

Centre Armand-Frappier Santé Biotechnologie

EVALUATION OF GENETIC EXCHANGE IN *LEISHMANIA* PARASITES IN AN INFECTED MAMMALIAN HOST

Ву

Roman Telittchenko

Dissertation submitted for obtaining the degree of Master of Sciences (M.Sc.) In the program of Virology and Immunology

Evaluation Committee

Committee president and Internal examiner

Maritza Jaramillo-Patiňo INRS-Centre Armand-Frappier Santé Biotechnologie

External examiner

Barbara Papadopoulou Department of Microbiology and Immunology Université Laval-CHUL

Research director

Albert Descoteaux INRS-Centre Armand-Frappier Santé Biotechnologie

© Copyrights reserved by Roman Telittchenko, 15 September 2020

"What is difficult in training will become easy in a battle" Alexander Vasilyevich Suvorov (1730-1800)

ACKNOWLEDGMENTS

First and foremost, I would like to thank and express my deepest appreciation to my research director, Albert Descoteaux, for giving me a chance to work and accomplish my Master degree within his laboratory. The years that I spent to get to this point were hard and filled with many obstacles; however, under Albert's exceptional leadership, guidance and help in both the work done in the laboratory and in the writing of this thesis, this was an unforgettable and most educative adventure. I feel that I have learned many things from him and that his guidance had shaped me into a proper researcher that I am today. It was a big honor to have worked under such a knowledgeable and wise individual such as Albert Descoteaux.

I would also like to thank the many colleagues that I have had the honor to work with during my Masters. I would like to thank Christine, Guillermo and Olivier for helping me sharpen my scientific skills as well as my skills in creating posters for presentation and the writing of various scientific documents. Aside these three individuals, there were also Renaud, Kevin, Hamlet, Marie-Michèle which have provided me with moral support as well as their awesome sense of humor and friendship which I sincerely hope will last until the very end. I would like to also express a special thank you to my friends and colleagues who came to our lab via exchange programs, Matthias and Felipe. They have helped me a lot with the execution of some of my experiments and pass a joyful and fun time in their company.

A special thank you as well to Jessy Tremblay, manager of the Confocal Microscopy and Flow Cytometry Core Facility for teaching me how to properly use a confocal microscope as well other fluorescent techniques such as FACS.

Many of my friends outside the lab have also been a great support in my never-ending battle for knowledge and I'd like to ask them to forgive me, that I could not allocate as much time as I could in the past. However, I am thankful for your continued support in my person and I will most certainly look forward to spending more time with you (Especially Evgeny Semakin and Nikolay Grigoriev).

Lastly, I would like to thank my parents for their support, love and help in this endeavor. Their scientific know-how had helped me resolve many issues that I've come across my time here and their advice had also helped me sharpen my technical skills as well. They both are my role models in life and I hope that with this victory, I had made them proud.

Thank you very much for all, everyone. Let us march into the future hand in hand once more!

ABSTRACT

Leishmaniasis is a disease characterized by a spectrum of symptoms ranging from cutaneous lesions to fatal visceral disease caused by Leishmania. This pathogen replicates in compartments of the endosomal-lysosomal pathway of phagocytes. Most Leishmania species live in individual vacuoles, but species of the Leishmania mexicana complex live in communal vacuoles. Current knowledge on Leishmania suggests that the genetic and pathogenic diversity of parasites is primarily due to vertical evolutionary pathways rather than horizontal gene exchange processes. Recent findings suggest that parasites are capable of genetic exchanges in sand flies. One potential benefit of occupying a communal vacuole is the proximity of the parasites which increases the possibility of genetic material exchange. This research project aims to determine whether communal vacuoles constitute an environment conducive to genetic exchange between parasites in infected cells. We have generated different strains of L. mexicana and L. amazonensis expressing distinct resistance markers. We performed co-infections in vitro in bone marrow derived macrophages and in vivo in C56BL/6 mice, and recovered the parasite populations after 5-8 days and 9 weeks respectively. Potential hybrid parasites, capable of proliferating in the presence of both antibiotics, were recovered from infections in vitro, but this was a rare phenomenon and they were less viable than the parental strains. Similar observations were noted for double drug-resistant parasites isolated in axenic cultures. No hybrids have been isolated from in vivo infections. In conclusion, genetic exchanges in infected mammalian cells appear to be very rare and generate inefficient and non-viable hybrid strains.

Keywords: Genetic Exchange, Parasite, Host-Pathogen Relationship, Macrophage, Drug Resistance, Intracellular Pathogen

RÉSUMÉ

La leishmaniose est une maladie caractérisée par un spectre de symptômes allant des lésions cutanées à la maladie viscérale mortelle causée par la Leishmania. Ce pathogène se réplique dans les compartiments de la voie endosomale-lysosomale des phagocytes. La plupart des espèces de Leishmania vivent dans des vacuoles individuelles, mais les espèces du complexe Leishmania mexicana vivent dans des vacuoles communautaires. Les connaissances actuelles sur la Leishmania suggèrent que la diversité génétique et pathogénique des parasites est principalement due à des voies d'évolution verticales plutôt qu'à des processus d'échange de gènes horizontaux. Des découvertes récentes suggèrent que les parasites sont capables d'échanges génétiques chez les phlébotomes. Un avantage potentiel d'occuper une vacuole communautaire est la proximité des parasites ce qui augmente la possibilité l'échange de matériel génétique. Ce projet de recherche vise à déterminer si les vacuoles communautaires constituent un environnement propice aux échanges génétiques entre parasites dans les cellules infectées. Nous avons généré différentes souches de L. mexicana et L. amazonensis exprimant des marqueurs de résistance distincts. Nous avons effectué des co-infections in vitro dans des macrophages dérivés de la moelle osseuse et in vivo chez des souris C56BL/6, et nous avons récupéré les populations de parasites après 5 à 8 jours et 9 semaines respectivement. Des parasites hybrides potentiels, capables de se proliférer en présence des deux antibiotiques, ont été récupérés des infections in vitro, mais c'était un phénomène rare et ils étaient moins viables que les souches parentales. Des observations similaires ont été notées pour les parasites doubles résistants isolés des cultures axéniques. Aucun hybride potentiel n'a été isolé à partir des infections in vivo. En conclusion, les échanges génétiques dans les cellules de mammifères infectées semblent être très rares et générer des souches hybrides inefficaces et non-viables.

Mots-clés: Échange Génétique, Parasite, Relation Hôte-Pathogène, Macrophage, Résistances aux Drogues, Pathogène Intracellulaire

SYNOPSIS/ SOMMAIRE RÉCAPITULATIF

La leishmaniose est un spectre de maladies à transmission vectorielle causées par le parasite protozoaire intracellulaire obligatoire de l'ordre des Kinetoplastida et de la famille des Trypanosomatidae, connu sous le nom de Leishmania, un pathogène vacuolaire qui se réplique dans le compartiment phagolysosomal des phagocytes. La Leishmania est endémique dans 98 pays, causant 1 million d'infections et entraînant 20 000 à 30 000 décès par an. Malgré des années d'avancées scientifiques, aucun vaccin efficace et sûr n'est encore disponible. En outre, le traitement actuel est difficile à administrer, coûteux et devient inefficace en raison de la propagation de la résistance aux médicaments. Il existe donc un besoin pressant de développer de nouvelles approches pour prévenir et traiter la leishmaniose. Il existe plus de 20 espèces de Leishmania différentes, trouvées à la fois dans le Nouveau monde (Amérique du Nord et du Sud) et dans l'Ancien monde (Europe, Afrique, Asie), qui peuvent provoquer la maladie chez l'homme et qui peuvent être divisées en trois manifestations cliniques majeures: viscérale, cutanée et mucocutanée. Ces manifestations sont déterminées par l'espèce parasitaire infectant l'hôte, mais dans certains cas, elles pourraient également être influencées par la réponse de l'hôte. La leishmaniose viscérale (Kala azar ou «Mort noire») est la forme la plus sévère de la maladie et est mortelle dans 95% des cas si elle n'est pas traitée. Il s'agit d'une forme d'infection chronique qui affecte généralement le foie, la rate, la moelle osseuse et les ganglions lymphatiques de l'individu infecté. Dans certains cas, après le traitement, certains patients peuvent développer une forme cutanée de la maladie connue sous le nom de leishmaniose cutanée post-kala-azar (PKDL), qui se manifeste par une éruption maculaire hypopigmentée ou érythémateuse maculopapuleuse. Ensuite, il y a la forme cutanée de leishmaniose qui est la forme d'infection la plus courante et la plus étudiée. Habituellement, cette forme d'infection entraîne des ulcères localisés ou des nodules cutanés sur la surface exposée (visage, bras, jambes) de l'hôte et peuvent s'auto-guérir dans les 2 à 18 mois suivant l'infection, mais dans de rares cas, des lésions non-traitées peuvent laisser des cicatrices graves et/ou défigurantes. Enfin, dans certains cas, les lésions cutanées peuvent se disséminer en lésions mucocutanées, dans lesquelles les tissus muqueux nasal et oral sont affectés et peuvent toucher le pharynx et le larynx dans une forme plus sévère de la maladie. Si elle n'est pas traitée, la leishmaniose mucocutanée peut entraîner la mort en raison d'une infection secondaire ou d'une malnutrition.

Leishmania a un cycle de vie dimorphique complexe qui implique deux organismes hôtes: le phlébotome et l'hôte mammifère comme l'homme, les rongeurs, les canins et autres mammifères.

L'infection commence lorsqu'un phlébotome régurgite la forme promastigote du parasite dans l'hôte mammifère au cours d'un repas sanguin. De là, le parasite rencontre la cellule phagocytaire cible auquel il se lie via des récepteurs cibles, ce qui conduit à l'internalisation du parasite par phagocytose. Après l'internalisation, il se différencie en amastigotes et se réplique dans les cellules phagocytaires infectées et ce cycle se poursuit dans les cellules infectées de l'hôte mammifère jusqu'à ce qu'un nouveau phlébotome vienne finalement se nourrir sur l'hôte et ingère des amastigotes flottants et des cellules infectées par le parasite avec son repas sanguin. Une fois que la mouche de sables a ingéré son repas sanguin d'un hôte infecté, les cellules infectées et les amastigotes libres se retrouvent dans le tube digestif de la mouche. Les amastigotes se transforment en promastigotes procycliques flagellés. Les promastigotes entreront alors dans une frénésie réplicative pendant les suivantes 24 à 48 heures via fission binaire. Ensuite, les promastigotes procycliques se développeront en une forme de promastigote métacyclique infectieuse à travers une série de transformations cellulaires connues sous le processus nommé métacyclogenèse. Cela termine le cycle de vie une fois que le phlébotome est prêt à prendre le repas sanguin suivant et que les parasites sont introduits dans un autre hôte mammifère.

La phagocytose est un mécanisme cellulaire important pour les cellules phagocytaires du système immunitaire inné qui est utilisé pour absorber des particules ou des cellules entières plus grandes ou égales à 0,5 µm de diamètre. La phagocytose peut être divisée en 4 étapes principales: Reconnaissance des particules, suivie d'une internalisation qui mènera à la formation et à la maturation du phagosome précoce à un phagolysosome et culminant avec l'élimination des particules à l'intérieur le phagolysosome par divers éléments microbicides. Par contre, les parasites *Leishmania* sont capables d'éviter la réponse immunitaire de l'hôte ainsi que de modifier la voie phagocytaire des cellules infectées et de se répliquer sans aucun souci.

En effet, les parasites parviennent de détourner la réponse immunitaire et les différents mécanismes cellulaires microbicides en utilisant une multitude de molécules, appelées facteurs de virulence, pour assurer leur survie au sein de l'hôte. L'un de ces facteurs est la zincmétalloprotéase GP63, également connue sous le nom de leishmaniolysine, qui est l'une des protéines de surface les plus abondantes et des gènes les plus conservés de *Leishmania*. Elle joue un rôle très important avant l'internalisation du parasite dans les cellules phagocytaires ainsi que dans les premiers stades de survie dans les cellules phagocytaires. La GP63 s'est avérée capable de dégrader des composants de la matrice extracellulaire tels que le collagène de type IV et la fibronectine, ce qui facilite la migration du parasite vers le derme. Elle joue également un rôle dans la perturbation du complexe d'attaque membranaire (MAC) prévenant ainsi la mort

viii

médiée par le complément. De plus, la *Leishmania* utilise ce facteur de virulence spécifique pour modifier les voies de signalisation des cellules hôtes afin de prévenir davantage toute activation inflammatoire et de bien maintenir leur cycle de vie. Mis à part la GP63, un autre facteur de virulence important est le LPG qui arrête la maturation du phagosome en inhibant sa fusion avec les endosomes tardifs et lysosomes. Par conséquent, cela empêche la formation de phagolysosomes et favorise la survie des parasites. Bien que le LPG soit une molécule clé qui assure la survie de parasites tels que *L. donovani* et *L. major* qui se répliquent dans des vacuoles individuelles au sein des cellules hôtes, ce n'est pas vrai pour toutes les espèces de parasite. Dans le cas des espèces du complexe *L. mexicana*, le LPG ne joue pas de rôle dans la survie intracellulaire ou la maturation des phagosomes pour favoriser leur survie au sein de la cellule hôte, les parasites du complexe *L. mexicana* se répliquent dans des vacuoles parasitophores (PV) communes, car cela peut fournir une protection contre les propriétés microbicides du phagosome.

Les divers résultats cliniques associés aux infections avec la Leishmania sont généralement clairement associés à des espèces et souches de parasites spécifiques. Cependant, la contribution du génotype du parasite à la maladie reste largement inconnue. Jusqu'à récemment, on pensait que la diversité des espèces de Leishmania résultait d'une accumulation progressive de mutations divergentes plutôt que d'une recombinaison génétique. En effet, la présence d'espèces de parasites hybrides dans la nature a été signalée depuis très longtemps ce qui suggère que les échanges génétiques peuvent se produire entre parasites. Il existe des dizaines d'articles décrivant les parasites hybrides Leishmania découverts dans le Nouveau monde, l'Ancien monde et même entre deux espèces divergentes. Enfin, il est important de noter que l'hybridation naturelle au niveau intraspécifique de L. infantum, L. donovani et L. tropica a été rapportée via des études de séquençage du génome entier. Outre les études qui démontrent l'existence d'hybrides dans la nature, il existe également des études qui ont révélés la capacité des parasites à échanger du matériel génétique au sein d'un phlébotome infecté. La première étude de ce type a été menée par Akopyants et al (Akopyants et al., 2009), où ils ont démontré que deux souches de L. major qui expriment deux marqueurs de résistance sélectionnables différents co-infectés dans le même phlébotome ont donné naissance à une population de parasites capables d'exprimer les deux marqueurs de résistances. Il y avait aussi des hybrides intraspécifiques entre L. major, L. tropica, L. donovani, L. infantum et des hybrides interspécifiques entre L. major/L. infantum qui ont été isolés des croisements dans les

ix

phlébotomes infectés. Par contre, ce n'est pas connu si le *Leishmania* peut subir des échanges génétiques à l'intérieur de l'hôte mammifère.

Comme mentionné précédemment, la plupart des espèces de Leishmania vivent dans des vacuoles individuelles serrées, mais les espèces du complexe Leishmania mexicana (L. mexicana et L. amazonensis) vivent dans des vacuoles communales spacieuses. L'un des avantages d'occuper une telle vacuole est le potentiel d'échange génétique. Puisque ce n'est pas connu si les échanges génétiques prennent place au sein d'un hôte mammifère infecté, l'hypothèse sous-jacente au projet présenté ci-dessous est que les vacuoles parasitophores communales hébergeant des parasites du complexe Leishmania mexicana fournissent un environnement exceptionnellement avantageux pour les échanges génétiques. Pour répondre à cette hypothèse, nous avons proposé de démontrer que les échanges génétiques peuvent prendre place entre les parasites in vitro dans une culture cellulaire infectée, dans les infections in vivo de souris ainsi que dans les cultures axéniques. Globalement, ce projet de recherche nous permettra de déterminer si des échanges génétiques se produisent dans les vacuoles communales spacieuses infectées par des parasites du complexe L. mexicana. Ces connaissances peuvent avoir des implications importantes pour la propagation de la résistance aux médicaments, le diagnostic et le traitement des infections de Leishmania, car les hybrides peuvent présenter des caractéristiques génétiques et des phénotypes complexes.

Comme décrit dans l'article présenté dans ce document, nous avons créé des souches parentales de *L. amazonensis* et de *L. mexicana* exprimant chacune un gène de résistance différent. Nous avons premièrement essayé de démontrer si les parasites peuvent s'échanger du matériel génétique dans un milieux axénique. Pour se faire, nous avons analysé quatre croissements différents qui étaient nous *L. amazonensis LPG2/LPG2::* Δ HYG + *L. amazonensis* +/SSU::NEO-GFP, L. amazonensis LPG2/LPG2:: Δ HYG + L. amazonensis NEO-DsRede; L. mexicana LPG2/LPG2:: Δ HYG + L. amazonensis NEO-DsRede; L. mexicana LPG2/LPG2:: Δ HYG + L. amazonensis NEO-DsRede. Nous avons démontré que le croisement de *L. amazonensis* LPG2/LPG2:: Δ HYG + L. amazonensis NEO-DsRede aurait généré des parasites doubles résistants. Nous avons réussi à isoler ces parasites entre 18 et 28 jours après le transfert dans un milieu sélectif. Nous avons pu démontrer par PCR que les parasites portaient les deux gènes de résistance; cependant, nous n'avons pas été en mesure de confirmer s'il ne s'agissait pas d'hybrides génomiques complets ou si seul le marqueur épisomique avait été transféré entre les parasites en raison du fait que les hybrides étaient morts. On a aussi essayé de voir si les parasites

peuvent échanger du matériel génétique entre cellules par des vésicules extracellulaires, mais on n'a jamais observé des parasites double résistants dans cette condition. Nous avons ensuite analysé la possibilité des échanges génétiques entre parasites dans des cultures cellulaires de macrophages différenciés de la moelle osseuse infectées. Nous avons essayé deux méthodes différentes afin d'isoler les parasites doubles résistants de ce type d'infection in vitro. Cependant, nous n'avons pas pu isoler des parasites double résistants via la première méthode. On a observé le même résultat avec la deuxième méthode à part deux instances séparées. On a pu observer des parasites doubles résistants de deux infections séparées du croisement de L. amazonensis LPG2/LPG2:: AHYG + L. amazonensis +/SSU::NEO-GFP. On a isolé une population de parasites potentiellement hybrides de la première de ces infections. On a pu maintenir ces parasites en culture en les cultivant dans des macrophages pendant trois semaines ; cependant, après la troisième semaine, les parasites ont perdu un des gènes de résistance et ils ont finalement péri par la suite. La deuxième infection nous a donné trois populations doubles résistants. Par contre, deux des populations analysées étaient positives pour la présence des deux gènes et la troisième population n'avait qu'un des gènes de résistance; cependant, ils sont morts peu de temps après l'isolement. Les deux populations restantes ont été maintenu pour une semaine avant de périr. Pour tous les parasites doubles résistants qu'on a pu isoler des infections in vitro, on a démontré par PCR la présence des deux gènes de résistance. Malheureusement, nous n'avons pas pu confirmer si ces parasites étaient des hybrides génomiques complets ou non, comme cela a été fait dans les études précédentes puisqu'ils ont tous péri et on n'a pas pu faire d'autre analyse. Finalement, on a aussi essayé d'isoler des parasites double résistant des infections in vivo. Nous avons fait des injections sous-cutanées de l'oreille des souris avec trois croisements de parasites. Par contre, on n'a jamais réussi d'isoler des parasites double-résistants de ces infections.

En conclusion, nous présentons dans cette étude pour la première fois l'occurrence d'échanges génétiques entre *L. amazonensis* au sein de cellules de mammifères infectées. Nous n'étions pas capables d'isoler des hybrides potentiels à partir de souris infectées, mais le fait que nous ayons isolé quelques parasites à double résistance à partir d'infections cellulaires *in vitro* suggère que de tels processus peuvent se produire. Ils sont rares et conduisent à la génération de descendants instables à faible viabilité. De plus, nous démontrons que des parasites à double résistance peuvent être observés dans les cultures axéniques. Nous avons également essayé de croiser *L. mexicana* et *L. amazonensis*; cependant, nous n'avons observé aucune descendance à double résistance issue d'un tel croisement. Un tel résultat peut être due au fait que différentes espèces ont des capacités différentes en matière de combinaison génétique où certaines

xi

espèces s'avèrent plus efficaces et d'autres moins. Une autre possibilité pour laquelle on n'a pas observé de parasite double résistant est que le microenvironnement de l'hôte mammifère est assez différent de celui du phlébotome et que l'un peut être plus approprié pour les échanges génétiques que l'autre.

Dans les futures études concernant spécifiquement les parasites du complexe *L. mexicana*, nous devrions continuer d'étudier leur possibilité d'échanges génétiques dans les cellules et hôtes de mammifères infectés. Il serait également intéressant de croiser ces espèces avec des espèces qui ont une compatibilité d'accouplement plus élevée. Cela peut augmenter les chances d'isoler des parasites hybrides potentiels. On sait maintenant que différentes espèces ont des capacités d'accouplement différentes, il est donc important de continuer à explorer les événements d'hybridation entre les différentes espèces de *Leishmania*. Ces études permettront de faire progresser notre compréhension de la diversité biologique et de la complexité du genre *Leishmania* et de fournir un aperçu des stratégies potentielles pour transmettre des gènes de résistance entre parasites. En outre, il sera également important d'évaluer la fertilité et l'aptitude de ces hybrides pour mettre davantage en évidence l'impact et l'importance de la recombinaison génétique au sein de la population de *Leishmania*.

TABLE OF CONTENTS

Contents

ACKNOWLEDGMENTS	iii
ABSTRACT	v
RÉSUMÉ	vi
SYNOPSIS/ SOMMAIRE RÉCAPITULATIF	vii
TABLE OF CONTENTS	xiii
LIST OF FIGURES	xv
LIST OF TABLES	xv
LIST OF ABBREVIATIONS	xvi
SECTION 1: LITTERATURE REVIEW	1
CHAPTER 1: THE IMMUNE SYSTEM	3
1.1 The immune system: an introduction	3
1.2 The Macrophage, common soldier of innate immunity	4
1.3 Phagocytosis	5
CHAPTER 2: LEISHMANIA	11
2.1 Leishmaniasis	11
2.2 Life cycle of <i>Leishmania</i>	15
2.3 Leishmania genetics	18
CHAPTER 3: HOST-PATHOGEN INTERACTIONS	20
3.1 Parasite entry into host	20
3.2 Vacuole formation and intracellular survival	25
3.3 Host immune response modulation	26
CHAPTER 4: LEISHMANIA GENETIC EXCHANGES	28
4.1 Occurrence of natural hybrids in nature	28
4.2 Leishmania genetic exchanges in different experimental conditions	29
4.3 Mechanism of genetic exchange in Leishmania	31
INTRODUCTION	33
SECTION 2: ARTICLE	35
Proof of Article Acceptance In Frontiers in Cellular and Infection Microbiology	38
ARTICLE ABSTRACT	
INTRODUCTION	40

MATERIALS AND METHODS	42
Ethics Statement	42
Plasmids and constructs	42
Parasites	42
Mammalian cell culture	43
Transwell experiments	43
Parasite co-culture experiments	44
In-vitro infections	44
In vivo infections and parasite recovery	45
DNA extraction and PCR confirmation of double-resistant parasites	46
Live Microscopy	46
RESULTS	47
Generation of drug-resistant strains of L. amazonensis and L. mexicana	47
Drug resistance is not transferred in <i>in vitro</i> cultures of promastigotes in the absence of cell-to-ce contact	ell 50
Genetic exchange among L. amazonensis and L. mexicana promastigotes in axenic cultures	51
Unstable genetic exchange in infected macrophages	53
Absence of detectable genetic exchange in <i>in vivo</i> infections	57
DISCUSSION	58
DATA AVAILABILITY STATEMENT	61
ETHICS STATEMENT	61
AUTHOR CONTRIBUTIONS	61
FUNDING	61
ACKNOWLEDGMENTS	61
CONFLICT OF INTEREST STATEMENT	61
SECTION 3: GENERAL DISCUSSION AND CONCLUSION	62
DISCUSSION	63
CONCLUSION	70
APPENDIX I: AUTHOR'S PROOF OF SUBMITTED ARTICLE	71
REFERENCES	87

LIST OF FIGURES

Figure 1.1: Pathogen phagocytosis and phagosomal maturation11
Figure 1.2: Leishmania life cycle17
Figure 1.3: Metacyclogenesis in an infected sand fly17
Figure 1.4: Representation of a Leishmania promastigote and amastigote20
Figure 1.5: Functions of Leishmania virulence factors
Figure 2.1: Generation of drug-resistant Leishmania parasites
Figure 2.2: Survival of parental strains within infected macrophages
Table 2.1: Crosses used in axenic cultures. 52
Figure 2.3: Genotype characterization of double drug-resistant parasites from axenic cultures.52
Figure 2.4: Survival within infected macrophages and visualization of parental strains within the
same vacuole54
Table 2.2: Crosses used in <i>in vitro</i> infections done in wells.
Table 2.3: Crosses used in <i>in vitro</i> infections done in flasks
Figures 2.5: Molecular genotype characterization of double drug-resistant parasites isolated from
in vitro infections
Table 2.4: Crosses used in <i>in vivo</i> infections

LIST OF TABLES

Table 2.1: Crosses used in axenic cultures	52
Table 2.2: Crosses used in <i>in vitro</i> infections done in wells	55
Table 2.3: Crosses used in <i>in vitro</i> infections done in flasks	55
Table 2.4: Crosses used in <i>in vivo</i> infections	57

LIST OF ABBREVIATIONS

4E-BP1: 4E (eIFE4) binding protein 1

AIDS: Acquired immunodeficiency syndrome

AP-1: Activator protein 1

APC: Antigen presenting cell

Arf: ADP-ribosylation factor

Arp 2/3: Actin related protein 2/3

ATP: Adenosine triphosphate

BAI: Brain-specific angiogenesis inhibitor

BMM: Bone-marrow derived macrophage

BCR: B-cell receptor

CD: Cluster of differentiation

Class C VPS/HOPS complex: Class C vacuolar protein sorting/homotypic fusion and protein sorting complex

CLR: C-type lectin receptor

Cop I: Coat protein I

CP: Cysteine protease

CPB: Cysteine protease B

CR: Complement receptor

CTLA-4: Cytotoxic T-lymphocyte-associated protein 4

DC: Dendritic cell

DMEM: Dulbecco's modified eagle mediq

DNA: Deoxyribonucleic acid

DNGR-1: Dendritic cell NK lectin group receptor-1

EEA1: Early endosome antigen 1

ELISA: Enzyme-linked immunosorbent assay

FBS: Fetal bovine serum

FcR: Fc receptor

G418: Geneticin

GFP: Green fluorescent protein

GP63: Major surface glycoprotein 63; leishmanolysin gRNA: Guide ribonucleic acid **HEPES:** Hydroxyethyl piperazineethanesulfonic acid HIV: Human immunodeficiency virus HYG: Hygromycin ICAM: Intracellular adhesion molecule IFA: Immunofluorescence antibody assays **IFNs:** Interferons **Ig:** Immunoglobullin **IL:** Interleukin **IRAK:** Interleukin-1 receptor associated kinase ITAM: Immunoreceptor tyrosine-based activation motif **JAK:** Janus kinase kDNA: Kinetoplast deoxyribonucleic acid **KMP-1:** kinetoplastid membrane protein-11 **LAMP:** Lysosomal-associated membrane LCM: L929 cell-conditioned medium LPG: Lipophosphoglycan LPS: Lipopolysaccharide LRV-1: Leishmania RNA virus-1 MAC: Membrane attack complex MAPK: Mitogen-activated protein kinase MARCO: Macrophage receptor with collagenous structure MHC: Major histocompatibility complex mRNA: Messenger ribonucleic acid **mTOR:** Mammalian target of rapamycin NADPH: Nicotinamide adenine dinucleotide phosphate **NET:** Neutrophil extracellular traps NF-KB: Nuclear factor kappa-light-chain-enhancer of B-cells **NO:** Nitric oxide

xvii

NOD-like receptor: Nucleotide oligomerization domain-like receptor

NOX: NADPH oxidase

NK: Natural Killer cell

NRAMP1: Natural resistance-associated macrophage protein 1

ORPL1: Oxysterol-binding protein-related protein 1

PAMP: Pathogen associated molecular pattern

PBS: Phosphate-buffered saline

PCR: Polymerase chain reaction

PD-1: Programmed cell death protein 1

PI3K: Phosphatidylinositol 3-kinase

PI(3)P: Phosphatidylinositol-3-phosphate

PKDL: Post-kala-azar dermal leishmaniasis

PLC: Phospholipase C

PM: Peritrophic matrix

PRR: Pathogen recognition receptor

PSG: Promastigote secretory gel

PtdSer: Phosphatidyl serine

PTP: Protein tyrosine phosphatase

PV: Parasitophorous Vacuole

Rab protein: Ras-associated binding protein

RIG-I-like receptor: Retinoic acid-inducible gene I-like receptor

RILP: Rab7-interacting lysosomal protein

RNA: Ribonucleic acid

RNS: Reactive nitrogen species

ROS: Reaction oxygen species

RPM: Revolutions per minute

rRNA: Ribosomal ribonucleic acid

SHP: Src homology region 2 domain-containing phosphatase 1

SNARE: Soluble N-ethylmaleimide-sensitive factor attachment protein receptor

SR-A: Scavenger receptor class A

STAT: Signal transducer and activator of transcription

TCR: T-cell receptor

TGF: Transforming growth factor

TIM: T-cell immunoglobulin and mucin domain

TLR: Toll-like receptor

TNF: Tumor necrosis factor

UTP: Uridine triphosphate

V-ATPase: Vacuolar ATPase

VAMP: Vesicle associated membrane protein

WHO: World health organization

WT: Wild type

SECTION 1: LITTERATURE REVIEW

CHAPTER 1: THE IMMUNE SYSTEM

1.1 The immune system: an introduction

The immune system is composed of thousands of cells whose primary objective is to defend the host from potential threats as an army would for its country. The threats that one may encounter can come in the shape of viral, bacterial, fungal or parasitic pathogens (Non-self antigens). There are also internal threats that the immune system should take care of such as cell debris, damaged tissues and cancer cells (Self antigens). This system evolved for a very long time to form the complex defensive mechanism we know today and could be divided into two distinctive categories: the innate and the adaptive immune systems (Yatim & Lakkis, 2015).

