 2 days Batch pH = 7, 37 ◦C 25.38 Act as a Bio flocculant [66]

Pullulan
Aureobasidium pullulans Potato starch Yeast extract, peptone 5 days Batch pH = 6; 26 ◦C 23.47

Could be used as a potential
purifying agent and as a flocculant for

heavy metal reduction
[29]

Aureobasidium pullulans Sucrose Barley malt extract 170 h Batch pH = 6; 26 ◦C 50 Biosorbent of heavy metals; Protective
agent [67,68]

Polylactide Indigenous microorganism Mango Peel Waste - 6 days Anaerobic
submerged pH = 10, 35 ◦C 17.48 Cost-effective biodegradable material [69]

Lactobacillus delbrueckii Broken rice Yeast Extract, Peptone 50 h Solid State pH = 6, 40 ◦C 79 Cost-effective Biodegradable material [70]
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2.1. Bacterial Cellulose

Waste, including agricultural residue, food waste, and industrial leftovers, can give
bacteria the nutrients and habitat they need to create bacterial cellulose. Examples of raw
materials used for obtaining bacterial cellulose are by-product streams from sugarcane jag-
gery waste [71] waste streams from biodiesel and confectionery industries [72], oat hull [73],
rice bark [74], corn stalk [75], fruit juices [76], Nylon 6-6 hydrolysate [77], cotton-based
textile waste [78], the wastewater of fermentation industries [79], etc. Bacterial cellulose
is chiefly isolated by both Gram-positive bacteria and Gram-negative bacteria such as
Komagataeibacter spp. Acetobacter spp., Sarcina ventriculi, Pseudomonas spp., etc. [15,80,81].
In comparison to plant-derived cellulose, cellulose produced by bacteria offers a range of
amenities, which include high levels of purity, superior mechanical and thermal attributes,
long-term sustainability, better water- and oil-holding capacities, high surface areas, and
biodegradable attributes [82,83]. Bacterial cellulose is a linear-chain polysaccharide made
up of repeating glucose monomeric units linked by β (1-4) linkages. It has a complex
structural arrangement with ample hydroxyl groups and robust intermolecular interac-
tions that hamper it from dissolving in water. It is remarkably resistant to decomposing
in water because it establishes an interconnected system of linked strands of cellulose,
which are bound jointly by bonds of hydrogen [84]. There are some challenges involved
in scaling up bacterial-cellulose production by fermentation. Agitated fermentation and
static fermentation are both viable methods for producing Bacterial cellulose. Zhong [85]
investigated that bacterial cellulose produced by static fermentation is a more laborious
and lengthy process than agitated fermentation, also static fermentation provides poor
yield as compared to agitated fermentation. Zhong [85] also concluded that due to the
high cost of bacterial-cellulose production, its application is limited as compared to plant-
based cellulose. Consequently, novel affordable nutrient sources such as fermentation
effluent, sugarcane molasses, and waste from fruits could additionally be utilized for the
bacterial-cellulose upscaling manufacturing process. The manufacturing process of bacte-
rial cellulose and its commercial usage has been constrained by high production costs as
well as low yield. Bacterial cellulose-producing bacteria have no capacity to co-produce
additional compounds with cellulose, such as lignin, pectin, and hemicellulose. Bacterial
cellulose has a significant purity advantage over cellulose generated from plants. Fur-
thermore, bacterial cellulose is biocompatible since complementary polymers and other
contaminants are absent from it [86]. Due to its biocompatibility and biodegradability, it
offers wide applications. Galdino et al. [87] developed a filter based on bacterial cellulose
for the elimination of oil from wastewater. Their findings suggested that bacterial cellu-
lose could be used as an alternative material for oil filter development. Cazón et al. [88],
Cielecka et al. [89], and Chiaoprakobkij et al. [90] utilized bacterial cellulose as a bioma-
terial to improve the ductility, tensile strength, biocompatibility of composites. Similarly,
Alves et al. [91] made filter membranes from bacterial cellulose for industrial water treat-
ment. Based on bacterial cellulose, various potential biosensors have been developed
for multifarious applications [92]. Some were developed for the detection of bacteria
and viruses [56,93], antibiotics [94], heavy metals [57,95], dyes [96], and pollutants [97].
Moreover, many researchers have investigated bacterial cellulose-based hydrogels for the
removal of heavy metals and dyes [98–100].

2.2. Microbial Hyaluronic Acid

A recurring mixture of D-glucuronic acid and D-N-acetyl glucosamine connected by
β (1-3) and β (1-4) linkages, respectively, makes up hyaluronic acid, also known as hyaluro-
nan [101]. It can be isolated from animal tissues like roosters’ crest, cartilage, vitreous
humor, and umbilical cords through a microbial fermentation process with the help of bac-
terial and yeast strains such as Streptococcus spp., Mytilus galloprovincialis, Pichia pastoris, and
Pseudomonas spp. [19,20,102,103]. The D-glucuronic acid and N-acetyl glucosamine moi-
eties of hyaluronic acid are generated from glucose-6-phosphate and fructose-6-phosphate,
correspondingly, by two different pathways [104]. The molecular makeup of the hyaluronic
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acid molecule reveals that it has several hydroxyl and carboxyl groups, which can result in
a great deal of intramolecular and intermolecular hydrogen bonding in solutions. These
bindings contribute to overall stiffness and exhibit gel-formation abilities [105,106]. Never-
theless, the advancement of microbial means of extraction has been prompted due to the
obstacles in managing tissues from animals, excessive expenses, and moral complications
related to hyaluronic acid generated from animals. Hyaluronic acid is the least explored
biopolymer for environmental applications. The main challenge involved in microbial
hyaluronic acid production is its low yield because of the extremely viscous nature of the
broth, which makes it challenging to regulate the mixture and rapid transfer of oxygen.
There is fierce competition for the same precursor molecules that are essential for cellular
growth and the generation of hyaluronic acid. In addition, the build-up of lactic acid—the
main metabolic waste product in hyaluronic acid fermentation activities—has a significant
negative effect on both cellular development and hyaluronic acid production. Different
approaches to prevail over these challenges include the systematic screening of proficient
strains, optimization of tailored culture media, and development of sophisticated cultiva-
tion procedures [107–110]. Zhang et al. [111] recently developed a hybrid hydrogel for plant
growth regulation and the adsorption of heavy metal ions. Taşdelen et al. [112] developed
a composite hydrogel to remove manganese in wastewater. When it comes to fish waste
(head, skin, fin) specifically, animal waste poses a serious environmental risk because al-
most 50% of the tissue is thrown away. It is essential to pursue initiatives related to research
and development aimed at developing novel approaches that make it easier to obtain this
biomaterial while also minimizing difficulties with waste management, emphasizing the
significance of those initiatives. Refs. [113,114] extracted hyaluronic acid from Scyliorhinus
canicula discards with the help of Streptococcus zooepidemicus strains. They concluded that
among all approaches, fed-batch operatory was valuable in achieving a high yield and
was beneficial in reducing the overall cost of production. Amado et al. [115] extracted
microbial hyaluronic acid from agro-industrial by-products. They obtained a maximum
yield of 3.48 g/L hyaluronic acid among three culture media. Moreover, hyaluronic acid has
potential application as a nanofiber due to its water-resistant characteristics. Um et al. [116]
and Wang et al. [117] constructed a water-resistant nanofiber with an electrospinning and
electro-blowing technique.

