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Abstract

The Arctic faces increasing exposure to environmental chemicals such as metals, posing

health risks to humans and wildlife. Biomonitoring of polar bears (Ursus maritimus) can be

used to quantify chemicals in the environment and in traditional foods consumed by the

Inuit. However, typically, these samples are collected through invasive or terminal methods.

The biomonitoring of feces could be a useful alternative to the current metal monitoring

method within the Arctic. Here, we aim to 1) quantify the relationship between concentra-

tions of metals in the feces and tissues (muscle, liver, and fat) of polar bears using predictive

modeling, 2) develop an easy-to-use conversion tool for use in community-based monitoring

programs to non-invasively estimate contaminant concentrations in polar bears tissues and

3) demonstrate the application of these models by examining potential exposure risk for

humans from consumption of polar bear muscle. Fecal, muscle, liver, and fat samples were

harvested from 49 polar bears through a community-based monitoring program. The sam-

ples were analyzed for 32 metals. Exploratory analysis indicated that mean metal concen-

trations generally did not vary by age or sex, and many of the metals measured in feces

were positively correlated with the internal tissue concentration. We developed predictive

linear regression models between internal (muscle, liver, fat) and external (feces) metal con-

centrations and further explored the mercury and methylmercury relationships for utility risk

screening. Using the cross-validated regression coefficients, we developed a conversion

tool that contributes to the One Health approach by understanding the interrelated health of

humans, wildlife, and the environment in the Arctic. The findings support using feces as a

biomonitoring tool for assessing contaminants in polar bears. Further research is needed to

validate the developed models for other regions in the Arctic and assess the impact of envi-

ronmental weathering on fecal metal concentrations.
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Introduction

The Arctic is a sink for many environmental chemicals produced globally due to global wind

patterns [1]. These higher inputs of environmental chemicals increase the potential for health

risk from increased exposure for humans and wildlife living in this region. Once deposited in

the environment, chemicals can then enter the food chain, where they can bioaccumulate and

biomagnify [1]. Chemicals including metals, polycyclic aromatic compounds (PACs), persis-

tent organic pollutants (POPs), polychlorinated bisphenyls (PCBs), and pesticides (e.g., chlor-

danes) have been detected in tissues of Arctic biota like fish, polar bears (Ursus maritimus),
and seal [1–4]. Metals (e.g., mercury, lead, cadmium) have also been detected in the blood of

Inuit, with contaminant levels often higher than those of the general Canadian population

[5, 6]. While the average blood total mercury (THg) concentrations were below guidelines for

screening and intervention when the Inuit Health Survey was completed in 2007–2008 [5], the

ongoing accumulation and persistence of contaminants in the Arctic due to global chemical

production that may an exposure risk for humans [2]. Thus, ongoing monitoring of environ-

mental sources of contaminants is essential, given that the consumption of wildlife is impor-

tant for northern peoples [7].

Inuit rely on traditional foods such as polar bears for nutritional and cultural sustenance

and ecological health [8], but as apex predators, this wildlife species often have the highest

body burdens of bioaccumulative contaminants [1, 4]. Further, contaminants measured in

polar bears also reflect the contaminant burdens of other wildlife that both polar bears and

humans eat (e.g., ringed seal [Pusa hispida]), thus, elevated contaminants in bear tissue may

reflect elevated levels in people. Further, there are also concerns about the health of these key

sentinel species that result from multi-stressor influences, many of which result from the

changing Arctic climate [9, 10]. For example, the increase in Arctic temperatures is reducing

the sea ice extent, which makes it more difficult for polar bears to hunt and results in decreased

body condition [9]. The increase in Arctic temperature is also causing a northward range shift

from certain species, resulting in a shift in local food webs and altering the flow of contami-

nants through the ecosystem [2]. These environmental changes can result in nutritional stress,

physiological stress, and increased exposure to contaminants [2, 9, 10].

A One Health approach seeks to understand the interrelated health of humans, wildlife,

and the environment, and biomonitoring tools can support this approach [11]. Biomonitoring

is the measurement of chemicals in a living organism’s body fluids or tissues. The measured

concentration reflects the total exposure from all routes (i.e., ingestion, inhalation, and absorp-

tion) [12]. Wildlife biomonitoring has long been used to quantify levels of contaminants in the

environment and ascribe risk using key sentinel species [12–14]. While invasive or destructive

samples are used, as is the case for the collection of liver or muscle samples, there have recently

been initiatives to move towards non-lethal and non-invasive biomonitoring techniques,

including the use of fur [15, 16] and feces [17].