The surface of our bodies is covered with skin cells which act as a border to the outside world in order to prevent pathogens and other nasty diseases from damaging our vulnerable cell ecosystem. However, sometimes the border is breached and that is when the primary response units rush to the host's defense and that is what we call the innate immune response. Innate immunity has a very important role of stopping and containing the threat before it spreads and causes heavy damage to the host and usually takes only hours to activate. This activation is induced by the various cytokines, chemokines and other distress molecules produced by damaged and neighboring tissue cells (Hato & Dagher, 2015). This system has a multitude of components that it can deploy. The first cells the pathogens encounter upon breaching the epithelium are neutrophils within the first hours (Julier et al., 2017). These are then quickly reinforced by the innate immunity common soldiers, the macrophages, and other cells which include monocytes, mast cells, dendritic cells (DC), Natural Killer cells (NK) and other granulocytes (Basophils, Eosinophils) (Julier et al., 2017; Kaur & Secord, 2019). There are also indirect defensive measures that aid the cells in stopping the pathogens in the shape of natural antibodies, complement system and a few more (Hato & Dagher, 2015). The innate immune cells sense the intruders through their pathogen recognition receptors (PRRs) that exist in several forms (Mogensen, 2009). These PRRs recognize conserved pathogen associated molecular patterns (PAMPs) and induce the immune cells to phagocytose the intruders and destroy them (Iwasaki & Medzhitov, 2015; Mogensen, 2009).

Although the innate immune system can clear pathogens by recognizing conserved pathogenic motifs, it cannot mount an efficient and pathogen-specific response. That is a job for the special armed force called the adaptive immune system and unlike innate immunity, it requires a couple of days to be activated and a couple of weeks to clear out the pathogen (Julier *et al.*, 2017). This

3

immunity is composed primarily of T and B-cells which specialize in cellular immune response and antibody production respectively. These cells have specialized receptors named TCRs and BCRs which are generated via a process called somatic recombination of a large array of gene segments and are highly specialized at recognizing antigens of a specific pathogen (Bonilla & Oettgen, 2010; Mogensen, 2009). Although it is efficient at destroying invading pathogens, it first needs to be activated. While the innate immunity is fighting at the periphery, a messenger readies for this event. DCs are the messengers that link the innate immunity with the adaptive. DCs are specialized cells known as antigen-presenting cells (APCs) that are responsible for the induction of the adaptive immune system (Bonilla & Oettgen, 2010). To do this, DCs phagocytose pathogenic organisms and process them to antigens. DCs expressing antigens on their major histocompatibility complex (MHC) proteins will travel from the site of infection to regional lymph nodes where they will interact with the cells of the adaptive immunity system (Bonilla & Oettgen, 2010; Yatim & Lakkis, 2015). Here, the appropriate T-cells will recognize the antigen and proliferate into effector and helper cells and the B-cells will turn into antibody producing factories (Plasma cells) (Yatim & Lakkis, 2015). Once the intruding pathogens are taken care off, most of the cells will die, but the few that survive will turn into memory cells (Bonilla & Oettgen, 2010; Mogensen, 2009). These memory cells will ensure a more robust response upon reencounter with the same pathogen in the next infection.

1.2 The Macrophage, common soldier of innate immunity

Macrophages (from Greek works *makros*, "large/big" and *phage*, "eater") are phagocytic cells that were first discovered by the Russian zoologist Ilya Metchnikoff in 1882 for their phagocytic activity in his famous experiment with starfish larvae (Shapouri-Moghaddam *et al.*, 2018; Tauber, 2003). As described higher up, macrophages are professional phagocytes that represent one of the key innate immune players that are responsible for clearing out invading pathogens; however, they also have an important role in maintaining homeostasis, repairing tissues, clearing apoptotic cells and a few more (Biswas & Mantovani, 2010; Gordon & Martinez-Pomares, 2017; Kim & Nair, 2019). These behaviors depend on the stimulus the cells receive from their surrounding environment. This process is known as macrophage polarization towards the classically activated or inflammatory state (M1) and alternatively activated or anti-inflammatory state (M2) (Martinez & Gordon, 2014; Shapouri-Moghaddam *et al.*, 2018). The M1 activation is typically induced by the inflammatory Th1 cytokine milieu, such as IFN- γ and TNF- α and/or PAMPs through various PRRs (Martinez & Gordon, 2014; Shapouri-Moghaddam *et al.*, 2018). These PRRs include external cell receptors such as the majority of toll-like receptors (TLR) and C-type lectin receptors (CLR) which

are able to recognize microbial molecules outside the cell (most classical example is TLR-4 that recognizes bacterial LPS) and they include internal cell receptors such as NOD-like receptors, RIG-I-like receptors and TLR 7-9 which can recognize phagocytosed antigens or viral molecules (Takeuchi & Akira, 2010). As a result, the M1 activated macrophages produce high amounts of inflammatory cytokines and chemokines which will recruit monocytes (main source of newly recruited tissue macrophages (Gordon & Martinez, 2010)) and neutrophils to the site of infection as well as spread the alarm throughout neighboring cells and produce high amounts of reactive oxygen species (ROS), improve the microbicidal activity of the cells and increase the expression of presentation molecules such MHC as well (Linehan & Fitzgerald, 2015; Shapouri-Moghaddam *et al.*, 2018). The M2 macrophages are polarized by IL-4 and IL-13 or phosphatidyl serine (PS) located on apoptotic cells or the anti-inflammatory IL-10 (Kim & Nair, 2019; Linehan & Fitzgerald, 2015; Shapouri-Moghaddam *et al.*, 2018). This results in a Th2 like response and will put out the inflammatory response and promote homeostasis, wound healing and tissue repair, and other function aimed at restoring the organism to normality (Shapouri-Moghaddam *et al.*, 2018).

1.3 Phagocytosis

Phagocytosis is an important cellular mechanism for cells of the innate immune system which is used to uptake particles or whole cells bigger or equal to 0.5 µm in diameter within a plasmamembrane envelope (Gordon, 2016; Kinchen & Ravichandran, 2008). This mechanism has many roles: in unicellular organisms this is the primary source for nutrient acquisition; however, in multicellular organisms it is important for pathogen and apoptotic cell clearance by cells termed phagocytes (Rosales & Uribe-Querol, 2017). Phagocytes in multicellular organisms can be divided into professional and non-professional phagocytes. Professionals include macrophages, neutrophils, DCs, monocytes, eosinophils and osteoclasts which all are important in either initiating an inflammatory response to clear intruding microbes and activating the adaptive immune system or maintain homeostasis, tissue remodeling and tissue repair by clearing apoptotic or necrotic cells (Flannagan et al., 2012; Gordon, 2016). Epithelial cells, endothelial cells, fibroblasts and astrocytes are non-professional phagocytes. These cells act as "secondary phagocytes" and they mostly clear the area they're in from apoptotic bodies, but they are not capable of ingesting microorganisms (Flannagan et al., 2012; Gordon, 2016). Phagocytosis can be divided into 4 major steps: Particle recognition, followed by internalization which will lead to phagosome formation and maturation from early phagosome to a phagolysosome and culminating with particle elimination within the phagolysosome (Figure 1.1) (Flannagan et al., 2009; Rosales & Uribe-Querol, 2017). Regardless of whether the phagocytosed particles are

5

microbial or apoptotic, they will both go through the same phagocytic process with the exception of some differences especially at the initial steps. After all, these particles will determine which signals will be activated within the phagocytes to ensure that they start a proper inflammatory or anti-inflammatory response (Arandjelovic & Ravichandran, 2015).

To initiate phagocytosis, the phagocytes must first recognize the particles in front of them in order to determine if its source is of foreign nature or if it's a self-particle and based on that they produce an appropriate response. In the case of microbial particle uptake, it is done by receptors located on these cells that can be categorized into two distinct groups: non-opsonic receptors and opsonic receptors (Gordon, 2016). Non-opsonic receptors are able to recognize and bind the particles directly and these are mostly found in different types of PRR. Although, as shown previously, PRRs are important in terms of pathogen recognition, not all of them induce phagocytosis. As a matter of fact, PRRs such as TLRs and G-coupled protein receptors were found to promote phagocytosis (Flannagan et al., 2012; Rosales & Uribe-Querol, 2017). For example, TLRs promote phagocytosis through the induction of the phagocytic gene program (Doyle et al., 2004). The receptors that do recognize PAMPs directly and induce phagocytosis include Dectin-1 receptors which recognize yeast polysaccharides (Herre et al., 2004) or mannose receptors (CD206) that recognize mannan (Ezekowitz et al., 1990; Flannagan et al., 2012). There are also CD14 and scavenger receptor SR-A which recognize lipopolysaccharide-binding proteins, lipopolysaccharide and lipothechoic acid (Flannagan et al., 2012; Rosales & Uribe-Querol, 2017). MARCO is another scavenger receptor that can recognize lipopolysaccharide, lipothechoic acid, CpG DNA and whole bacterial cells such as Neisseria meningitis (Canton et al., 2013; Rosales & Uribe-Querol, 2017) There is also CD36 that is capable of recognizing *Plasmodium falciparum*infected red blood cells (Patel et al., 2004). Finally, there are other receptors that induce phagocytosis such as CD33, CD169 and DNGR-1; however, the full list of receptors and the ligands that they recognize respectively is yet to be fully uncovered (Flannagan et al., 2012; Gordon, 2016). The second group of phagocytic receptors consist of opsonic receptors. These receptors are able to recognize microbial particles that are bound by circulating soluble molecules that help tag them for degradation (Flannagan et al., 2012; Rosales & Uribe-Querol, 2017). These molecules are known as opsonins which include circulating immunoglobulins and molecules part of the complement system. The most widely-known and studied opsonin-receptors are the Fcy receptors which recognize various IgG classes through their Fc portion at varying affinities (Anderson et al., 1990; Bruhns et al., 2009). However, there are other Fc receptors that are capable of recognizing other immunoglobulins such as IgA and IgE (Flannagan et al., 2012; Rosales & Uribe-Querol, 2017). Finally, there are complement receptors which recognize the

molecules of the complement cascade such as CR1, CR3 and CR4 that recognize iC3b and others (Ghiran *et al.*, 2000; Ross *et al.*, 1992).

Although phagocytosis is important in clearing microbial organisms, most of the time this mechanism is used by phagocytes to remove apoptotic cells. As a matter of fact, human phagocytes remove billions of dying cells daily (Kinchen & Ravichandran, 2008). The phagocytosis of apoptotic bodies is done in a couple of steps. First of all, apoptotic cells release molecules that are usually found within the cell such as ATP/UTP, lysophosphatidylcholine and sphingosine-1-phosphate, into the extracellular space which serve the purpose of "find me" signals for phagocytic cells (Arandjelovic & Ravichandran, 2015; Rosales & Uribe-Querol, 2017). This "find me" signal acts as the primary signal for the phagocytes, the secondary signal is the "eat me" signal which is provided by physical contact between the phagocyte and the apoptotic entity (Arandjelovic & Ravichandran, 2015; Rosales & Uribe-Querol, 2017). This is achieved through the recognition of surface molecules such as phosphatidylserine (PtdSer) on apoptotic cells; however, there are other surface molecules that play a role in this scenario such as a modified form of ICAM-3 and calreticulin (Arandjelovic & Ravichandran, 2015; Poon et al., 2014; Rosales & Uribe-Querol, 2017). PtdSer can be directly recognized by phagocytic receptors such as TIM-1, TIM-4, BAI-1 or Stabilin-2 and, in addition to that, apoptotic cells can also be recognized by other receptors such as the scavenger receptors MARCO, SR-A and CD-36 and a few others (Flannagan et al., 2012; Rosales & Uribe-Querol, 2017). It needs to be mentioned however, that PtdSer is not only found on dying cells, but it is also expressed on living cells. However, it must be noted that there is 300-fold difference of PtdSer expression between healthy and apoptotic cells which helps phagocytes distinguish these cell types and remove the dead (Flannagan et al., 2012; Rosales & Uribe-Querol, 2017). Also, healthy cells prevent their phagocytosis by expressing molecules such as CD31, CD46 and CD47 which provide "Don't eat me" signals upon contact with phagocytic cells (Arandjelovic & Ravichandran, 2015; Flannagan et al., 2012; Poon et al., 2014; Rosales & Uribe-Querol, 2017). Nevertheless, we still do not have the full picture of all the signaling pathways and receptors involved in the process of phagocytosis that explain how the cell distinguishes between tolerant and immune phagocytosis.

As soon as the phagocytic receptors recognize a particle, it will trigger a cascade of signaling events that will lead to actin remodeling and formation of the phagocytic cup around the particle for internalization with the subsequent early phagosome formation (Flannagan *et al.*, 2012; Gordon, 2016; Rosales & Uribe-Querol, 2017). Unfortunately, we do have a full picture of all these signaling pathways; however, we have well described pathways such as that of FcR and CR3

7

receptor signaling pathways (Flannagan *et al.*, 2012; Rosales & Uribe-Querol, 2017). In the case of the Fcγ receptor (FcγR), exposure of the ligand to the receptor causes their clustering on the cell membrane which initiates the phosphorylation of their immunoreceptor tyrosine-based activation motifs (ITAMs) by the Src-family kinases partially (Lyn, Lck and Hck) (Ghazizadeh *et al.*, 1994; Takai, 2002). The phosphorylated ITAMs create a docking site for the SH2 domain of the tyrosine kinase Syk that can also phosphorylate the ITAMs (Freeman & Grinstein, 2014; Johnson *et al.*, 1995). This will lead to a signaling cascade that will activate many other molecules and enzymes such as PI3K (phosphatidylinositol 3-kinase) and or PLCγ and other downstream molecular players (Flannagan *et al.*, 2012; Rosales & Uribe-Querol, 2017). PI3K can then lead to the activation of different factors such as NF-κB that will lead to the activation of the Arp2/3 actin nucleation complex which will promote actin polymerization and subsequent formation of the phagocytic cup (May *et al.*, 2000; Rosales & Uribe-Querol, 2017).

Once the particle has been internalized into the phagocyte, the phagosome is formed and starts the maturation process. Maturation can be separated into 4 steps: the early phagosome; the intermediate phagosome, the late phagosome and finally the phagolysosome. Initially, the newly formed phagosome membrane is mostly composed of plasma membrane components (Levin et al., 2016). However, the phagosome's membrane will quickly undergo through a biochemical alteration both through changes of membrane and its contents which will make it rapidly acquire early endosome properties (Flannagan et al., 2009; Levin et al., 2016; Pitt et al., 1992; Rosales & Uribe-Querol, 2017). This is achieved through the fusion of the phagosome with early recycling and sorting endosomes (Levin et al., 2016; Rosales & Uribe-Querol, 2017). These fusion events between the early phagosome and early endosomes is mediated between the small GTPase Rab 5 (Bucci et al., 1992; Gutierrez, 2013). Its role is critically important in phagosome maturation, because perturbation in its function or the protein itself can arrest the phagosome's progression to phagolysosomes (Vieira et al., 2003). Not much is known about the mechanism of recruitment of Rab 5 to the phagosomes; however, it is known that some of these proteins are present on the plasma membrane during the formation of the phagosome (Chavrier et al., 1990). Rab 5 acquisition and activation on the phagosome will lead to the recruitment of multiple other proteins to the phagosome (Flannagan et al., 2009; Levin et al., 2016). First of all, with the support of p150 Ser and Thr kinase, Rab 5 will recruit hVPS34, a class III phosphatidylinositol-3-kinase which generates phosphatidylinositol-3-phosphate (PI(3)P) (Vieira et al., 2001). PI(3)P in turn recruits proteins such as EEA-1, NADPH oxidase and others to the early phagosome membrane (Flannagan et al., 2012). EEA-1 in turn facilitates the docking and fusion of early endosomes to

the phagosome by directly interacting with SNAREs, such as syntaxin 6 and syntaxin 13 (Christoforidis *et al.*, 1999; Levin *et al.*, 2016; McBride *et al.*, 1999; Simonsen *et al.*, 1999). Remarkably, despite all these numerous fusion events, the surface area of the phagosome does not grow over time. This is due to the capacity of the phagosome, like that of the endosome, to be able to recycle molecules to the plasma membrane via mechanisms that involve molecules such as Copl, Arf and Rab GTPases (Botelho *et al.*, 2000). However, the majority of recycling events are mediated via Rab 11 and Rab 4 GTPases (Levin *et al.*, 2016). Finally, it must be noted that the lumen of the early phagosome will become slightly acidic (pH 6.1-6.5) due to proton pumping catalyzed by the vacuolar ATPase (V-ATPase) that were recruited to the phagosome (Rosales & Uribe-Querol, 2017).

Next stop on the road of phagosome maturation, is the intermediate phagosome, which exists for a brief moment. It is mainly characterized by the gradual loss of Rab 5 and acquisition of Rab 7 which is mediated in part via the class C VPS/HOPS complex (Poteryaev *et al.*, 2010; Rink *et al.*, 2005). Additionally, this is the stage where there are intraluminal vesicles formed which contain membrane associated molecules targeted for degradation (Rosales & Uribe-Querol, 2017).

With the accumulation of Rab 7 GTPases on the membrane, the phagosome matures into the late phagosome. Rab 7 is required for the phagosome maturation since defects in its functioning prevent the phagosome to fuse with endosomes and lysosomes as well as prevent proper acidification (Harrison et al., 2003). Hence, it is highly important in the fusion of late endosomes and/or lysosomes with the phagosome (Harrison et al., 2003; Rink et al., 2005). Although we know very little about the effector proteins that are recruited by Rab 7, we do know that it is able to recruit Rab7-interacting lysosomal protein (RILP) and oxysterol-binding protein-related protein 1 (ORPL1) (Flannagan et al., 2012; Levin et al., 2016; Rosales & Uribe-Querol, 2017). Together, these two effectors will recruit the dynein-dynactin complex which will promote the centripetal migration of phagosomes along the microtubules (Harrison et al., 2003; Johansson et al., 2007; van der Kant et al., 2013). This event is needed to facilitate the late endosomal and lysosomal compartments to fuse with the phagosome by bringing them to close proximity so that SNAREs, such as VAMP7 and VAMP8, could interact with each other and complete membrane fusion (Antonin et al., 2000; Rosales & Uribe-Querol, 2017; Wade et al., 2001). Additionally, the late phagosome will acquire lysosomal-associated membrane (LAMP) 1 and 2 and luminal proteases via fusion with late endosomes thereby preparing the field for the final stage of maturation (Huynh et al., 2007; Rosales & Uribe-Querol, 2017). LAMP acquisition is critical for the late phagosome in order to fuse with lysosomes and fulfill its microbicidal and degrative functions (Binker et al.,

2007; Flannagan *et al.*, 2012). The late phagosome will also recruit more V-ATPases to its membrane which will further acidify the compartment (pH 5.5-6.0) (Flannagan *et al.*, 2012; Rosales & Uribe-Querol, 2017).

The final stage on the phagosome maturation journey is the phagolysosome, once the late phagosome fuses with lysosomes. Physically, phagolysosomes differ from late phagosomes with their internal membrane enriched in PI(3)P and lack of mannose-6-phosphate receptors(Griffiths et al., 1988; Kobayashi et al., 1998). One of the other major differences is the ability of the phagolysosome of degrative functions and acquisition of degrative components. First of all, this is due to the acquisition of multiple V-ATPases which enhance proton pumping and which make the phagolysosome become more acidic (pH5.5-4.5 and sometimes even lower) (Flannagan et al., 2012; Rosales & Uribe-Querol, 2017). The acidification itself plays a major role in clearing vacuolar contents of the phagolysosome. For instance, it creates a hostile environment that denies the growth of microorganisms and it functions as means of activation of many hydrolytic enzymes (Flannagan et al., 2009; Huynh et al., 2007). The phagolysosomes also contain various reactive oxygen species (ROS) and reactive nitrogen species (RNS) which will eliminate the microorganisms captured within the compartment (Flannagan et al., 2009). Finally, the phagolysosome contains many other antimicrobial peptides and proteins that essentially can be divided into those that can inhibit growth, such as NRAMP1 that achieves this effect by extruding divalent cations such as Zn2+ and Mn2+ that are important for bacterial growth out of the phagosomal lumen (Cellier et al., 2007), or those that compromise the integrity of the microorganisms such as defensins, lysozymes, cathelicidins and others (Flannagan et al., 2009). Cathelicidins, for example, permeabilize the cell wall and inner membrane of Gram-positive bacteria or the outer and inner membranes of Gram-negative bacteria (Zanetti, 2005). The phagolysosome contents; however, differ in their composition and ratios between different cell types, but this does not stop the cells of achieving their ultimate phagocytic goal.

Nature Reviews | Microbiology

Figure 1.1: Pathogen phagocytosis and phagosomal maturation

The early phagosome is formed as soon as the pathogen is internalized by the phagocytic cell. The phagosome undergoes a series of transformations by interacting with various components of the endocytic pathway. This is important for the maturation of the phagosome which culminates in phagolysosome formation that will ultimately degrade the pathogen (Flannagan *et al.*, 2009).

CHAPTER 2: LEISHMANIA

2.1 Leishmaniasis

Leishmaniasis is a spectrum of vector-borne diseases caused by the obligate intracellular protozoan parasite *Leishmania* of the Kinetoplastida order and Trypanosomatidae family (Ghorbani & Farhoudi, 2018) and it is considered as a neglected tropical disease by the world health organization. Currently, this disease is endemic in 98 countries, (de Vries *et al.*, 2015; WHO, 2020) and causes the occurrence of 700 000 to 1 million of new cases yearly as well as 20 000 to 30 000 deaths yearly (Akhoundi *et al.*, 2017; WHO, 2020). However, the actual numbers of infections may be even greater since we do not necessarily see the full epidemiological picture due to the fact that the data may be unreliable or incomplete in the countries endemic for this disease (Alvar *et al.*, 2012). Moreover, as estimated by the World Health Organization (WHO), there is currently over 1 billion people that are at risk of infection on the entire planet. Although most of the countries that are affected by the disease are developing countries predominantly located in the South American, African and Asian continents, climate change as well as animal and human migrations may help the vector and, consequently, help leishmaniasis spread into other regions and territories (Antinori *et al.*, 2012; Savoia, 2015; WHO, 2020)

There exists over 20 different Leishmania species, found both in the New world (North and South America) and Old world (Europe, Africa, Asia), that can cause the disease in humans which can be divided into three major clinical manifestations: visceral, cutaneous and mucocutaneous (de Vries et al., 2015; WHO, 2020). Additionally, leishmaniasis may persists from a couple of months to a couple of years in an infected person and sometimes the disease does not display any clinical symptoms in the affected mammal or human (Cohen-Freue et al., 2007). These manifestations are determined by the parasite species infecting the host, but they could also be influenced by the hosts response and genetics as well (Rogers, 2012; Zabala-Penafiel et al., 2020). Visceral leishmaniasis (Kala azar or "Black death") is the most severe form of the disease and is deadly in 95% of the cases if left untreated (WHO, 2020) and with the majority of cases concentrated in India, Brazil, Nepal, Bangladesh and Sudan (Morimoto et al., 2019). As a matter of fact, these countries harbor 90% of visceral leishmaniasis cases worldwide (WHO, 2020). Usually, the sickness is characterized by fever, weight loss, hepatosplenomegaly and anemia (Morimoto et al., 2019). It is a form of chronic infection and is caused by L. infantum and L. donovani which usually affect the liver, spleen, bonne marrow and lymph nodes of the infected individual (de Vries et al., 2015; Murray et al., 2005). In some cases, after treatment, certain patients may develop a dermal form of the disease known as post-kala-azar dermal leishmaniasis (PKDL), which manifests itself as a hypopigmented macular or as an erythematous maculopapular rash (Burza et al., 2018; Dighal et al., 2020). Then there is the cutaneous form of leishmaniasis caused by species such as L. major, L. amazonensis or L. arabica, which is the most common and most studied form of infection. The majority of cutaneous (90% of them) leishmaniasis cases occur in Afghanistan, Algeria, Brazil, Columbia, Costa-Rica, Ethiopia, Iran, Peru, Syria, and Saudi Arabia (Desjeux, 2004; WHO, 2020). Usually, this form of infection results in a localized ulcer or skin nodule on the exposed skin surface (face, arms, legs) of the host and can self-heal in 2 to 18 months post-infection, but in rare cases, untreated lesions may leave severe and/or disfiguring scars (Burza et al., 2018; David & Craft, 2009). Finally, in certain cases the cutaneous lesions may disseminate into mucocutaneous ones, in which the nasal and oral mucosal tissues are affected and may affect the pharyngeal and laryngeal mucosa in a more severe form of the disease (Handler et al., 2015; Strazzulla et al., 2013). Such disease is mostly found in the New world and is observed the majority of times in infections with L. braziliensis; however, there are other species such L. guyanensis, L. panamensis and L. amazonensis that may cause such disease (Handler et al., 2015; Strazzulla et al., 2013). If left untreated, mucocutaneous leishmaniasis may lead to death due to secondary infection or malnutrition.

Currently, there are many techniques that are available to detect the parasite in the affected individual. Although in certain cases the clinical features are identifiable, such as in the case of cutaneous and mucocutaneous forms of leishmaniases, cases of visceral leishmaniases are not as easily detectable. The most effective of all are molecular and serological tests due to their specificity. Polymerase Chain reaction (PCR) assays based on the amplification of kinetoplast or nuclear DNA are very useful to identify specific leishmania strains, especially among cutaneous strains, whereas serological methods such as isoenzyme analysis, immunofluorescence antibody assays (IFA), western blots, ELISA, direct agglutination techniques, latex agglutination technique which allows for the detection of Leishmania antigens in urine and rapid strip testing for rK39 antigen are all useful in determining visceral infections (Akhoundi et al., 2017; Burza et al., 2018; de Vries et al., 2015; Savoia, 2015). These tests are also less invasive in regards to a patient as well (Akhoundi et al., 2017; Burza et al., 2018; de Vries et al., 2015; Savoia, 2015). It must be added that there are known cases in which the clinical outcomes may be caused by species that typically do not express them. It was found previously that parasites which cause visceral leishmaniases, such as *L. infantum* or *L. donovani* zymodeme MON-37, cause a cutaneous form of disease (Ranasinghe et al., 2013; Svobodova et al., 2009) and vice versa visceral leishmaniasis can be caused by usually cutaneous strains such as Leishmania tropica (Magill et al., 1993). Therefore, specific identification techniques are highly important to determine parasite species, however; most of the time these sensitive techniques are not available in certain regions due to economic reasons. Therefore, we still use classical techniques such as microscopy, in vitro parasite culture biopsies from different organs such as the spleen, bone marrow, lymph nodes or skin depending on the species in question (Burza et al., 2018; de Vries et al., 2015; Savoia, 2015).

Since the antiquity, people have immunized themselves against *Leishmania* by transferring material from leishmaniasis lesions to naïve individuals, a process called leishmanization (Zabala-Penafiel *et al.*, 2020). This was the earliest type of "vaccination" that was used as prophylaxis against leishmaniasis. This is important since it is now known that patients develop a long-term immune protection which allows for asymptomatic infection and hence it is important to develop an effective vaccine (Zabala-Penafiel *et al.*, 2020). At the current moment, there is no approved and effective human vaccine against leishmaniasis (Ghorbani & Farhoudi, 2018; Zabala-Penafiel *et al.*, 2020); however, we were able to make effective canine vaccines that will undoubtably help control and prevent leishmaniasis transmission between dogs and humans (Moafi *et al.*, 2019). Despite the lack of human vaccines, there are currently some that are being tested in clinical trials most of which are live attenuated parasite vaccines (Moafi *et al.*, 2019; Zabala-Penafiel *et al.*, 2020). Although we do not have effective prophylactic measures, we have limited treatment

13

options available to cure leishmaniasis. The primary drug that is used to cure leishmaniasis is the pentavalent antimony; however, other treatments such as Amphotericin B, liposomial Amphotericin B (AmBisome), Paromomycin, Miltefosine and Pentamidine are available (Capela *et al.*, 2019; David & Craft, 2009; Ghorbani & Farhoudi, 2018). There is also other therapies and treatments that have been used to varied success alone or in combination with the main treatments; however, they cannot be considered as a fully-fledged leishmaniasis treatment (David & Craft, 2009).

Unfortunately, even if we have measures to cure leishmaniasis, treatment options are often difficult to administer, very expensive especially in third world countries, have toxic effects and adverse secondary effects with the exception of Miltefosine which causes less adverse effects and can be orally administered (Capela et al., 2019; David & Craft, 2009; Ghorbani & Farhoudi, 2018). Due to limited treatment options, there is also a problem of parasites gaining resistance and this problem is increasing with every passing year (Capela et al., 2019; Ghorbani & Farhoudi, 2018). Co-infections of patients with HIV and Leishmania is also another rising issue that threatens global health. The occurrence of such complications was reported since the 1990 (Monge-Maillo et al., 2014) and their numbers are expected to rise in our closest future due to the fact that both of these diseases share similar geographical regions (Okwor & Uzonna, 2016). The parasite and the virus form a symbiotic relationship in which Leishmania helps activating the immune system in a chronic fashion that allows the viral load to increase and lead to a faster progression of AIDS and HIV in turn causes immunosuppression which is favorable for uncontrolled replication of the parasite (Monge-Maillo et al., 2014; Okwor & Uzonna, 2013). In brief, leishmaniasis is a disease that threatens the health of millions of individuals worldwide with very limited treatment options available. Due to its concentration in equatorial and sub-equatorial regions which harbor primarily poor third world countries and negligence as a disease, there is little economic interest for big pharma to search and develop for more effective and less toxic treatment options to battle this particular parasite. However, due to its increasing spread in other geographical regions and the fact that it may cause additional complications as seen higher up, it will be necessary in the future to allocate more resources and time to improve our understanding and better our fight against this parasite to ensure that this pathogen does not turn from a neglected tropical disease into something more sinister.