2.3. Xanthan Gum

The commercially grown Xanthomonas campestris bacteria secretes xanthan gum, an
exopolysaccharide [118]. It is a high molecular weight microbial biopolymer that belongs
to the heteropolysaccharide category. Primarily, the carbon supply for the production of
xanthan gum comes from the substrate’s glucose and sucrose. Xanthan gum is constituted
of a mixture of glucuronic acid, mannose, and glucose units of repetition adjoined by β

(1-4) linkages. It is generally obtained by an aerobic fermentation approach accompanied
by precipitation in isopropyl alcohol. The kind of fermenter employed, the way it is used
(batch or continuous), the culture medium, and the growth parameters, such as the pH level,
temperature, and oxygen in the medium, all affect the synthesis of xanthan [119]. It readily
dissolves in cold water and displays strong pseudoplastic flow characteristics [120]. Its
structural arrangement is extremely branched and complex. It is one of the most promising
and commercialized biopolymers that has been used for the entrapment of living cells [121].
Because of its structural divergence and rheological characteristics, it can be employed
for a variety of applications. Sulaiman et al. [122], Liu et al. [123], and Feng et al. [124]
investigated the application of xanthan gum for soil stabilization and to improve soil
water-retention efficacy. Ramos de Souza et al. [125] and Keykhosravi et al. [126] employed
xanthan gum to boost oil recovery. Oil recovery was improved due to wettability modifica-
tion, and increased water viscosity was achieved using a nano-polymer suspension. The
findings of Ko et al. [127], Njuguna and Schönherr [128], Mohafezatkar Gohari et al. [129],
Taktak and Özyaranlar [130], Hosseini et al. [131], and Hu et al. [132] described that because
of its exceptional selectivity, recovery, and reusability after regeneration, xanthan gum is
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a phenomenal biomaterial for the immobilization of heavy metals and an adsorbent of
cationic dyes. Moreover, xanthan can also be used for developing edible films and coatings
for the shelf-life extension of agriculture and horticulture produce [133–135]. Palaniraj and
Jayaraman [119] claimed in their study that by using ultrafiltration after fermentation, the
consumption of energy while recovering xanthan gum can be reduced by 80%. The main
challenges involved in producing xanthan gum through microbial fermentation are viscos-
ity obstacles. They also concluded that by employing a centrifugal-packed bed reactor, the
viscosity problem can be overcome. Additionally, it was found that membrane-assisted
deposition significantly increased membrane flow while using fewer accumulating solutes,
leading to a significant increase in separation efficiency.

2.4. Microbial β-Glucan

Traditionally, based on raw materials, the isolation of β-glucan is grouped into cereals
and non-cereals with varying compositional structures. Additionally, certain microorgan-
isms can also create exopolysaccharides, that may be able to meet demand on an industrial
scale. Exopolysaccharides from microorganisms are advantageous replacements for natural
plant polysaccharides because of their distinctive metabolic characteristics. The source from
which beta-glucan was acquired affects its characteristics. Industrial scale-ups of β-glucan
have some constraints—notably, lengthy extraction times and high costs—associated with
the process [136]. This microbial biopolymer exists both intracellularly (typically as a stor-
age unit of carbohydrates) and extracellularly (generally as a capsule or as slime layers and
biofilms). Furthermore, there are two types of microbial beta-glucans: linear and branched.
Singular β (1-3) or β (1-6) glucose units may make up linear beta-glucans. Branched
beta-glucans are identified by the combination of β (1-3) and β (1-6) connections [137].
Zhu et al. [136] summed up the production of β-glucan using different processes and com-
pared the yields and production times. The biological activity of obtained β-glucan depends
upon raw material, manufacturing processes, and purifying techniques [17,18,32]. β-glucan
is a significant antifungal agent for crop protection. Chavanke et al. [138] reported the
valuable impact of β-glucan in plant defense pathways, resistance against disease-causing
microorganisms, and in response to changing environmental circumstances. Anusuya and
Sathiyabama [139] observed the antifungal effect of β-glucan against the destructive fungus
P. aphanidermatum, which mainly harms crucial crop plants. Similarly, Jayasekara et al. [62]
and Anusuya and Sathiyabama [140] reported the antifungal efficacy of β-D glucan against
the Saccharomyces cerevisiae strain and in the prevention of rhizome rot disease of turmeric,
respectively. Vetvicka [141] examined the impact of β-glucan against environmental toxins
like mycotoxin, aflatoxin, and depleted uranium.

2.5. Alginate

Alginate is majorly extracted from seaweed species, e.g., Sargassum cristaefolium,
Laminaria digitata, and Ascophyllum nodosum [13,38,39], and from some bacterial strains,
e.g., Pseudomonas spp. and Azotobacter spp. Alginate is an unbranched water-soluble hy-
drocolloid that belongs to the polysaccharide category. Guluronic and mannuronic acid-
repeating monomeric units are adjoined by glycosidic connections to form alginate. The
arrangement and composition of monomers designate the overall characteristics of algi-
nate [142]. Alginates could provide a cross-link (egg-box) structure through ionic interac-
tions and trapping cations. This chelating structural arrangement provides alginate with
the capability of quenching heavy metals from wastewater. Hydrogels can be formed
from alginate with the addition of calcium ions, which are usually stimulated by the in-
corporation of acids such as acetic acid. The potential of alginate-based hydrogels and
their usage in the removal of dyes and heavy metals have been extensively studied by
numerous researchers [143–150]. Furthermore, alginate is considered to remove toxic pollu-
tants from wastewater [151,152]. Also, after contaminant elimination, algal biorefinery is a
sustainable approach to recovering biochemicals (carotenoids, acetic acid, lactic acid, and
eugenol), bioenergy (biohydrogen, biomethane, bioethanol, and biogas), and biomaterials
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(biochar, films, coatings, and carbon fiber) from biomass [153,154] from algal biomass.
As for environmental applications, Lu et al. [155] developed sodium alginate beads for
wastewater treatment, which were pH-sensitive and had controllable swelling behavior,
using a post-cross-linking approach. The smart polysaccharide was found to be efficient
for Cu2+, Ag+, Fe3+, and methylene blue with a maximum adsorption capacity of 54.9, 82.8,
135.5, and 572.7 mg/g, respectively. In another study, Da Cunha et al. [156] fabricated
pH-stimuli-responsive alginate/chitosan microcapsules containing linseed oil for the active
corrosion protection of carbon steel. Benzotriazole, used as a corrosion inhibitor, was added
through a layer-by-layer approach. The use of such smart biopolymers, known for their in-
stantaneous response to pH variations, led to an observed enhancement in the release of the
corrosion inhibitor at pH levels below 5. In the study conducted by Gopishetty et al. [157],
sodium alginate and polyvinyl alcohol were used to create thin, porous hydrogel films
with tiny pores. Due to the stimuli-responsive properties of sodium alginate, these smart
hydrogel films demonstrated an ability to regulate the dimensions of the pores in response
to changes in pH, thereby enhancing their efficiency in the process of separation. From
advanced drug delivery systems to adaptable separation membranes, smart biopolymers
hold great promise in shaping the future of technology and science. As ongoing research
delves deeper into their potential, we can anticipate even more ground-breaking devel-
opments that capitalize on their unique properties. There are some limitations involved
in using alginate as a biomaterial, such as mechanical stability, broad ranges of pore size
distribution, mechanical stability, and osmotic swelling when subjected to physiological
conditions. Additionally, due to changing environmental conditions, it is susceptible to
variability in the proportion of guluronic to mannuronic acid residues and their molecular
weight [63,158]. Contreras-Abara et al. [63] found that under diazotrophic conditions, its
yield can be increased, and its constant molecular weight can be controlled by utilizing a
continuous culture approach.

2.6. Poly (D/L-γ-Glutamic Acid) (γ-PGA)

Poly (γ-glutamic acid) is considered one of the smartest microbial biopolymers due
to its distinctive structural characteristics and applications. γ-PGA is an optically active
polyamide that is structurally composed of D-L glutamic acid adjoined by a peptide bond.
γ-PGA Poly (γ-glutamic acid) and Poly (α-glutamic acid) are two isomeric arrangements
usually extracted extracellularly through a reaction of glutamic ester monomers with an
appropriate producer bacteria under optimum fermentation conditions [23,24] The avail-
ability of free carboxyl and amine groups in γ-PGA at specific pH ranges makes it a suitable
biopolymer to capture cations, especially heavy metals from noxious environments [159].
In the realm of environmental research, its emerging directive is to make sustainable mate-
rial from the waste stream. γ-PGA can be used for multifarious environmental goals: in
bioremediation [160,161]; as a bio-flocculant agent [65,162]; for wastewater treatment [163]
or soil sedimentation [164]; as an anti-freezing agent [165] or antifungal agent [166]; for the
construction of filter membranes [167,168]; and as biodegradable green plastic [169]. Al-
though the microbial fermentation of γ-PGA has been extensively researched, costs related
to manufacturing, particularly those associated with substrates and processes, continue to
be high [170].

2.7. Pullulan

Pullulan is a fungal-based microbial biopolymer that belongs to the family of ex-
opolysaccharides. It is extracted with fermentation approaches by utilizing the fungal
strain Aureobasidium pullulans. Pullulan is comprised of replicating units of maltotriose
adjoined jointly by α-(1,6) glycosidic joinings. Maltotriose is an oligosaccharide, which is
further composed of three glucose units adjoined by (1,4) glycosidic joinings [171]. Elevated
fermentation-broth viscosity, melanin coloring, and pullulanolysis during fermentation are
the main issues encountered during the manufacturing of pullulan [172]. Other than this,
the high cost of feed is a major challenge involved in producing pullulan. To overcome
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this, inexpensive lignocellulosic substances can be used as carbon sources for microbial
fermentation [173]. Pullulan can endure high heat loads, has a versatile range of viscosities
and solubilities, and is generally regarded as safe by monitoring authorities. It embraces
strong adhesive attributes and has the capacity to develop non-odorous, semi-opaque, and
oxygen-proof films [125,174]. Pullulan exhibits applications in the bioremediation of indus-
trial waste streams [29], biosorption of heavy metals [67,175,176], harmful dyes [177–179],
antibiotics [180,181], and other pollutants [182] in water due to its robust adhesive at-
tributes. The use of synthetic polymers for food packaging has increased over time due to
their mechanical and thermal attributes, but the decomposition of these polymers leads
to the production of harmful gases [183]. One of the major uses of pullulan is to make
antimicrobial films to preserve food [184–189].