Feces have promise as a biomonitoring tool, especially in the Arctic, where temperatures

are below-freezing for most of the year, meaning that samples may persist for longer. Fecal

samples are also relatively easy to identify on the snow-covered landscapes and can be collected

non-invasively. Further, feces serve as an important excretion mechanism for eliminating con-

taminants from the body [18, 19]. Fecal samples from free-ranging polar bears in the Arctic

have been used to assess polar bear identity and population structure [20] and diet [21] but

have yet to be evaluated for their utility in estimating contaminant concentrations of tissues

within the body. Previous research has successfully used other excretory pathways, such as fur,

to model the relationship between measured external and internal contaminants, developing

conversion factors that can be used for risk screening [15].
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Here, we evaluate the relationship between concentrations of metals of concern, including

arsenic, cadmium, lead, mercury, and methylmercury, in feces from the colon with those in

tissues (muscle, liver, and fat) using predictive modeling. Our research seeks to evaluate the

potential for field scat for non-invasive biomonitoring of body burdens of contaminants of

concern in polar bears by providing an easy-to-use conversion tool to estimate internal organ

metal concentrations from fecal measurements. These methods will help evaluate the potential

risk to individuals who consume polar bear meat as part of a traditional diet.

Methods

Sample collection and composition

All samples used in this study were collected under the BearWatch program, which is a com-

munity, government, and academic partnership that aims to develop methods to non-inva-

sively monitor polar bears across the Canadian Arctic by integrating traditional ecological

knowledge with genomic [20, 22, 23] and analytical techniques [3]. Sample sets of skeletal

muscle, liver, subcutaneous fat from the rump area, and intestines with feces were obtained

through legal hunts of polar bears sanctioned by the Government of Nunavut (GN) and the

Government of Northwest Territories (GNWT). No ethics approval was needed for this study,

as section 14(6)(c) of the Inuvialuit Final Agreement (IFA), also known as the Western Arctic

Claim Settlement Act, Inuvialuit hunters are given exclusive permission to hunt polar bears

across the Western Arctic Region. Harvesting practices are regulated through a Total Allow-

able Harvest (quota), and hunting practices are conducted ethically. Following ethical hunting

practices, the harvest occurs in the field, where the Inuit hunters are provided with the neces-

sary materials and training for gathering organs for research purposes.

The polar bear sample sets were collected between 2016 and 2019 from six polar bear sub-

populations across the Canadian Arctic, including Northern Beaufort Sea (NB) (n = 3), South-

ern Hudson Bay (SH) (n = 20), Western Hudson Bay (n = 1), Baffin Bay (n = 1), Foxe Basin

(n = 12), and Gulf of Boothia (n = 12). The samples also came with information on the sex

(male or female) and age (subadult or adult) of the bear. There were 36 adults (30 male and 6

female), 12 subadults (6 males and 6 females), and one bear of unknown age, each consisting

of one muscle, liver, fat, and intestine sample. The samples were stored at −20˚C until ship-

ment to Queen’s University, Kingston, Ontario, Canada, all ‘cold chain’. Sample sets were pro-

cessed in a Level 2 laboratory at Queen’s University, with subsamples of tissue and feces sent

for chemical analyses in the Analytical Services Unit, accredited by the Canadian Association

for Laboratory Accreditation (CALA).

Chemical analysis

Detailed analytical and quality assurance/ quality control (QA/QC) methods are provided in

Boutet et al. (2023). In brief, the Analytical Services Unit (ASU) at Queen’s University,

Kingston, Ontario, analyzed the samples for metals and elements in the tissues of the polar

bears using an Agilent 7700X Inductively Couple Plasma (ICP) Mass spectrometer (MS)

(Santa Clara, California, USA) and ICP- optical emission spectrometry (OES) (Varian Vista

axial ICP-OES). Total Hg (THg) was quantified using cold vapor atomic absorption spectro-

photometry (Milestone DMA-80 Direct Mercury Analyzer). The methylmercury (MeHg)

analysis was quantified in the laboratory of Dr. Marc Amyot, University of Montreal, Mon-

treal, Quebec, using a Tekran1 2700 Methyl Mercury Auto-Analysis System. Appropriate

QA/QC methods, including sample blanks, standard reference material, and replicate mea-

surements, were used. Concentrations are reported in μg/g dry weight (dw).

PLOS ONE Non-invasive biomonitoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0305398 June 25, 2024 3 / 16

https://doi.org/10.1371/journal.pone.0305398


Statistical analysis

Descriptive statistics, t-tests, correlations, and linear regression analysis use available data

(non-imputed), for which only one measurement was missing for MeHg. Values below the

detection limit (BDL) were replaced with ½ the detection limit, and all values were trans-

formed to improve normality (log10). Metals and tissues that had high percentages of BDL val-

ues�60% were excluded from the predictive models (see Helsel (2006) [24]). All metals were

detected in assayed fecal samples, with the highest percent missing being 34.7%. Based on this

criterion, seven metals were eliminated entirely from the analysis: antimony, boron, tin, beryl-

lium, chromium, aluminum, and thallium. The highest frequency of BDL values�60% was

observed in fat samples, where 11 metals were further excluded from the analysis, including

barium (Ba), cobalt (Co), lead (Pb), manganese (Mn), molybdenum (Mo), nickel (Ni), silver

(Ag), strontium (Sr), thallium (Tl), uranium (U), and vanadium (V).