2.2 Life cycle of Leishmania

Leishmania has a complex dimorphic life cycle which involves two host organisms: the sand fly and mammalian host such as humans, rodents, canines and others (Figure 1.2). There are two main genera of sand flies that are known to act as vectors for the parasite which are *Lutzomyia* and *Phlebotomus* located in the New and Old worlds respectively (Rogers, 2012). They harbor the flagellated extracellular form of the parasite known as a promastigote in their alimentary tract, that may be found in several different forms including the mammalian transmissible form known as metacyclic promastigotes. The mammalian hosts on the other hand harbor the non-flagellated ovoid amastigote form of the parasite which is present in infected cells that are macrophages in their majority, but can also be DCs, neutrophils, monocytes and possibly other cell types such as fibroblasts (Bogdan *et al.*, 2000; Handman & Bullen, 2002; Peters *et al.*, 2008; Teixeira *et al.*, 2013; Viana *et al.*, 2017).

It all begins when an infected female sand fly inoculates the infective metacyclic promastigote Leishmania parasites into a mammalian host during a blood meal via regurgitation (Sacks & Kamhawi, 2001; Sunter & Gull, 2017; Teixeira et al., 2013). The skin damage and the sand fly saliva will start the recruitment process of neutrophils and macrophages to the inoculation site as well as it will facilitate the infection by the saliva's immunosuppressive functions (Bates & Rogers, 2004; Sacks & Kamhawi, 2001; Sunter & Gull, 2017). Once the parasite encounters the target cell, it will bind to it via target receptors which leads to the internalization of the parasite via phagocytosis (Antoine et al., 1998; Handman & Bullen, 2002; Sunter & Gull, 2017; Teixeira et al., 2013). This receptor binding is mediated either via the opsonization by complement of the parasite or parasite encoded molecules such as lipophosphoglycan (LPG) or GP63 metalloprotease (Handman & Bullen, 2002; Teixeira et al., 2013). Once inside the phagosome, the parasite will convert it into a parasitophorous vacuole (PV) where the Leishmania promastigote transforms into an amastigote which is triggered by environmental cues that remain to be fully elucidated (Besteiro et al., 2007; Cohen-Freue et al., 2007; Sacks & Kamhawi, 2001; Sunter & Gull, 2017). This transformation usually takes from 24h to 72h depending on parasite species. The amastigotes will then replicate within the infected cell via binary fission until the cells burst and release the parasite into the surrounding environment. The free amastigotes may then re-invade new macrophage cells or other phagocytes such a dendritic cells (Handman & Bullen, 2002). Alternatively, the parasites can also be transmitted cell-to-cell via phagocytosis of an infected apoptotic macrophage by an uninfected macrophage (Real et al., 2014). This cycle continues within the mammalian host until a new sand fly eventually comes to feed on the hosts' blood and ingests with-it free-floating amastigotes and parasite infected cells.

Once the sand fly has ingested its blood meal from an infested host, the infected cells and free amastigotes end up in the digestive tract of the fly. The ingested blood meal along with the parasites is then encapsulated in a structure known as peritrophic matrix (PM) and within this matrix, the amastigotes transform to the so-called flagellated procyclic promastigotes (Bates & Rogers, 2004; Kamhawi, 2006; Sacks & Kamhawi, 2001; Sunter & Gull, 2017; Teixeira et al., 2013). The PM provides a temporary semi-protective barrier from the sand fly digestive molecules for the parasite during its transition between different forms; however, this is also the time when the parasite is most vulnerable to digestive enzymes which may lead to a loss of up to 50% of the parasite population (Bates & Rogers, 2004; Kamhawi, 2006). Nevertheless, the surviving promastigotes will then enter a replicative frenzy for the following 24-48 hours via binary fission (Bates & Rogers, 2004; Kamhawi, 2006; Sacks & Kamhawi, 2001; Teixeira et al., 2013). Next, the procyclic promastigotes will develop into the infective metacyclic promastigote forms through a series of cell transformations known as a process termed metacyclogenesis (Kamhawi, 2006). This is achieved first by the procyclic promastigote transforming into a Nectomonad form of parasite which has an important role of breaking through the PM to gain access to anterior abdominal midgut where it will attach itself with its flagellum to the epithelial cell microvilli to avoid excretion from the vector via defecation (Bates & Rogers, 2004; Kamhawi, 2006; Sacks & Kamhawi, 2001; Sunter & Gull, 2017; Teixeira et al., 2013). The Nectomonad will then transform into a Leptomonad/Haptomonad form of parasite and finally into its final stage metacyclic promastigote form (Bates & Rogers, 2004; Kamhawi, 2006; Sunter & Gull, 2017; Teixeira et al., 2013). It must be noted that Leptomonads and Haptomonads are not the same cell type. Leptomonad form of promastigotes derive directly from the Nectomonad form of the parasite and are a replication capable population in the later infection stages of the sand fly vector (Bates & Rogers, 2004; Kamhawi, 2006; Sunter & Gull, 2017). They also have an important role of producing promastigote secretory gel (PSG), a substance that is known to block the lumen of the anterior midgut and stomodeal valve of the insect to improve the efficiency of parasite transmission during a bloodmeal (Rogers, 2012). On the other hand, Haptomonads are a form of parasite that attach themselves to the stomodeal valve to block it with themselves and therefore assume a similar role of PSG which is to improve transmission (Bates & Rogers, 2004). It is still unclear from which form of promastigotes the Haptomonad arises (Bates & Rogers, 2004; Sunter & Gull, 2017). Additionally, it must be noted that the appearance of each form of parasite varies between species in time (Gossage et al., 2003) and there also exist differences between the

location of each form of parasites between the *Viannia* and *Leishmania* subgenus (Bates & Rogers, 2004; Kamhawi, 2006). Despite these differences, the end product of metacyclogenesis are metacyclic promastigotes (Figure 1.3). This completes the life cycle once the sand fly is ready to take the following bloodmeal and the infective parasites are introduced into another mammalian host.

Figure 1.2: Leishmania life cycle

The parasite has a complex life cycle that takes place in part in the sand fly and in part in a mammalian host (CDC, 2019 courtesy by DPDx)

Figure 1.3: Metacyclogenesis in an infected sand fly.

Once inside the vector, the parasite transforms quickly from its amastigote form to the procyclic promastigote. The procyclic promastigote then develops to the infective metacyclic promastigote via metacyclogenesis (Adapted from Sunter *et al*, 2013)
2.3 Leishmania genetics

The Leishmania genome is one of the more complex genomes that is studied in a eukaryotic organism. As any other eukaryotic organism, the chromosomes of the parasite are located in the nucleus (Figure 1.4) and are organized into 36 chromosomes of various sizes; however, this only concerns Old world Leishmania species (Britto et al., 1998; Ivens et al., 2005; Rogers et al., 2011). New world Leishmania species have their genome organized into 35 (L. braziliensis) or 34 (Leishmania mexicana complex) chromosomes, with chromosomes 20 and 34 merged together in one case and chromosomes 8 and 29 as well as 20 and 36 in the other case respectively (Britto et al., 1998; Ivens et al., 2005; Rogers et al., 2011). The parasites are also characterized by unique genetic regulatory mechanisms at both the nuclear and mitochondrial levels. Unlike higher eukaryotic organisms, Leishmania parasites transcribe their nuclear protein-coding genes via RNA polymerase II in a polycistronic manner rather than controlled transcription initiation of every gene separately through a promoter (Clayton, 2016). The large polycistronic RNA is then transspliced and polyadenylated into smaller mRNA transcripts (Clayton, 2016; Martinez-Calvillo et al., 2003). The levels of the mRNA depend on its stability and maturation (Clayton, 2016; Rogers et al., 2011). Additionally, the Leishmania genome has many tandem arrays of duplicated genes on the same or different chromosomes which can allow for increased gene expression (Ivens et al., 2005; Peacock et al., 2007). Another genetic peculiarity that Leishmania have is the organization of their mitochondrial DNA. As a matter of fact, all parasites of the Trypanosomatidae family such as Leishmania store all of their mitochondrial DNA within a specialized compartment termed the kinetoplast which represents about 30% of total cellular DNA (Figure 1.4) (Cavalcanti & de Souza, 2018). The kinetoplast DNA (kDNA) is further divided into circular molecules which are found in two variants: maxicircles and minicircles (Camacho et al., 2019; Cavalcanti & de Souza, 2018). Maxicircles are present in a few copies and encode rRNAs and proteins of the respiratory chain whereas minicircles are found in thousands of copies and they encode guide RNAs (gRNA) which are vital for editing maxicircle-derived transcripts (Camacho et al., 2019; Cavalcanti & de Souza, 2018). This editing is achieved by the gRNA adding or removing uridylated residues on maxicircle transcripts to form functional RNA transcripts (Camacho et al., 2019; Cavalcanti & de Souza, 2018). As a side note, it must be mentioned that the gene content itself between different species of Leishmania has very little variability. Species-specific genes exist; remarkably however, they are very few and most have unknown functions (Peacock et al., 2007; Rogers et al., 2011). Lastly, gene expression between the promastigote and amastigote life stages varies very little as well. The amount of differentially expressed genes ranges between 0.2% and 5% of total genes (Cohen-Freue et al., 2007; Rochette et al., 2008).

An euploidy is generally considered to have a negative effect on an organism's health and fitness. As it is well-known, animals, humans and some protists are diploid organisms meaning organisms that have 2 copies of each chromosome in their cells with the sole exception of gamete cells being haploid that are essential for sexual reproduction (Sterkers et al., 2014). Generally whole chromosome or segmental aneuploidies in such organisms lead to severe developmental defects or even death (Tang & Amon, 2013; Torres et al., 2008). Trisomy of chromosome 21 in humans (Down Syndrome) is one of many examples of how aneuploidy may be detrimental to one's fitness. However, it is a very different story for Leishmania parasites. Leishmania are considered to be "mainly diploid" organisms; however, aneuploidy has been previously reported (Rogers et al., 2011; Sterkers et al., 2011). In reality, these parasites exhibit mosaic aneuploidy, that is they contain varying numbers of chromosomes and these numbers vary from cell to cell within the same population (Sterkers et al., 2014). This chromosome copy number variation can be seen between different strains of one species or even between different species of parasite (Bussotti et al., 2018; Downing et al., 2011; Rogers et al., 2011; Sterkers et al., 2011). Moreover, this variation can also be seen between individual cells within a given population (Sterkers et al., 2011). As a consequence of mosaic aneuploidy, the parasites are able to maintain a conserved intra-strain genetic heterogeneity within a population that compromises homozygous cells (Sterkers et al., 2014). The frequent copy number variation of chromosomes and genes as described previously allows for a dynamic adaptation mechanism for the parasite based on its surrounding environment such as drug exposure (Ubeda et al., 2008). This is not only true in situations where the parasite jumps from one host to another, but this dynamic can also allow for genetic/karyotypic and tropism diversity (Bussotti et al., 2018; Rogers et al., 2011; Sterkers et al., 2014) or enhanced drug resistance (Downing et al., 2011; Ubeda et al., 2008). Finally, it should be mentioned that this genetic diversity can further be diversified due to genetic exchanges between strains, species or even parasites within the same population. As a matter of fact, there is a dozen of studies that prove this phenomenon and many studies mention the existence of hybrid strains of parasites; however, we shall discuss this more thoroughly in chapter 4.

Figure 1.4: Representation of a Leishmania promastigote and amastigote

The promastigote and amastigote forms of the parasite are different in physical shape but the interior remains the same. The representation also shows the location of the nucleus and the kinetoplast in the mitochondrion (Besteiro *et al.*, 2007)

CHAPTER 3: HOST-PATHOGEN INTERACTIONS

3.1 Parasite entry into host

As discussed in chapter 1, the immune system of any living organism exists to protect it from exogenous pathogenic organisms. Although the immune system is able to clear a vast majority of pathogens in the form of bacteria, fungi, viruses and parasites, some of these pathogens such as *Listeria monocytogenes* or *Mycobacterium tuberculosis* have evolved ways to survive this onslaught within the host or within the infected cells (Flannagan *et al.*, 2009). *Leishmania* parasites represent another group of pathogens that are able to avoid the host's immune response and prevail within it.

Interestingly, not all *Leishmania* will live to replicate within infected host cells. As a matter of fact, during an infection, there is a sub-population of dead parasitical cells that is present and these

cells are vital for the development of the infection (Seguin & Descoteaux, 2016). Consequently, it was demonstrated that the absence of dead cells results in less virulent parasite infections that are quickly cleared in otherwise susceptible mice (van Zandbergen *et al.*, 2006). The mortality of the parasites is a naturally occurring event within the vector and generates parasites that express PtdSer on their surface like apoptotic cells (Wanderley *et al.*, 2013). These cells induce an anti-inflammatory response upon their recognition by phagocytes which in turn will secrete large amounts of anti-inflammatory cytokines IL-10 and TGFß and this will help the parasites invade the host cells without raising the alarm (Wanderley *et al.*, 2013). However, this particular tactic is not restricted to *Leishmania* alone since other pathogens such as *Trypanosoma cruzi* or *Toxoplasma gondii* are able to use the same strategy to silently infect host cells (Damatta *et al.*, 2007; Seabra *et al.*, 2004).

On the other hand, live parasites begin their path in the invasion of the mammalian host during a sand fly's blood meal. Once inside, the primary objective of the parasites is to go deeper into the tissues and, at the same time, get to their target cells without raising an immune alarm. The parasites achieve this by employing a multitude of molecules, known as virulence factors, to ensure their survival within the host (Atayde et al., 2016). One of such factors is the zincmetalloprotease GP63, otherwise known as leishmaniolysine, that is one of the most abundant surface proteins and highly conserved genes of Leishmania parasites (Atayde et al., 2016). GP63 plays a very important role before the internalization of the parasite into phagocytic cells as well as in the early stages of survival in those cells. It has been shown that L. major deficient in GP63 display lower virulence both in *in vitro* and *in vivo* settings or *L. amazonensis*, whose GP63 levels were down-regulated, were more susceptible to complement-mediated killing as well as being less infective in mice (Joshi et al., 2002; Seguin & Descoteaux, 2016; Thiakaki et al., 2006). First of all, GP63 has been shown capable of degrading components of the extracellular matrix such as collagen type IV and fibronectin, which facilitates the migration of the parasite to the dermis (McGwire et al., 2003; Seguin & Descoteaux, 2016). It also has a role in disrupting the membrane attack complex (MAC) formation by binding and directly cleaving the C3b component into iC3b, an inactive form of C3 (Brittingham et al., 1995). The complement system acts in a cascade where the first protein will recruit and activate the second one and continue the chain of activations. C3b has a very important role of both opsonizing the target pathogen and binding with the CP/LP C3 convertase complex which will shift its activity to a C5 convertase (Ricklin et al., 2016). The C5 convertase will then activate the C5 component which will then recruit the C6, C7, C8 and multiple copies of the C9 and form the MAC (Ricklin et al., 2016). Since the parasite inactivates the C3 component, it will thus deny the MAC formation and ultimately avoid complement-mediated lysis.

21

In addition to shutting off the complement system, the parasites also use iC3b to bind the complement receptors CR1 and CR3 (Mac-1) which enhances the parasite's phagocytosis by macrophages (Brittingham & Mosser, 1996; Mosser & Rosenthal, 1993; Podinovskaia & Descoteaux, 2015). Internalization through these receptors is very beneficial for the parasite since it inhibits inflammation (Podinovskaia & Descoteaux, 2015).

Alternatively to secreting virulence factors into the extracellular space, Leishmania is also able to secrete exosome-like vesicles. The group of Silverstein et al first reported this phenomenon (Dong et al., 2019; Silverman et al., 2010a); however, the first evidence of this was obtained through the study of L. mexicana exoproteome which revealed that these exosomes are secreted at both 26°C (mimicking the internal body temperature of the sand fly vector) and 37°C (mimicking the internal body temperature of the mammalian host) (Hassani et al., 2011). Additionally, it was found that such a temperature shift, that mimics inoculation into the host, augmented rapidly the number of secreted vesicles released from the parasites (Hassani et al., 2011). These microvesicles were found to be enriched with the surface protease GP63 as well as other virulence factors that were found to have important immunomodulatory functions (Atayde et al., 2015; Hassani et al., 2014; Silverman et al., 2010a). For instance, it was found that the exosomes of GP63 depleted L. major parasites were less capable of immunomodulatory properties than their wild type counterparts through the modulation of protein tyrosine phosphatases and transcription factors (Hassani et al., 2014). Moreover, it was found that the lack of GP63 on these microvesicles had led to a drastic change in protein composition as well (Hassani et al., 2014). The microvesicles also have a role in tampering with the signaling pathways of the immune cells (Silverman et al., 2010a; Silverman et al., 2010b). For example, L. donovani microvesicles were capable of modulating the human IFN-y stimulated monocytes cytokine secretion by inhibiting TNF- α production and promoting IL-10 production (Silverman et al., 2010b). Although these studies clearly show that parasite derived exosomes have a role in host immune system modulation, most of these studies used vesicles derived from parasite culture supernatants or various biological fluids. Up to date, there seems to be only one study demonstrating that Leishmania exosomes are produced within the insect vector midgut and are secreted into the mammalian host along with the parasites during a bloodmeal (Atayde et al., 2015). Intriguingly, Atayde et al also demonstrated that co-inoculation of both exosomes and parasites augmented skin lesion as a result of augmented pro-inflammatory cytokine synthesis one of which was identified as IL-17 α (Atayde *et al.*, 2015). IL-17 α , in turn, has been shown to be a key player in neutrophil recruitment during the development of Leishmaniainduced lesions (Boaventura et al., 2010; Lopez Kostka et al., 2009) and it was demonstrated that exosomes also play a role in the recruitment of neutrophils and other immune cells (Hassani *et al.*, 2014). Finally, exosomes were also found to be enriched with various small RNAs; however, their role in infections is yet to be determined (Lambertz *et al.*, 2015). In general, the release of extracellular vesicles by the parasite has an important role in the establishment of infection.

Once inside the mammalian host the parasite has to deal not only with passive threats in the form of complement and others, but also with various immune cells that rush to the injured tissues to repair the damage and remove any threats that have entered from the surface. The first cells to arrive to the site of infection are neutrophils followed by macrophages, monocytes and dendritic cells (Seguin & Descoteaux, 2016). Cell migration is also enhanced to the site of infection up to three-fold by the saliva of the sand fly (Rogers & Titus, 2003; Seguin & Descoteaux, 2016). The type of cells and their proportion at the site of infection may vary based on which species of Leishmania are involved in the infection. In one study for instance, L. chagasi infection causes many cell populations to migrate to the inflammatory exudate; however, the majority of the cells stay in the lining tissue around the wound (Vasconcelos et al., 2014). In addition, the parasites cause an influx of more neutrophils rather than other professional phagocytes which helps minimize the initial inflammatory response (Vasconcelos et al., 2014). Usually, during an inflammatory challenge, neutrophils will live for 6-8 hours after being primed and then they are picked up by macrophages and dendritic cells (Summers et al., 2010). Leishmania learned to exploit this pathway and use the neutrophils as a natural "Trojan Horse". As a matter of fact, it was shown that neutrophils which successfully capture parasites will transmit them to macrophages/dendritic cells upon apoptotic neutrophil uptake (Laskay et al., 2003; Peters et al., 2008; Ribeiro-Gomes et al., 2012; van Zandbergen et al., 2004). The parasites were even found to enhance the infected neutrophils' expression of apoptotic markers than their non-infected counter parts (Ribeiro-Gomes et al., 2012). Moreover, these cells do not provide an adequate environment for replication and therefore, the parasites are capable of delaying the neutrophils apoptotic death program up to 42 hours to maximize their chances for uptake by macrophages and other phagocytes (Aga et al., 2002; Ribeiro-Gomes et al., 2012; van Zandbergen et al., 2004). Hence, this pathway provides another major way for the parasite to infect the host without raising an immunological response. Interestingly, it was demonstrated in one study that depletion of neutrophils in susceptible BALB/c mice drove resistance to L. major infection (Tacchini-Cottier et al., 2000). Neutrophils also have the ability to release DNA and a subset of cytosolic and granular proteins which form a web-like structure collectively known as neutrophil extracellular traps (NETs) (Papayannopoulos, 2018). NET release occurs though a process known as NETosis

which can be rapidly induced by contact with a pathogenic organism, including *Leishmania* (Gabriel *et al.*, 2010; Guimaraes-Costa *et al.*, 2009; Papayannopoulos, 2018). Their primary role is to kill and capture various pathogens and prevent their dissemination in the organism; however, in the case of *Leishmania*, the outcome varies according to the parasite species involved in the infection (Seguin & Descoteaux, 2016). Thus, some species, such as *L. amazonensis*, will be killed by NETs (Guimaraes-Costa *et al.*, 2009) and others, such as *L. donovani* and *L. infantum*, are able to evade these traps via expression of LPG on their surface or via 3'-Nucleotidase/Nuclease enzyme activity respectively (Gabriel *et al.*, 2010; Guimaraes-Costa *et al.*, 2014).

Another cell type that the parasites encounter on their way in are NK cells. NK cells are immune players that have active roles in both the innate and adaptive immunities. They produce a lot of pro-inflammatory cytokines, such as IFN- γ , upon their activation by cytokines such as IL-2 or IL-12, thus favoring a Th1 response (Scharton & Scott, 1993; Tosi, 2005; Vivier *et al.*, 2008). Their activation also does not require priming by DC cells. NK cells destroy pathogens by releasing cytotoxic granules containing granzymes and perforins which lyse their targets (Tosi, 2005). Although during *Leishmania* infection the NK cells are activated normally and they function as usual, the parasites have developed a way to counteract them. It was found that GP63 was able to inactivate NK cells directly by preventing their proliferation and the expression of their surface receptors (Lieke *et al.*, 2008). This ultimately helps to thwart a restrictive Th1 response to a more permissive Th2 response for the parasite.

Once the parasite had past all of these dangers, it will finally encounter that for what it has come for: the macrophage cell. The parasites employ many strategies to enter their target cell. Higher up, we have demonstrated that parasites may enter the macrophage via complement receptors CR1 and CR3 or via phagocytosed infected neutrophils; however, these are not the only ways that the parasite can gain access to the cell. In fact, different species of *Leishmania* may be recognized by different receptors on the macrophage such as mannose receptors, FcγRs and fibronectin receptors (Ueno & Wilson, 2012). In addition to receptor mediated uptake, the parasites may also be internalized via the caveolae pathway as well (Podinovskaia & Descoteaux, 2015). Regardless of how the parasite will be internalized by the macrophage, the rest of the way will follow the standard phagocytic pathway. From this point on, the parasites will start their metamorphosis to amastigotes and convert the phagosomal vacuole into their home.

3.2 Vacuole formation and intracellular survival

Even if Leishmania manages to survive the initial dangers of the host immune system, once inside the macrophage, the parasite must still fight for its survival by modulating the biogenesis of the phagolysosome and converting the phagosome into a parasitophorous vacuole (PV) in which it will thrive and replicate in. It must absolutely be noted that most species replicate in tight individual vacuoles; however, species of the Leishmania mexicana complex (L. mexicana, L. amazonensis, L. venezuelensis, L. pifanoi) replicate in spacious communal vacuoles (Antoine et al., 1998; Okuda et al., 2016; Real & Mortara, 2012). Single and communal vacuole modifications differ from one another by how they are formed; however, up to date, single vacuoles are best understood. These modifications have been shown to depend on Leishmania virulence factors as well. In the case of L. donovani and L. major, this modulation of the phagosome to PV is caused by the parasite inserting its LPG into the phagosomal membrane which disrupts phagosomal lipid microdomains (Seguin & Descoteaux, 2016). The surface protein LPG was shown to arrest phagosome maturation by inhibiting its fusion with late endosomes via impairment of the recruitment of Rab7, retention of the actin polymerization activity along with the accumulation of periphagosomal F-actin and delayed recruitment of LAMP-1 (Dermine et al., 2000; Desjardins & Descoteaux, 1997; Holm et al., 2001; Lodge & Descoteaux, 2005; Moradin & Descoteaux, 2012; Scianimanico et al., 1999; Spath et al., 2003). Aside for the sabotage mentioned higher up, this disruption also causes failure in NADPH oxidase assembly on the phagosome membrane which reduces ROS production in L. donovani infected cells (Lodge et al., 2006). Additionally, it was found that L. donovani LPG prevents the recruitment of Synaptotagmin V to the phagosomal membrane which prevents in turn the recruitment of vesicular proton-ATPases and phagosome acidification (Vinet et al., 2009). LPG is a key molecule that ensures the survival of parasites such as L. donovani and L. major within the host cells since LPG-deficient parasites simply fail to establish a proper infection and ultimately perish. However, this is not true for all parasite strains. In the case of *L. amazonensis* and *L. mexicana* LPG does not play a role in intracellular survival or phagosome maturation. Indeed, one study revealed that L. amazonensis containing phagosomes fuse without much problem with late endosomes and lysosomes regardless of whether the parasites were LPG deficient or not (Courret et al., 2002). The same conclusions were drawn earlier in time for *L. mexicana* as well; that is LPG deficiency does not play a role on their virulence or intracellular survival (IIg, 2000). In fact, it is hypothesized that, unlike other Leishmania species which arrest phagosome maturation to promote their survival within the host cell, parasites of the L. mexicana complex replicate in large PVs, because it may provide protection against microbicidal properties of the phagosome (Wilson et al., 2008). The size of

communal vacuoles is due not only to their fusion with various endosomes and lysosomes but also due to fusion between different vacuoles with the same parasite strains or different ones (Real & Mortara, 2012; Real *et al.*, 2010; Real *et al.*, 2008) and potentially with phagosomes containing inert particles, colloids, macromolecules and other microorganisms (Alexander & Vickerman, 1975; Berman *et al.*, 1981; Collins *et al.*, 1997; Rabinovitch *et al.*, 1985; Shepherd *et al.*, 1983; Veras *et al.*, 1992; Veras *et al.*, 1996). Although LPG has a critical role in ensuring the survival of the promastigote at the earlier stages of infection, its role becomes secondary during the amastigote stage. As a matter of fact, this molecule is highly down-regulated at the amastigote stage (Bahr *et al.*, 1993). As a result, there is less perturbation in the phagosomes' membrane which leads to the acidification of the compartment and fusion with lysosomes; however, it is not a deadly condition for the amastigote since its optimal pH is between 4.0 and 5.5 (Mukkada *et al.*, 1985). Aside LPG, as seen higher up, there are other virulence factors that may contribute to parasite survival in host cells. As an example, GP63 was found to disable antimicrobial peptides, such as cathelicidins and defensins, that may still present a serious threat for the parasites within the phagosomal compartment (Kulkarni *et al.*, 2006).

3.3 Host immune response modulation

Once the parasite has successfully navigated through the treacherous innate immune system components and has established itself safely within the infected macrophage, it will also have to hamper with the inflammatory signaling pathways and the immune system in general to prevent the host from establishing an effective defense to eliminate the pathogen. The parasite employs an array of virulent proteins such as cysteine proteases (CP), kinetoplastid membrane protein-11 (KMP-11), serine peptidase inhibitors and others to achieve this (Figure 1.5) (Atayde et al., 2016; Podinovskaia & Descoteaux, 2015; Seguin & Descoteaux, 2016). One of the more important proteins in immune system modulation is the metalloprotease GP63 that we have described since the start of this chapter. In fact, this metalloprotease has been shown to activate protein tyrosine phosphatases (PTP) such as PTP1B and SHP-1 which will act in an inhibitory fashion on JAK2/STAT1, MAPK and IRAK-1 pathways (Abu-Dayyeh et al., 2008; Blanchette et al., 1999; Forget et al., 2006; Gomez et al., 2009; Martiny et al., 1999). For example, GP63 activated SHP-1 can dephosphorylate JAK2 which will prevent further signaling through this pathway (Gomez et al., 2009). Of note, the parasites can further block the JAK2/STAT1 pathway by proteasomemediated degradation of the STAT-1 molecules (Forget et al., 2005). Furthermore, GP63 is capable of directly inactivating transcription factors AP-1 and NF-KB (Contreras et al., 2010; Isnard et al., 2012). Finally, GP63 was shown to cleave mTOR, a kinase responsible in regulating

the translational repressor 4E-BP1 (Jaramillo *et al.*, 2011). As a result, mTOR cleavage leads to 4E-BP1 activation which will inhibit mTOR complex 1 assembly and thus promote *Leishmania* proliferation (Jaramillo *et al.*, 2011). All of these actions will lead to the inhibition of the production of inflammatory molecules such as IL-12, TNF- α , IFN- γ and nitric oxides (NO) which were identified as host factors that are important for effective control of the infection (Podinovskaia & Descoteaux, 2015; Seguin & Descoteaux, 2016). Another pathogenicity factor is CPB which was found to be important for *L. mexicana* since parasites deficient of this protein showed reduced pathogenicity (Casgrain *et al.*, 2016; Denise *et al.*, 2003). CPB was also shown to act on host macrophage PTP as well as the AP-1, NF- κ B and STAT1 transcription factors which resulted in similar effects seen higher up, such as reduced IL-12 expression (Abu-Dayyeh *et al.*, 2010). In short, *Leishmania* utilizes various pathogenic factors to modify host cell signaling pathways in order to further prevent any inflammatory activation and successfully carry out their life cycle.