2.8. Chitosan

Chitosan belongs to the family of polysaccharides. It is one of the most researched
biopolymers due to its bioactivity and is known as a non-migratory bioactive polymer
(Steven and Hotchkiss 2003). The deacetylated version of chitin, poly-(14)-N-acetyl-D-
glucosamine, is a natural biopolymer attained from crab shells and lobsters by engaging
fungal strains (Table 2) subsequently through succeeding processes of demineralization,
deproteinization, and deacetylation [190]. The solid-state fermentation process has been
considered a viable approach to producing chitosan from fungal stains since it allows
for substantial product concentrations and has fewer apparatus requirements than liquid-
submerged fermentation. Nevertheless, solid-state fermentation has its own limitations like
rapid mass transfer, and, more importantly, heat exchange issues, which become crucial on
an industrial scale [191]. Another advantage of producing this microbial biopolymer from
fungal sources is its uniformity, convenient handling, efficient harvesting, and availability
over the entire year, as well as its improved physicochemical attributes [192]. Various
research analyses studied the impact of chitosan as an antimicrobial and antifungal agent
and its potential to make edible films and coating solutions for diminishing the post-harvest
losses of fruits and vegetables [190,193–197]. Other potential applications of chitosan for
the environment are as a plant growth regulator [198–200], a flocculating agent for dye
and heavy metal reduction [201–205], a water purifier [206,207], and as a bioremediation
agent [208–210]. Szymańska and Winnicka [211] reported the stability concern of chitosan as
a biomaterial, referring to the degradation of chitosan during storage due to the breakdown
of its functional group. The degradation of chitosan is significantly influenced by both
intrinsic and extrinsic factors. It is suggested to improve the stability blending of chitosan
with other hydrophilic biopolymers.

2.9. Polyhydroxyalkanoates (PHA) and Polyhydroxybutyrate (PHB)

PHA and PHB come under the type of polyesters that are intracellularly extracted
by both bacterial and fungal strains. PHB is one of the forms within PHA. Among both,
PHA attracts more interest from both industrialists and academia because of its wider
range. PHB has limited flexibility, poor thermal stability, and a slow degradation rate as
compared to PHA. Worldwide, many investigators have isolated PHA and PHB with the
aid of diverse strains (Tables 1 and 3). PHA is usually comprised of linear-chained repeat-
ing (R)-3-hydroxy fatty acid units adjoined together by ester bonds. PHA is categorized
into short chains (C3–C5) and medium chains (C6–C14) as per their carbon chain length.
Zheng et al. [212] and Mohapatra et al. [21] extracted PHA by both submerged and solid-
state fermentation. The higher yield was conveyed by solid-state fermentation. Moreover,
a significant difference was noted in its thermal, structural, and morphological properties.
Also, the selection of a raw material as a carbon source directly influences the quality of the
microbial biopolymer. PHA functions as a storage unit and serves as a terminal electron re-
ceptor for bacteria under stress conditions [213,214]. PHA is effectively being employed for
the formation of bioplastic due to its biodegradability, thermoplasticity, and bio-tolerance
attributes [215,216]. Dhania et al. [217] developed PHB nanoparticle-based scaffolds and
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concluded its benefits for tissue engineering. Meanwhile, PHA could be regarded as an
alternative to conventional plastics, which supports diminishing the use of synthetic poly-
mers. Othman et al. [218] explored the potential of PHA-based degradable mulch film in
rice-seed germination. Kelwick et al. [219] designed a protease biosensor based on AL-PHA
beads for the detection of proteolytic activity. Amanat et al. [220] analyzed the long-term
potential of diverse types of PHA-based material for bioremediation. Apart from this, PHA
can also be used for purification processes [221,222]. Tanadchangsaeng et al. [53] observed
the biodegradability of both PHA and PHB in seawater by calculating the amount of carbon
dioxide collected from decomposition operations. The main drawbacks of producing this
microbial biopolymer are the expensive feed and inadequate thermal and mechanical prop-
erties, mainly of PHB. Improvements to the substrate types, supplying methods, growth
conditions, and/or genetic modifications can lead to much improved traits [223].

2.10. Polylactide (PLA)

Polylactide or polylactic acid, also known as PLA, is a microbial biopolymer that
functions identically to polyolefins and is capable of being processed utilizing standard
approaches like blow molding and protrusion to produce green bioplastics. Polylactic
acid comes under the class of polyester. It is comprised of lactic acid monomers. Sugars
are generally converted into lactic acid with the aid of bacterial and algae strains and are
afterward polymerized to polylactic acid [46,47]. A study by Balla et al. [224] concluded
that advanced ring-open polymerization with catalysts like tin and zinc is beneficial to
declining the cost of PLA. PLA is a biodegradable and biocompatible polymer that exists in
two enantiomeric forms L-PLA and D-PLA can be selected for material properties. PLA
is a promising biopolymer that can be extracted from municipal waste [225], lignocellu-
losic [226], and food waste streams with the aid of enzymatic and fermentation processes.
Most waste biomass is comprised of the prevalent natural flora of lactic acid bacteria. There-
fore, it can be anticipated that sugars in biowaste are naturally fermented to lactic acid [225].
Menezes et al. [227] explored the performance of PLA in protracted marine environments.
Zhang et al. [228] emphasized the use of PLA-based films as an environmentally satisfying
alternative to traditional plastic mulch. Another notable application of PLA-based fibrous
membranes was analyzed for oil–water separation by Mo et al. [229]. In comparison to
polymers made from petroleum, this microbial biopolymer is high-priced and has inferior
mechanical characteristics. Now, copolymerization can be used to overcome this difficulty
and to scale up at an industrial scale [230].

3. Characteristics of Microbial Biopolymers

Biopolymers produced by microorganisms offer a variety of roles for organisms. The
expenditure of generating biodegradable substances as well as the expense of recycling
waste can be decreased by using agricultural and industrial waste as substrates for the
production of microbial biopolymers. Agricultural waste such as rice straw, maize cobs,
oats, fruit peels, and molasses, and industrial waste such as wastewater from dairy pro-
cessing, the textile and pharmaceutical industries, seafood, and slaughter waste, can be
used to make biopolymers that are sustainable, bio-functional, biostable, and biologically
compatible [231–236]. An overview of the production of microbial biopolymers from
agro-industrial waste is illustrated in Figure 1.

Some of its features are as follows:

(i) They can adapt to altering environmental circumstances and be modified accord-
ingly [237,238].

(ii) Microbial biopolymers such as proteins or polypeptides act as catalysts in numerous
biochemical reactions. This helps to decline the activation energy when used in the
chemical reaction. So, these catalysts enable microorganisms to breakdown nutrients
and produce essential nutrients for cellular pathways [239].

(iii) They are storage factories that reserve energy and permit microorganisms to acclimate
extra energy in case of metabolic demand [240].
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(iv) They act as defensive associates for microbial cells and guard the cells against the
environment. In other words, microbial biopolymers act as biofilms and stick to the
surfaces of cells, defending them from physical and chemical stresses [241,242].

(v) Microbial biopolymers act as intermediaries for transmission between microorganisms
and their environment. They assist in receiving and sending signals to organize their
behaviors and their response to alerting environments [242].

 

 

 

 

Figure 1. Overview of microbial biopolymers production from agro-industrial waste and its environ-
mental applications.

4. Factors Influencing the Production of Microbial Biopolymers

Microbial biopolymers have garnered considerable attention lately because they have
the prospect of serving as alternates for synthetic polymers. Several aspects influence
the fabrication of microbial biopolymers, and they can be split into two major categories:
intrinsic factors and extrinsic factors (represented in Figure 2).
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Figure 2. Factors influencing the fabrication of microbial biopolymers.