We tested for differences in the measured tissue metal or element concentrations between

age classes (subadult or adult) or sexes (female or male) using t-tests. The reported difference

uses the first group as the category that occurs first alphabetically, which is important to deter-

mine which group has a lower mean concentration. Due to the unequal sample sizes for com-

pared groups (age: adult = 36, subadult = 12, unknown = 1, and sex: female = 13, male = 36),

we used Welch’s two-sample t-tests, which assume unequal variances. The p-value was

adjusted for multiple comparisons using the Bonferroni method (n comparison = 25).

When developing the predictive models, we used a real intercept due to the time-integrated

nature of chemical ADME (absorption, distribution, metabolism, excretion; for more details,

see Doogue and Polasek (2013) [25]). There are scenarios where internal concentrations of a

contaminant may be detectable but not yet present in the feces because excretion is the last

metabolic step. Thus, an intercept of zero is not biologically valid. We did not include any

additional covariates, even when differences were observed between age and sex groups, as

such information on sex and age may not be readily available if fecal (scat) samples are being

collected from the landscape. The regressions are log-log models, and beta coefficients (esti-

mate) are therefore interpreted as percentage change. The p-values, root mean square errors

(RMSE), R-squared estimates, and mean absolute errors (MAE) are based on results from

leave-one-out cross-validations (LOOCV) from the caret package in R [26] and were used to

evaluate the quality of the model. While no R-squared cut-off was applied, models were

deemed poor if the p-value for the estimate was>0.05 (i.e., not statistically different from

zero). We only complete pairwise predictive models (e.g., As in Feces ~ As in muscle, liver,

and fat) and further investigate the use of Hg and MeHg in feces using predictive models to

convert the total Hg concentrations measured in the feces to MeHg concentrations in the

three tissues and feces. When developing the conversion tool, we removed all relationships

with low predictive power and variables with a high number of BDL values. In this tool, we

only include models where the regression coefficients were significant (p< 0.05). The goal of

this conversion tool is to be conservative (i.e., overestimate), thus, we use the upper 95% confi-

dence interval of the beta coeffect to calculate the estimated tissue concentration.

Human health risk screening

We demonstrate how these models could be used for human health risk screening using the

example of MeHg. To do this, we used rates of consumption of polar bear meat from the Inuit

Health Survey (IHS) food frequency questionnaire (FFQ) conducted in 2007–2008. On aver-

age, Inuit consume polar bear meat at an average rate of 9.7 ± 68 g/week [27]. We used this

mean and standard deviation within a truncated normal (min = 0) bootstrapping (n = 1000)

framework to simulate the population consumption distribution. Using these simulated
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populations, we applied the measured upper 95% confidence limit of the mean for MeHg in

polar bear muscle to estimate the mercury intake (ug/week). We then repeated this process

with the upper 95% confidence limit of the estimated muscle MeHg mean. To get the esti-

mated tissue mean, we used the regression intercept and the regression coefficient’s upper 95%

confidence limit to predict the muscle MeHg concentration. We assess our predicted con-

sumption values by comparing the estimated and measured distributions and various refer-

ence values.

Results

Metals and elements measured in polar bear feces used in the analysis are summarized in

Table 1. Overall essential elements (e.g., Ca, K, P) are measured in higher concentrations than

metals with no biological function (e.g., MeHg, Hg, As). On average, the ratio of MeHg to

Table 1. Summary statistics of metals measured in polar bear feces (μg/g dry weight).

Fat Feces Liver Muscle

Element Mean ± SD Range Mean ± SD Range Mean ± SD Range Mean ± SD Range

Silver (Ag) 0.01 ± 0.005 0.01–0.03 0.28 ± 0.98 0.01–6.40 0.52 ± 0.42 0.13–2.80 0.01 ± 0.01 0.01–0.04

Arsenic (As) 1.00 ± 0.79 0.25–4.60 2.50 ± 3.29 0.25–20.00 1.39 ± 1.32 0.25–6.50 1.49 ± 1.55 0.25–5.20

Barium (Ba) 0.07 ± 0.05 0.05–0.36 1.92 ± 4.66 0.05–22.00 0.07 ± 0.09 0.05–0.68 0.07 ± 0.04 0.05–0.26