Tampering with the host cells' signaling is not the only aspect the parasites should take care of to ensure safety within the host cell. Modulation of the host's adaptive immune response is yet another important step in preventing its elimination. Indeed, it was revealed that GP63 of L. major and L. donovani was capable of cleaving the co-receptor CD4 on T-cells which potentially reduces their response to APCs and thus prevent their activation (Hey et al., 1994). Moreover, both of these parasites were found to inhibit macrophage and DC cross-presentation in a GP63dependant manner (Matheoud et al., 2013). This is achieved via direct cleavage of the SNARE Vamp-8 that results in the prevention of the NADPH-oxidase NOX2 complex recruitment on phagosomes which leads to decreased ROS production, preventing acidification and inhibiting MHC class I antigen presentation, known as cross-presentation, thus reducing CD8+ T-cell activation (Dingjan et al., 2017; Matheoud et al., 2013). Additionally, the parasites are also capable of modulating MHC class II-dependent antigen presentation as well; however, different parasite species deal with this mechanism in different manners (De Souza Leao et al., 1995; Meier et al., 2003; Podinovskaia & Descoteaux, 2015; Roy et al., 2014). Aside for acting directly on MHC class molecules, Leishmania can disrupt the adaptive immune system activation by other means. For instance, it was shown that the parasite increases cellular membrane fluidity which prevents proper antigen presentation between APCs and T-cells (Chakraborty et al., 2005). The parasites may also modulate other co-stimulatory molecules required for signaling between the APCs and T-cells. One such molecule is the co-stimulatory molecule B7 which is down-regulated during Leishmania infections and thus prevents proper T-cell activation (Kaye et al., 1994; Saha et al., 1995). Other co-stimulatory that are down-regulated by the parasite are CD40 and CD86

which were found to prevent the proper maturation of DC cells and thus promote a silent infection (Neves *et al.*, 2010). Moreover, CD40 down-regulation by *L. major* was found to anergize T-cells and promote regulatory T-cell development in the context of low expression of CD40 which as a whole plays a role in successful infection by the parasite (Campbell *et al.*, 1996; Martin *et al.*, 2010). Finally, it was demonstrated that during visceral leishmaniases CD8+ effector T-cells were inefficient in producing IFN γ and expressed four-fold higher levels of CTLA-4 and PD-1 ligands featuring markers of exhausted and anergic cells (Gautam *et al.*, 2014). A similar occurrence was also described for CD4+ T cells as well (Esch *et al.*, 2013).

Table 2. <i>Leishmania</i> intracellular survival factors and their role in <i>Leishmania</i> –macrophage interactions.				
Name	Description	Role in host–parasite interactions		
LPG	Lipophosphoglycan	Activates MAPK, disrupts lipid rafts, \uparrow TNF, \uparrow IL-1 β , \uparrow IL-6, \downarrow TLR9, \downarrow recruitment of Syntaptotagmin V, NADPH oxidase and V-ATPase to PV, scavenges ROS, \uparrow HO-1		
GP63	Zinc-dependent metalloprotease	Activates PTPs, p130Cas, Cortactin, Caspase 3 \downarrow miRNA-122, \downarrow TNF, \downarrow IL-12, \downarrow NO, \downarrow mTOR, \downarrow AP-1		
ISP	Inhibitor of serine peptidase	\downarrow Neutrophil elastase, \downarrow trypsin, \downarrow chymotrypsin, \downarrow TLR4 activation, \downarrow Protein kinase R activation		
Prohibitin	Prohibitin ortholog	Interacts with host HSP70, \uparrow parasite uptake		
PKC-like	Protein Kinase C ortholog	↑ Parasite phagocytosis		
ISCL	Inositol phosphosphingolipid phospholipase C-like	\uparrow Survival and replication		
Aldolase	Fructose-bisphosphate aldolase	Activates SHP-1, ↓ acidification		
MsrA	Methionine sulfoxide reductase A	↑ Resistance to ROS/RNI		
ALO	Arabino-1,4-lactone oxidase/vitamin C biosynthesis	\uparrow Resistance to ROS/RNI, \downarrow IL-12, \downarrow TNF		
TXNPx	Tryparedoxin peroxidase	Detoxifies ROS/RNI, ↓ NRAMP-1, Fe redistribution		
Thioredoxin	ROS scavenging enzyme	Stabilizes PTPs, \downarrow proinflammatory pathways		
СРВ	Cysteine protease	Activates PTPs, \downarrow activation, \downarrow NO		
MIF	Macrophage migration inhibitory factor ortholog	Activates MAPK, ↓ apoptosis		

Figure 1.5: Functions of Leishmania virulence factors

The parasite employs various virulence factors that help seize the host cell and modulate the immune activation response (Podinovskaia & Descoteaux, 2015)

CHAPTER 4: LEISHMANIA GENETIC EXCHANGES

4.1 Occurrence of natural hybrids in nature.

As stipulated before, *Leishmania*'s main mode of reproduction is asexual. *Leishmania* was considered to be a strictly clonal organism incapable of any genetic exchange in the past. In fact, many protozoan parasites, such as trypanosomatids which include *Leishmania* and *Trypanosoma* parasites, were considered strictly clonal based on strong linkage disequilibrium observations and

a few more factors (Schmid-Hempel *et al.*, 2011; Tibayrenc & Ayala, 2013), despite evidence of hybrid parasites found in the wild. This is known as the clonal theory and it also dictates that all these parasitic pathogens undergo rare genetic exchange events that are not frequent to break the pattern of preponderant clonal evolution (Tibayrenc & Ayala, 2013). Moreover, the diversity of *Leishmania* species was considered to be due to gradual accumulation of divergent mutations rather than by genetic recombination (Rougeron *et al.*, 2017; Schmid-Hempel *et al.*, 2011; Tibayrenc & Ayala, 2013). However, there is also another opinion suggesting that genetic exchanges are not as rare and that *Leishmania* actually uses a mixed mating strategy where clonality is used in an unchallenged stable environment for quick dissemination and genetic fitness (Rougeron *et al.*, 2017). In any case, regardless of the different opinions, the fact that genetic exchanges occur in *Leishmania* is now widely accepted. However, a considerable amount of debate is still present over how frequent such processes take place and what are their impact on the population structure (Rougeron *et al.*, 2017; Tibayrenc & Ayala, 2013).

As proof that genetic exchanges actually occur among the parasites, natural occurrence of hybrid parasite species in the wild has been reported for a very long time. As a matter of fact, there are dozens of papers that describe *Leishmania* hybrid parasites that were discovered in the new world, although the majority are described as *L. braziliensis/L. peruviana* (Banuls *et al.*, 1997; Banuls *et al.*, 1999; Belli *et al.*, 1994; Bonfante-Garrido *et al.*, 1992; Cortes *et al.*, 2012; Cupolillo *et al.*, 1997; Delgado *et al.*, 1997; Dujardin *et al.*, 1995; Jennings *et al.*, 2014; Kato *et al.*, 2016; Kato *et al.*, 2019; Nolder *et al.*, 2007; Torrico *et al.*, 1999). In addition to New world species, hybrid parasites were reported for Old world species (Evans *et al.*, 1987; Kelly *et al.*, 1991; Odiwuor *et al.*, 2011) and between divergent species (Cortes *et al.*, 2019; Ravel *et al.*, 2006; Seblova *et al.*, 2015; Volf *et al.*, 2007). Lastly, it is important to note that natural hybridization at the intraspecific level of *L. infantum, L. donovani*, and *L. tropica* has been reported via whole genome sequencing studies (Chargui *et al.*, 2009; Cotton *et al.*, 2020; lantorno *et al.*, 2017; Rogers *et al.*, 2014) and microsatellite identification as well (Gelanew *et al.*, 2014; Rougeron *et al.*, 2009). These studies clearly show that *Leishmania* are not as clonal as previously believed.

4.2 Leishmania genetic exchanges in different experimental conditions

Aside the studies that demonstrate the existence of hybrids in the wild, there are also studies which have revealed the ability of the parasites to exchange genetic material within an infected sand fly host. The first such study was conducted by Akopyants *et al* in 2009, where they showed

that two L. major strains harboring in their genome two different selectable drug-resistance markers co-infected in the same sand fly gave rise to a population of parasites that harbored both drug-resistance genes (Akopyants et al., 2009). Next, it was shown that L. major strains from 4 distinct geographical regions were capable of exchanging DNA in an intraspecific manner (Inbar et al., 2013). Moreover, a few other studies have shown that by co-infecting sandflies with parasite strains harboring two different drug selectable markers and/or two different fluorescent markers gave rise to hybrids between L. donovani strains, L. infantum strains and L. tropica (Calvo-Alvarez et al., 2014; Inbar et al., 2019; Sadlova et al., 2011). Finally, there is one study that demonstrated that hybrid formation from the cross of L. infantum and L. major by the presence of two selectable drug-resistance markers is possible within an infected vector (Romano et al., 2014) and, to date, this is the only interspecies cross that has been shown to occur in an experimental setting and isolated in the wild (Ravel et al., 2006; Romano et al., 2014). Interestingly, the double drugresistant parasites were all found to be full genomic hybrids that inherited at least one chromosome from each parent; however, the progeny inherited the maxicircle DNA only from one parent (Akopyants et al., 2009; Calvo-Alvarez et al., 2014; Inbar et al., 2013; Inbar et al., 2019; Romano et al., 2014). Although there is evidence that the parasites are capable of genetic exchange, not all crosses seem to be productive. In fact, one group of researchers reported that they did not observe any hybrids from the cross of *L. turanica* and *L. major* which may imply that not all species are capable of such exchanges (Chajbullinova et al., 2012). There may also be species-specific difference among Leishmania in terms of their genetic exchange capabilities where some may be more efficient than others (Chajbullinova et al., 2012; Inbar et al., 2019). Interestingly, it was revealed recently that full genomic hybrids between two L. tropica strains can also be formed in axenic cultures; however, the frequency of their formation was much less when compared to the frequency in the vector (Louradour et al., 2020). However, this is only true for the parasites of L. tropica since previous attempts with L. major were not found to give rise to hybrid progeny in similar conditions (Akopyants et al., 2009; Inbar et al., 2013; Louradour et al., 2020) and other crosses have not yet been tested.

As demonstrated above, there are studies which have shown that genetic exchange between *Leishmania* cells can occur within the sand fly vector. Therefore, it is widely believed that hybrid species arise only in the sand fly vector; however, there are no studies at the current time that demonstrate or deny the possibility of genetic exchanges within a mammalian host or in an *in vitro* cell culture. To date, only Akopyants and colleagues have attempted to test this hypothesis with *L. major* parasites and they were unsuccessful in isolating any hybrids from infected mice (Akopyants *et al.*, 2009). Hence, it is important to assess this possibility in the future.

4.3 Mechanism of genetic exchange in *Leishmania*

Over the past decades, genetic exchanges were studied among trypanosomatids and other protozoan parasites. They were all found to be capable of exchanging genetic material amongst each other; however, the mechanism of how this is achieved is not fully understood for all of them. It was found for example that *T. brucei* parasites were capable of exchanging genetic information within infected Tse-Tse flies (Gibson et al., 2008; Peacock et al., 2014). These parasites are capable of producing haploid gametes; however, this takes place only in the salivary glands of the fly (Gibson et al., 2008; Peacock et al., 2014). Additionally, T. cruzi was also found to be capable of such genetic manipulation; however, it is still uncertain by which mechanism this is achieved and whether it is done within the vector or the mammalian host (Berry et al., 2019; Gaunt et al., 2003; Schwabl et al., 2019). Recent evidence seems to suggest that these parasites reproduce via a mechanism resembling classic meiosis (Schwabl et al., 2019). Lastly, an interesting observation was recorded for the *Plasmodium* parasite as well. It is known that this species of parasite has a sexual life cycle within the mosquito vector and an asexual one in the mammalian host; however, Regev-Rudzki and colleagues showed that P. falciparum was capable of transmitting genes between one another in infected host cells. In fact, P. falciparum was capable of doing this by delivering drug-resistance genes via exosome-like vesicles derived from P. falciparum-infected red blood cells between infected cells (Regev-Rudzki et al., 2013). As we can see, protozoan parasites employ various mechanisms for their reproductive means; however, what is known about *Leishmania*'s mechanism for genetic exchange?

Although hybrid *Leishmania* species were isolated from the wild and demonstrated to occur experimentally, not much is known about the mechanism that governs DNA exchanges in the parasites. This is due to the fact that such genetic events are rare and are very difficult to observe. Moreover, there were no gamete stages or cell fusions ever described or observed directly in sand flies. In fact, it was proposed that genetic exchanges in *Leishmania* could be explained via a parasexual process as described for some Fungi such as *Candida albicans* (Forche *et al.*, 2008; Sterkers *et al.*, 2014). This process involves the fusion of two parental cells followed by the generation of a transient polyploid cell which results in chromosome shuffling and random chromosome loss. Parasexuality generates different types of progeny and it best describes the process by which the parasites replicate, especially if we take into consideration their mosaic aneuploidy (Sterkers *et al.*, 2014). This process was considered to be the main mode by which *Leishmania* exchange genetic material, but this consideration was recently proven wrong. Currently, it is believed that *Leishmania* exchanges its genetic content via a meiosis-like

mechanism (Inbar et al., 2019). This is supported by whole genome sequencing of hybrid parasites within L. major, L. infantum, L. tropica and between L. major/L. infantum which revealed that parental chromosome inheritance patterns were found in 97-99% of the time as would be expected under meiosis (Inbar et al., 2019). Since no gametes were ever observed to be present in Leishmania, it was proposed that the parental cells must first fuse together in order to give rise to hybrid strains (Inbar et al., 2019). Although most hybrids were reported as diploid (2n), there were some hybrids that have been reported as triploid (3n) or even quadruploid (4n) (Akopyants et al., 2009; Calvo-Alvarez et al., 2014; Inbar et al., 2013; Inbar et al., 2019; Romano et al., 2014; Sadlova et al., 2011). In the case of the 3n progeny, it was suggested that one 2n parental cell failed to undergo meiosis and fused with a 1n cell form the other parent whereas the 4n progeny resulted in the fusion of two 2n parents (Inbar et al., 2019; Louradour et al., 2020). Although Inbar et al or any other group of scientists did not observe fusion between the parasite cells directly, such an event was recorded on film in 1990 in vitro between an L. tropica and L. infantum (Lanotte & Rioux, 1990). The fusion was mediated via the posterior extremities of each parasite and such an event was also observed in Giemsa-stained smears of L. major parasites as well (Sousa et al., 1997). Moreover, nuclear fusion was also observed between the intracellular amastigote form of the parasite via quantitative microspectrophotometry suggesting that genetic exchanges may potentially occur within a mammalian host as well (Kreutzer et al., 1994). However, such possibility has not yet been widely explored. Finally, meiotic gene orthologues were identified within the Leishmania genome which were found to be highly expressed in the metacyclic form of the parasite (Inbar et al., 2013); however, this does not necessarily imply that they have a function in that process since in the past such orthologues were found in other asexual organisms and they had a different function (Weedall & Hall, 2015). Nevertheless, such genes may provide a clue indicating that it may be possible for the parasite to exchange genetic material especially with all the evidence listed above.

INTRODUCTION

Leishmaniases is a spectrum of human diseases ranging from a confined cutaneous lesion to progressive deadly visceral infections if left untreated. It is caused by the protozoan parasite Leishmania, a vacuolar pathogen that replicates within the phagolysosomal compartment of phagocytes. Leishmania is endemic in 98 countries, causing 1 million infections and resulting in 20 000-30 000 deaths yearly. Despite years of scientific advances, no effective and safe vaccines are yet available. Furthermore, current treatment is difficult to administer, expensive, and becoming ineffective due to the spread of drug resistance. There is thus a pressing need for the development of novel approaches to prevent and treat leishmaniases. The infection begins when a sand fly regurgitates the promastigote form of the parasite into the mammalian host during a blood meal. From there, they differentiate into amastigotes for replication within infected phagocytic cells. The diverse clinical outcomes associated with Leishmania infections are generally clearly associated to specific parasite species and strains. However, the contribution of parasite genotype to disease outcome remains largely unknown. Until recently, it was believed that the diversity of Leishmania species, arose by gradual accumulation of divergent mutations rather than by genetic recombination. However, the occurrence of hybrid strains in the wild suggests that genetic exchanges may occur naturally. Moreover, this was experimentally demonstrated by using two clones of L. major bearing distinct drug-resistance markers by Akopyants et al, who reported that promastigotes are capable of exchanging genetic material during their development within the sand fly vector. There were also intraspecies hybrids between L. major, L. tropica, L. donovani, L. infantum and interspecies hybrids between L. major/L. infantum isolated from crosses within infected sand flies. Whether Leishmania can undergo genetic exchanges inside the mammalian host is unknown.

Whereas most *Leishmania* species live in tight individual vacuoles, species of the *Leishmania mexicana* complex (*L. mexicana* and *L. amazonensis*) live in spacious communal vacuoles. One of the benefits of occupying such vacuole is the potential for genetic exchange. The <u>hypothesis</u> underlying this project is that **communal parasitophorous vacuoles harboring parasites of the** *L. mexicana* **complex provide an exceptionally advantageous environment for genetic exchanges.** To address this hypothesis, we propose the following objectives:

- 1- To determine whether genetic crosses occur in axenic cultures
- 2- To determine whether genetic crosses occur in in vitro infected macrophages
- 3- To determine whether genetic crosses occur in vivo in infected mice

Globally, this research project will allow us to determine whether genetic exchanges occur in spacious communal vacuoles infected with parasites of *L. mexicana* complex. This knowledge may have important implications for the spread of drug-resistance, diagnosis and treatment of *Leishmania* infections since hybrids may display complex genetic features and phenotypes.

SECTION 2: ARTICLE

Study on the occurrence of genetic exchange among parasites of the Leishmania mexicana complex

Étude sur l'occurrence d'échanges génétiques entre parasites du complexe *Leishmania mexicana*

Roman Telittchenko¹ and Albert Descoteaux^{1*}

¹ Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada

Author contributions: Design of experiments: RT and AD. Performed the experiments: RT. Data analysis: RT and AD. Article writing: RT and AD

Article was submitted to Frontiers in Cellular and Infection Microbiology on September 16th 2020. Article is currently accepted and getting ready for publication, **DOI:** 10.3389/fcimb.2020.607253 (December 2nd 2020)

Running title: Genetic exchange in Leishmania amazonensis

*Corresponding Author:

E-mail: <u>albert.descoteaux@iaf.inrs.ca</u> Tel. (+1) 450-687-5010 ext. 4465 Fax (+1) 450-686-5501

Proof of Article Acceptance In Frontiers in Cellular and Infection Microbiology

Mail - Roman.Telittchenko@inrs.ca

Page 1 of 1

Frontiers: Congratulations! Your manuscript is accepted - 607253

Frontiers Cellular and Infection Microbiology Editorial Office <cellandinfect.editorial.office@frontiersin.org>

Tue 11/10/2020 6:44 AM

To:Telittchenko, Roman <Roman.Telittchenko@inrs.ca>;

Attention : ce courriel provient d'un expéditeur externe.

Dear Dr Telittchenko,

Frontiers Cellular and Infection Microbiology Editorial Office has sent you a message. Please click 'Reply' to send a direct response

Congratulation on the acceptance of your manuscript!

Upon endorsement, the Reviewer 2 spotted the following typos : Line 671 and 690. Writing error "repectively".

Could you please correct this before to send your files to our Production team?

Thank you very much in advance and congratulations again

The Editorial Office

I am pleased to inform you that your manuscript Study on the occurrence of genetic exchange among parasites of the Leishmania mexicana complex has been approved for production and accepted for publication in Frontiers in Cellular and Infection Microbiology, section Parasite and Host. Your manuscript is currently being prepared for publication. The provisional version of the abstract or introductory section is currently available online. Please do not communicate any changes at this stage. You will be contacted as soon as the author proofs are ready for your revisions.

Manuscript title: Study on the occurrence of genetic exchange among parasites of the Leishmania mexicana complex Journal: Frontiers in Cellular and Infection Microbiology, section Parasite and Host Article type: Original Research Authors: Roman Telittchenko, Albert Descoteaux Manuscript ID: 607253 Edited by: Juan David Ramírez

Due to lockdown orders in various countries you may experience a delay in the production and publication of your article but please be assured that we are working to provide them as soon as possible and ask for your patience.

You can click here to access the final review reports and manuscript: http://www.frontiersin.org/Review/EnterReviewForum.aspx?activationno=c1c171dc-410b-46fe-87bc-01868f0b1591

As an author, it is important that you maintain your Frontiers research network (Loop) profile up to date, as your publication will be linked to your profile allowing you and your publications to be more discoverable. You can update profile pages (profile pictures, short bio, list of publications) using this link: http://loop.frontiersin.org/people/

Tell us what you think!

At Frontiers we are constantly trying to improve our Collaborative Review process and would like to get your feedback on how we did. Please complete our short 3-minute survey and we will donate \$1 to Enfants du Monde, a Swiss non-profit organization: https://frontiers.qualtrics.com/jfe/form/SV_8q8kYmXRvxBH5at?survey=author&aid=607253&uid=1098090

Thank you very much for taking the time to share your thoughts.

Best regards,

Your Frontiers in Cellular and Infection Microbiology team

Frontiers | Editorial Office - Collaborative Peer Review Team www.frontiersin.org Avenue du Tribunal Fédéral 34, 1005 Lausanne, Switzerland Office T 41 21 510 17 40

For technical issues, please contact our IT Helpdesk (support@frontiersin.org) or visit our Frontiers Help Center (zendesk.frontiersin.org/hc/en-us)

ARTICLE ABSTRACT

In *Leishmania*, genetic exchange has been experimentally demonstrated to occur in the sand fly vector and in promastigote axenic cultures and it involves a meiotic-like process. No evidence of genetic exchange in mammalian hosts have been reported so far, possibly due to the fact that the *Leishmania* species used in previous studies replicate within individual parasitophorous vacuoles. In the present work, we explored the possibility that residing in communal vacuoles may provide conditions favorable for genetic exchange for *L. mexicana* and *L. amazonensis*. Using promastigote lines of both species harboring integrated or episomal drug-resistance markers, we assessed whether genetic exchange can occur in axenic cultures, in infected macrophages as well as in infected mice. We obtained evidence of genetic exchange for *L. amazonensis* in both axenic promastigote cultures and infected macrophages. However, the resulting products of those genetic events were unstable as they did not sustain growth in subsequent sub-cultures, precluding further characterization.

INTRODUCTION

Protozoan parasites of the genus *Leishmania* are the causative agents of a spectrum of diseases known as leishmaniasis that range from self-healing cutaneous lesions to destructive mucocutaneous infections and visceral pathologies. *Leishmania* has a distinct life cycle which consists of two specific environments. The first is that of the sand fly insect vector in which the parasites multiply within the alimentary tract under the promastigote form and the second is the infected mammalian or human hosts where the parasites replicate as amastigotes within the phagolysosomal compartment of host phagocytes. Currently, there are 20 known species of parasites that are associated with human disease. However, there is still a considerable amount of debate of whether this diversity is due to recombinational events or due to gradual accumulation of mutations during clonal division (Rougeron *et al.*, 2017; Tibayrenc & Ayala, 2013).

In eukaryotic pathogenic organisms, sex is one of the main mechanisms that allows the spread of pathogenicity, resistance and virulence genes (Heitman, 2010). However, due to very strong linkage disequilibrium observed in Leishmania, it has been argued that the reproductive mode of Leishmania is predominantly clonal (Tibayrenc & Ayala, 2013). There is however much evidence indicating that genetic exchange is part of the biology of *Leishmania* parasites, as evidenced by the occurrence of hybrids in nature. These natural hybrids were described at the intraspecific level for L. tropica, L. donovani, L. infantum and L. brasiliensis (Chargui et al., 2009; Cotton et al., 2020; Gelanew et al., 2014; lantorno et al., 2017; Rogers et al., 2014; Rougeron et al., 2009). There were also reports of hybrids that originated from crosses between parasites of the Viannia subgenus such as L. braziliensis and L. guyanensis, which are one of the most common ones described (Banuls et al., 1997; Banuls et al., 1999; Belli et al., 1994; Bonfante-Garrido et al., 1992; Cortes et al., 2012; Cupolillo et al., 1997; Delgado et al., 1997; Dujardin et al., 1995; Jennings et al., 2014; Kato et al., 2016; Kato et al., 2019; Nolder et al., 2007; Torrico et al., 1999). Natural hybrids were also reported for Leishmania species of the Leishmania subgenus such as L. major and L. arabica, L. major and L. infantum, as well as L. donovani and L. infantum (Cortes et al., 2019; Evans et al., 1987; Kelly et al., 1991; Odiwuor et al., 2011; Ravel et al., 2006; Seblova et al., 2015; Volf et al., 2007).

Using two strains of *L. major* harboring distinct integrated drug-resistance markers, Akopyants and colleagues experimentally demonstrated the existence of genetic exchange in the invertebrate stage of the parasite (Akopyants *et al.*, 2009). By infecting sand flies and dissecting them 13-16 days post-infection, the double drug-resistant progeny of this cross was further

demonstrated to be actual genomic hybrids by confirming the presence of at least one set of allelic markers from each parent (Akopyants et al., 2009). In another study from the same group, it was further shown that crosses in the invertebrate stage between L. major parasites coming from 4 distinct geographical locations are able to produce hybrid progeny, which also suggests that there are no intraspecies barriers when it comes to exchanging genetic information (Inbar et al., 2013). Another interesting finding, was that hybrid formation was observed in both the natural *P. duboscgi* vector and in the unnatural but permissive L. longipalpis and, by isolating the parasites from infected sand flies 3-18 days post-infection, it was further ruled out that genetic exchange takes place between parasites when they are in the nectomonad form (Inbar et al., 2013). In addition, a study based on microscopy and flow cytometry allowed to visualize evidence of genetic exchange between two strains of L. donovani expressing two different fluorescent molecules (RFP and GFP) which were present in the same vector (*P. perniciosus* or *L. longipalpis*) and gave rise to yellow promastigote progeny; however, these putative hybrids could not be recovered from the sand flies and grown in culture for further analyses (Sadlova et al., 2011). There was also a study which demonstrated hybrid formation in sand flies between two L. infantum strains expressing different fluorescent as well as different drug-resistance markers (Calvo-Alvarez et al., 2014) and another paper demonstrated the formation of hybrid parasite strains in sand flies between 2 entirely different species, namely L. major and L. infantum (Romano et al., 2014). Finally, the ability of *L. tropica* to exchange genetic information in an intraspecific manner in an infected insect vector as well as in axenic culture has also been recently demonstrated using whole genome sequencing (Inbar et al., 2019; Louradour et al., 2020).

Despite the fact that hybrid parasites could be isolated both in nature and in laboratory conditions from infected sand flies, the mechanism by which they reproduce is still poorly understood. This is partially due to the fact that this is not an obligate mode of reproduction of the parasite; however, recent genome sequencing data from 44 hybrids generated between and within *L. infantum*, *L. tropica* and *L. major* suggest that *Leishmania* reproduces via a meotic-like mechanism (Inbar *et al.*, 2019). Apart from one study using *L. major* (Akopyants *et al.*, 2009), it is still not widely known whether or not genetic exchange can occur within an infected macrophages could harbor 4N amastigotes suggesting that genetic exchange is possible in mammalian host cells (Kreutzer *et al.*, 1994). Here, we explored the possibility of intraclonal and interspecific genetic exchange among parasites of the *L. mexicana* complex, which unlike other *Leishmania* species, replicate in spacious communal vacuoles that may provide an environment favorable to genetic exchange (Case *et al.*, 2016).

MATERIALS AND METHODS

Ethics Statement

All animal handling was performed in accordance with the protocols 1806–01 and 1806–02, which were approved by the *Comité Institutionel de Protection des Animaux* of the INRS-Centre Armand-Frappier Santé Biotechnologie. These protocols respect procedures on animal practice as instructed by the Canadian Council on Animal Care, described in the Guide to the Care and Use of Experimental Animals.

Plasmids and constructs

The plasmid pLaLPG2-HYG from which the LPG2:: Δ HYG targeting construct was used to create Hygromycin B-resistant parasites was kindly provided by Drs. Valeria M. Borges and Leonardo Paiva Farias (Fiocruz Bahia - Instituto Gonçalo Moniz, Brazil) (Figure 1). The plasmid pCR2.1-L.d-rDNA-pr- α IRNEO α IR-GFP from which the Ld-rDNA-NEO-GFP targeting sequence was used to create G418-resistant parasites was kindly provided by Dr. Barbara Papadopoulou (Université Laval, Canada) (Figure 1). The plasmid pKS-NEO-DsRede was provided by Dr. David L. Sacks (National Institute of Allergy and Infectious Diseases, USA) (Kimblin *et al.*, 2008). The pLeish-HYG-GFP construct was created the following way: a Sacl fragment containing the GFP gene was excised from the plasmid pXG-GFP⁺ (Ha *et al.*, 1996), blunted, and inserted into the EcoRV site of pLeish-HYG (unpublished), yielding pLeish-HYG-GFP.