4.1. Intrinsic Factors

(i) Selection of microorganisms: The selection of microbial strains plays a vital role in
the fabrication of biopolymers. There is only a limited number of commercially available
strains allowed by the Food Drug Administration (FDA) for use in the fabrication process.
The effectiveness, yield, and functional, mechanical, and rheological properties are directly
reliant upon the selected microbial strain and its metabolic pathways [10].

(ii) Medium composition: One of the most significant factors for effective microbial
fermentation is the medium composition [243]. An adequate supply of carbon and nitrogen
in the culture medium is the most significant factor for the production of microbial biopoly-
mers. Generally, microbes use polysaccharides such as glucose, sucrose, and fructose as
carbon sources, as well as amino acids and ammonium salts as nitrogen sources, depending
upon the type of biopolymer. Appropriate carbon-to-nitrogen ratios are desirable for the
cultivation of microbial biopolymers [244]. Moreover, microbes require nutrients, minerals,
and trace elements for the synthesis of microbial biopolymers (Table 4). The right concen-
trations of nutrients and trace elements like beef extract, yeast extract, sulfur, iron, and
phosphorus are obligatory for the microbial metabolic pathway. Additionally, the medium
must be free of any elements that can interfere with microbial action. Any imbalance leads
to creating a disturbance in the metabolic pathway, which in turn influences the production
of biopolymers [7,10,245,246].

(iii) pH, temperature, and oxygen supply: The yield and characteristics of microbial
biopolymers can be reformed with the supply of oxygen. Several factors, including the
microorganism, there are several pHs as well as temperature levels that are ideal for
fabrication. Microbial growth rates and the fabrication of biopolymers could be impaired
by deviations from the ideal circumstances.
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4.2. Extrinsic Factors

(i) Downstream processing: The overall production of biopolymers is influenced
by various downstream processes; filtration, precipitation, and extraction directly affect
the quality of biopolymers [247]. The extraction of a biopolymer from agro-industrial
waste provides less yield as compared to extraction from commercially utilized materials.
Extraction of biopolymer by solvents and multiple steps in downstream processing raise
the end cost of biopolymer [248]. For example, Pérez-Rivero et al. [249] and Koller [250]
concluded in their studies that there are several processes in the manufacture of PHAs, and
downstream processing can make up half of those steps’ production costs. Periodically, the
temperature step involved in downstream processing leads to a deteriorating effect on the
attributes of some biopolymers.

(ii) Process design: The final attributes of fabricated biopolymers depend upon various
process factors such as agitation techniques, the type of bioreactor employed, inoculum
density, feeding methods, mass flow, enthalpy of stream, and processing time [251]. Simple
batch reactors, continuous or fed-batch systems, and semi-continuous are possible types of
bioreactors employed for the production of microbial biopolymers. In terms of the layout,
scalability, ease of inspection, control, and the particular needs of the biopolymer being
produced must be considered [9,252].

(iii) Scale-up considerations: There are complications in repositioning lab-scale biopoly-
mer production on an industrial scale. For prosperous large-scale production, components
like conserving constant requirements, precluding contamination, and improving nutrient
and oxygen transportation are paramount [7].

(iv) Ageing of biopolymers: After the fabrication of the biopolymer, it experiences
changes in its structural and rheological properties over time. This process is known as
the aging of biopolymers. Changes in crystallinity and physicochemical attributes are
directed towards the weakening of biopolymers. Nagaraja et al. [253], Deroiné et al. [254],
Siviello et al. [255], Leceta et al. [256], Santos et al. [182] and Cui et al. [257] observed
the impact of aging on poly(3-hydroxybutyrate-co-3-hydroxyvalerate, alginate, chitosan,
bacterial cellulose and polylactic acid, respectively.

5. Role of Microbial Biopolymers in Wastewater Treatment Processes

Wastewater describes any water that has been contaminated by industrial processes or
human activities, including both residential and commercial sources and natural sources,
such as stormwater runoff and infiltration or inflow into sewer systems [258]. Wastewater
contains a range of contaminants, including inorganic pollutants (heavy metals and rare
earth minerals), organic pollutants (dyes, food, detergents, pesticides, herbicides, and
pharmaceuticals), and other pollutants (oil, radioactive waste, spill, grease, etc.), which
have detrimental effects on the environment and human health [259]. Until now, step-by-
step processes like preliminary, primary, and secondary treatment have been employed
to ensure water meets the required quality standards for safe discharge or reuse [258].
Various approaches have been tested in the removal of contaminants, including aerobic
and anaerobic biological methods and the use of physical and chemical treatments. Co-
agulation and flocculation comprise fundamental stages in the removal of large, coarse,
solid materials, like suspended solids, heavy metal ions, and dye molecules. Oxidation
methods tackle the removal of organic impurities, while adsorption mechanisms have
proceeded to capture soluble particles. Membrane-based treatment technologies have also
demonstrated the capacity to separate impurities from wastewater, enhancing overall water
quality [260]. Recently, the use of microbial biopolymers has gained significant attention as
a value-added and sustainable approach to wastewater treatment. By acting as filtration
media, adsorbents, coagulants, and flocculants, microbial biopolymers can be integrated
into various stages of the treatment process, potentially further enhancing the efficiency
and effectiveness of wastewater treatment methods [171]. The upcoming subsections will
delve into the diverse roles of microbial biopolymers in wastewater treatment.
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6. Applications of Microbial Biopolymers

6.1. Microbial Biopolymers as Adsorbents

Adsorption is a surface phenomenon that has gained popularity in water treatment in
recent years. It is a well-known equilibrium separation process recognized by its simplicity,
effectiveness, and efficiency [261]. This process is favored because it does not require the use
of extra chemicals, excess water, or energy, thereby allowing for a low operating cost [262].
Synthetic polymers are generally derived from coal and petroleum, which are unable to fit
in recycling systems. Contrarily, microbial biopolymers outperform petroleum-based poly-
mers in terms of affordability, environmental sustainability, and usability [263]. Microbial
biopolymers are composed of a variety of functional groups, including methoxyl carboxyl,
phenolic hydroxyl, amines, and hydroxide. Due to chelating metal ions establishing surface
complexes, these functional groups of microbial biopolymer-based adsorbents enhance the
adsorption efficacy of pollutants from different samples [264]. Generally, adsorption occurs
due to attractive forces between the adsorbate, which is the compound being adsorbed,
and the surface of the adsorbent, the compound to which the adsorbate gets attached. Up
to date, a variety of adsorbents have been used, and the common types can be classified de-
pending on the material nature. Thus, adsorbents can be from organic, mineral, or natural
origins [261]. Among the natural group, microbial biopolymers and biopolymer compos-
ites, (Table 5) play a significant part due to their porous structure, highly specific surface
area, durability, and cost-effectiveness. Additionally, their abundant functional groups
present on the surface can speed up decontamination and the removal of soluble particles,
greasy substances, dyes, and other pollutants in water. Likewise, these functional groups
have an affinity to combine with heavy metals like mercury, copper, cadmium, lead, nickel,
chromium, and zinc. Biopolymers also offer a promising solution to address emerging
contaminants, particularly surfactants, in wastewater. Biswas and Pal [265] discussed the
use of biopolymers such as chitosan, alginate, tannin composites, and more for the removal
of surfactants. Recent progress in the development of chitosan-based adsorbents, shedding
light on their remarkable potential for various pollutant removal, such as heavy metal
ions, and cationic and anionic dyes, has been emphasized by da Silva Alves et al. [266].
As highlighted by Benavente et al. [267], the abundant amino and hydroxyl groups on the
surface of chitosan can be used to chelate heavy metal ions, specifically Cu2+, Hg2+, Pb2+

and Zn2+, with a maximum adsorption capacity of 79.94 mg/g, 109.55 mg/g, 58.71 mg/g
and 47.15 mg/g, respectively. Additionally, alginate, with its hydroxyl and carboxyl groups
distributed across its surface, can capture metallic ions through an ion-exchange mech-
anism [268]. However, despite such unique advantages, limited functionality, including
poor mechanical, chemical, and physical properties, has been observed. Therefore, biopoly-
mers are often subject to modification using various synthetic or natural monomers, and
they are combined with diverse materials for applications in water treatment [259]. As a
low-cost adsorbent, cellulose can be chemically modified by esterification, etherification,
oxidation, halogenation, and chelation. In the context of chelation, amine, carboxyl, amide,
and imidazole binding ligands were seen to have better efficiency, owing to their large
surface area, cost efficiency, and sustainability [171]. Another promising way to further
enhance biopolymer adsorbents’ ability to remove heavy metals and dyes is the utiliza-
tion of low-cost sorbent hydrogels. A sodium alginate/polyethylene amine compound
hydrogel has shown an adsorption capacity of 322.6 mg/g and 344.8 mg/g for the absorp-
tion of Cu2+ and Pb2+ ions, respectively, in wastewater [269]. In another case, a sodium
alginate/polyethyleneimine hydrogel was used for dye adsorption and demonstrated the
excellent removal performance of methylene blue with a maximum absorption capacity of
400.0 mg/g. Within 30 min, approximately 99% of the dye was removed [270]. Furthermore,
graphene oxide (GO) was encapsulated in a sodium alginate/polyvinyl alcohol compound.
Used as an effective adsorbent for removing Cu2+ and UO2