Calcium (Ca) 67.41 ± 103.96 10.00–

750.00

8,726.94 ± 23,383.52 330.00–

155,000.00

110.93 ± 29.84 67.00–260.00 191.93 ± 367.54 92.00–

2,700.00

Cadmium (Cd) 0.04 ± 0.11 0.00–0.78 1.59 ± 2.37 0.01–15.50 2.07 ± 1.24 0.46–7.80 0.07 ± 0.05 0.01–0.25

Cobalt (Co) 0.01 ± 0.00 0.01–0.01 0.12 ± 0.26 0.01–1.35 0.01 ± 0.00 0.01–0.02 0.01 ± 0.00 0.01–0.02

Copper (Cu) 0.77 ± 0.87 0.25–4.30 11.91 ± 10.35 3.70–70.00 109.64 ± 41.52 40.00–200.00 5.39 ± 1.82 2.10–12.00

Iron (Fe) 10.09 ± 7.24 5.00–39.50 598.09 ± 1,011.73 40.00–5,400.00 287.08 ± 189.61 43.00–950.00 130.17 ± 23.63 76.50–190.00

Total Mercury

(THg)

5.55 ± 23.79 0.01–

147.00

2.69 ± 3.52 0.30–20.67 45.86 ± 41.89 6.05–158.33 0.59 ± 0.44 0.16–2.70

Potassium (K) 489.90 ± 334.94 110.00–

1,800.00

11,060.20 ± 3,715.34 2,500.00–

19,000.00

7,030.61 ± 750.33 5,000.00–

8,300.00

12,150.00 ± 1,602.99 5,350.00–

15,000.00

Methylmercury

(MeHg)

0.03 ± 0.03 0.00–0.12 0.31 ± 0.33 0.02–1.73 2.37 ± 2.50 0.48–13.58 0.43 ± 0.33 0.10–1.53

Magnesium (Mg) 38.80 ± 28.95 9.80–

120.00

1,908.37 ± 2,028.90 210.00–

11,000.00

512.96 ± 51.66 410.00–

640.00

847.04 ± 118.79 390.00–

1,300.00

Manganese (Mn) 0.13 ± 0.07 0.10–0.45 13.58 ± 40.67 0.10–260.00 10.40 ± 2.12 6.00–16.00 0.59 ± 0.33 0.21–2.40

Molybdenum (Mo) 0.03 ± 0.01 0.03–0.06 0.28 ± 0.15 0.11–0.94 1.39 ± 0.33 0.87–2.30 0.04 ± 0.02 0.03–0.08

Sodium (Na) 795.31 ± 515.07 190.00–

2,300.00

6,397.96 ± 2,767.82 2,700.00–

14,000.00

2,243.88 ± 536.25 1,500.00–

3,800.00

2,155.10 ± 550.78 1,400.00–

4,300.00

Nickel (Ni) 0.05 ± 0.05 0.03–0.35 0.36 ± 0.69 0.03–4.20 0.05 ± 0.07 0.03–0.52 0.05 ± 0.06 0.03–0.30

Phosphorous (P) 414.49 ± 249.32 120.00–

1,350.00

9,221.43 ± 15,312.11 1,200.00–

110,000.00

8,991.84 ± 1,002.67 6,500.00–

11,000.00

8,090.82 ± 971.02 3,200.00–

9,400.00

Lead (Pb) 5.83 ± 39.98 0.03–

280.00

449.55 ± 3,144.01 0.03–22,008.50 0.37 ± 0.55 0.05–3.50 0.18 ± 0.42 0.03–2.10

Sulphur (S) 577.04 ± 352.55 150.00–

1,900.00

11,947.96 ± 5,538.21 5,500.00–

31,000.00

6,571.43 ± 664.11 5,300.00–

7,950.00

8,014.29 ± 907.09 3,500.00–

9,500.00

Selenium (Se) 0.17 ± 0.13 0.05–0.68 2.99 ± 2.30 0.80–11.50 19.04 ± 30.29 3.05–195.00 1.61 ± 0.45 0.96–3.00

Strontium (Sr) 0.17 ± 0.13 0.10–0.64 36.11 ± 82.44 0.64–480.00 0.26 ± 0.22 0.10–1.50 0.35 ± 0.42 0.10–2.10

Thallium (Tl) 0.13 ± 0.05 0.10–0.32 4.90 ± 22.10 0.10–150.00 0.25 ± 0.06 0.10–0.38 0.27 ± 0.06 0.10–0.45

Uranium (U) 0.001 ± 0.0004 0.001–

0.003

0.03 ± 0.08 0.001–0.58 0.001 ± 0.0004 0.00–0.00 0.001 ± 0.001 0.001–0.001

Vanadium (V) 0.01 ± 0.01 0.01–0.05 0.44 ± 1.18 0.01–5.90 0.18 ± 0.14 0.07–0.68 0.02 ± 0.02 0.01–0.09