Parasites

Both *L. amazonensis* LV79 (MPRO/BR/72/M1841) and *L. mexicana* (MNYC/BZ/62/M379) were passaged in mice to maintain their virulence. Amastigotes recovered from ear dermis lesions of infected C57BL/6 mice were differentiated into promastigotes in *Leishmania* medium (M199-1X (Sigma) with 10% heat-inactivated fetal bovine serum (FBS), 100 μ M hypoxanthine, 3 μ M biopterin, 40 mM HEPES at pH 7.4, 5 μ M hemin, 1 μ M biotin, and Penicillin-Streptomycin) in a 26°C incubator. For the generation of *L. amazonensis* LPG2/LPG2:: Δ HYG and *L. mexicana* LPG2/LPG2:: Δ HYG, log-phase *L. amazonensis* and *L. mexicana* promastigotes were electroporated with the LPG2:: Δ HYG targeting construct (excised as a 2.6-kb *EcoRVI-Hind*III-*BgI*I fragment from pLa-LPG2KO-HYG) in 0.2 cm electroporation cuvettes, at 0.45kV and 500 μ F of high capacitance as previously described in similar protocols (Descoteaux *et al.*, 1994; Turco *et al.*, 1994). After electroporation, promastigotes were grown in drug-free *Leishmania* medium for

24 h. Following this incubation, *L. amazonensis LPG2/LPG2::* Δ *HYG* parasites were selected in the presence of 35 µg/ml Hygromycin B (Sigma) and *L. mexicana LPG2/LPG2::* Δ *HYG* parasites were selected in the presence of 70 µg/ml Hygromycin B (Sigma) respectively. For the generation of *L. amazonensis* +/*SSU::NEO-GFP*, *L. amazonensis* promastigotes were electroporated with the L.d-rDNA-*NEO-GFP* targeting construct (excised as a 4.25-kb *Bst*XI fragment from pCR2.1-L.d-rDNA-pr- α IR*NEO* α IR-*GFP*). After electroporation, the parasites were grown in drug free medium for 24 h and then grown in *Leishmania* medium containing 20 µg/ml of G418 (Life Technologies). *L. amazonensis NEO-DsRed*e parasites were obtained by electroporating *L. amazonensis* promastigotes with the plasmid pKS-*NEO-DsRed*e. Parasites were grown in drug free medium for 24 h and then grown in medium containing 20 µg/ml G418. The same method was used to obtain *L. mexicana* pKS-*NEO-DsRed*e and they were maintained in *Leishmania* medium containing 40 µg/ml of G418. *L. amazonensis HYG-GFP*. Parasites were grown in drug-free medium for 24 h and then grown in medium containing 35 µg/ml Hygromycin B

Mammalian cell culture

Bone marrow-derived macrophages (BMM) were differentiated from the bone marrow of 6- to 8week old C57BL/6 mice as previously described (Descoteaux & Matlashewski, 1989). BMM were differentiated for 7 days in complete DMEM (containing L-glutamine (Life Technologies), 10% v/v heat inactivated fetal bovine serum (FBS) (Life Technologies), 10 mM HEPES (Bioshop) at pH 7.4, and penicillin-streptomycin (Life Technologies)) supplemented with 15% v/v L929 cellconditioned medium (LCM) as a source of macrophage colony-stimulating factor-1. To render the BMM quiescent prior to experiments, cells were transferred to tissue culture-treated 6-well or 24well plates or T25 tissue culture flasks for 24 hours in complete DMEM without LCM. The cells were kept in a humidified 37°C incubator with 5% CO_2 . The number of macrophages used per container are as following: 2.2 X 10⁶ BMMs per well of a 6-well plate, 0.3 X 10⁶ BMMs per well of 24-well plate and 25 X 10⁶ BMMs in T-25 flasks.

Transwell experiments

For genetic exchange transwell experiments, donor parasites (*L. amazonensis NEO-dsRede*) were relocated to the to the insert chamber containing 0.4 μ m pores in a polycarbonate membrane (Corning) and the recipient parasites (*L. amazonensis LPG2/LPG2::* Δ HYG) were added to the wells. The plates were then either incubated at 26°C or pre-incubated at 34°C for 4 hours, as done

previously (Hassani *et al.*, 2011), and then transferred to 26°C. The parasites were collected at 24 h, 72 h, 96 h and 120 h post-incubation. Each parental stain was equally divided into 3 wells of a 6-well plate and were grown in the presence of antibiotics. Two wells were used as controls containing either 35 μ g/ml of Hygromycin B or 20 μ g/ml of G418 and the last well contained both drugs in the medium. The parasites were kept in such conditions up to 3 weeks. Each parental strain was also grown separately and were under the same conditions as a control.

Parasite co-culture experiments

As described (Louradour *et al.*, 2020), stationary phase promastigotes of two parental strains were mixed and distributed into 96-well plates up to a total volume of 100 µl in each well. One million parasites of each strain were added in the wells. Three days later, each co-culture from the 96-well plate was transferred to a single well of a 24-well plate containing 900 µl of *Leishmania* medium containing either 35 µg/ml Hygromycin B and 20 µg/ml G418 if both parental strains were *L. amazonensis* or 60 µg/ml Hygromycin B and 40 µg/ml G418 if one of the parental strains was *L. amazonensis* and the other was *L. mexicana*. Each line was cultured individually in *Leishmania* medium supplemented with either Hygromycin B or G418 or both drugs as controls. When double drug-resistant parasite cultures were growing in wells (growth was observed between 19 and 28 days), the cells were passaged in *Leishmania* medium at a dilution of 1:10. DNA was then extracted from double drug-resistant parasites and was used for PCR reactions.

In-vitro infections

Metacyclic promastigotes were isolated from promastigote cultures in the late stationary phase by means of a density gradient centrifugation (Spath & Beverley, 2001). Specifically, 2 ml of 40% w/v Ficoll PM400 (GE healthcare) were added to the bottom of ta 15 ml tube, followed by a 5 ml layer of 10% Ficoll PM400 in M199-1x and topped by late stationary phase promastigotes resuspended in 5 ml of DMEM with no FBS (Arango Duque *et al.*, 2019). Metacyclic promastigotes were collected from the DMEM-10% Ficoll interphase after spinning the gradient for 10 min. The percentage of isolated metacyclic parasites from the interphase generally varied from 12-18% of the input population. Metacyclic promastigotes were then opsonized with the serum of C57BL/6 mice for 30 minutes, washed 3 times with PBS and resuspended in T-25 flasks (Sarstedt) (Ratio 3:1 for single infections, ratio 6:1 for mix infections). The cells were then incubated at 4°C for 10 minutes (Arango Duque *et al.*, 2019) to synchronize phagocytosis. The internalization of parasites

was triggered by transferring the cells to 34°C (Arango Dugue et al., 2019). Two hours postinternalization, the cells were washed 3 times with warmed cDMEM to remove non-internalized promastigotes. Infected BMM were incubated for 120 h and 192 h. Next, the amastigotes were isolated from infected macrophages by resuspending those in cDMEM containing 0.05% of SDS. Shortly, the macrophages resuspended in 2ml of cDMEM containing SDS are incubated at 37°C for 3 minutes. Then, the resulting supernatant is resuspended in 10 ml of cDMEM and spun at 3000 rpm. After the spin, the supernatant was discarded. The amastigotes were resuspended in Leishmania medium and separated into 3 separate conditions. The conditions were: Leishmania medium containing 20 µg/ml of G418 or Leishmania medium containing 32 µg/ml of Hygromycin B or Leishmania medium containing both drugs. The parasites were left for incubation at 26°C for up to 3 weeks to select for double drug-resistant parasites. If applicable, the double drug-resistant parasites were passaged at a dilution of 1/10 and their DNA was then extracted and was used for PCR reactions. Double drug-resistant parasites were also passaged in infected BMM for 3 days as well. For parasite survival, cells were washed with PBS and fixed and stained with fixative and staining solutions of the Hema 3 stain set (Fisher Scientific). This process was done for 2 h, 48h ,120h and 192h timepoints.

Alternatively, the infections were done in 6-well plates instead of T-25 flasks. Three wells were used for mixed infection for each timepoint (120 h and 192 h) and two wells were reserved for infection with each parental strain alone. Once the amastigotes were obtained, they were plated in 96-well plates in 100 μ l of drug free *Leishmania* medium as described in the parasite co-culture section. The amastigotes were plated at 5 million parasites per well. Three days later, each well was transferred to a well of 24-well plate that contained 900 μ l with antibiotics. Pure parental cultures were used as controls as previously described. If applicable, the double drug-resistant parasites were passaged at a dilution of 1/10 and their DNA was then extracted from double drug-resistant parasites and was used for PCR reactions.

In vivo infections and parasite recovery

C57BL/6 mice (6- to 8-weeks old) were infected with 1 X 10⁵ metacyclic promastigotes (5 X 10⁴ of each line) of either *L. amazonensis LPG2/LPG2::* Δ *HYG* + *L. amaz* +/*SSU::NEO-GFP* or *L. mexicana LPG2/LPG2::* Δ *HYG* + *L. amaz* +/*SSU::NEO-GFP* into the ear dermis with an insulin syringe (29 G). Mice infected separately with each line were used as controls. At 9 weeks post-infection, mice were euthanized under CO₂ asphyxiation and by cerebral dislocation as well. The infected ears were then collected and disinfected in 70% ethanol for 10 min and air dried for 10

45

min. Then, they were separated into dorsal and ventral leaflets and cut up into small pieces with surgical scissors. The cut-up ears were loaded in 2.0 ml tubes containing zirconium beads (Benchmark Scientific Inc.) and resuspended in 1 ml of *Leishmania* medium and vortexed for a 1 min and 30 sec. The resulting suspension was then transferred to 100 µm cell strainers placed over 50 ml Falcon tubes and filtered to isolate the amastigotes. The remaining tissue in the cell strainer was smashed with a sterile 10ml syringe plunger and washed two times with *Leishmania* medium. The resulting cell suspension was spun at 3200 RPM at 4°C for 10 min. The amastigotes were then separated in three T-25 flasks and left in unconditioned *Leishmania* medium for 24 hours. Lastly, the antibiotics were added to each flask according to each condition and were incubated at 26°C for three weeks. The conditions were Hygromycin only, G418 only or both drugs.

DNA extraction and PCR confirmation of double-resistant parasites

For genotyping analyses, total DNA was extracted from parasites by using a phenol/chloroform treatment as previously described (Medina-Acosta & Cross, 1993). All of the PCR amplifications were done in 50 µl total volume containing 100 ng of parasite DNA and 10pmol of each primer. The following primer pairs were used: for Hygromycin B 5'-ATGAAAAGCCTGAACTCACC-3' (Forward), 5'-CTATTCCTTTGCCCTCGG-3' (Reverse) that were previously described (Romano, 2014); for G418 5'CCACGACGGGCGTTCCTTGCGCAGCTGTGC-3' (Forward), 5'-GTCAGCCCATTCG CCAAGCTCTTCAGC-3' (Reverse) which were custom made. The resulting DNA products were then verified by electrophoresis on 1.2 % Agarose gel and subsequently viewed by staining the samples with ethidium bromide.

Live Microscopy

BMMs were platted at the bottom of 6 well-plate with a coverslip attached to the bottom of the wells. The cells were kept in the 34°C incubator for 24 h without LCM to render them quiescent. They were then infected with metacyclic parasites of each line separately as a positive control or with a combination of two. Non-infected cells were used as a negative control. The samples were then viewed with 63X objective lens LSM780 system confocal microscope (Carl Zeiss microimaging). The images were taken and processed with the ZEN 2012 Software (Carl Zeiss) and subsequently mounted into the figures via adobe photoshop 2019.

RESULTS

Generation of drug-resistant strains of L. amazonensis and L. mexicana

To investigate the possibility that formation of hybrids and genetic exchange may occur among parasites of the *L. mexicana* complex, we used *L. amazonensis* LV79 and *L. mexicana* M379 expressing either episomal or integrated genes encoding resistance to Hygromycin B (*HYG*) or to G418 (*NEO*). To this end, we generated one line of *L. amazonensis* and one line of *L. mexicana* in which the *HYG* resistance gene was integrated in one allele of the *LPG2* gene (*L. amazonensis LPG2/LPG2::*Δ*HYG* and *L. mexicana LPG2/LPG2::*Δ*HYG*) (Fig 2.1A), one line of *L. amazonensis* in which a *NEO-GFP* construct was integrated into the ribosomal RNA locus (*L. amazonensis* +/*SSU::NEO-GFP*) (Fig 2.1A), one line of *L. amazonensis* NEO-DsRede and *L. mexicana* with an episomal *NEO-DsRed* plasmid (*L. amazonensis* NEO-DsRede and *L. mexicana* NEO-DsRede), and one line of *L. amazonensis* with an episomal *HYG-GFP* plasmid (*L. amazonensis* HYG-GFPe). We confirmed the presence/absence of both resistance genes in each line by PCR analysis using specific primers against *HYG* and *NEO* (Fig. 2.1B), and we ensured that these drug-resistant recombinant parasites retained the ability to infect and replicate within bone marrow-derived macrophages (BMMs) over a period of 196 h (Fig 2.2).

Figure 2.1: Generation of drug-resistant Leishmania parasites.

(A) L.d-rDNA-*NEO-GFP* and *LPG2::*△*HYG* targeting constructs were used for the integration into the ribosomal RNA locus or in one allele of *LPG2*, respectively. For the L.d-rDNA-*NEO-GFP* construct, the *NEO-GFP* resistance cassette (white and grey boxes) was inserted in the *Smal* site of the ribosomal RNA locus (black rectangle). The dashed lines delimit the regions of recombination between the target genes and targeting constructs. Arrows indicate orientation. (B) PCR products for drug-resistance markers *HYG* and *NEO* of *L. amazonensis* and *L. mexicana* parental strains. The size of *HYG* and *NEO* resistance genes is 1029 bp and 503 bp long, respectively. The pLeish-*HYG-GFP* and the pKS-*NEO-DsRed* constructs were used as controls for the *HYG* and *NEO* genes, respectively. *L.a.* LV79 WT is a DNA sample used to show that our wild type parasites do not harbor any drug-resistance markers in their genomes. *L. amazonensis NEO-DsRed* eare controls used to validate the presence of *HYG* and *NEO* resistance genes. No DNA sample was loaded as negative control. M, molecular DNA ladder; H, Hygromycin; N, G418.

Figure 2.2: Survival of parental strains within infected macrophages.

BMMs were infected with metacyclic serum-opsonized promastigotes of *L. amazonensis* and *L. mexicana* parental strains (*L. amazonensis LPG2/LPG2::* Δ *HYG*, *L. mexicana LPG2/LPG2::* Δ *HYG*, *L. amazonensis* +/SSU::*NEO-GFP*, *L. amazonensis NEO-DsRed*e) for 2 h, 48 h, 120 h and 196 h. Bars represent mean ± SE of three representative experiments performed in triplicate in bone marrow derived murine macrophages. Parasites were counted in 100 macrophages and quantified by light microscopy.

Drug resistance is not transferred in *in vitro* cultures of promastigotes in the absence of cell-to-cell contact

Evidence indicate that DNA can be transferred from cell-to-cell through extracellular vesicles (Elzanowska et al., 2020). In addition, erythrocytes infected with Plasmodium falciparum can transfer parasite DNA to other infected cells via the release of extracellular vesicles (Regev-Rudzki et al., 2013). Whereas no such mechanism has been described in Leishmania, it was recently reported that the Leishmania RNA virus 1 (LRV1) exploits the Leishmania exosomal pathway as a mode of transmission from one promastigote to another (Atayde et al., 2019). This led us to verify the hypothesis that extracellular vesicles released in the culture medium may serve as a vehicle to transfer genetic material, including episomes harboring a drug-resistance gene among promastigotes. To this end, we used transwells (0.4 µm pores) to physically separate L. NEO-DsRede promastigotes from *L. amazonensis-LPG2/LPG2::*<u>/</u>HYG amazonensis promastigotes. We incubated the transwell plates either at 26°C or we pre-incubated them at 34°C for 4 h and then transferred the plates to 26°C. Such a transient increase in temperature has been previously shown to enhance the secretion of extracellular vesicles by Leishmania promastigotes (Hassani et al., 2011). Promastigotes co-incubated in transwells at either 26°C or 34°C were collected after 24, 72, 96, and 120 h and assessed for their capacity to grow in the presence of both hygromycin and G418. Both L. amazonensis-NEO-DsRede and L. amazonensis-LPG2/LPG2:: AHYG were viable and resistant to G418 and hygromycin, respectively, up to 120 h of co-incubation in the transwells. However, no double drug-resistant parasites were recovered from 9 independent experiments performed in triplicate, indicating that exchange of genetic information through extracellular vesicles among L. amazonensis promastigotes, if it occurs, is a rare event.

Genetic exchange among *L. amazonensis* and *L. mexicana* promastigotes in axenic cultures

A recent study revealed that some strains of L. tropica, but not L. major, form hybrids in promastigote axenic cultures (Louradour et al., 2020). This finding prompted us to evaluate the occurrence of genetic crosses among L. amazonensis and L. mexicana promastigotes in in vitro co-cultures. Following the experimental protocol described by Louradour et al, we co-cultured combinations of stationary phase promastigotes with integrated drug-resistance genes as depicted in Table 2.1 (Louradour et al., 2020). We also performed co-culture experiments using promastigotes harboring episomes (Table 2.1). Each co-culture was distributed into 96-well plates in drug-free medium. Three days later, the parasites were transferred into 24-well plates and cultured in selective medium (hygromycin B and G418) and left for up to 40 days in a 26°C incubator. Individual single drug-resistant lines were used as controls and had gone through the same process. After 40 days of incubation, we did not obtain double drug-resistant parasites except for the co-cultures of L. amazonensis-LPG2/LPG2:: AHYG and L. amazonensis-NEO-DsRede (Table 2.1). We obtained promastigote populations resistant to both G418 and hygromycin B in 3 separate wells. However, only one out of 3 grew sufficiently to allow for DNA isolation and PCR analysis, which revealed the presence of both HYG and NEO genes (Fig. 2.3). However, we were unable to further characterize these double-drug-resistant parasites as they perished in subsequent passages. These results suggest that the occurrence of genetic exchange in axenic cultures among those two drug-resistant lines is rare and results in transient/unstable double drug-resistant promastigotes.

Crosses in Axenic cultures	No. of wells with crosses	% Yield of double drug resistant parasites
L. amaz LPG2/LPG2::∆HYG × L. amaz +/SSU::NEO-GFP	192	0/192 (0%)
L. amaz LPG2/LPG2::∆HYG × L. amaz NEO-DsRede	192	3/192 (1.56%)
L. mex. LPG2/LPG2::∆HYG × L. amaz +/SSU::NEO-GFP	96	0/96 (0%)
L. mex LPG2/LPG2::⊿HYG × L. amaz NEO-DsRede	96	0/96 (0%)

Table 2.1: Crosses used in axenic cultures.

Demonstrates the number of wells tested and percentage of isolated double drug-resistant parasites.

Figure 2.3: Genotype characterization of double drug-resistant parasites from axenic cultures.

PCR amplification of genes encoding antibiotic resistance. The size of *HYG* and *NEO* resistance genes is 1029 bp and 503 bp long. The pLeish-*HYG-GFP* and the pKS-*NEO-DsRed* constructs were used as controls for the *HYG* and *NEO* genes, respectively. *L.a.* LV79 WT is a DNA sample used to show that our wild type parasites do not express any drug-resistance markers. *L. amazonensis LPG2/LPG2::*_/*HYG* and *L. amazonensis NEO-DsRed* e are controls used to validate the presence of *HYG* and *NEO* resistance genes within the appropriate parental strains. No DNA sample was loaded as negative control.

Unstable genetic exchange in infected macrophages

The fact that L. amazonensis and L. mexicana replicate within communal parasitophorous vacuoles led us to verify the possibility that these intracellular replicative niches provide conditions propitious for genetic exchanges among Leishmania cells. To this end, we infected BMMs with the following four combinations of drug-resistant parasites: L. amazonensis LPG2/LPG2:://HYG + L. amazonensis +/SSU::NEO-GFP; L. amazonensis LPG2/LPG2:: AHYG + L. amazonensis NEO- DsRede; L. mexicana LPG2/LPG2:: <u>AHYG + L. amazonensis +/SSU::NEO-GFP</u>, and L. mexicana LPG2/LPG2:: AHYG + L. amazonensis NEO-DsRede. Similar to single infection, parasites in mixed infections replicated up to 192 h post-infection and induced the formation of communal PVs (Fig 2.4A). To confirm that these communal PVs harbored both drug-resistant Leishmania lines, we performed live cell imaging on BMMs co-infected with either L. amazonensis HYG-GFPe + L. amazonensis NEO-DsRede or L. amazonensis HYG-GFPe + L. mexicana NEO-DsRede. In both cases, we observed the two drug-resistant parasite lines within the same communal vacuoles, at 48 h and 72 h post-infection (Fig 2.4B). At 120 h and 192 h post-infection, we lysed the infected BMM and cultured the recovered parasites in medium containing hygromycin and G418 in a similar fashion as the axenic parasite cultures done in plates. As shown in Table 2.2, we failed to recover any double drug-resistant parasites from these coinfection experiments. Next, we modified our experimental approach to perform co-infection experiments on a larger scale, with the following 3 combinations of drug-resistant promastigotes: L. amazonensis LPG2/LPG2:: AHYG + L. amazonensis +/SSU::NEO-GFP, L. amazonensis LPG2/LPG2:: AHYG + L. amazonensis NEO-DsRede, and L. mexicana LPG2/LPG2:: AHYG + L. amazonensis +/SSU::NEO-GFP (Table 2.3). We co-infected BMMs with each combination and we used each individual drug-resistant line as controls. Out of a total of 28 infections, we obtained double drug-resistant parasite populations out of 2 separate infections, which arose from the coinfections with L. amazonensis LPG2/LPG2:: AHYG + L. amazonensis +/SSU::NEO-GFP (Table 4). We detected the presence of both NEO and HYG drug resistance genes in these double drugresistant parasite populations by PCR analysis (Fig 2.5). We were able to maintain one of this double drug-resistant population in culture for 3 weeks; however, after the third week, this population lost the NEO resistance gene and has ultimately perished afterwards (Fig 2.5A). For the second occurrence of double drug-resistant parasites, we isolated 3 separate populations which contained both HYG and NEO genes as assessed by PCR analysis (Fig 2.5B), whereas the third population had only the HYG resistance gene and died upon further passages (Fig 2.5B). The two double drug-resistant populations were maintained for a week and died upon additional
passages. These results suggest that genetic exchange may take place in infected macrophages and result in transient/unstable double drug-resistant parasites.

Figure 2.4: Survival within infected macrophages and visualization of parental strains within the same vacuole.

(A) BMMs were infected with metacyclic serum-opsonized promastigote crosses of *L. mexicana* complex parental parasite strains (*L. amazonensis LPG2/LPG2::ΔHYG* + *L. amazonensis* +/SSU::*NEO-GFP*; *L. amazonensis LPG2/LPG2::ΔHYG* + *L. amazonensis NEO-DsRede*; *L. mexicana LPG2/LPG2::ΔHYG* + *L. amazonensis* +/SSU::*NEO-GFP*) for 2h, 48h, 120h and 196h. Bars represent mean ± SE of three representative experiments performed in triplicate in bone marrow derived murine macrophages. Parasites were counted in 100 macrophages and quantified by light microscopy. Macrophages were stained with HEMA 3 kit. Representative pictures from each cross are shown. (B) Live microscopy analysis of *L. amazonensis* and *L. mexicana* parasite strains expressing different fluorescent markers. Representative pictures of both parental strains within the same communal vacuole at 48h and 72h are shown. *LV79-GFP*, *L. amazonensis* HYG-GFPe; *LV79-Red*, *L. amazonensis* NEO-DsRede; M379-Red, *L. mexicana* NEO-DsRede.

Crosses 120h Post-Infection	No. of wells with crosses	% Yield of double drug resistant parasites
L. amaz LPG2/LPG2::∆HYG ×	89	0/89 (0%)
L. amaz +/SSU::NEO-GFP		
L. amaz LPG2/LPG2::∆HYG ×	34	0/34 (0%)
L. amaz NEO-DsRede		
L. mex. LPG2/LPG2::∆HYG ×	63	0/63 (0%)
L. amaz +/SSU::NEO-GFP		
L. mex LPG2/LPG2::∆HYG ×	63	0/63 (0%)
L. amaz NEO-DsRede		
Crosses	No. of wells	% Yield of double drug
Crosses 192h Post-Infection	No. of wells with crosses	% Yield of double drug resistant parasites
Crosses 192h Post-Infection L. amaz LPG2/LPG2::∆HYG ×	No. of wells with crosses 72	% Yield of double drug resistant parasites 0/72 (0%)
Crosses 192h Post-Infection L. amaz LPG2/LPG2::∆HYG × L. amaz +/SSU::NEO-GFP	No. of wells with crosses 72	% Yield of double drug resistant parasites 0/72 (0%)
Crosses 192h Post-Infection L. amaz LPG2/LPG2::∆HYG × L. amaz +/SSU::NEO-GFP L. amaz LPG2/LPG2::∆HYG ×	No. of wells with crosses 72 72	% Yield of double drug resistant parasites 0/72 (0%) 0/72 (0%)
Crosses 192h Post-Infection L. amaz LPG2/LPG2::∆HYG × L. amaz +/SSU::NEO-GFP L. amaz LPG2/LPG2::∆HYG × L. amaz NEO-DsRede	No. of wells with crosses 72 72	% Yield of double drug resistant parasites0/72 (0%)0/72 (0%)
Crosses 192h Post-Infection L. amaz LPG2/LPG2::∆HYG × L. amaz +/SSU::NEO-GFP L. amaz LPG2/LPG2::∆HYG × L. amaz NEO-DsRede L. mex. LPG2/LPG2::∆HYG ×	No. of wells with crosses 72 72 69	% Yield of double drug resistant parasites0/72 (0%)0/72 (0%)0/72 (0%)0/69 (0%)
Crosses 192h Post-Infection L. amaz LPG2/LPG2::∆HYG × L. amaz +/SSU::NEO-GFP L. amaz LPG2/LPG2::∆HYG × L. amaz NEO-DsRede L. mex. LPG2/LPG2::∆HYG × L. amaz +/SSU::NEO-GFP	No. of wells with crosses 72 72 69	% Yield of double drug resistant parasites0/72 (0%)0/72 (0%)0/69 (0%)
Crosses 192h Post-Infection L. amaz LPG2/LPG2::∆HYG × L. amaz +/SSU::NEO-GFP L. amaz LPG2/LPG2::∆HYG × L. amaz NEO-DsRede L. mex. LPG2/LPG2::∆HYG × L. amaz +/SSU::NEO-GFP L. mex LPG2/LPG2::∆HYG ×	No. of wells with crosses 72 72 69 66	% Yield of double drug resistant parasites 0/72 (0%) 0/72 (0%) 0/69 (0%) 0/66 (0%)

Table 2.2: Crosses used in *in vitro* infections done in wells.

Demonstrates the number of wells tested and percentage of isolated double drug-resistant parasites.

Cross	No. of infections	No. of times parent 1 was isolated	No. of times parent 2 was isolated	No. of times double drug- resistant parasites were isolated	% R ecovery
L. amaz LPG2/LPG2::∆HYG	14	14	14	2	14%
×					
L. amaz +/SSU::NEO-GFP					
L. amaz LPG2/LPG2::∆HYG	10	10	10	0	0%
×					
L. amaz NEO-DsRede					
L. mex. LPG2/LPG2::ΔHYG	4	4	4	0	0%
×					
L. amaz +/SSU::NEO-GFP					

Data includes the number of mating crosses executed in flasks and parasite strains that were isolated from each infection. Percentage indicates the total number of times that double-drug resistant parasites were isolated.

Figures 2.5: Molecular genotype characterization of double drug-resistant parasites isolated from *in vitro* infections.

PCR amplification of genes encoding antibiotic resistance. The size of HYG and NEO resistance genes is 1,029 and 503 bp long. The pLeish-HYG-GFP and the pKS-NEO-DsRed constructs were used as controls for the HYG and NEO genes, respectively. L.a. LV79 WT and L.a. PH8 WT is a DNA sample used to show that our wild type parasites do not express any drug-resistance markers. L. amazonensis LPG2/LPG2:: D HYG, L. amazonensis +/SSU::NEO-GFP are controls used to validate the expression of HYG and NEO resistance genes within the appropriate parental strains. No DNA sample was loaded as negative control. (A) PCR amplification of resistance genes of the first double drug- resistant parasite population. Population was maintained for 3 weeks until it lost one of the resistance genes and perished. PCRs of double drug-resistant parasites represent the presence of both genes on weeks 1, 2, and 3 (B) PCR amplification PCR amplification of resistance genes of the second occurrence of double drug-resistant parasites. Three populations were isolated (Pop 1 – 3). Two of the population were found to be double-drug resistant and one was not.

Absence of detectable genetic exchange in *in vivo* infections

To determine whether mammalian hosts provide an environment favorable for genetic exchange for the species of the *L. mexicana* complex, we inoculated mice into the ear dermis with two combinations of single drug-resistant parasites, namely *L. amazonensis* $LPG2/LPG2::\Delta HYG + L$. *amazonensis* +/SSU::NEO-GFP and *L. mexicana* $LPG2/LPG2::\Delta HYG + L$. *amazonensis* +/SSU::NEO-GFP (Table 2.4). Mice infected with single drug-resistant lines were used as a control. Nine weeks post-infection, we recovered parasites from lesions and we cultured them in the presence of either hygromycin, G418, or both. As shown in Table 2.4, we recovered each single drug-resistant line that was co-inoculated or inoculated alone as controls. However, we did not succeed in isolating double drug-resistant parasites from cutaneous lesions, indicating that genetic exchange does not occur to a detectable level within the mammalian host for *Leishmania* species residing in communal parasitophorous vacuoles.

Cross	No. of infected mice	No. of times parent 1 was isolated	No. of times parent 2 was isolated	No. of times double drug- resistant parasites were isolated	% R ecovery
L. amaz LPG2/LPG2:://HYG	13	13	13	0	0%
×					
L. amaz +/SSU::NEO-GFP					
L. mex. LPG2/LPG2::∆HYG	6	6	6	0	0%
×					
L. amaz +/SSU::NEO-GFP					

Data includes the number of infected mice with each cross and parasite strains that were isolated from each infection. Percentage indicates the total number of times that double drug-resistant parasites were isolated.

DISCUSSION

For decades, the occurrence of natural *Leishmania* hybrids has been described among clinical and field isolates, indicating that genetic exchange is part of the biology of these parasites. Experimental genetic crosses among *Leishmania* cells were initially reported to occur exclusively in the sand fly vector (Akopyants *et al.*, 2009; Calvo-Alvarez *et al.*, 2014; Inbar *et al.*, 2013; Inbar *et al.*, 2019; Romano *et al.*, 2014; Sadlova *et al.*, 2011). However, recent evidence revealed that experimental genetic crosses also occur in axenic promastigote cultures, indicating that mating competent forms are present in these populations (Louradour *et al.*, 2020). The fact that studies on the experimental generation of hybrids have been performed with *Leishmania* species living in tight individual parasitophorous vacuoles may have precluded the detection of genetic exchange within mammalian host cells. In this study, we sought to determine whether genetic exchange occurs among species of the *L. mexicana* complex, which replicate within communal parasitophorous vacuoles. Using promastigotes expressing different drug-selectable markers, we obtained evidence of intraclonal genetic exchange for *L. amazonensis* in both axenic promastigote cultures and infected macrophages. However, the resulting products of those genetic events were unstable as they did not sustain growth in subsequent sub-cultures.