2+, the hydrogels showed a
maximum absorption of 247.16 mg/g and 403.78 mg/g, respectively [271]. In another
research, GO was used to formulate three-dimensional graphene oxide porous biopolymer
gels, which foster the establishment of hydrogen bonding and hydrophobic interactions.
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This 3D network structure provides abundant active sites for the effective adsorption of
cationic dyes and heavy metal ions. Another interesting technique was highlighted by
Wang et al. [272], which involved the use of aquatic sodium alginate for the gelation of
heavy metal ions. In this study, alginate showed the fast gelation of Pb2+, Cu2+, and Cd2+

within less than 10 min. The resulting gel–liquid separation from wastewater was achieved
smoothly through gravity. Magnetic adsorbents are becoming increasingly favored in water
treatment. Their rising popularity can be attributed to their capacity to enhance adsorption
efficiency, minimize adsorbent wastage, and simplify separation through the use of an
external magnetic field [273,274]. Abdul Rahman et al. [275] developed magnetic cellulose,
chitosan, alginate, and composite hydrogel beads. The bio-sorbent demonstrated strong po-
tential for treating heavy metal-contaminated wastewater comprised of Ca and Fe ions and
showcased enhanced thermal stability when compared to raw cellulose and chitosan. The
mechanical resistance of some naturally derived microbial biopolymer-based membranes
is poor. This can be overcome by embedding it with compatible nano biomaterials [276].
For instance, chitosan is an interesting biopolymer for this purpose due to its film-forming
ability, biocompatibility, and favorable hydrophilicity [277]. Salehi et al. [277] investigated
chitosan-based membranes for adsorptive studies. They suggested the concept of cross-
linking chitosan with TiO2 to create a self-regenerating dye adsorbent. Also, cross-linking
with glutaraldehyde, glyoxal, and formaldehyde was suggested to improve its solubility
and mechanical attributes.

Table 5. Studies related to the use of biopolymers as adsorbents to treat wastewater.

Polymer Pollutant
Adsorption

Capacity
(mg·g−1)

References

Inorganic contaminants
Carboxylated cellulose nanocrystal/sodium alginate hydrogel Pb2+ 335.3 [278]

Cellulose/PVA/Graphene Composite aerogel

Cu2+

Cd2+

Cr3+

Co2+

Zn2+

Pb2+

80.12
102.23
123.02
62.38
69.55
57.16

[279]

Thioglycolic Acid-Esterified Cellulose Nanocrystals Cu2+ 4.244 [280]
Chitosan-glucose hydrogel Co2+ 202 [281]

Chitosan/orange peel hydrogel Cu2+

Cr6+
116.6
107.5 [282]

Xanthate-modified chitosan/poly (N-isopropylacrylamide)
Cu2+

Pb2+

Ni2+

115.1
172.0
66.9

[283]

Cellulose/guar gum/biochar Cu2+

Co2+
805.45
772.52 [284]

Cellulose/bentonite grafted polyacrylic acid hydrogel Cd2+ 242.53 [285]

Alginate/polyethyleneimine Cu2+

Pb2+
322.6
344.8 [269]

3D network nanostructured sodium alginate Cd2+

Cu2+
9.54

13.38 [286]

Hyaluronic acid-supported magnetic microspheres Cu2+ 12.2 [287]

Xanthan gum/n-acetyl cysteine modified mica bionanocomposite
Pb2+

Cu2+

Ni2+

530.54
177.2
51.48

[288]

Poly (Acrylamide-co-Acrylic Acid)/Xanthan Gum hydrogel Cd2+

Ni2+
312.15
185.0 [289]

Pullulan/polydopamine hydrogels Cu2+ 100.9 [290]
Sodium alginate/coffee waste Pb2+ 984.4 [291]

Whey protein concentrate/pullulan hydrogel Cu2+ 81.6 [292]

Polylactic acid hydrogel Pb2+

Ni2+
416.07
243.10 [293]

Organic contaminants
Sodium hydroxide activated acrolein/chitosan Acid blue 93 2500 [294]

Carboxymethyl cellulose/chitosan/triethylenetetramine Direct blue
Congo red

534.25
519.53 [295]

Cellulose/guar gum/biochar Methylene blue 598.28 [284]
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Table 5. Cont.

Polymer Pollutant
Adsorption

Capacity
(mg·g−1)

References

Cellulose/Poly(acrylic acid) Methylene blue 1492.99 [296]

Chitosan/polyacrylate/graphene oxide Methylene blue
FY3

296.5
280.3 [297]

Chitosan/cellulose Congo red 380 [298]
Chitosan/poly(n-vinyl-2-pyrrolidone) Orange G 63.7 [299]
Xanthan gum/amantadine composites Methylene blue 565 [300]

Polyaniline/Xanthan Gum Nanocomposite Methylene Blue 22.52 [301]
Xanthan gum/polyacrylic

acid/graphene oxide
Methyl violet

Methylene Blue
1052.63
793.65 [302]

Pullulan-graft-poly(3-acrylamidopropyl trimethylammonium chloride)
microspheres Azocarmine B 113.63 [303]

Sodium alginate-polyaniline nanotube Methyl orange 370.4 [304]
Sodium alginate/coffee waste Acridine orange 805.3 [291]

Crosslinked chitosan films SDBS 714 [305]
Nanofibrillated cellulose Cationic surfactants 462.28 [306]
Hydrogel chitosan beads SDS 1300 [307]

6.2. Microbial Biopolymers as Coagulants and Flocculants

Coagulation and flocculation are two interrelated methods commonly known as the
most economical processes used in water treatment for solid-particle removal. Despite
their interconnection, coagulation and flocculation are entirely different phenomena. Co-
agulation is an electrostatic phenomenon that occurs through the charge neutralization of
suspended particles and colloids. It is induced by adding coagulants that destabilize the
particles, leading to their collision and aggregation. This, in turn, initiates the formation of
flocs, which precipitate from the suspension due to the influence of gravity. Flocculation
takes place to further enhance the downstream processes by creating larger and heavier
flocs, thereby enhancing the effective removal of impurities. While coagulation occurs in
a short time frame of less than 10 s, flocculation is a long physical process lasting about
20–45 min [274,308]. A large variety of coagulants and flocculants have been used for
wastewater treatment. Commonly used inorganic coagulants, such as aluminum sulfate,
aluminum chloride ferrous sulfate, etc. [309–311], have caused environmental and eco-
logical concerns due to their generation of additional sludge volume [312,313]. Hence,
microbial biopolymers emerged as a viable solution [312,314]. Among the variety classes
of biopolymers, polysaccharides have garnered significant attention from the scientific
community, mainly due to their functional groups present on the surface, contributing to
the effective adsorption of different contaminants in the flocculation process [315–317]. As
described in the recent literature, chitosan, cellulose, alginate, pullulan, xanthan gum, and
their derivatives are bio-based flocculants. Those polysaccharides have shown their ability
as relevant agents in the elimination of turbidity, total dissolved solids (TDS), chemical
oxygen demand (COD), metal cations, inorganic anions, dyes, pesticides, minerals, mi-
croorganisms, and numerous other pollutants found in various types of wastewaters [318].
Other bioflocculants based on dextran [319–321], pectin [322,323], and lignin [324], as well
as their grafted derivatives, have also been reported for color-reducing, turbidity, COD,
or heavy metal ions. Table 6 provides an overview of recently reported biopolymers and
their derivatives as coagulants and flocculants investigated for water treatment. With
the emergence of nanocomposite-based biopolymers, reports regarding the utilization of
biopolymers in their unmodified form are notably limited. This can be attributed to the
very developed surface area of nanoparticles, characterized by a notable abundance of
active sites and functional groups, which positively enhance water treatment [325,326].
However, despite the multiple gains in using nanoflocculants, real concerns remain about
the potential environmental impacts regarding the introduction of these particles into the
ecosystem. Uncertainty surrounding whether nanoparticles will induce toxic effects within
the natural environment persists [318]. Recent reports highlight that direct flocculation,
operating independently from coagulation, is emerging as a notably cost-effective alterna-
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tive, particularly attributed to its reduced cost and environmental impact, along with its
enhanced safety for human well-being and efficiency in terms of time. It is a simplified
method based on the dual functionality of cationic or anionic polymers, first neutralizing
particle charges and then bridging their aggregation. Unlike coagulation, direct flocculation
has demonstrated its effectiveness for high levels of organic contaminants across a large
pH spectrum [315,327]. Several factors and mechanisms are involved, ranging from the
chemical structure, properties, and charge of both the particles to be removed and the
flocculant to their concentration, the pH of the environment, temperature, mixing rate,
ionic strength, and even the mechanism of the process, which can significantly influence the
flocculation. Thus, despite the significant progress that has been made in understanding
this process, ongoing research continues to further uncover its complexities [328].