Zinc (Zn) 5.17 ± 4.78 1.00–27.50 180.59 ± 199.49 13.00–1,100.00 171.14 ± 54.32 72.00–340.00 175.79 ± 43.90 61.00–240.00

https://doi.org/10.1371/journal.pone.0305398.t001
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THg measured in the feces was 19.6% (95% CI = 14.4–24.8%). This falls within the 95% confi-

dence interval of the ratios measured in fat 26.0% (95% CI = 19.6–32.4), is slightly higher than

the ratio measured in liver 8.2% (95% CI = 6.0–10.4%), and is lower than the ratio measured in

muscle 71.3% (95% CI = 66.0 76.7%). None of the concentrations measured in any tissue

exceeded the consumption guidelines, which are detailed in Boutet et al. (2023).

Results of t-tests before correcting for multiple comparisons comparing sexes (male and

female) and ages (subadult and adult) indicate both age and sex differences in some of the

assayed contaminants in feces and muscle, liver, and fat, but not for most metals. Age differ-

ences were observed in Ag in fat (p = 0.04), Na in feces (p = 0.02), Cd in liver (p = 0.048), Hg in

liver (p = 0.03), Se in liver (p = 0.024), and Pb in muscle (p = 0.04). Of the significant differences

between age classes, mean values for metals/elements were higher in adults, except for Na,

where the mean was higher for subadults. Sex differences were observed in uranium in feces

(p = 0.04), Fe in liver (p = 0.002), Mn in liver (p = 0.02), Cu in muscle (p = 0.01), Mn in muscle

(p = 0.003), and Mo in muscle (p = 0.04). Means for metals/elements where significant differ-

ences were found were higher in females than males. After correcting for multiple comparisons,

only Fe in the liver remained significantly higher in females than in males (S1 and S2 Tables).

Correlations imply that MeHg and Hg are broadly positively associated with various metals

in various tissues (Fig 1). In contrast, some essential elements, notably P and K, were nega-

tively associated with other tissues. The correlations between feces and fat should be inter-

preted with caution, as many of the metal concentrations measured in fat were BDL, as noted

in the methods.

All metals were modeled in predictive linear regression models (S3 Table). The average R2

values range from 0.02 to 0.40. We include curated an easy-to-use conversion tool that can be

used for community-based monitoring to calculate the predicted metal concentrations for any

fecal metal concentration for a given tissue (S4 Table). After eliminating the metals with poor

relationships (i.e., non-statistically significant beta coefficients), we were left with 16 metals in

the conversion tool (As, Cd, Cu, Hg, MeHg, Pb, Mg, Mn, Mo, P, K, Se, Na, S, Ti, Zn); fourteen

of these metals can be predicted in the liver, 11 in the muscle, and five in the fat.

We present the relationship between feces and internal tissues for some metals of exposure

concern (Fig 2). The corresponding LOOCV regression summary statistics for the

Fig 1. Visual representation of the correlation matrix comparing the association between each covariate. The color of the circles represents the

direction of the relationship, where red indicates a negative relationship, blue indicates a positive relationship, and white represents no relation. The

circle size represents the strength of the association. Cells that are missing a circle indicate non-significant correlations (p > 0.05).

https://doi.org/10.1371/journal.pone.0305398.g001
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corresponding plots are presented in Table 2. When comparing As, Cd, Hg, and MeHg, the As

in feces poorly predicts internal As concentration, and one average had<10% variance

explained. Hg and MeHg were predictive models, as indicated by statistically significant p-val-

ues (p< 0.05) and comparatively high average R2 values. Fecal MeHg was more predictive of

internal tissue concentration than fecal Hg; on average, fecal MeHg on average explained 40%

Fig 2. Select scatterplots with linear regression line of best fit (red) and 95% confidence interval (grey) across four different metals As (A-C), Cd (D-F), Hg

(G-I), and MeHg (J-L) using the metal concentration (μg/g) measured in feces to predict the concentration of metal (μg/g) in the liver, muscle, and fat. The

cross-validated regression outputs and significance corresponding to each plot can be found in Table 2.

https://doi.org/10.1371/journal.pone.0305398.g002
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of MeHg in the liver and 33% of variance in muscle. While Pb is also a metal of concern, many

(>75%) of the concentrations measured in fat and muscle samples were BDL, thus, only liver

Pb could be modeled. Pb in feces explained, on average, 27% of the variance of Pb in the liver

(p< 0.001).

We further investigation the use of Hg and MeHg in feces as a biomonitoring and risk

screening tool as it is often cheaper to measure total Hg than MeHg. We developed relation-

ship to convert total Hg concentration in the feces into internal MeHg concentrations. There

is a statistically significant relationship between the THg measured in feces and MeHg in all

internal tissues, with the liver having the strongest relationship (average R2 = 0.37 p< 0.001)

and there was no pattern by age or sex (Fig 3 and Table 3).