The study of experimental genetic exchange in *Leishmania* consists in mixing strains carrying distinct drug-resistance markers and/or fluorescent markers integrated into their genomes and the subsequent selection and analysis of double drug-resistant parasites (Akopyants *et al.*, 2009; Calvo-Alvarez *et al.*, 2014; Inbar *et al.*, 2013; Inbar *et al.*, 2019; Louradour *et al.*, 2020; Romano *et al.*, 2014; Sadlova *et al.*, 2011). Whole genome sequencing revealed that these double drug-resistant parasites are full genomic hybrids predominantly resulting from a mechanism resembling meiosis (Inbar *et al.*, 2019). Whether other forms of genetic exchange take place in *Leishmania* had not received much attention. Hence, we tested whether the transfer of genetic material can occur without direct contact between *Leishmania* promastigotes, as previously reported for *P. falciparum* via cell-derived extravesicular vesicles (Regev-Rudzki *et al.*, 2013). Our attempts to detect the transfer of an episome from one line of *L. amazonensis* to another in transwell experiments were unsuccessful, suggesting that physical contact is required for genetic exchange among *Leishmania* promastigotes. Our results also suggest that in contrast to the *Leishmania* virus LRV-1 (Atayde *et al.*, 2019), episomal DNA is not transferred through extracellular vesicles or other released material.

The recent report that genetic crosses take place in axenic cultures of *L. tropica* (Louradour *et al.*, 2020) prompted us to explore the possibility that genetic exchange occurs among *L. amazonensis* and *L. mexicana* promastigotes in axenic cultures. In contrast to the *L. tropica* strains used by Louradour and colleagues (Louradour *et al.*, 2020), we obtained only a few populations of double drug-resistant *L. amazonensis* promastigotes which turned out to be unstable. The fact that those populations did not sustain sub-cultures precluded further analyses. Clearly, not all species or strains of *Leishmania* are equal in terms of capacity to generate mating-competent forms *in vitro*. Hence, whereas Louradour and colleagues were obtained when both parental strains were *L. major* (Louradour *et al.*, 2020). In the case of *L. amazonensis*, it is possible that strains other than the one we used are more competent in generating mating-competent forms in axenic cultures. Future studies will be aimed at investigating this important issue.

It is well established that hybrid formation among Leishmania promastigotes takes place in the sand fly (Akopyants et al., 2009; Calvo-Alvarez et al., 2014; Inbar et al., 2013; Inbar et al., 2019; Romano et al., 2014; Sadlova et al., 2011). Failure to detect genetic exchanges in the mammalian host suggests that amastigotes do not generate mating competent forms or that they are less prone to recombination. It is also possible that the phagolysosomal environment is not as conducive to genetic exchange as the sand fly midgut. However, it was reported previously that amastigotes are able to undergo nuclear fusion within infected macrophages indicating that genetic exchanges may indeed be possible within infected hosts (Kreutzer et al., 1994). Alternatively, the fact that the Leishmania species used so far to study genetic exchange replicate within individual parasitophorous vacuoles (L. major, L. tropica, L. donovani, L. infantum) may have limited the probabilities of genetic exchange among amastigotes. With this in mind, we hypothesized that replication within a communal vacuole may provide amastigotes with conditions propitious to genetic exchange, as reported for Chlamydia (Jeffrey et al., 2013). The recovery of double-drug resistant promastigote populations from macrophages co-infected with L. amazonensis LPG2/LPG2:://HYG + L. amazonensis +/SSU::/NEO-GFP and the detection of both the HYG and NEO genes in these cultures suggest that intraclonal genetic exchanges may occur within communal parasitophorous vacuoles. However, the inability to grow these L. amazonensis double drug-resistant populations over several passages and to clone double drug-resistant parasites precluded further characterization of these progeny and thus determine whether or not these parasites were genuine hybrids. Previous studies revealed that not all hybrid progeny is as viable as their parental counterparts. Hence, Sadlova et al observed L. donovani hybrids in infected sand flies, but all of their attempts to grow them in culture have failed. This led to the conclusion that although *L. donovani* parasites are able to exchange genetic information, the hybrids produced were not viable (Sadlova *et al.*, 2011). Finally, there was also a report which explored the possibility of genetic material exchange between *L. major* and *L. turanica* in infected sand flies; however, it was reported that such events do not take place between these parasite species (Chajbullinova *et al.*, 2012).

As reported for *L. major* (Akopyants *et al.*, 2009), we were unable to recover double drug-resistant parasites from mice co-infected with *L. amazonensis* and *L. mexicana*. However, based on our results with *in vitro* infections, we cannot rule out that genetic exchanges do not take place in mammalian hosts infected with those species. An important factor to consider is the number of *in vivo* infections we performed. Indeed, studies on genetic exchange done in the insect vector required hundreds of sand flies to be infected. Hence, Akopyants *et al* used 102 sand flies to study genetic exchange between *L. major* parasites, Sadlova *et al* infected 121 sandflies to study this phenomenon for *L. donovani*, whereas Romano *et al* used 446 sandflies to study these events among strains of *L. infantum* (Akopyants *et al.*, 2009; Romano *et al.*, 2014; Sadlova *et al.*, 2011). Another important factor to take into consideration is the ability of the *L. amazonensis* and *L. mexicana* strains we used in our study to generate mating competent forms, as evidenced in the study of Louradour and colleagues using *L. tropica* and *L. major* (Louradour *et al.*, 2020).

In summary, we provide evidence of possible intraclonal genetic exchanges among *L. amazonensis* parasites in axenic cultures and within mammalian host cells. However, the double drug-resistant parasites obtained in our studies were unstable and could not be further characterized. Future studies will be required to identify strains of *L. amazonensis* and *L. mexicana* with higher capacity to generate mating competent forms and use these strains for studies in macrophages and in mice on a larger scale.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

ETHICS STATEMENT

The animal study was reviewed and approved by Comité Institutionel de Protection des Animaux of the INRS-Centre Armand-Frappier Santé Biotechnologie.

AUTHOR CONTRIBUTIONS

RT and AD conceived and designed the study, contributed to the data analysis, drafted, and revised the manuscript. RT performed the experiments. RT and AD wrote and revised the manuscript. All authors read and approved the final version of this manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by Canadian Institutes of Health Research (CIHR) grant PJT-156416 to AD. AD is the holder of the Canada Research Chair on the Biology of intracellular parasitism. The funders had no role in study design, data collection and interpretation, decision to publish, or preparation of the manuscript.

ACKNOWLEDGMENTS

We thank Dr. David L. Sacks (National Institute of Allergy and Infectious Diseases, USA) for providing the plasmid pKS-*NEO-dsRed*, Dr Barbara Papadopoulou (Université Laval, Canada) for providing the plasmid pCR2.1-L.d-rDNA-pr-αIR*NEO*αIR-*GFP* and Drs Leonardo Paiva Farias (Fiocruz Bahia, Brazil) for providing the pLa*LPG2-HYG* construct and J. Tremblay for assistance in immunofluorescence experiments. We thank Matthias Govaerts and Olivier Séguin for their technical help during this study.

CONFLICT OF INTEREST STATEMENT

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

SECTION 3: GENERAL DISCUSSION AND CONCLUSION

DISCUSSION

Leishmania is an intracellular pathogenic organism that causes a range of pathologies collectively known as leishmaniasis which range from self-healing cutaneous lesions to deadly visceral infections. The parasite also has a complex life cycle that takes place in both the sand fly and mammalian hosts. Although the form of the parasite changes from promastigote to amastigote and *vice versa* when the parasites change hosts, they still replicate via binary fission. For a long time, the parasite was considered to be a strictly clonal organism; however, isolation of natural hybrids, whole genome sequencing studies and experimental genetic crosses have shown that *Leishmania*'s mode of reproduction is not as simple as previously believed.

In the past decade, a few groups of researchers have shown direct evidence that *Leishmania* is capable of exchanging its genetic information between each other. The first such study was published in 2009 which revealed that the co-infection of the vector with two strains of *L. major* harboring two different drug-selectable markers gave rise to a population of cells expressing both drug-resistance genes (Akopyants *et al.*, 2009). The studies that followed demonstrated that genetic exchanges occur between individuals of *L. donovani, L. major, L. infantum, L. tropica* (Calvo-Alvarez *et al.*, 2014; Inbar *et al.*, 2013; Inbar *et al.*, 2019; Sadlova *et al.*, 2011) and one has demonstrated genetic exchanges between two *Leishmania* species, namely *L. major* and *L. infantum* (Romano *et al.*, 2014). All of these studies have shown that the parasite is capable of such a genetic event within the infected sand fly vector; however, there are no studies except for one that demonstrate whether or not genetic exchanges are possible in the infected host or in a culture of infected cells (Akopyants *et al.*, 2009). Hence, this is what we decided to investigate.

As stated previously, the study of Akopyants *et al* is the only one which explored the possibility of *Leishmania* genetic exchange in an infected host. For their experiment, they used strains of *L. major* parasites expressing two different drug resistance genes and co-infected the ears of BALB/c mice; however, no double drug-resistant hybrid strains were ever recovered from such infections (Akopyants *et al.*, 2009). We, on the other hand, decided to test this possibility by co-infecting macrophage cells *in vitro* and mice with two strains of *L. amazonensis* or *L. mexicana* bearing two different drug selectable markers as well. The drug-resistance markers were integrated into the parasite genome as it was done in previous studies (Akopyants *et al.*, 2009; Calvo-Alvarez *et al.*, 2014; Inbar *et al.*, 2013; Inbar *et al.*, 2019; Romano *et al.*, 2014); however, we also used parasites expressing episomal (e) resistance markers which were not done previously in similar studies. The reason for us choosing species of *L. mexicana* is because, unlike

L. major, they replicate in large spacious communal vacuoles which may provide a proper environment for genetic exchanges. In fact, it was proved that *Chlamydia*, another intracellular agent, is capable of exchanging genetic material between cells within communal vacuoles (Jeffrey *et al.*, 2013; Suchland *et al.*, 2009). In addition, it was shown that intracellular *Leishmania* amastigotes are capable of nuclear fusion indicating that it may be possible for the parasites to exchange genetic material within a mammalian host.

First, we decided to explore the possibility of genetic exchange between parasites in axenic cultures. This way we wanted to demonstrate that this process could potentially occur outside of live hosts. Although this doesn't prove or disprove our hypothesis, it was still interesting to witness whether the parasites are capable of exchanging genetic material in such conditions, because it was never shown to occur prior to the current year and because it would provide an easier way to study such events in laboratory conditions. Previous attempts to generate hybrid parasites in axenic cultures have not yielded any positive results (Akopyants et al., 2009; Inbar et al., 2013). However, very recently, there was a study that has revealed that *L. tropica* parasites are capable of exchanging DNA in axenic conditions (Louradour et al., 2020). By contrast, the frequency of hybrid formation in the given condition was much lower when compared to the frequency of formation in the vector (Louradour et al., 2020). Moreover, attempts of mating two strains of L. major have failed to provide hybrid parasites as previously shown (Louradour et al., 2020). We decided to test this possibility with our L. amazonensis and L. mexicana strains. We proceeded with a similar method described in the study of Louradour et al where we mixed our parasite strains at a ratio of 1:1 in 96 well-plates and left them for 3 days. Later, the parasites were transferred to 24-well plates into conditioned medium for selection of double drug-resistant parasites. We attempted to test four crosses: L. amazonensis LPG2/LPG2:: AHYG + L. amazonensis +/SSU::NEO-GFP; L. amazonensis LPG2/LPG2:://HYG + L. amazonensis NEO-DsRede; L. mexicana LPG2/LPG2:: AHYG + L. amazonensis +/SSU::NEO-GFP, and L. mexicana LPG2/LPG2:: AHYG + L. amazonensis NEO-DsRede. Out of these four crosses only one (L. amazonensis LPG2/LPG2:: AHYG + L. amazonensis NEO-DsRede) had generated double drugresistant parasites. We were able to demonstrate by PCR that the parasites bore both resistance genes; however, we were not able to confirm whether they were actual full genomic hybrids or only the episomal marker was transferred between the parents due to the fact that the hybrids had died. Moreover, we were able to confirm the presence of both genes only in one population of cells out of the 3 populations that we initially isolated. This was due to the fact that we were not able to grow the parasites in culture after their isolation indicating that the supposed hybrids are

unstable. We managed to isolate the parasites anywhere between 18-28 days post transfer into selective medium, similarly to previously published results where *L. tropica* hybrids were isolated 18-30 days post-transfer into selective medium (Louradour *et al.*, 2020). Another similarity is that we recovered a very low yield of parasites in such conditions suggesting that although it is possible, the yield is very low compared to the yield in sand flies (Louradour *et al.*, 2020). Although axenic cultures in which parasites are cultivated are supposed to mimic the internal environment of the sand fly, they seem to lack certain factors found within the vector that may play a role in *Leishmania* genetic exchanges and which need to be uncovered in the future.

We have found that we were able to grow double drug-resistant parasites in axenic cultures. However, we could not conclude whether this was an actual genetic cross or that one parent had transferred only the episomal drug-resistance marker to the other. The cross that generated double drug-resistant parasites had one parent expressing an episomal marker and hence the question. To test this hypothesis, we decided to use transwells to see if parasites are capable of transferring such small DNA packages between cells in an indirect fashion. Now, it is typically considered that parasites need to fuse together in order to exchange genetic material via a meiosis-like mechanism (Inbar et al., 2019). However, it is yet unknown if small DNA molecules such as plasmids can be transmitted between parasites via extracellular vesicles. Extracellular vesicles have been demonstrated to be secreted in both environments mimicking the sand fly and mammalian hosts (Atayde et al., 2015; Hassani et al., 2011). Moreover, the parasites were shown to secrete even more vesicles upon temperature shift to 37°C mimicking the parasite's entry into the host (Hassani et al., 2011). These vesicles are packed with many virulent proteins and small RNAs which play a role in modulating the host's immune response (Atayde et al., 2016). In addition to that, the Leishmania RNA virus 1 was also found to use these extracellular vesicles to propagate from one cell to the next (Atayde et al., 2019; de Carvalho et al., 2019). Since the parasites are capable of transferring RNA material in these vesicles, we wanted to see if Leishmania could transfer DNA material as well, since it was demonstrated for another protozoan parasite, Plasmodium falciparum, which was capable to transfer such material via exosomes between infected red blood cells (Regev-Rudzki et al., 2013). Hence, we decided to see if the cross L. amazonensis LPG2/LPG2:: △HYG + L. amazonensis NEO-DsRede can generate double drug-resistant parasites in transwells which allow only extracellular vesicles to pass through. Despite all our attempts to generate double drug-resistant parasites in such conditions, regardless of whether we pre-incubated them at 34°C or not, we were unable to observe any double drugresistant parasites. This may be due to the fact that the parasites require direct physical contact

as it had been proposed previously (Inbar *et al.*, 2019). Although we weren't able to observe any drug-resistance genes being transferred between parasites via extracellular vesicles, it does not mean that they do not play a role spreading drug-resistance. In fact, a recent study had demonstrated that drug-resistant parasites had modified extracellular vesicles (Douanne *et al.*, 2020). Even though the core proteome of these vesicles is conserved between drug-resistant and sensitive parasites, some virulence and transcription factors as well as proteins coded by drug resistance genes are enriched in theses vesicles and it could facilitate the survival of these drug-resistant parasites as well as potentially that of sensitive parasites within a challenging environment (Douanne *et al.*, 2020). Finally, it would be interesting in the future to examine the contents of Leishmania derived exosomes and see whether they could potentially contain DNA material. This could potentially provide the final evidence for whether the parasite is able to transfer genetic material between each other via such method.

In our study, we show that *L. amazonensis*, parasites that replicate predominantly in communal vacuoles, are able to give rise to potential hybrid progeny in the context of infected mammalian cell. We have tested three types of crosses for hybrid crosses which were L. amazonensis LPG2/LPG2:://HYG + L. amazonensis +/SSU::NEO-GFP; L. amazonensis LPG2/LPG2:://HYG + L. amazonensis NEO-DsRede; L. mexicana LPG2/LPG2:://HYG + L. amazonensis +/SSU::NEO-GFP. By infecting bone-marrow derived macrophages (BMM) with each cross, we managed to isolate double drug resistant progeny twice; however, both were isolated from the L. amazonensis LPG2/LPG2:: AHYG + L. amazonensis +/SSU::NEO-GFP cross. The other two crosses did not generate any double drug-resistant progeny. Both isolates were confirmed to express both resistance genes by PCR. Unfortunately, we could not confirm whether these parasites were full genomic hybrids or not, as done in previous studies. The only other evidence (data not shown) that strongly suggests that the double drug-resistant parasites could have been full genomic hybrids is the fact that the progeny expressed a green fluorescent protein that most likely was inherited from L. amaz NEO-GFPi parent. Additionally, we also demonstrated by using different parental strains of parasites expressing two different fluorescent markers that both parents could be found in the same communal vacuole regardless of whether both strains were L. amazonensis or L. amazonensis and L. mexicana. Although we show that L. amazonensis can undergo some form of genetic recombination, it is a rather rare event. We had a 14 % double drug-resistant parasite recovery rate. However, this was to be expected since genetic exchange studies done in sand flies also revealed a similar pattern. In fact, genetic crosses between L. infantum strains or L.infantum/L.major had a 3.4% and a 3.2% hybrid recovery ratio respectively (Calvo-Alvarez et

al., 2014; Romano et al., 2014). On top of that, other studies have shown that different strains of L. major also had different hybrid recovery rates ranging from 7% to 26% (Akopyants et al., 2009; Inbar et al., 2013). However, some species have an undoubtably high hybrid forming capability. It was demonstrated that hybrid recovery ratio of L. tropica was in the range of 42%-65% (Inbar et al., 2019) and there are many studies reporting natural hybrids between L. braziliensis and L. peruviana or L. guyanensis suggesting that these parasites also have a high capacity for exchanging genetic material. Hence, it is clear that different species have different capabilities when it comes to genetic recombination were some are found to be more efficient and others not. Of note, it would be interesting to document the mating efficiency of New world Leishmania species as well as between geographically isolated New world and Old world Leishmania in infected sand flies To conclude, our 14 % recovery seems to be in accordance with what was previously demonstrated; however, it would be more accurate to judge this ratio if we were to recover these supposed hybrids from infected sandflies. This is due to the fact that the sand fly gut microenvironment and that of an in vitro cell culture or a mammalian host are different and may have an impact on the parasite genetic exchange capabilities as it was demonstrated for L. tropica between axenic cultures and sand fly infections (Inbar et al., 2019; Louradour et al., 2020). In any case, the mating capabilities of different Leishmania species remain to be fully described, but one thing that may clearly be concluded is that the parasites have different efficiencies in such processes and perhaps even in different microenvironments.

Interestingly, we observed that our potential hybrid progeny is not as viable as their parental counterparts. The double drug-resistant parasite populations we had isolated from *in vitro* macrophage infections did not manage to survive for a long time. As a matter of fact, a similar phenomenon was also observed for double drug-resistant progeny isolated from axenic cultures. We were able to maintain one of the hybrids for three weeks by maintaining them in infected BMMs until they lost one of the resistance genes and ultimately perished as a result. This showed that not only do our parasites have low viability but they are also unstable since they had lost one of the resistance genes. However, this is not an entirely unexpected outcome. For instance, Sadlova *et al* managed to observe putative *L. donovani* hybrids in infected sand flies, but they were unable to isolate and cultivate any of them in culture suggesting that such progeny was nonviable in long term perspective (Sadlova *et al.*, 2011). Additionally, some studies demonstrated that hybrid progeny may occasionally have loss of heterozygosity. For example, it was found that one of the hybrid clones of *L. major/L. infantum* had a loss of heterozygosity for one of the parental alleles on chromosome 29 (Romano *et al.*, 2014). As another example, genetic sequencing studies in *L. major* hybrids have revealed that there was a 1-3% loss of heterozygosity or partial

loss at certain loci (Inbar *et al.*, 2013; Inbar *et al.*, 2019). This loss of heterozygosity may be a possible reason that would explain why our double-resistant progeny lost one of the resistance markers. Interestingly, low viability is not the only sign of reduced fitness in hybrid strains of *Leishmania*. In fact, it was recently shown *L. major* intraspecies hybrids had a lesser mating competency than their parental counterparts whereas the interspecies hybrids of *L. major/L. infantum* were found to be sterile (Inbar *et al.*, 2019). Another peculiarity is that the study had also explored the mating capacity of natural *L. tropica* hybrids and they found that one strain failed to mate and was deemed sterile whereas another was mating competent and as efficient as the parental strains they tested for their crosses (Inbar *et al.*, 2019). This leads to the conclusion that not only different *Leishmania* species have different mating capabilities, but that the hybrid progeny also has varying degrees of fertility which could a perspective venue to explore in the future.

Since we were able to observe potential hybrid parasites isolated from in vitro macrophage infections, we attempted to isolate such parasites from infected mice. We did not isolate any double drug-resistant progeny despite all of our attempts of generating such parasites either in an intraspecific manner between L. amazonensis or and interspecific manner with L. amazonensis and L. mexicana. According to the literature, there was only one study that attempted to test whether genetic exchanges are possible between parasites in an infected mammalian host. The researchers had infected mice with two parental strains of L. major, however, they did not isolate any hybrid parasites from these infections (Akopyants et al., 2009). Although both our results and those of Akopyants et al did not recover hybrid progeny from infected mice, it does not suggest that such exchanges do not take place in cells of infected hosts. In the case of L. major, the most probable reason of why no hybrid parasites were obtained is because these parasites, unlike those of the L. mexicana complex, replicate in individual vacuoles. Unlike the tight individual vacuoles, large communal vacuoles provide an advantageous environment where two cells may potentially exchange genetic material. Moreover, there is one study that has demonstrated that amastigotes could undergo nuclear fusion indicating that genetic exchanges could take place (Kreutzer et al., 1994). Another factor that we should keep in mind is that we have observed double drug-resistant parasites isolated from *in vitro* cell infections. One of the reasons as to why we did not observe double drug-resistant parasites from in vivo infections as opposed to in vitro may be due to the fact that the number of parasites used in both methods varies highly. For instance, we infected mice with 1×10⁵ metacyclic parasite mixes (5×10⁴ each parent) corresponding to the range of inoculated parasites by a single fly (From 10 to 1×10⁵ parasites) into a host (Kimblin et al., 2008), whereas for in vitro 1.5×10⁸ parasites per infection (7.5×10⁷ each

parent). Considering the fact that genetic exchanges are a rare occurrence, we have more chances to isolate double drug-resistant progeny from *in vitro* rather than *in vivo*. Also, studies done in sandflies show us that researchers had to infect anywhere between 100 to 450 sandflies to isolate hybrid parasites and all that also depended on how mating competent the different species were (Akopyants *et al.*, 2009; Calvo-Alvarez *et al.*, 2014; Inbar *et al.*, 2013; Inbar *et al.*, 2019; Romano *et al.*, 2014; Sadlova *et al.*, 2011). For example, the lowest yielding crosses were those between *L. infantum* parasites (3.4%) and to obtain such hybrids the researchers had to infect 446 sandflies (Romano *et al.*, 2014). We believe that in order for us to successfully isolate double drug-resistant parasites, we need to infect about the same number of mice to isolate them.

In our study, we have mostly focused on studying the potential of genetic recombination in L. amazonensis; however, we also attempted to test this phenomenon at the interspecies level between L. amazonensis and L. mexicana, two species that replicate in communal vacuoles. Our attempts to cross these two species did not yield any potential hybrids. In fact, there is one study that had reported that there is no hybrid formation observed between L. major and L. turanica (Chajbullinova et al., 2012). Perhaps, our lack of hybrid formation may be due to the fact that we had not done enough replicates to observe the given progeny and the same conclusion could be given for the L. major/L. turanica cross considering that some crosses are rarer than others. Additionally, future studies should explore mating capabilities of different L. amazonensis and L. mexicana strains as it was done previously for L. major (Inbar et al., 2013). Another reason that has been mentioned before, is that the microenvironment of a mammalian host is quite different than that of sand fly and that one may be more appropriate for genetic exchanges than the other. In addition, we did not try intraspecific crosses with L. mexicana as we did with L. amazonensis to assess their intraclonal mating capabilities; however, we suspect that they may be as efficient as L. amazonensis. Our lack of hybrid formation between these two species could not be due to growth competition. In fact, both species grew in infected cells at the same rate when co-cultured or alone. The only difference that we found was their growth pattern within the infected macrophages. Specifically, L. mexicana parasite population grew at a slower rate over time when compared to L. amazonensis. Of note, all L. amazonensis parental strains used in our crosses grew well within infected cells and at similar rates. Finally, it is important to note that we confirmed the presence of both L. mexicana and L. amazonensis parental strains within the same infected cells and within the same communal vacuoles. Therefore, our lack of interspecies double-resistant parasites cannot be due to the parasites not growing in the same vacuoles.

CONCLUSION

In conclusion, we present for the first time in the present study the occurrence of genetic exchanges between L. amazonensis within infected mammalian cells. We were not capable of isolating potential hybrids from infected mice, but the fact that we have isolated a few double drugresistant parasites from *in vitro* cell infections suggest that such processes may occur. They are rare and lead to the generation of unstable offspring with low-viability. Moreover, we demonstrate that double drug-resistant parasites can be observed in axenic cultures. We have also tried to cross L. mexicana and L. amazonensis; however, we did not observe any double drug-resistant progeny from such a cross. In future studies concerning the parasites of the L. mexicana complex specifically, we should continue investigating their possibility of genetic exchanges in infected mammalian cells and hosts. It would be also interesting to cross these species with species that have a higher mating compatibility such as L. tropica or L. braziliensis which have been reported to form natural hybrids with other species multiple times. This may increase the chances of isolating potential hybrid parasites. Although L. tropica and L. braziliensis are parasites that replicate in individual vacuoles, we believe that they can still fuse with the communal vacuoles of L. mexicana complex parasites since it has been shown in the past between vacuoles of L. amazonensis and L. amazonensis/L. major (Real et al., 2010; Real et al., 2008). It is now known that different species have different mating capabilities, therefore it is important to continue exploring hybridization events within and between different Leishmania species. Additionally, examining genetic exchange capabilities between L. amazonensis or L. mexicana species. Such studies will further advance our understanding on the biological diversity and complexity of the Leishmania genus as well as provide insight in the potential strategies to transmit resistance genes between parasites. In addition, it will also be important to assess the fertility and fitness of these hybrids to further highlight the impact and importance of genetic recombination within the Leishmania population as recently shown in one study (Inbar et al., 2019).

APPENDIX I: AUTHOR'S PROOF OF SUBMITTED ARTICLE

Author's Proof

Carefully read the entire proof and mark all corrections in the appropriate place, using the Adobe Reader commenting tools (Adobe Help). We do not accept corrections in the form of edited manuscripts. Also, we do not accept corrections communicated via email. We encourage you to upload or post all your corrections directly in the Production forum, to avoid any comments being missed.

In order to ensure the timely publication of your article, please submit the corrections within 48 hours. If you have any questions, contact cellandinfect.production.office@frontiersin.org.

Before you submit your corrections, please make sure that you have checked your proof carefully as once you approve it, you won't be able to make any further corrections.

Quick Check-List

- Author names Complete, accurate and consistent with your previous publications
- Affiliations Complete and accurate. Follow this style when applicable: Department, Institute, University, City, Country
- Tables Make sure our formatting style did not change the meaning/alignment of your Tables.
- Figures Make sure we are using the latest versions.
- Funding and Acknowledgments List all relevant funders and acknowledgments.
- Conflict of Interest Ensure any relevant conflicts are declared.
- Supplementary files Ensure the latest files are published and that no line numbers and tracked changes are visible.
- Also, the supplementary files should be cited in the article body text.
- Queries Reply to all typesetters queries below
- Content Read all content carefully and ensure any necessary corrections are made.

Author Queries Form

Q1	Confirm whether the insertion of the article title is correct.
Q2	The citation and surnames of all of the authors have been highlighted. Check that they are correct and consistent with the authors' previous publications, and correct if need be. Please note that this may affect the indexing of your article in repositories such as PubMed.
Q3	Confirm that the email address in your correspondence section is accurate.
Q4	Confirm that all author affiliations are correctly listed. Note that affiliations are listed sequentially as per journal style and requests for non-sequential listing will not be applied.
Q5	Confirm that the keywords are correct and keep them to a maximum of eight and a minimum of five. (Note: a keyword can be comprised of one or more words.) Note that we have used the keywords provided at Submission. If this is not the latest version, please let us know.
Q6	Check if the section headers (i.e., section leveling) were correctly captured.
Q7	Confirm that the short running title is correct, making sure to keep it to a maximum of five words.