Table 6. Studies related to the use of biopolymers as coagulants flocculants to treat wastewater.

Polymer Pollutant Removal Rates (%) References

Inorganic contaminants
Chitosan/Poly(acrylamide-acryloyloxyethyl)

trimethylammonium chloride Zn2+ 99.3 [329]

Sodium alginate/triethylenetetramine nanoflocculant Pb2+ 97 [330]
Chitosan/acrylamide/itaconic acid/3-acrylamide propyl

trimethylammonium chloride Ni2+ 86.3 [331]

Cationic Pullulan Derivatives FeO
TiO2

95
75 [332]

Organic contaminants
Chitosan/poly (acrylamide-itaconic acid) Crystal violet 81.6 [333]

Polyaluminium
chloride/xanthan gum Congo red 93.81 [334]

Cationic pullulan derivatives
Novadim

Bordeaux mixture
Karate Zeon

90
98
80

[335]

Cationic cellulose/bentonite

Methylene Blue
Duasyn Direct Red

Acid Black 2
Crystal Violet
Basic Green 1

99
95

100
100
99

[336]

Carboxymethyl cellulose/itaconic acid/sodium alginate Crystal violet 92.2 [337]
Cellulose nanocrystals Reactive blue 19 80 [338]

Sodium alginate/methacryloxyethyltrimethyl ammonium chloride Dissolved Organic Carbon (DOC) 35.42 [339]
Other contaminants (Water Quality Parameters)

Sodium alginate/methacryloxyethyltrimethyl ammonium chloride UV254 32.42 [339]

Xanthan Gum/Polyacrylamide
/SiO2

Turbidity
Total Solids (TS)

Total Dissolved Solids (TDS)
Total Suspended (TSS)

93.95
76.97
48.21
93.75

[340]

xanthan gum/polyacrylamide Turbidity 52.63 [341]
Pullulan/p(N-isopropylacrylamide) Turbidity 88 [332,342]

Poly-γ-glutamic acid Turbidity 86.6 [343]
Chitosan/Poly(acrylamide-acryloyloxyethyl)

trimethylammonium chloride Total Phosphorus (TP) 98.8 [329]

Chitosan/poly-glutamic acid

COD
Total Nitrogen (TN)

TP
Turbidity

44.8
53.4
28.1
98.3

[344]

Bentonite/chitosan/poly-glutamic acid

COD
TN
TP

Turbidity

86.2
80.3
52.3
98.2

[285]

Sodium alginate/methacryloxyethyltrimethyl ammonium chloride Turbidity 95.96 [339]
Sodium alginate/polysilicate aluminum calcium Turbidity 97.2 [345]

Chitosan/Poly(acrylamide-acryloyloxyethyl)
trimethylammonium chloride COD 72.5 [329]

Cellulose Nanocrystals Turbidity 99.7 [346]

Dicarboxyl cellulose Turbidity
COD

80
60 [347]

Dicarboxyl cellulose Turbidity 99.5 [348]
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6.3. Microbial Biopolymers as Filters in Membrane Processes

The capacity of microbial biopolymers to develop biofilms, set up selective barri-
ers, and improve filtration effectiveness is the idea underlying their application as filters
in membrane processes. Impaction, electrostatic contact, diffusion, and interception are
prominent processes involved in biopolymer filtering [241,349]. Filtration is a method
used for the separation of solid particles and large molecules from liquid suspensions
through a porous barrier such as a membrane. Membranes possess selective permeability,
controlling the passage of mass through their porous surfaces through interactions with
the materials to be separated. The efficiency of this technique is directly linked to the
size of the membrane’s pores and the characteristics of the material used [350]. A wide
variety of membranes with different conformations and structures are available. Membrane
filtration techniques such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF),
and reverse osmosis (RO) are distinguished by their varying pore sizes, ranging from
5000 nm in MF to 0.2 nm in RO [351]. As with all membrane filtration processes, the main
downside that limits their large-scale applications is membrane fouling, which occurs due
to contaminants that adhere to the membrane’s surface or get trapped within its pores over
time, forming a layer that hinders the flow of desired components through the membrane.
This phenomenon reduces filtration efficiency as well as the membranes’ lifespan and
increases energy consumption [352,353]. Recently, biopolymer nanocomposite membranes
have gained popularity as a promising solution for mitigating membrane fouling. They
have shown improved antifouling properties by minimizing the adhesion of floculants
and improving water permeability, thereby enhancing filtration process efficiency [354,355].
This, in turn, has played a pivotal role in fueling the fast growth of membrane filtration
technologies and has boosted the number of publications focused on the utilization of
membranes for separating oil–water emulsions [356]. The use of natural fillers such as
nitrocellulose or chitosan nanoparticles within biopolymer membranes has significantly
enhanced membrane stability and reduced the dosage of chemicals and the volume of
sludge. Therefore, biopolymers stand out as an environmentally friendly, efficient, and
sustainable alternative to conventional membrane filtration techniques [350,357] Among
the different biopolymers, hydrophilic biopolymers, such as bacterial cellulose, chitosan,
alginate, and hyaluronic acid, are preferred for membrane processes due to their durability
and ability to withstand corrosive substances that may be present in the wastewater. As
highlighted by Galdino et al. [87], a bacterial-cellulose matrix can be used to separate
almost all oil during the filtration of oily effluents and can be washed and reused up to
20 times without losing its filtration efficiency. Surface modification can further enhance
retaining specific contaminants like heavy metals and dyes, thus improving the mem-
brane’s permeability and selectivity [358]. For example, Yu et al. [359] demonstrated that a
modified chitosan-cellulose acetate-TiO2-based membrane can be used for the demulsifica-
tion of oil–water emulsion, reaching up to 99% in separation efficiency. As highlighted by
Divya and Oh [360], recent advancements in microbial polymer thin-film nanocomposite
membranes, incorporating nanofillers like carbon-based materials, metals, and metal ox-
ides, have garnered considerable attention in the field of water purification due to their
notable characteristics, including hydrophilicity, thermal stability, selectivity, permeabil-
ity, and thermal resistance. However, despite advances in the biopolymeric-membrane
approach, some major limitations were also observed: the potential degradation of biopoly-
mer during extended storage periods, their requisite compatibility with the effluent being
treated, and the potential high operational costs when aiming for a higher rate of solid-
and liquid-phase separation [356]. Additional drawbacks, such as the potential risk of
obstructing the water flow pathway due to the addition of nanomaterials; the formation
of defects and non-selective porosity resulting from inadequate interaction between the
polymer and nanoparticles; and the poor dispersion of fillers within the polymer matrix,
leading to the aggregation and agglomeration of nanoparticle on the membrane surface
or within the membrane itself, all emphasize the need for further research to address
these existing challenges [355]. Table 7 summarizes recent research on membrane filtering
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employing biopolymer materials. Bacterial cellulose is one of the most interesting microbial
biopolymers for this application due to its large surface area, nano-porous structure, and
biodegradability [15]. Faria et al. [15] investigated the exceptional quality of bacterial
cellulose for eliminating microplastics by 99%, which upheld performance for continuous
cycles. Qalyoubi et al. [276] addressed the most common challenges associated with novel
adsorptive membranes including fouling, costs associated with the process, adsorbent
regrowth, adsorption capacity, barrier permeability, rates of rejection, and specificity. They
also concluded that, since many novel materials have only been evaluated in research
settings up to this point, creating innovative materials for hybrid matrix membranes is still
an obstacle to overcome. Exploring cheaper alternatives for adsorptive membranes could
be a useful area of interest because many innovative materials are unable to enter the in-
dustry due to their high price tags. Concerning superior performance and high adsorptive
capacity, agro-industrial waste is a suitable candidate to be explored for this purpose.

Table 7. Studies related to the use of biopolymers as membrane filters to treat wastewater.