On average, the Inuit consume 9.7 ± 68 g/week of polar bear meat [27]. Using the upper

limit of the confidence interval on the beta coefficient from our models, our predictions of

MeHg intake from polar bear meat is more conservative (i.e., predicts a higher concentration)

for consumers on the upper end of the distribution (Fig 4 red shaded area) than the measured

values (Fig 4 blue shaded area). The estimated max intake (1.96 μg MeHg/kg/week) higher

than the measured intake (1.54 μg MeHg/kg/ week). This demonstrates that fecal Hg concen-

trations can be used to predict muscle MeHg concentrations for risk screening purposes.

While the consumption rates for polar bear liver and fat were not included in Laird et al.

(2013b), a similar exercise could be completed for these tissues if data becomes available.

We compare our estimated intakes to three different reference values. The provisional toler-

able daily intake (TDI) for MeHg set by Health Canada is 0.0002 mg/kg/day in sensitive

Table 2. Select leave-one-out-cross-validated (LOOCV) regression outputs using the metal concentration (μg/g) measured in feces to predict the concentration of

metal (μg/g) in the liver, muscle, and fat.

Label Tissue Term Beta Error P-value RMSE Average R2 MAE n

A Liver Intercept -0.07 0.05 0.18 0.36 0.09 0.3 47

Feces As 0.32 0.11 < 0.001

B Muscle Intercept -0.1 0.06 0.14 0.44 0.03 0.36 47

Feces As 0.29 0.13 0.03

C Fat Intercept -0.14 0.05 < 0.001 0.31 0.03 0.24 47

Feces As 0.23 0.09 0.02

D Liver Intercept 0.27 0.03 < 0.001 0.22 0.07 0.16 47

Feces Cd 0.15 0.05 0.01

E Muscle Intercept -1.25 0.04 < 0.001 0.32 0.14 0.27 47

Feces Cd 0.27 0.08 < 0.001

F Fat Intercept -1.76 0.06 < 0.001 0.43 0.68 0.3 47

Feces Cd 0 0.1 1

G Liver Intercept 1.43 0.06 < 0.001 0.4 0.02 0.33 47

Feces Hg 0.26 0.14 0.06

H Muscle Intercept -0.37 0.04 < 0.001 0.24 0.12 0.2 47

Feces Hg 0.27 0.08 < 0.001

I Fat Intercept -0.91 0.13 < 0.001 0.84 0.11 0.54 47

Feces Hg 0.17 0.29 0.56

J Liver Intercept 0.57 0.07 < 0.001 0.26 0.34 0.2 46

Feces MeHg 0.49 0.09 < 0.001

K Muscle Intercept -0.2 0.07 0.01 0.25 0.24 0.21 45

Feces MeHg 0.39 0.09 < 0.001

L Fat Intercept -1.4 0.11 < 0.001 0.39 0.15 0.33 44

Feces MeHg 0.46 0.14 < 0.001

https://doi.org/10.1371/journal.pone.0305398.t002
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(infants, children <12 and women of childbearing age) and 0.00047 mg/kg/day in non-sensi-

tive populations, which is equal to 1.4 μg MeHg/kg/ week and 3.29 μg MeHg/kg/ week, respec-

tively [28]. The Environmental Protection Agency (EPA)’s Integrated Risk Information

System assessment for MeHg lists the point of departure (POD) for oral exposure to MeHg as

8.6 x 10−4 mg/kg/day or 6.02 μg/kg/week based on the lower 95% confidence limit of the

Fig 3. Select scatterplots with linear regression line of best fit (black) and 95% confidence interval (grey) using the Hg concentration (μg/g) measured in

feces to predict the concentration of MeHg (μg/g) in the liver, muscle, and fat. The cross-validated regression outputs and significance corresponding to

each plot can be found in Table 3. The sample points are also colored by age (AD = Adult, SUB = Subadult) and sex (F = Female, M = Male).

https://doi.org/10.1371/journal.pone.0305398.g003
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Table 3. Select leave-one-out-cross-validated (LOOCV) regression outputs using the Hg concentration (μg/g) measured in feces to predict the concentration of

MeHg (μg/g) in the liver, muscle, and fat.