Q8	If you decide to use previously published, copyrighted figures in your article, please keep in mind that it is your responsibility, as the author, to obtain the appropriate permissions and licenses and to follow any citation instructions requested by third-party rights holders. If obtaining the reproduction rights involves the payment of a fee, these charges are to be paid by the authors.	
Q9	Ensure that all the figures, tables and captions are correct, and that all figures are of the highest quality/resolution.	
Q10	Verify that all the equations and special characters are displayed correctly.	
Q11	Is "Descoteaux et al., 1994" a reference citation? If yes, please provide the complete reference details.	
Q12	Check if the edit made in line "(6-8weeks old)" is fine.	
Q13	Confirm that the Data Availability statement is accurate. Note that we have used the statement provided at Submission. If this is not the latest version, please let us know.	
Q14	Ensure to add all grant numbers and funding information, as after publication this will no longer be possible. All funders should be credited and all grant numbers should be correctly included in this section.	
Q15	Confirm whether the insertion of the Ethics Statement section is fine. Note that we have used the statement provided at Submission. If this is not the latest version, please let us know.	
Q16	Confirm that the details in the "Author Contributions" section are correct and note that we have added the sentence "All authors contributed to the article and approved the submitted version."	
Q17	Please provide in-text citation, publication year, journal title, volume number and page range of Ref. Descoteaux et al.	
Q18	Please provide volume number and page range of Ref. Elzanowska et al., 2020.	
Q19	Please provide the doi for Evans et al. 1987; Turco et al. 1994.	
Q20	Please provide page range of Ref. lantorno et al., 2017.	
Q21	Confirm if the text included in the Conflict of Interest statement is correct.	

Q3

Q1

Q2

Study on the Occurrence of Genetic Exchange Among Parasites of the Leishmania mexicana Complex

Roman Telittchenko and Albert Descoteaux*

Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada

In *Leishmania*, genetic exchange has been experimentally demonstrated to occur in the sand fly vector and in promastigote axenic cultures through a meiotic-like process. No evidence of genetic exchange in mammalian hosts have been reported so far, possibly due to the fact that the *Leishmania* species used in previous studies replicate within individual parasitophorous vacuoles. In the present work, we explored the possibility that residing in communal vacuoles may provide conditions favorable for genetic exchange for *L. mexicana* and *L. amazonensis*. Using promastigotes lines of both species harboring integrated or episomal drug-resistance markers, we assessed whether genetic exchange can occur in axenic cultures, in infected macrophages as well as in infected mice. We obtained evidence of genetic exchange for *L. amazonensis* in both axenic promastigote cultures and infected macrophages. However, the resulting products of those putative genetic events were unstable as they did not sustain growth in subsequent sub-cultures, precluding further characterization.

Keywords: genetic exchange, *Leishmania*, host-pathogen relationship, macrophage, drug resistance, 💽 intracellular pathogen

INTRODUCTION

Specialty section:

OPEN ACCESS

Juan David Ramírez

Rosario University, Colombia

New University of Lisbon, Portugal

Universidad del Rosario, Colombia

Edited by:

Reviewed by:

Luz Patino,

Isabel Mauricio

*Correspondence:

Albert Descoteaux

albert.descoteaux@inrs.ca

This article was submitted to Parasite and Host, a section of the journal Frontiers in Cellular and Infection Microbiology

Received: 16 September 2020 Accepted: 10 November 2020 Published: xx Month 2020

Citation: Telittchenko R and Descoteaux A

(2020) Study on the Occurrence of Genetic Exchange Among Parasites of the Leishmania mexicana Complex. Front. Cell. Infect. Microbiol 1.0607253. doi: 10.3389/fcimb.2020.607253 Protozoan parasites of the genus *Leishmania* are the causative agents of a spectrum of diseases known as leishmaniasis that range from self-healing cutaneous lesions to destructive mucocutaneous infections and visceral pathologies. *Leishmania* has a distinct life cycle which consists of two specific environments. The first is that of the sand fly insect vector in which the parasites multiply within the alimentary tract under the promastigote form and the second is the infected mammalian or human hosts where the parasites replicate as amastigotes within the phagolysosomal compartment of host phagocytes. Currently, there are 20 known species of parasites that are associated with human disease. However, there is still a considerable amount of mutations during clonal division (Tibayrenc and Ayala, 2013; Rougeron et al., 2017).

In eukaryotic pathogenic organisms, sex is one of the main mechanisms that allows the spread of pathogenicity, resistance, and virulence genes (Heitman, 2010). Due to very strong linkage disequilibrium observed in *Leishmania*, it has been argued that the reproductive mode of *Leishmania* is predominantly clonal (Tibayrenc and Ayala, 2013). However, there is much evidence indicating that genetic exchange is part of the biology of *Leishmania* parasites, as

Month 2020 | Volume 10 | Article 607253

Q6

115 evidenced by the occurrence in nature of hybrids. These natural 116 hybrids were described at the intraspecific level for L. tropica, L. 117 donovani, L. infantum, and L. brasiliensis (Chargui et al., 2009; 118 Rougeron et al., 2009; Gelanew et al., 2014; Rogers et al., 2014; 119 Iantorno et al., 2017). There were also reports of hybrids that 120 originated from crosses between parasites of the Viannia 121 subgenus, such as L. braziliensis and L. guyanensis, which are 122 one of the most common ones described (Bonfante-Garrido 123 et al., 1992; Belli et al., 1994; Dujardin et al., 1995; Banuls 124 et al., 1997; Cupolillo et al., 1997; Delgado et al., 1997; Banuls 125 et al., 1999; Torrico et al., 1999; Nolder et al., 2007; Cortes et al., 126 2012; Jennings et al., 2014; Kato et al., 2016; Kato et al., 2019). 127 Natural hybrids were also reported for Leishmania species of the 128 Leishmania subgenus such as L. major and L. arabica, L. major 129 and L. infantum, as well as L. donovani and L. infantum (Evans 130 et al., 1987; Kelly et al., 1991; Ravel et al., 2006; Volf et al., 2007; 131 Odiwuor et al., 2011; Seblova et al., 2015; Cortes et al., 2019).

132 Using two strains of L. major harboring distinct integrated 133 drug-resistance markers, Akopyants and colleagues 134 experimentally demonstrated the existence of genetic exchange 135 in the invertebrate stage of the parasite (Akopyants et al., 2009). 136 By infecting sand flies and dissecting them 13-16 days post-137 infection, the double drug-resistant progeny of this cross was 138 further demonstrated to be actual genomic hybrids by 139 confirming the presence of at least one set of allelic markers 140 from each parent (Akopyants et al., 2009). In another study from 141 the same group, it was further shown that crosses in the 142 invertebrate stage between L. major parasites coming from 4 143 distinct geographical locations are able to produce hybrid 144 progeny, which also suggests that there are no intraspecies 145 barriers when it comes to exchanging genetic information 146 (Inbar et al., 2013). Another interesting finding, was that 147 hybrid formation was observed in both the natural P. duboscqi 148 vector and in the unnatural but permissive L. longipalpis and, by 149 isolating the parasites from infected sand flies 3-18 days post-150 infection, it was further ruled out that genetic exchange takes 151 place between parasites when they are in the nectomonad form 152 (Inbar et al., 2013). In addition, a study based on microscopy and 153 flow cytometry allowed to visualize evidence of genetic exchange 154 between two strains of L. donovani expressing two different 155 fluorescent molecules (RFP and GFP) which were present in 156 the same vector (P. perniciosus or L. longipalpis) and gave rise to 157 yellow promastigote progeny; however, these putative hybrids 158 could not be recovered from the sand flies and grown in culture 159 for further analyses (Sadlova et al., 2011). There was also a study 160 which demonstrated hybrid formation in sand flies between two 161 L. infantum strains expressing different fluorescent as well as 162 different drug-resistance markers (Calvo-Alvarez et al., 2014) 163 and another paper demonstrated formation of hybrid parasite strains in sand flies between two entirely different species, 164 165 namely L. major and L. infantum (Romano et al., 2014). 166 Finally, the ability of L. tropica to exchange genetic 167 information in an intraspecific manner in an infected insect 168 vector as well as in axenic culture has also been recently 169 demonstrated using whole genome sequencing (Inbar et al., 170 2019; Louradour et al., 2020).

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

Despite the fact that hybrid parasites could be isolated both in nature and in laboratory conditions from infected sand flies and axenic cultures, the mechanism by which they reproduce is still poorly understood. This is partially due to the fact that this is not an obligate mode of reproduction of the parasite; however, recent genome sequencing data from 44 hybrids generated between and within L. infantum, L. tropica, and L. major suggest that Leishmania reproduces via a meotic-like mechanism (Inbar et al., 2019). Apart from one study using L. major (Akopyants et al., 2009), it is still not widely known whether or not genetic exchange can occur within an infected mammalian host, although there is a study that has shown previously by DNA quantification that infected macrophages could harbor 4N amastigotes suggesting that genetic exchange is possible in mammalian host cells (Kreutzer et al., 1994). Here, we explored the possibility of intraclonal and interspecific genetic exchange among parasites of the L. mexicana complex, which unlike other Leishmania species, replicate in spacious communal vacuoles that may provide an environment favorable to genetic exchange (Case et al., 2016).

MATERIALS AND METHODS

Ethics Statement

All animal handling was performed in accordance with the protocols 1806–01 and 1806–02, which were approved by the *Comité Institutionel de Protection des Animaux* of the INRS-Centre Armand-Frappier Santé Biotechnologie. These protocols respect procedures on animal practice as instructed by the Canadian Council on Animal Care, described in the Guide to the Care and Use of Experimental Animals.

Plasmids and Constructs

The plasmid pLaLPG2-HYG from which the LPG2:: AHYG targeting construct was used to create Hygromycin B-resistant parasites was kindly provided by Drs. Valeria M. Borges and Leonardo Paiva Farias (Fiocruz Bahia - Instituto Gonçalo Moniz, Brazil) (Figure 1). The plasmid pCR2.1-L.d-rDNA-praIRNEOaIR-GFP from which the Ld-rDNA-NEO-GFP targeting sequence was used to create G418-resistant parasites was kindly provided by Dr. Barbara Papadopoulou (Université Laval, Canada) (Figure 1). The plasmid pKS-NEO-DsRed was provided by Dr. David L. Sacks (National Institute of Allergy and Infectious Diseases, USA) (Kimblin et al., 2008). The pLeish-HYG-GFP construct was created the following way: a SacI fragment containing the GFP gene was excised from the plasmid pXG-GFP+ (Ha et al., 1996), blunted, and inserted into the EcoRV site of pLeish-HYG (unpublished), yielding pLeish-HYG-GFP.

Parasites

Both *L. amazonensis* LV79 (MPRO/BR/72/M1841) and *L. mexicana* (MNYC/BZ/62/M379) were passaged in mice to maintain their virulence. Amastigotes recovered from ear dermis lesions of infected C57BL/6 mice were differentiated

248 Q8

FIGURE 1 | Generation drug-resistant Leishmania parasites. (A) Ld-rDNA-NEO-GFP and LPG2:::ΔHYG targeting constructs used for the integration into the ribosomal RNA locus or in one allele of LPG2, respectively. For the L.d-rDNA-NEO-GFP construct, the NEO-GFP resistance casset(white and gray boxes) was inserted in the Smal site of the ribosomal RNA locus (black rectangle). The dashed lines delimit the regions of recombination between the target genes and targeting constructs. Arrows indicate orientation. (B) PCR products for drug resistance markers H/G and NEO of L amazonensis and L mexicana parental strains. The size of H/G and NEO resistance genes is 1,029 and 503 bp long, respectively. The pLeish-H/G-GFP and the pKS-NEO-DSRed constructs were used as controls for the H/G and NEO genes, respectively. La. LV79 WT is a DNA sample used to show that our wild type parasites do not harbor any drug-resistance are controls used to validate the presence of H/G and NEO resistance genes. No DNA sample was loaded as negative control. M, molecular DNA ladder; H, Hygromycir; N, G418.

into promastigotes in Leishmania medium (M199-1X (Sigma) with 10% heat-inactivated fetal bovine serum (FBS), 100 µM Q10 hypoxanthine, 3 μM biopterin, 40 mM HEPES at pH 7.4, 5 μM hemin, 1 µM biotin, and Penicillin-Streptomycin) in a 26°C incubator. For the generation of L. amazonensis LPG2/ LPG2:: AHYG and L. mexicana LPG2/LPG2:: AHYG, log-phase L. amazonensis and L. mexicana promastigotes were electroporated with the LPG2:: AHYG targeting construct (excised as a 2.6-kb EcoRVI-HindIII-BglI fragment from pLaLPG2KO-HYG) in 0.2 cm electroporation cuvettes, at 0.45 kV and 500 µF of high capacitance as previously described in similar protocols (Descoteaux et al., 1994; Turco et al., 1994). Q11 After electroporation, promastigotes were grown in drug-free Leishmania medium for 24 h. Following this incubation, L. amazonensis LPG2/LPG2:: AHYG parasites were selected in the presence of 35 µg/ml Hygromycin B (Sigma) and L. mexicana LPG2/LPG2:: AHYG parasites were selected in the presence of 70 µg/ml Hygromycin B (Sigma) respectively. For the generation of L. amazonensis +/SSU::NEO-GFP, L. amazonensis promastigotes were electroporated with the L.d-rDNA-NEO-GFP targeting construct (excised as a 4.25-kb BstXI fragment from pCR2.1-L.d-rDNA-pr-aIRNEOaIR-GFP). After electroporation, the parasites were grown in drug free medium for 24 h and then grown in Leishmania medium containing 20 µg/ml G418 (Life Technologies). L. amazonensis NEO-DsRede parasites were obtained by electroporating L. amazonensis promastigotes with the plasmid pKS-NEO-DsRed. Parasites were grown in drug free medium for 24 h and then grown in medium containing 20 µg/ ml G418. The same method was used to obtain L. mexicana pKS-NEO-DsRede and they were maintained in Leishmania medium

containing 40 µg/ml of G418. *L. amazonensis HYG-GFPe* promastigotes were generated by electroporating *L. amazonensis* with the plasmid pLeish-*HYG-GFP*. Parasites were grown in drug-free medium for 24 h and then grown in medium containing 35 µg/ml Hygromycin B

Mammalian Cell Culture

Bone marrow-derived macrophages (BMM) were differentiated from the bone marrow of 6- to 8-week old C57BL/6 mice as previously described (Descoteaux and Matlashewski, 1989). BMM were differentiated for 7 days in complete DMEM [containing L-glutamine (Life Technologies), 10% v/v heat inactivated fetal bovine serum (FBS) (Life Technologies), 10 mM HEPES (Bioshop) at pH 7.4, and penicillin-streptomycin (Life Technologies)] supplemented with 15% v/v L929 cellconditioned medium (LCM) as a source of macrophage colony-stimulating factor-1. To render the BMM quiescent prior to experiments, cells were transferred to tissue culturetreated 6- or 24-well plates or T25 tissue culture flasks for 24 h in complete DMEM without LCM. The cells were kept in a humidified 37°C incubator with 5% CO2. The number of macrophages used per container are as following: 2.2 X 10⁶ BMMs per well of a 6-well plate, 0.3 X 106 BMMs per well of 24well plate and 25 X 106 BMMs in T-25 flasks.

Transwell Experiments

For genetic exchange transwell experiments, donor parasites (*L. amazonensis NEO-dsRede*) were relocated to the insert chamber containing 0.4 μ m pores in a polycarbonate membrane (Corning) and the recipient parasites (*L. amazonensis LPG2*/

374

343 LPG2:: AHYG) were added to the wells. The plates were then 344 either incubated at 26°C or pre-incubated at 34°C for 4 h, as 345 done previously (Hassani et al., 2011), and then transferred to 346 26°C. The parasites were collected at 24, 72, 96, and 120 h post-347 incubation. Each parental stain was equally divided into 3 wells 348 of a 6-well plate and were grown in the presence of antibiotics. 349 Two wells were used as controls containing either 35 µg/ml of 350 Hygromycin B or 20 µg/ml of G418 and the last well contained 351 both drugs in the medium. The parasites were kept in such 352 conditions up to 3 weeks. Each parental strain was also grown 353 separately and were under the same conditions as a control.

355 Parasite Co-Culture Experiments

356 As described (Louradour et al., 2020), stationary phase 357 promastigotes of two parental strains were mixed and 358 distributed into 96-well plates up to a total volume of 100 µl in 359 each well. One million parasites of each strain were added in the 360 wells. Three days later, each co-culture from the 96-well plate 361 was transferred to a single well of a 24-well plate containing 900 362 µl of Leishmania medium containing either 35 µg/ml Hygromycin B and 20 µg/ml G418 if both parental strains 363 364 were L. amazonensis or 60 µg/ml Hygromycin B and 40 µg/ml 365 G418 if one of the parental strains was L. amazonensis and the 366 other was L. mexicana. Each line was cultured individually in 367 Leishmania medium supplemented with either Hygromycin B or 368 G418 or both drugs as controls. When double drug-resistant 369 parasite cultures were growing in wells (growth was observed 370 between 19 and 28 days), the cells were passaged in Leishmania 371 medium at a dilution of 1:10. DNA was then extracted from 372 double drug-resistant parasites and was used for PCR reactions. 373

In Vitro Infections

Metacyclic promastigotes were isolated from promastigote 375 376 cultures in the late stationary phase by means of a density 377 gradient centrifugation (Spath and Beverley, 2001). Specifically, 2 ml of 40% w/v Ficoll PM400 (GE healthcare) were added to the 378 379 bottom of ta 15 ml tube, followed by a 5 ml layer of 10% Ficoll 380 PM400 in M199-1x and topped by late stationary phase 381 promastigotes resuspended in 5 ml of DMEM with no FBS (Arango Duque et al., 2019). Metacyclic promastigotes were 382 383 collected from the DMEM-10% Ficoll interphase after spinning 384 the gradient for 10 min. The percentage of isolated metacyclic 385 parasites from the interphase generally varied from 12-18% of 386 the input population. Metacyclic promastigotes were then 387 opsonized with the serum of C57BL/6 mice for 30 min, washed 3 times with PBS and resuspended in cold complete 388 389 DMEM (cDMEM). The parasites were then fed to macrophages 390 adhered in T-25 flasks (Sarstedt) (Ratio 3:1 for single infections, 391 ratio 6:1 for mix infections). The cells were then incubated at 4°C 392 for 10 min (Arango Duque et al., 2019) to synchronize 393 phagocytosis. The internalization of parasites was triggered by transferring the cells to 34°C (Arango Duque et al., 2019). Two 394 hours post-internalization, the cells were washed three times 395 396 with warmed cDMEM to remove non-internalized 397 promastigotes. Infected BMM were incubated for 120 and 398 192 h. Next, the amastigotes were isolated from infected 399 macrophages by resuspending those in cDMEM containing 419

420

421

422 423

424 425

426

427

428

429

430

431

432

0.05% of SDS. Shortly, the macrophages resuspended in 2ml of 400 401 cDMEM containing SDS are incubated at 37°C for 3 min. Then, the resulting supernatant is resuspended in 10 ml of cDMEM 402 and spun at 3,000 rpm. After the spin, the supernatant was 403 404 discarded. The amastigotes were resuspended in Leishmania medium and separated into 3 separate conditions. The 405 406 conditions were: Leishmania medium containing 20 µg/ml of G418 or Leishmania medium containing 32 µg/ml of 407 Hygromycin B or Leishmania medium containing both drugs. 408 The parasites were left for incubation at 26°C for up to 3 weeks to 409 select for double drug-resistant parasites. If applicable, the 410 411 double drug-resistant parasites were passaged at a dilution of 412 1/10 and their DNA was then extracted and was used for PCR 413 reactions. Double drug-resistant parasites were also passaged in infected BMM for 3 days as well. For parasite survival, cells were 414 washed with PBS and fixed and stained with fixative and staining 415 416 solutions of the Hema 3 stain set (Fisher Scientific). This process 417 was done for 2, 48, 120, and 192 h timepoints. 418

Alternatively, the infections were done in 6-well plates instead of T-25 flasks. Three wells were used for mixed infection for each timepoint (120 and 192 h) and two wells were reserved for infection with each parental strain alone. Once the amastigotes were obtained, they were plated in 96-well plates in 100 μ l of drug free *Leishmania* medium as described in the parasite co-culture section. The amastigotes were plated at 5 million parasites per well. Three days later, each well was transferred to a well of 24well plate that contained 900 μ l with antibiotics. Pure parental cultures were used as controls as previously described. If applicable, the double drug-resistant parasites were passaged at a dilution of 1/10 and their DNA was then extracted from double drug-resistant parasites and was used for PCR reactions.

In Vivo Infections and Parasite Recovery

C57BL/6 mice (6-8 weeks old) were infected with 1 X 10⁵ Q12 433 metacyclic promastigotes (5 X 10⁴ of each line) of either L. 434 amazonensis LPG2/LPG2:: AHYG + L. amaz +/SSU::NEO-GFP or 435 L. mexicana LPG2/LPG2:: AHYG + L. amaz +/SSU:: NEO-GFP 436 437 into the ear dermis with an insulin syringe (29 G). Mice infected 438 separately with each line were used as controls. At 9 weeks post-439 infection, mice were euthanized under CO2 asphyxiation and by cerebral dislocation as well. The infected ears were then collected 440 and disinfected in 70% ethanol for 10 min and air dried for 441 10 min. Then, they were separated into dorsal and ventral leaflets 442 and cut up into small pieces with surgical scissors. The cut-up 443 444 ears were loaded in 2.0 ml tubes containing zirconium beads 445 (Benchmark Scientific Inc.) and resuspended in 1 ml of 446 Leishmania medium and vortexed for a 1 min and 30 s. The resulting suspension was then transferred to 100 µm cell strainers 447 placed over 50 ml Falcon tubes and filtered to isolate the 448 amastigotes. The remaining tissue in the cell strainer was 449 smashed with a sterile 10 ml syringe plunger and washed two 450 times with Leishmania medium. The resulting cell suspension 451 was spun at 3,200 RPM at 4°C for 10 min. The amastigotes were 452 453 then separated in three T-25 flasks and left in unconditioned Leishmania medium for 24 h. Lastly, the antibiotics were added 454 455 to each flask according to each condition and were incubated at 456

Telittchenko and Descoteaux

459

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

457 26°C for three weeks. The conditions were Hygromycin only,
 458 G418 only or both drugs.

460 DNA Extraction and PCR Confirmation of 461 Double-Resistant Parasites

462 For genotyping analyses, total DNA was extracted from parasites 463 by using a phenol/chloroform treatment as previously described 464 (Medina-Acosta and Cross, 1993). All of the PCR amplifications 465 were done in 50 µl total volume containing 100 ng of parasite 466 DNA and 10pmol of each primer. The following primer pairs 467 were used: for Hygromycin B 5'-ATGAAAAGCCTGA 468 ACTCACC-3' (Forward), 5'-CTATTCCTTTGCCCTCGG-3' 469 (Reverse) that were previously described (Romano, 2014); for 470 G418 5'CCACGACGGGCGTTCCTTGCGCAGCTGTGC-3' 471 (Forward), 5'-GTCAGCCCATTCG CCAAGCTCTTCAGC-3' 472 (Reverse) which were custom made. The resulting DNA 473 products were then verified by electrophoresis on 1.2% 474 Agarose gel and subsequently viewed by staining the samples 475 with ethidium bromide. 476

Live Microscopy

BMMs were platted at the bottom of 6 well-plate with a coverslip attached to the bottom of the wells. The cells were kept in the 34°C incubator for 24 h to without LCM to render them quiescent. They were then infected with metacyclic parasites of each line separately as a positive control or with a combination of two. Non-infected cells were used as a negative control. The samples were then viewed with 63X objective lens LSM780 system confocal microscope (Carl Zeiss microimaging). The images were taken and processed with the ZEN 2012 Software (Carl Zeiss) and subsequently mounted into the figures *via* Adobe Photoshop 2019.

RESULTS

Generation of Drug-Resistant Strains of *L. amazonensis* and *L. mexicana*

495 To investigate the possibility that formation of hybrids and 496 genetic exchange may occur among parasites of the L. 497 mexicana complex, we used L. amazonensis LV79 and L. 498 mexicana M379 expressing either episomal or integrated genes 499 encoding resistance to Hygromycin B (HYG) or to G418 (NEO). 500 To this end, we generated one line of L. amazonensis and one line 501 of L. mexicana in which the HYG resistance gene was integrated 502 in one allele of the LPG2 gene (L. amazonensis LPG2/ 503 LPG2:: AHYG and L. mexicana LPG2/LPG2:: AHYG) (Figure 504 1A), one line of L. amazonensis in which a NEO-GFP 505 construct was integrated into the ribosomal RNA locus (L. 506 amazonensis +/SSU::NEO-GFP) (Figure 1A), one line of L. 507 amazonensis and one line of L. mexicana with an episomal 508 NEO-DsRed plasmid (L. amazonensis NEO-DsRede and L. 509 mexicana NEO-DsRede), and one line of L. amazonensis with 510 an episomal HYG-GFP plasmid (L. amazonensis HYG-GFPe). 511 We confirmed the presence/absence of both resistance genes in 512 each line by PCR analysis using specific primers against HYG 513

and *NEO* (Figure 1B), and we ensured that these drug-resistant recombinant parasites retained the ability to infect and replicate within bone marrow-derived macrophages (BMMs) over a period of 196 h (Figure 2).

Drug Resistance is not Transferred in In Vitro Cultures of Promastigotes in the Absence of Cell-To-Cell Contact

Evidence indicate that DNA can be transferred from cell-to-cell through extracellular vesicles (Elzanowska et al., 2020). In addition, erythrocytes infected with Plasmodium falciparum can transfer parasite DNA to other infected cells via the release of extracellular vesicles (Regev-Rudzki et al., 2013). Whereas no such mechanism has been described in Leishmania, it was recently reported that the Leishmania RNA virus 1 (LRV1) exploits the Leishmania exosomal pathway as a mode of transmission from one promastigote to another (Atayde et al., 2019). This led us to verify the hypothesis that extracellular vesicles released in the culture medium may serve as a vehicle to transfer genetic material, including episomes harboring a drugresistance gene among promastigotes. To this end, we used transwells (0.4 µm pores) to physically separate L. amazonensis NEO-DsRede promastigotes from L. amazonensis-LPG2/ LPG2:: AHYG promastigotes. We incubated the transwell plates either at 26°C or we pre-incubated them at 34°C for 4 h and then transferred the plates to 26°C. Such a transient increase in temperature has been previously shown to enhance the secretion of extracellular vesicles by Leishmania promastigotes (Hassani et al., 2011). Promastigotes co-incubated in transwells at either 26 or 34°C were collected after 24, 72, 96, and 120 h and assessed for their capacity to grow in the presence of both

FIGURE 2 | SURVia of parental strains within Intected macrophages. Binitis were infected with metacyclic serum-opsonized promastigotes of L. amazonensis and L. mexicana parental strains (L. amazonensis LPG2/ LPG2:: ΔHYG, L. mexicana LPG2/LPG2:: ΔHYG, L. amazonensis +/SSU::NEO-GFP, L. amazonensis NEO-DsRede) for 2, 48, 120, and 196 h. Bars represent mean ± SE of three representative experiments performed in triplicate in bone marrow derived murine macrophages. Parasites were counted in 100 macrophages and quantified by light microscopy.

570

571 hygromycin and G418. Both L. amazonensis-NEO-DsRede and L. 572 amazonensis-LPG2/LPG2:: AHYG were viable and resistant to 573 G418 and hygromycin, respectively, up to 120 h of co-574 incubation in the transwells. However, no double drug-575 resistant parasites were recovered from 9 independent 576 experiments performed in triplicate, indicating that exchange 577 of genetic information through extracellular vesicles among L. 578 amazonensis promastigotes, if it occurs, is a very rare event.

Genetic Exchange Among L. amazonensis 580 and L. mexicana Promastigotes in Axenic 581 582 Cultures

583 A recent study revealed that some strains of L. tropica, but not L. 584 major, form hybrids in promastigote axenic cultures (Louradour 585 et al., 2020). This finding prompted us to evaluate the occurrence 586 of genetic crosses among L. amazonensis and L. mexicana 587 promastigotes in in vitro co-cultures. Following the 588 experimental protocol described by Louradour et al, we co-589 cultured combinations of stationary phase promastigotes with 590 integrated drug-resistance genes as depicted in Table 1 591 (Louradour et al., 2020). We also performed co-culture 592 experiments using promastigotes harboring episomes (Table 593 1). Each co-culture was distributed into 96-well plates in drug-594 free medium. Three days later, the parasites were transferred into 595 24-well plates and cultured in selective medium (hygromycin B 596 and G418) and left for up to 40 days in a 26°C incubator. 597 Individual single drug-resistant lines were used as controls and 598 had gone through the same process. After 40 days of incubation, 599 we did not obtain double drug-resistant parasites except for the 600 co-cultures of L. amazonensis-LPG2/LPG2:: AHYG and L. 601 amazonensis-NEO-DsRede (Table 1). We obtained 602 promastigote populations resistant to both G418 and 603 hygromycin B in 3 separate wells. However, only one out of 3 604 grew sufficiently to allow for DNA isolation and PCR analysis, 605 which revealed the presence of both HYG and NEO genes 606 (Figure 3). However, we were unable to further characterize 607 these double-drug-resistant parasites as they perished in 608 subsequent sub-cultures. These results suggest that genetic 609 exchange in axenic cultures among those two drug-resistant 610 lines may occur and results in transient/unstable double drug-611 resistant promastigotes.

579

TABLE 1 | Crosses used in axenic cultures.

617	Crosses in axenic cultures	No. of wells	% Yield of double
618		with crosses	drug-resistant parasites
619	L. amaz LPG2/LPG2::ΔHYG ×	192	0/192 (0%)
620	L. amaz +/SSU::NEO-GFP		
621	L. amaz LPG2/LPG2::ΔHYG ×	192	3/192 (1.56%)
622	L. amaz NEO-DsRede		
(22	L. mex. LPG2/LPG2:: ΔHYG ×	96	0/96 (0%)
623	L. amaz +/SSU::NEO-GFP		
624	L. mex LPG2/LPG2::ΔHYG ×	96	0/96 (0%)
625	L. amaz NEO-DsRede		
626			

Demonstrates the number of wells tested and percentage of isolated double drug-627 resistant parasites

FIGURE 3 | Molecular genotype characterization of double drug-resistant parasites isolated from axenic cultures. PCR amplification of genes encoding antibiotic resistance. The size of HYG and NEO resistance genes is 1,029 and 503 bp long. The pLeish-HYG-GFP and the pKS-NEO-DsRed constructs were used as controls for the HYG and NEO genes, respectively. La. LV79 WT is a DNA sample used to show that our wild type parasites do not express any drug-resistance markers. L. amazonensis LPG2/LPG2:: AHYG and L. amazonensis NEO-DsRede are controls used to validate the presence of HYG and NEO resistance genes within the appropriate parental strains. No DNA sample was loaded as negative control.