Polymer Pollutant Removal Rates (%) References

Inorganic contaminants

Polylactic acid/amino-activated carbon/modified mangrove
particles pH-responsive adsorptive membrane

Cu2+

Pb2+

Ni2+

99.95
100

99.95
[361]

Cellulose acetate/chitosan/TiO2 Cu2+ 97.0 [359]
PLA/PHB/Polybutylene succinate/polypropylene

carbonate/silica nanoparticles Mn2+ 14.17 [362]

Cellulose acetate/nanochitosan/PEG Cr6+ 95 [363]
Hyaluronic acid/polyamide Na2SO4 94.90 [364]

Organic contaminants

Cellulose acetate/PLA/polyurethane Methylene Blue
Congo Red

45
60 [365]

Cellulose microfiber/PLA/poly(butylene
adipate-co-terephthalate)/maleic anhydride Methylene Blue 97.2 [366]

Fe3O4/Xanthan gum/polyvinylidene fluoride Reactive Black 5
Reactive Red 120

84.8
73.8 [367]

Xanthan Gum/polyvinylidene fluoride/dimethyl sulfoxide Congo red 91.25 [368]
Cellulose microfiber/PLA/poly(butylene adipate-co-terephthalate) Methylene Blue 58.7 [366,369]

Sodium alginate hydrogel/graphene oxide

MB
Direct Red (DR80)
Congo Red (CR)

Crystal Violet (CV)

100
98.80
100
100

[369]

Chitosan/bacterial cellulose/carboxyl multi-walled
carbon nanotubes

Direct Orange S, Procion Red
mx-5B Stilbene Yellow

Methylene Blue

99.7
97.8
62.8
27.5

[370]

Hyaluronic acid/polyamide Perfluorohexane sulfonic
acid (PFHxS) 93.40 [364]

Other contaminants
Sodium alginate/tannic acid/β-FeOOH Oil 99.64 [371]

Chitosan/bacterial cellulose/carboxyl multi-walled carbon
nanotubes Oil 97.67 [370]

Pristine PLA Oil 93.9 [372]
PLA/polyethylene oxide Oil 99.6 [373]

Cellulose acetate/chitosan/TiO2 Oil 99.4
97.0 [359]

PLA/multi-walled carbon nanotubes/graphene oxide Ammonium-nitrogen
Phosphate

90.1
71.3 [374]

PLA/PHB/Polybutylene succinate/polypropylene
carbonate/silica nanoparticles

Oil
Total Dissolved Solids (TDS)

Turbidity

98.6
22.56
11.33
89.15

[362]

Cellulose acetate

Sulfamethoxazole
Primidone

Carbamazepine
Phenacetine

17β-Estradiol

82
85
85
10
29

[375]
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6.4. Bioremediation and Soil Stabilization

Bioremediation is an economical and time-consuming approach usually employed for
degrading, neutralizing, and detoxifying contaminants predominantly from soil, water, and
sediments. Bioremediation is chiefly performed by diverse means such as biodegradation,
phytoremediation, bioaugmentation, and biostimulation. These incorporated methodolo-
gies usually accelerate metabolic activities and remediate contaminated sites [376,377].
Biosorption can be accompanied by a variety of other techniques, which boost the recov-
ery or removal of pollutants such as metalloids [378]. For example, there are challenges
involved in removing metalloids. However, these challenges can be overcome by the for-
mation of metalloid complexes with microbial biopolymers. Due to electrostatic interaction,
the generation of stable complexes between metalloid and microbial biopolymers takes
place [379]. Many microbial biopolymers contain negatively charged functional groups
that help to bind metals, such as hydroxyl groups (OH−) on the matrix of bacterial cellu-
lose, carboxyl groups (COOH−) in hyaluronic acid, xanthan gum, and alginate. Also, the
charges present on some microbial biopolymers vary as per the pH of the surrounding
environment. For example, at an acidic pH, chitosan gains hydrogen (H+) and becomes
a positively charged ammonium group (NH3

+), and at an alkaline pH, chitosan loses
hydrogen ions and becomes an uncharged amine form (NH2) [380]. Depending upon the
charge, microbial biopolymers can be employed for multiple applications, which are cited
in previous sections. Additionally, microbial biopolymers act as nutrients, which directly
promotes the microbial activity of microorganisms involved in the bioremediation process
and allows them to thrive and flourish in a variety of unfavorable conditions. Furthermore,
some microbial biopolymers such as PHA and PHB produce metabolizing enzymes under
particular nutritional and environmental stresses, which helps to upsurge bacterial survival
during the bioremediation process [11].

Soil stabilization is an approach for altering the physiochemical attributes of the soil;
it enhances the soil’s effectiveness in terms of physical aspects. Biofilm-oriented biore-
mediation is a potent tool for the removal of environmental pollutants. Soil stabilization
promises the improved structural stability of soil [381,382]. Microbial biofilms are collec-
tions of grouped microbial cells wrapped in an extracellular polymeric substance (EPS)
matrix that they have self-assembled. Because they are resistant to harsh environments,
biofilms serve as a shield for safeguarding microbes from factors such as exposure to ultra-
violet rays, excessive temperature, elevated salinity, and abnormal pH [242]. Numerous
kinds of unwanted substances have polluted both the ecosystems of land and water. The
majority of these pollutants are polymers of polycyclic aromatic hydrocarbons and total
petroleum hydrocarbons, which are generally considered a threat to public health [383,384].
Industrial waste such as dyes and wastewater streams are usually comprised of the afore-
mentioned pollutants and are responsible for polluting the soil and water. The primary
approaches to eliminating the metals from polluted soil are thermal desorption, adsorption,
precipitation by chemicals, ion exchange, and electroplating accumulation [385]. With the
advent of recent developments in microbial biopolymers, the latest developments in the
industry are investigating the strategic application of microbial biopolymers and bioremedi-
ation methods as environmentally satisfactory alternatives for soil stabilization. Microbial
biopolymers have prospective benefits in terms of sustainable development, biological
degradation, and minimal carbon footprint [386]. Due to their distinctive qualities and
compatibility with the environment, various biopolymers have been employed for dust
control, erosion control, and strengthening soil [387]. For instance, xanthan gum has been
used for strengthening and stabilizing soil [388–392]. Also, chitosan has been employed
to minimize permeability, eliminate heavy metals, stabilize soil, hasten the separation of
organic matter, and limit soil erosion [393–398]. Microbial biopolymers could transform soil
engineering approaches, providing more environmentally friendly choices for persistent
soil stabilization as well as encouraging a more sustainable future.
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7. Challenges and Future Perspectives of Microbial Biopolymers in
Environmental Applications

Microbial polymers are an attractive substitute for chemically derived materials. How-
ever, scaling up their production from a laboratory to an industrial scale is very challenging.
Several variables—notably the cost of substrates, the amount of biopolymer produced over
feed rate, and the expenditures of downstream processing, among others—determine how
successfully biopolymers may be scaled up and if they are economically feasible to produce
at an industrial scale [14]. The major challenges in the process are the production cost and
the extraction of a pure biopolymer from a complex mixture. Acquiring microorganisms
that can use inexpensive as well as easily accessible raw ingredients is a crucial phase in
making microbial biopolymer manufacturing economically viable [399]. Using waste raw
material for biopolymer production is very attractive and can largely address the issue of
the high cost of raw ingredients. Moreover, the use of genetically modified strains and
omics techniques to enhance the fermentation yield could greatly help to minimize the
overall production cost [400].

The dewatering process of biomass following its cultivation represents one of the
foremost operational expenditures in polymer recovery. Undoubtedly, one of the most pop-
ular approaches for this is settling. Gravitational settling is the most straightforward and
inexpensive method, but due to the small molecule size of microbial biopolymers, filtering
by membranes could potentially be employed, accompanied by centrifugation. However, it
should be accurately optimized to limit the enhancement of operation costs [401].

In general, optimizing bioprocess at a pilot scale, coupled with techno-economic
analysis, could help in resolving many industrial challenges.

In silico methods should be also employed to simulate the production and secretion of
bacterial polymers based on the huge availability of data. This could offer valuable insights
into the regulatory framework required for their safe application—a framework that is
absent at present [400].