Label Tissue Term Beta Error P-value RMSE Average R2 MAE n

A Liver Intercept 0.03 0.06 0.64 0.34 0.37 0.30 47

A Liver Liver MeHg 0.79 0.15 0.00 0.34 0.37 0.30 47

B Muscle Intercept 0.47 0.11 0.00 0.41 0.16 0.35 46

B Muscle Muscle MeHg 0.56 0.20 0.01 0.41 0.16 0.35 46

C Feces Intercept 0.49 0.11 0.00 0.40 0.17 0.34 46

C Feces Feces MeHg 0.38 0.14 0.01 0.40 0.17 0.34 46

D Fat Intercept 0.78 0.25 0.00 0.42 0.15 0.34 45

D Fat Fat MeHg 0.33 0.14 0.02 0.42 0.15 0.34 45

https://doi.org/10.1371/journal.pone.0305398.t003

Fig 4. MeHg intake from polar bear meat (μg/kg/week) is based on 1000 simulations for a population using a truncated normal

distribution with an average consumption rate of 9.7 ± 68 grams/week [27] of an average 67 kg person. The two histograms are

the measured muscle concentration (blue bars) and muscle concentration predicted by the fecal MeHg concentration (red bars).

The black dashed lines represent the varies reference values for methylmercury (MeHg).

https://doi.org/10.1371/journal.pone.0305398.g004
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benchmark dose (BMDL) for developmental neuropsychological impairment. This corre-

sponds to a reference dose (RfD) of 1 x 10−4 mg/kg/day (the low-end range of BMDL5) or

0.7 μg/kg/week after an uncertainty factor (UF) of 10 is applied, as this assessment is based on

data from epidemiological studies [29] (Fig 4).

Based on the maximum MeHg concentration in muscle measured in our dataset and the

distribution of polar bear meat consumption from average adults weighing around 67 kg [27],

approximately 0.2% of the population could exceed the tolerable weekly intake using the

threshold for the most sensitive population, and 12.8% of the population could exceed the EPA

for MeHg with the uncertainty factor applied but are well below the empirical POD. The per-

centage of exceedances increases as human weight decreases.

Discussion

Many metal concentrations measured in polar bear feces predicted contaminant concentra-

tions in tissues; however, these relationships varied among metals and tissues with a large

range of R2 values. Generally, concentrations measured in the feces yielded the best predictive

relationships with liver, followed by muscle and fat (S1 Table). Fecal metal concentrations, par-

ticularly Hg and MeHg, had the strongest relationships with tissue concentrations. We devel-

oped a user-friendly model interface to translate the results from this study for use by

community members or government officials. We use simple linear regressions rather than

more complex physiologically-based toxicokinetic modeling (PBTK) as we wish to contribute

to the toolbox for community-based monitoring programs and make our tools maximally

accessible.

Age was missing for one female bear. While age and sex can be important, especially for

bioaccumulative chemicals and chemicals that impact the endocrine system [30], there were

no overarching trends of differences in metal concentrations by age, sex, or metal, especially

after correcting for multiple comparisons. Not including age and sex in these models implies

that the mean values of these data may change depending on the sex and age composition of

future sampling (e.g., more adults than subadults). Additionally, samples from underrepre-

sented geographic areas (e.g., Northern Beaufort Sea, Western Hudson Bay, and Baffin Bay)

are needed to validate whether our developed predictive models are generalizable across all

geographic regions.

Hg and MeHg models were among the best predictive models, as evidenced by the high

cross-validated R2 values. This means that feces could be used for non-invasive biomonitoring

which is especially relevant as exposure to Hg among Inuit is an ongoing public health concern

[31]. This prompted our exploration of the usefulness of feces as a biomonitoring tool for

human health risk screening. Total Hg measured in feces was a better predictor of MeHg con-

centrations in the liver than the MeHg in feces. However, total Hg in feces was not as good a

predictor of MeHg in muscle but had similar predictive ability for MeHg in fat. Thus, in the

absence of speciated MeHg data, total Hg could be used as a proxy for estimating internal

MeHg concentrations. These results are similar, to those reported in Bechshoft et al., 2019 who

use THg measured in polar bear fur as a predicter for THg and MeHg in the muscle. However,

the percentage MeHg of the THg measurement was higher in the fur (> 70%) when compared

with our feces (19.2%) [32]. The relationship between MeHg and Hg likely reflect some of the

complex detoxification processes where MeHg is demethylated into an inorganic, and thereby,

a less toxic form of Hg, or MeHg is conjugated with another compound, for example, those

containing Se, which makes the MeHg inert and not harmful [33–35].

Within a One Health framework the concentration of metal measured in polar bear can

also be used to draw conclusions about the ringed seals, the main prey of polar bear. Since
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humans and polar bears are both apex predators of seals information learned from polar bear

monitoring can also be used to inform on the health of ringed seals, via contaminant burdens,

and by extension humans For example, the main route of exposure to methylmercury is

through the diet [36]. While the polar bear diet varies spatially, ringed sea (Pusa hispida) was

the primary prey of polar bears in many regions in the Canadian Arctic (Baffin Bay, David

Strait, Foxe Basin, Gulf of Boothia, and Southern Hudson Bay), followed by bearded seal (Erig-
nathus barbatus) [37]. It is predicted that species redistribution will result from the physical

and biological pressures associated with climate change [38]. A shift in available prey can also

change the contaminant exposure levels and composition for wildlife through tropic level

shifts [39]. Important future research would be to strengthen the understanding between the

concentrations of contaminants in seals and the body burden of polar bears. Using a modeling

approach based on the concentrations of contaminants in polar bear feces to estimate the con-

centrations of contaminants in seals could provide a low cost and non-invasive provide ongo-

ing monitoring of ecosystem health.

Further, integration of Western scientific methodologies with traditional ecological knowl-

edge held about the polar bear by the Inuit offers a comprehensive approach to understanding

ecosystem health [40]. The conversion tool we develop in this paper can help facilitate non-

invasive collection of scat from the landscape, serves as a valuable screening tool for communi-

ties to assess metal exposure in Arctic ecosystems. This holistic approach not only advances

scientific understanding but also characterizes polar bear health from an Inuit perspective,

acknowledging the interconnectedness of ecological, cultural, and human health in the Arctic

environment [40].

Correlation plots assessing the relationship between fecal metal concentrations and the

other metals in the liver, muscle, and fat could help guide further investigations of using the

fecal concentration of one metal to predict the internal tissue concentration of other metals.

The strong correlations, as indicated by the large red and blue circles, indicate fecal metal con-

centrations may predict different internal metal concentrations. This should be evaluated

using larger datasets than we have here. Correlations between K and P and many tissue metal

concentrations were negative (Fig 1). While we did not model these relationships using regres-

sions, these general trends may provide additional information for communities and govern-

ment agencies, as when these elements have high concentrations, it may imply lower values of

some metals within tissues.

All metals assayed in this study were measured at the total concentration of all species of

that element, except for MeHg. However, we know that different metal species have different

bioavailability in the gastrointestinal tract and result in different toxicities [41]. For example,

bioavailability for arsenic species decreases as follows: arsenite > arsenate > monomethylarso-

nate (MMA) > dimethylarsinate (DMA) [42]. However, in biological and environmental

monitoring, measuring the total of all metal species combined is more common than quantify-

ing speciated measures, as the latter costs more. In other words, total metal concentrations

serve as a proxy exposure of the most toxic species for a given metal. In reality, this overesti-

mates the risk from exposure but is a health-protective method that aligns with risk s guidance

for evaluating metals [43]. The number of concentrations below the BDL also limited our

results. While BDL values are common in toxicological research, as many environmental con-

centrations and exposures to chemicals are low, this can impact the modeling [24, 44, 45]. This

limited the number of relationships we could derive. Moreover, while other contaminants

(e.g., PACs, PCBs, and pesticides such as chlordanes) were measured in these bears [3], the

large number of non-detects limited our ability to develop feces as a non-invasive biomonitor-

ing tool for these other chemical classes. Many of these other contaminants lack toxic reference

values, making it difficult to evaluate and communicate the risks of exposure.
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We used feces from the lower part of the intestines, which has allowed us to develop predic-

tive models from matched pairs between chemical concentrations in tissues and chemical con-

centrations in the feces of the same harvested animal. An important next step would be to test

whether the conversion factors developed in this research can be applied to fecal samples (scat)

collected from the landscape. While polar bears can have large home ranges (upwards of 350

000 km2 [46]), the fecal samples collected on the landscape can be geotagged at collection to

develop regional comparisons across the different polar bear management units. Future

research should test whether environmental weathering processes change the concentration of

metals measured in the feces to ensure the developed relationships still represent the predicted

internal concentrations.

Supporting information

S1 Table. Summary of t-test results comparing the different in measured metal concentra-

tions by metal and tissue between male and female bears. P.adj has been adjusted for multi-

ple comparison using the Bonferroni method.

(CSV)

S2 Table. Summary of t-test results comparing the different in measured metal concentra-

tions by metal and tissue between male and female bears. P.adj has been adjusted for multi-

ple comparison using the Bonferroni method.

(CSV)

S3 Table. Summary of the model terms for the leave one out cross validation (LOOCV)

regression model using fecal metal concentrations to predict internal tissue concentra-

tions.

(CSV)

S4 Table. Easy-to-use conversion tool to estimate internal tissue (yellow: muscle, liver, fat)

concentrations from metal concentrations measured in feces (green). Only regression rela-

tionships where p< 0.05 are presented; black squares are where p-value regression coefficient

>0.05.

(XLSX)

S5 Table. Study data by tissue (Feces, liver, muscle, fat) and metal. All concentrations are

reported in μg/g dry weight.
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