Moreover, legislative and policy unpredictability could make it challenging to meet
environmental goals. Uncertainty alters the political economics of environmental policy.
The acceptability, development, and scalability of microbial biopolymers also depend upon
the system. The system is comprised network of actors (business organizations, research
groups, policymakers, and regulatory bodies). In a nutshell, the setting up of new supply
chain-hosting actors requires a lengthy approach to the development and implementation
of novel economic models, among other aspects [402]. Last but not least, environmental
applications come with the challenges of handling data that require computation and
vast information storage units. Rodila et al. [403] commented on the features of big data,
referring to the 5V principle (Volume of data, Velocity of data accumulation, Variety of
data by different sources, Validity and precision of data, Value and Purpose of data).
Numerous environmental applications will be more efficiently utilized by the correct
mathematical framework and its mapping across different computational systems [403].
A deep understanding of the interaction between diverse ecosystem complexities and
environmental and biodiversity uncertainties is required, which makes it challenging to
design a model to anticipate and adapt to changes in the future to produce desirable
outcomes [404,405].

8. Conclusions

In contrast to the information available on physical and chemical methods, the amount
of information available on the environmental implications of microbial biopolymers is
very limited. As a result, information on significant biopolymer production, recovery,
processes, and the potential of environment applications was insufficient. This updated
review offers exclusive knowledge of the growing interest in environmental applications of
microbial biopolymers. Using biopolymers is an opportunity to solve environmental issues
and an effective approach to the circular bioeconomy. There is still a large gap between
industry and academia. Many research studies were conducted on a laboratory scale only.
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A vast approach is required to commercialize the technology on a mass scale. Moreover,
government organizations and regulatory agencies need to establish procedures for the
maturation and placement of microbial biopolymers to benefit from application in practice
and monetary profits.
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of pullulan and biosorption of metals by Aureobasidium pullulans strain CH-1 on peat hydrolysate. Bioresour. Technol. 2008,
99, 6673–6677. [CrossRef] [PubMed]

69. Jawad, A.H.; Alkarkhi, A.F.M.; Jason, O.C.; Easa, A.M.; Norulaini, N.A.N. Production of the lactic acid from mango peel
waste—Factorial experiment. J. King Saud Univ. Sci. 2013, 25, 39–45. [CrossRef]

70. Nakano, S.; Ugwu, C.U.; Tokiwa, Y. Efficient production of d-(−)-lactic acid from broken rice by Lactobacillus delbrueckii using
Ca(OH)2 as a neutralizing agent. Bioresour. Technol. 2012, 104, 791–794. [CrossRef] [PubMed]

https://doi.org/10.1016/j.cej.2022.135079
https://doi.org/10.1080/07388551.2020.1805405
https://doi.org/10.1016/j.ijbiomac.2018.07.103
https://doi.org/10.1007/s10924-012-0533-3
https://doi.org/10.3390/polym14030428
https://doi.org/10.1016/j.biteb.2022.101005
https://doi.org/10.1016/j.jenvman.2023.118141
https://doi.org/10.1016/j.bios.2020.112163
https://www.ncbi.nlm.nih.gov/pubmed/32250935
https://doi.org/10.1016/j.ijbiomac.2016.06.070
https://doi.org/10.1007/s12649-017-0034-7
https://doi.org/10.1016/j.foodchem.2015.11.062
https://doi.org/10.3923/pjbs.2007.3010.3013
https://doi.org/10.1016/j.jphotobiol.2020.112052
https://doi.org/10.1016/j.btre.2022.e00742
https://www.ncbi.nlm.nih.gov/pubmed/35677324
https://doi.org/10.3390/fermentation9050426
https://doi.org/10.1155/2016/7109825
https://doi.org/10.1016/j.bcab.2019.101413
https://doi.org/10.1007/s11947-009-0186-y
https://doi.org/10.1016/j.ecoenv.2019.06.002
https://www.ncbi.nlm.nih.gov/pubmed/31195227
https://doi.org/10.1016/j.biortech.2007.11.053
https://www.ncbi.nlm.nih.gov/pubmed/18166451
https://doi.org/10.1016/j.jksus.2012.04.001
https://doi.org/10.1016/j.biortech.2011.10.017
https://www.ncbi.nlm.nih.gov/pubmed/22093977


Appl. Sci. 2024, 14, 5081 25 of 37

71. Khattak, W.A.; Khan, T.; Ul-Islam, M.; Ullah, M.W.; Khan, S.; Wahid, F.; Park, J.K. Production, characterization and biological
features of bacterial cellulose from scum obtained during preparation of sugarcane jaggery (gur). J. Food Sci. Technol. 2015,
52, 8343–8349. [CrossRef] [PubMed]

72. Tsouko, E.; Kourmentza, C.; Ladakis, D.; Kopsahelis, N.; Mandala, I.; Papanikolaou, S.; Paloukis, F.; Alves, V.; Koutinas, A.
Bacterial Cellulose Production from Industrial Waste and by-Product Streams. J. Food Sci. Technol. 2015, 16, 14832–14849.
[CrossRef]

73. Skiba, E.A.; Budaeva, V.V.; Ovchinnikova, E.V.; Gladysheva, E.K.; Kashcheyeva, E.I.; Pavlov, I.N.; Sakovich, G.V. A technology for
pilot production of bacterial cellulose from oat hulls. Chem. Eng. J. 2020, 383, 123128. [CrossRef]

74. Goelzer, F.D.E.; Faria-Tischer, P.C.S.; Vitorino, J.C.; Sierakowski, M.R.; Tischer, C.A. Production and characterization of
nanospheres of bacterial cellulose from Acetobacter xylinum from processed rice bark. Mater. Sci. Eng. R Rep. 2009, 29, 546–551.
[CrossRef]

75. Cheng, Z.; Yang, R.; Liu, X.; Liu, X.; Chen, H. Green synthesis of bacterial cellulose via acetic acid pre-hydrolysis liquor of
agricultural corn stalk used as carbon source. Bioresour. Technol. 2017, 234, 8–14. [CrossRef]

76. Kurosumi, A.; Sasaki, C.; Yamashita, Y.; Nakamura, Y. Utilization of various fruit juices as carbon source for production of
bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr. Polym. 2009, 76, 333–335. [CrossRef]

77. Zhou, J.; Chen, Y.; Zhang, Y.; Sun, S.; Ullah, M.W.; Xu, W. Biotransformation of nylon-6,6 hydrolysate to bacterial cellulose. Green

Chem. 2021, 23, 7805–7815. [CrossRef]
78. Hong, F.; Guo, X.; Zhang, S.; Han, S.F.; Yang, G.; Jönsson, L.J. Bacterial cellulose production from cotton-based waste textiles:

Enzymatic saccharification enhanced by ionic liquid pretreatment. Bioresour. Technol. 2012, 104, 503–508. [CrossRef] [PubMed]
79. Huang, C.; Yang, X.Y.; Xiong, L.; Guo, H.J.; Luo, J.; Wang, B.; Zhang, H.R.; Lin, X.Q.; Chen, X.D. Evaluating the possibility of

using acetone-butanol-ethanol (ABE) fermentation wastewater for bacterial cellulose production by Gluconacetobacter xylinus.
Lett. Appl. Microbiol. 2015, 60, 491–496. [CrossRef] [PubMed]

80. Nguyen, Q.D.; Nguyen, T.V.L.; Nguyen, T.T.D.; Nguyen, N.N. Effects of different hydrocolloids on the production of bacterial
cellulose by Acetobacter xylinum using Hestrin–Schramm medium under anaerobic condition. Bioresour. Technol. Rep. 2022,
17, 100878. [CrossRef]

81. Sharma, P.; Mittal, M.; Yadav, A.; Aggarwal, N.K. Bacterial cellulose: Nano-biomaterial for biodegradable face masks—A greener
approach towards environment, Environmental Nanotechnology. Monit. Manag. 2023, 19, 100759. [CrossRef] [PubMed]

82. Barshan, S.; Rezazadeh-Bari, M.; Almasi, H.; Amiri, S. Optimization and characterization of bacterial cellulose produced by
Komagatacibacter xylinus PTCC 1734 using vinasse as a cheap cultivation medium. Int. J. Biol. Macromol. 2019, 136, 1188–1195.
[CrossRef] [PubMed]

83. Swingler, S.; Gupta, A.; Gibson, H.; Kowalczuk, M.; Heaselgrave, W.; Radecka, I. Recent Advances and Applications of Bacterial
Cellulose in Biomedicine. Polymers 2021, 13, 412. [CrossRef]

84. Wang, T.; Sun, B.; Tang, K.; Shen, W.; Chen, C.; Sun, D. Sustainable bacterial cellulose derived composites for high-efficiency
hydrogen evolution reaction. Int. J. Biol. Macromol. 2023, 242, 125173. [CrossRef]

85. Zhong, C. Industrial-Scale Production and Applications of Bacterial Cellulose. Front. Bioeng. Biotechnol. 2020, 8, 605374. [CrossRef]
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