Unstable Genetic Exchange in Infected Macrophages

The fact that L. amazonensis and L. mexicana replicate within communal parasitophorous vacuoles led us to verify the possibility that these intracellular replicative niches provide conditions propitious for genetic exchange. To this end, we infected BMMs with the following four combinations of drugresistant parasites: L. amazonensis LPG2/LPG2:: AHYG + L. amazonensis +/SSU::NEO-GFP; L. amazonensis LPG2/ LPG2:: Δ HYG + L. amazonensis NEO-DsRede; L. mexicana LPG2/LPG2:: AHYG + L. amazonensis +/SSU::NEO-GFP, and L. mexicana LPG2/LPG2:: AHYG + L. amazonensis NEO-DsRede. Similar to single infection, parasites in mixed infections replicated up to 192 h post-infection and induced the formation of communal PVs (Figure 4A). To confirm that these communal PVs harbored both drug-resistant Leishmania lines, we performed live cell imaging on BMMs co-infected with either L. amazonensis HYG-GFPe + L. amazonensis NEO-DsRede or L. amazonensis HYG-GFPe + L. mexicana NEO-DsRede. In both cases, we observed the two drug-resistant parasite lines within the same communal vacuoles, at 48 and 72 h postinfection (Figure 4B). At 120 and 192 h post-infection, we lysed the infected BMM and cultured the recovered parasites in medium containing hygromycin B and G418 in a similar 671 fashion as the axenic parasite cultures done in plates. As shown 672 673 in Table 2, we failed to recover any double drug-resistant parasites from these co-infection experiments. Next, we 674 modified our experimental approach to perform co-infection 675 experiments on a larger scale, with the following 3 combinations 676 of drug-resistant promastigotes: L. amazonensis LPG2/ 677 LPG2:: Δ HYG + L. amazonensis +/SSU::NEO-GFP, L. 678 amazonensis LPG2/LPG2:: AHYG + L. amazonensis NEO-679 DsRede, and L. mexicana LPG2/LPG2:: Δ HYG + L. amazonensis 680 +/SSU::NEO-GFP (Table 3). We co-infected BMMs with each 681 combination and we used each individual drug-resistant line as 682 controls. Out of a total of 28 infections, we obtained double drug-683 resistant parasite populations out of 2 separate infections, which 684

Month 2020 | Volume 10 | Article 607253

metacyclic serum-opsonized promastigotes crosses of L. mexicana complex parental parasite strains (L. amazonensis LPG2/LPG2:: AHYG + L. amazonensis +/SSU:: NEO-GFP; L. amazonensis LPG2/LPG2:: AHYG + L. amazonensis NEO-DsRede; L. mexicana LPG2/LPG2:: AHYG + L. amazonensis +/SSU::NEO-GFP, and L. mexicana LPG2/LPG2:: AHYG + L. amazonensis NEO-DsRede) for 2, 48, 120, and 196 h. Bars represent mean ± SE of three representative experiments performed in triplicate in bone marrow derived murine macrophages. Parasites were counted in 100 macrophages and quantified by light microscopy. Macrophages were stained with HEMA 3 kit. Representative pictures from each cross are shown. (B) Live microscopy analysis of L. amazonensis and L. mexicana parasite strains expressing different fluorescent markers. Representative pictures of both parental strains within the same communal vacuole at 48 and 72 h are shown. LV79-GFP, L, amazonensis HYG-GFPe; LV79-DsRed, L, amazonensis NEO-DsRede; M379-DsRed, L, mexicana NEO-DsRede,

TABLE 2 | Crosses used in in vitro infections done in wells.

722	22		
723	Crosses120 h post-infection	No. of wells	% Yield of double
724		with crosses	urug-resistant parasites
725	L. amaz LPG2/LPG2::ΔHYG ×	89	0/89 (0%)
726	L. amaz +/SSU::NEO-GFP		
727	L. amaz LPG2/LPG2::ΔHYG ×	34	0/34 (0%)
121	L. amaz NEO-DsRede		
728	L. mex. LPG2/LPG2:: AHYG ×	63	0/63 (0%)
729	L. amaz +/SSU::NEO-GFP		
730	L. mex LPG2/LPG2:: ΔHYG ×	63	0/63 (0%)
731	L. amaz NEO-DsRede		
720	Crosses	No. of wells	% Yield of double
132	192 h post-infection	with crosses	drug-resistant parasites
733	L. amaz LPG2/LPG2:: AHYG ×	72	0/72 (0%)
734	L. amaz +/SSU::NEO-GFP		
735	L. amaz LPG2/LPG2:: AHYG ×	72	0/72 (0%)
736	L. amaz NEO-DsRede		
	L. mex. LPG2/LPG2:: AHYG ×	69	0/69 (0%)
131	L. amaz +/SSU::NEO-GFP		
738	L. mex LPG2/LPG2:: AHYG ×	66	0/66 (0%)
739	L. amaz NEO-DsRede		
740			and the first start for the start

Demonstrates the number of wells tested and percentage of isolated double drug-resistant parasites

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org

arose from the co-infections with L. amazonensis LPG2/ LPG2:: Δ HYG + L. amazonensis +/SSU::NEO-GFP (Table 3). We detected the presence of both NEO and HYG drugresistance genes in these double drug-resistant parasite populations by PCR analysis (Figure 5). We were able to maintain one of this double drug-resistant population in culture for 3 weeks; however, after the third week, this population lost the NEO resistance gene and has ultimately perished afterwards (Figure 5A). For the second occurrence of double drug-resistant parasites, we isolated 3 separate populations which contained both the HYG and NEO genes as assessed by PCR analysis (Figure 5B), whereas the third population had only the HYG resistance gene and died upon further passages (Figure 5B). The two double drug-resistant populations were maintained for a week and died upon additional passages. These results suggest that genetic exchange may take place in infected macrophages and result in transient/ unstable double drug-resistant parasites.

Month 2020 | Volume 10 | Article 607253

TABLE 3 | Crosses used in in vitro infections done in flasks

Cross	No. of infections	No. of times parent 1 was isolated	No. of times parent 2 was isolated	No. of times double drug-resistant parasites were isolated	% Recovery
L. amaz LPG2/LPG2:: ΔHYG ×	14	14	14	2	14%
L. amaz +/SSU::NEO-GFP L. amaz LPG2/LPG2::ΔHYG × L. amaz NEO-DsRede	10	10	10	0	0%
L. mex. LPG2/LPG2::ΔHYG × L. amaz +/SSU::NEO-GFP	4	4	4	0	0%

Data includes the number of mating crosses executed in flasks and parasite strains that were isolated from each inflection. Percentage indicates the total number of times that double-drug resistant parasites were isolated.

FIGURE 5 | Molecular genotype characterization of double drug-resistant parasites isolated from in vitro infections. PCR amplification of genes encoding antibiotic resistance. The size of HYG and NEO resistance genes is 1,029 and 503 bp long. The pLeish-HYG-GFP and the pKS-NEO-DsRed constructs were used as controls for the HYG and NEO genes, repectively, L.a. LV79 WT and L.a. PH8 WT is a DNA sample used to show that our wild type parasites do not express any drug-resistance markers, L. amazonensis LPG2/LPG2:: AHYG, L. amazonensis +/SSU::NEO-GFP are controls used to validate the expression of HYG and NEO resistance genes within the appropriate parental strains. No DNA sample was loaded as negative control. (A) PCR amplification of resistance genes of the first double drug- resistant parasite population. Population was maintained for 3 weeks until it lost one of the resistance genes and perished. PCRs of double drug-resistant parasites represent the presence of both genes on weeks 1, 2, and 3 (B) PCR amplification PCR amplification of resistance genes of the second occurrence of double drug-resistant parasites. Three populations were isolated (Pop 1-3). Two of the population were found to be double-drug resistant and one was not.

Absence of Detectable Genetic Exchange in In Vivo Infections

To determine whether mammalian hosts provide an environment favorable for genetic exchange for the species of the *L. mexicana* complex, we inoculated mice into the ear dermis with two combinations of single drug-resistant parasites, namely *L. amazonensis LPG2/LPG2::*\Delta HYG + *L. amazonensis* +/SSU:: *NEO-GFP* and *L. mexicana LPG2/LPG2::*\Delta HYG + *L. amazonensis* +/SSU::NEO-GFP (**Table 4**). Mice infected with single drug-resistant lines were used as a control. Nine weeks post-infection, we recovered parasites from lesions and we cultured them in the presence of either hygromycin B, G418, or both. As shown in **Table 4**, we recovered each single drugresistant line that was co-inoculated or inoculated alone as controls. However, we did not succeed in isolating double drug-resistant parasites from cutaneous lesions, indicating that genetic exchange does not occur to a detectable level within the mammalian host for *Leishmania* species residing in communal parasitophorous vacuoles.

DISCUSSION

For decades, the occurrence of natural Leishmania hybrids has been described among clinical and field isolates, indicating that genetic exchange is part of the biology of these parasites. Experimental genetic crosses among Leishmania cells were initially reported to occur exclusively in the sand fly vector (Akopyants et al., 2009; Sadlova et al., 2011; Inbar et al., 2013; Calvo-Alvarez et al., 2014; Romano et al., 2014; Inbar et al., 2019). However, recent evidence revealed that experimental genetic crosses also occur in axenic promastigote cultures, indicating that mating competent forms are present in these populations (Louradour et al., 2020). The fact that studies on the experimental generation of hybrids have been performed with Leishmania species living in tight individual parasitophorous vacuoles may have precluded the detection of genetic exchange within mammalian host cells. In this study, we sought to determine whether genetic exchange occurs among species of the L. mexicana complex, which replicate within communal parasitophorous vacuoles. Using promastigotes expressing drug-selectable markers, we obtained evidence of intraclonal genetic exchange for L. amazonensis in both axenic promastigote cultures and infected macrophages. However, the resulting products of those genetic events were unstable as they did not sustain growth in subsequent sub-cultures.

The study of experimental genetic exchange in *Leishmania* consists in mixing strains carrying distinct drug-resistance markers and/or fluorescent markers integrated into their genomes and the subsequent selection and analysis of double drug-resistant parasites (Akopyants et al., 2009; Sadlova et al., 2011; Inbar et al., 2013; Calvo-Alvarez et al., 2014; Romano et al., 2014; Inbar et al., 2019; Louradour et al., 2020). Whole genome

Telittchenko and Descoteaux

922

923

970

971

972

973

974

975

976

977

978

979

980

983

985

988

990

992

995

997

999

1001

1002

1003

1006

1009

TABLE 4 | Crosses used in in vivo infections

Cross	No. of infected mice	No. of times parent 1 was isolated	No. of times parent 2 was isolated	No. of times double drug-resistant parasites were isolated	% Recover
L. amaz LPG2/LPG2::ΔHYG ×	13	13	13	0	0%
L. amaz +/SSU::NEO-GFP					
L. mex. LPG2/LPG2:: ΔHYG ×	6	6	6	0	0%
L. amaz +/SSU::NEO-GFP					

Data includes the number of infected with each cross and parasite strains that were isolated from each infection. Percentage indicates the total number of times that double drug-resistant parasites were isolated.

sequencing revealed that these double drug-resistant parasites are 924 full genomic hybrids predominantly resulting from a mechanism 925 resembling meiosis (Inbar et al., 2019). Whether other forms of 926 genetic exchange take place in Leishmania had not received much 927 attention. Hence, we tested whether the transfer of genetic material 928 can occur without direct contact between Leishmania 929 promastigotes, as previously reported for P. falciparum via cell-930 derived extravesicular vesicles (Regev-Rudzki et al., 2013). Our 931 attempts to detect the transfer of an episome from one line of L. 932 amazonensis to another in transwell experiments were 933 unsuccessful, suggesting that physical contact is required for 934 genetic exchange among Leishmania promastigotes. Our results 935 also suggest that in contrast to the Leishmania virus LRV-1 936 (Atayde et al., 2019), episomal DNA is not transferred through 937 extracellular vesicles or other released material. 938

The recent report that genetic crosses take place in axenic 939 cultures of L. tropica (Louradour et al., 2020) prompted us to 940 explore the possibility that genetic exchange occur among L. 941 amazonensis and L. mexicana promastigotes in axenic cultures. 942 In contrast to the L. tropica strains used by Louradour and 943 colleagues (Louradour et al., 2020), we obtained only a few 944 populations of double drug-resistant L. amazonensis 945 promastigotes which turned out to be unstable. The fact that 946 those populations did not sustain sub-cultures precluded further 947 analyses. Clearly, not all species or strains of Leishmania are 948 equal in terms of capacity to generate mating-competent forms 949 in vitro. Hence, whereas Louradour and colleagues were 950 successful in recovering hybrids from L. tropica axenic co-951 cultures, no hybrids were obtained when both parental strains 952 were L. major (Louradour et al., 2020). In the case of L. 953 amazonensis, it is possible that strains other than the one we 954 used are more efficient in generating mating-competent forms in 955 axenic cultures. Future studies will be aimed at investigating this 956 957 important issue.

It is well established that hybrid formation among Leishmania 958 promastigotes takes place in the sand fly (Akopyants et al., 2009; 959 Sadlova et al., 2011; Inbar et al., 2013; Calvo-Alvarez et al., 2014; 960 Romano et al., 2014; Inbar et al., 2019; Louradour et al., 2020). 961 Failure to detect genetic exchange in the mammalian host 962 suggests that amastigotes do not generate mating competent 963 forms or that they are less prone to recombination. It is also 964 possible that the phagolysosomal environment is not as 965 conducive to genetic exchange as the sand fly midgut. 966 However, it was reported previously that amastigotes undergo 967 nuclear fusion within infected macrophages suggesting that 968 genetic exchange may indeed be possible within infected hosts 969

(Kreutzer et al., 1994). Alternatively, the fact that the Leishmania 981 species used so far to study genetic exchange replicate within 982 individual parasitophorous vacuoles (L. major, L. tropica, L. donovani, L. infantum) may have limited the probabilities of 984 genetic exchange among amastigotes. With this in mind, we hypothesized that replication within a communal vacuole may 986 provide amastigotes with conditions propitious to genetic 987 exchange, as reported for Chlamydia (Jeffrey et al., 2013). The recovery of double-drug resistant promastigote populations from 989 macrophages co-infected with L. amazonensis LPG2/ LPG2:: AHYG + L. amazonensis +/SSU:: NEO-GFP and the 991 detection of both the HYG and NEO genes in these cultures suggest that intraclonal genetic exchange may occur within 993 communal parasitophorous vacuoles. However, the inability to 994 grow these L. amazonensis double drug-resistant populations over several passages and to clone double drug-resistant parasites 996 precluded further characterization of these progeny and thus determine whether or not these parasites were genuine hybrids. 998 Previous studies revealed that not all hybrid progeny is as viable as their parental counterparts. Hence, Sadlova et al. observed L. 1000 donovani hybrids in infected sand flies, but all of their attempts to grow them in culture have failed. This led to the conclusion that although L. donovani parasites are able to exchange genetic information, the hybrids produced were not viable (Sadlova 1004 et al., 2011). Finally, there was also a report which explored the 1005 possibility of genetic exchange between L. major and L. turanica in infected sand flies; however, it was reported that such events 1007 do not take place between these parasite species (Chajbullinova 1008 et al., 2012).

As described for L. major (Akopyants et al., 2009), we were 1010 unable to recover double drug-resistant parasites from mice co-1011 infected with L. amazonensis and L. mexicana. However, based 1012 on our results with in vitro infections, we cannot rule out that 1013 genetic exchange do not take place in mammalian hosts infected 1014 with those species/strains. An important factor to consider is the 1015 number of in vivo infections we performed. Indeed, studies on 1016 genetic exchange done in the insect vector required hundreds of 1017 sand flies to be infected. Hence, Akopyants et al. used 102 sand 1018 flies to study genetic exchange between L. major parasites, 1019 Sadlova et al. infected 121 sandflies to study this phenomenon 1020 for L. donovani, whereas Romano et al. used 446 sandflies to 1021 study these events among strains of L. infantum (Akopyants 1022 et al., 2009; Sadlova et al., 2011; Romano et al., 2014). Another 1023 important factor to take into consideration is the ability of the L. 1024 amazonensis and L. mexicana strains we used in our study to 1025 generate mating competent forms, as evidenced in the study of 1026

1031

1032

1033

1034

1035

1036

Louradour and colleagues using L. tropica and L. major (Louradour et al., 2020).

In summary, we provide evidence of possible intraclonal genetic exchange among L. amazonensis parasites in axenic cultures and within mammalian host cells. However, the double drug-resistant parasites obtained in our studies were unstable and could not be further characterized. Future studies will be required to identify strains of L. amazonensis and L. mexicana with higher capacity to generate mating competent forms and use these strains for studies in macrophages and in mice on a larger scale.

1037 1038 1039

1040 1041

1042

1043

1044

1045

1046

1048

1049

1050

1051

1052

1053

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

Q13 DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Q15 ETHICS STATEMENT 1047

The animal study was reviewed and approved by Comité Institutionel de Protection des Animaux of the INRS-Centre Armand-Frappier Santé Biotechnologie.

Q16 AUTHOR CONTRIBUTIONS 1054

RT and AD conceived and designed the study, contributed to the data analysis, and drafted and revised the manuscript. RT

REFERENCES

- Akopvants, N. S., Kimblin, N., Secundino, N., Patrick, R., Peters, N., Lawver, P., et al. (2009). Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. Science 324 (5924), 265-268. doi: 10.1126/science.1169464
- Arango Duque, G., Jardim, A., Gagnon, E., Fukuda, M., and Descoteaux, A. (2019). The host cell secretory pathway mediates the export of Leishmania virulence factors out of the parasitophorous vacuole. PloS Pathog 15 (7), e1007982. doi: 10.1371/iournal.ppat.1007982
- Atayde, V. D., da Silva Lira Filho, A., Chaparro, V., Zimmermann, A., Martel, C., Jaramillo, M., et al. (2019). Exploitation of the Leishmania exosomal pathway by Leishmania RNA virus 1. Nat. Microbiol 4 (4), 714-723. doi: 10.1038/s41564-018-0352-y
- Banuls, A. L., Guerrini, F., Le Pont, F., Barrera, C., Espinel, I., Guderian, R., et al. (1997). Evidence for hybridization by multilocus enzyme electrophoresis and random amplified polymorphic DNA between Leishmania braziliensis and Leishmania panamensis/guvanensis in Ecuador, J. Eukarvot Microbiol 44 (5), 408-411. doi: 10.1111/j.1550-7408.1997.tb05716.x
- Banuls, A. L., Jonquieres, R., Guerrini, F., Le Pont, F., Barrera, C., Espinel, I., et al. 1074 (1999). Genetic analysis of leishmania parasites in Ecuador: are Leishmania 1075 (Viannia) panamensis and Leishmania (V.) Guyanensis distinct taxa? Am. J. 1076 Trop. Med. Hyg 61 (5), 838-845. doi: 10.4269/ajtmh.1999.61.838
- 1077 Belli, A. A., Miles, M. A., and Kelly, J. M. (1994), A putative Leishmania panamensis/Leishmania braziliensis hybrid is a causative agent of human 1078 cutaneous leishmaniasis in Nicaragua. Parasitology 109 (Pt 4), 435-442. 1079 doi: 10.1017/s0031182000080689 1080
- Bonfante-Garrido, R., Melendez, E., Barroeta, S., de Alejos, M. A., Momen, H., 1081 Cupolillo, E., et al. (1992). Cutaneous leishmaniasis in western Venezuela caused 1082 by infection with Leishmania venezuelensis and L. braziliensis variants. Trans. R
- Soc. Trop. Med. Hyg 86 (2), 141-148. doi: 10.1016/0035-9203(92)90544-m 1083

performed the experiments. RT and AD wrote and revised the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by the Canadian Institutes of Health Research (CIHR) grant PJT-156416 to AD. AD is the holder of the Canada Research Chair on the Biology of intracellular parasitism. The funders had no role in study design, data collection and interpretation, decision to publish, or preparation of the manuscript.

ACKNOWLEDGMENTS

We thank Dr. David L. Sacks (National Institute of Allergy and Infectious Diseases, USA) for providing the plasmid pKS-NEOdsRed, Dr Barbara Papadopoulou (Université Laval, Canada) for providing the plasmid pCR2.1-L.d-rDNA-pr-aIRNEOaIR-GFP, and Drs Leonardo Paiva Farias (Fiocruz Bahia, Brazil) for providing the pLaLPG2-HYG construct and J. Tremblay for assistance in immunofluorescence experiments. We thank Matthias Govaerts and Olivier Séguin for their technical help during this study.

> 1111 1112

1084

1085

1086 1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1130

1134

1138

Q14

1113 1114

- Calvo-Alvarez, E., Alvarez-Velilla, R., Jimenez, M., Molina, R., Perez-Pertejo, Y., Balana-Fouce, R., et al. (2014). First evidence of intraclonal genetic exchange in trypanosomatids using two Leishmania infantum fluorescent transgenic clones. PloS Negl. Trop. Dis. 8 (9), e3075. doi: 10.1371/journal.pntd.0003075
- Case, E. D., Smith, J. A., Ficht, T. A., Samuel, J. E., and de Figueiredo, P. (2016). Space: A Final Frontier for Vacuolar Pathogens. Traffic 17 (5), 461-474. doi: 10.1111/tra.12382
- Chajbullinova, A., Votypka, J., Sadlova, J., Kvapilova, K., Seblova, V., Kreisinger, J., et al. (2012). The development of Leishmania turanica in sand flies and competition with L. major. Parasit Vectors 5:219. doi: 10.1186/1756-3305-5-219

Chargui, N., Amro, A., Haouas, N., Schonian, G., Babba, H., Schmidt, S., et al. (2009). Population structure of Tunisian Leishmania infantum and evidence for the existence of hybrids and gene flow between genetically different populations. Int. J. Parasitol 39 (7), 801-811. doi: 10.1016/j.ijpara.2008.11.016

- 1128 Cortes, S., Esteves, C., Mauricio, I., Maia, C., Cristovao, J. M., Miles, M., et al. (2012). In vitro and in vivo behaviour of sympatric Leishmania (V.) 1129 braziliensis, L. (V.) peruviana and their hybrids. Parasitology 139 (2), 191-199. doi: 10.1017/S0031182011001909 1131
- Cortes, S., Albuquerque-Wendt, A., Maia, C., Carvalho, M., Lima, I. A., de Freitas, L. A. 1132 R., et al. (2019). Elucidating in vitro and in vivo phenotypic behaviour of L. infantum/L. major natural hybrids. Parasitology 146 (5), 580-587. doi: 10.1017/ 1133 S0031182018001993
- Cupolillo, E., Grimaldi, G.Jr., and Momen, H. (1997). Genetic diversity among 1135 Leishmania (Viannia) parasites. Ann. Trop. Med. Parasitol 91 (6), 617-626. 1136 doi: 10.1080/00034989760716 1137
- Delgado, O., Cupolillo, E., Bonfante-Garrido, R., Silva, S., Belfort, E., Grimaldi Junior, G., et al. (1997). Cutaneous leishmaniasis in Venezuela caused by infection with a new hybrid between Leishmania (Viannia) braziliensis and L.

1141	(V.) guyanensis. Mem Inst Oswaldo Cruz 92 (5), 581–582. doi: 10.1590/s0074-	Medina-Acosta, E., and Cross, G. A. (1993). Rapid isolation of DNA from	1198
1142	02761997000500002 Descatory A and Matlah gudki C (1980) a fas and tymer pagrosis factor gap	trypanosomatid protozoa using a simple 'mini-prep' procedure. Mol.	1199
1143	expression in Leishmania donovani-infected macrophages. Mol. Cell Biol. 9	Nolder, D., Roncal, N., Davies, C. R., Llanos-Cuentas, A., and Miles, M. A. (2007).	1200
1144	(11), 5223–5227. doi: 10.1128/mcb.9.11.5223	Multiple hybrid genotypes of Leishmania (viannia) in a focus of	1201
1145	Q17 Descoteaux, A., Garraway, L., Ryan, K. A., Garrity, L. K., Turco, S., and Beverley, S.	mucocutaneous Leishmaniasis. Am. J. Trop. Med. Hyg 76 (3), 573-578. doi:	1202
1146	Identification of genes by functional complementation in protozoan parasite Leishmania.	10.4269/ajtmh.2007.76.573 Odiumer S. De Dendrer S. Mass J. Duiardin J.C. and Van der Auwern C.	1203
1147	D., et al. (1995). Putative Leishmania hybrids in the Eastern Andean valley of	(2011). Natural Leishmania donovani/Leishmania aethiopica hybrids	1204
1148	Huanuco, Peru. Acta Trop. 59 (4), 293-307. doi: 10.1016/0001-706x(95)00094-u	identified from Ethiopia. Infect. Genet. Evol. 11 (8), 2113-2118. doi: 10.1016/	1205
1149	Q18 Elzanowska, J., Semira, C., and Costa-Silva, B. (2020). DNA in extracellular vesicles:	j.meegid.2011.04.026	1206
1150	biological and clinical aspects. <i>Mol. Oncol.</i> doi: 10.1002/1878-0261.12777	Ravel, C., Cortes, S., Pratlong, F., Morio, F., Dedet, J. P., and Campino, L. (2006).	1207
1151	Hybrid formation within the genus Leishmania? Parassitologia 29 (2-3), 165–173.	Leishmania infantum and Leishmania major. Int. I. Parasitol 36 (13), 1383–	1208
1152	Gelanew, T., Hailu, A., Schonian, G., Lewis, M. D., Miles, M. A., and Yeo, M. (2014).	1388. doi: 10.1016/j.ijpara.2006.06.019	1209
1155	Multilocus sequence and microsatellite identification of intra-specific hybrids and	Regev-Rudzki, N., Wilson, D. W., Carvalho, T. G., Sisquella, X., Coleman, B. M., Rug, M.,	1210
1154	ancestor-like donors among natural Ethiopian isolates of Leishmania donovani. Int.	et al. (2013). Cell-cell communication between malaria-infected red blood cells via	1211
1155	J. Parasitol 44 (10), 751–757. doi: 10.1016/J.J.para.2014.05.008 Ha, D. S. Schwarz, I. K., Turco, S. L. and Beverley, S. M. (1996). Use of the green	Rogers M. B. Downing, T. Smith, B. A. Imamura, H. Sanders, M. Svobodova,	1212
1157	fluorescent protein as a marker in transfected Leishmania. Mol. Biochem.	M., et al. (2014). Genomic confirmation of hybridisation and recent inbreeding	1213
1158	Parasitol 77 (1), 57-64. doi: 10.1016/0166-6851(96)02580-7	in a vector-isolated Leishmania population. PloS Genet. 10 (1), e1004092.	1214
1159	Hassani, K., Antoniak, E., Jardim, A., and Olivier, M. (2011). Temperature-induced	doi: 10.1371/journal.pgen.1004092	1216
1160	function. Plos One 6 (5), e18724, doi: 10.1371/journal.pone.0018724	et al. (2014). Cross-species genetic exchange between visceral and cutaneous strains	1217
1161	Heitman, J. (2010). Evolution of eukaryotic microbial pathogens <i>via</i> covert sexual	of Leishmania in the sand fly vector. Proc. Natl. Acad. Sci. U.S.A. 111 (47), 16808-	1218
1162	reproduction. Cell Host Microbe 8 (1), 86-99. doi: 10.1016/j.chom.2010.06.011	16813. doi: 10.1073/pnas.1415109111	1219
1163	Q20 Iantorno, S. A., Durrant, C., Khan, A., Sanders, M. J., Beverley, S. M., Warren, W. C.,	Rougeron, V., De Meeus, T., Hide, M., Waleckx, E., Bermudez, H., Arevalo, J., et al.	1220
1164	et al. (2017). Gene Expression in Leisnmania is Regulated Predominantiy by Gene Dosage <i>mBio</i> 8 (5) doi: 10.1128/mBio.01393-17	(2009). Extreme indreeding in Leisnmania brazillensis. Proc. Natl. Acaa. Sci.	1221
1165	Inbar, E., Akopyants, N. S., Charmoy, M., Romano, A., Lawyer, P., Elnaiem, D. E.,	Rougeron, V., De Meeus, T., and Banuls, A. L. (2017). Reproduction in	1222
1166	et al. (2013). The mating competence of geographically diverse Leishmania	Leishmania: A focus on genetic exchange. Infect. Genet. Evol. 50, 128-132.	1223
1167	major strains in their natural and unnatural sand fly vectors. <i>PloS Genet.</i> 9 (7),	doi: 10.1016/j.meegid.2016.10.013	1224
1168	e10036/2. doi: 10.13/1/journal.pgen.10036/2 Johan F. Shaik J. Jantorno, S. A. Romano, A. Nzelu, C. O. Owens, K. et al.	Sadlova, J., Yeo, M., Seblova, V., Lewis, M. D., Mauricio, I., Volf, P., et al. (2011). Visualization of Leishmania donovani fluorescent hybrids during early stage	1225
1169	(2019). Whole genome sequencing of experimental hybrids supports meiosis-	development in the sand fly vector. PloS One 6 (5), e19851. doi: 10.1371/	1226
1170	like sexual recombination in Leishmania. PloS Genet. 15 (5), e1008042.	journal.pone.0019851	1227
1171	doi: 10.1371/journal.pgen.1008042	Seblova, V., Myskova, J., Hlavacova, J., Votypka, J., Antoniou, M., and Volf, P.	1228
1172	Genomic and phenotypic characterization of <i>in vitro-venerated</i> Chlamydia	(2015). Natural hybrid of Leishmania Infantum/L. donovani: development in Phlebotomus tobbi. P. perniciosus and Lutzomvia longinalnis and comparison	1229
1173	trachomatis recombinants. BMC Microbiol 13:142. doi: 10.1186/1471-2180-13-142	with non-hybrid strains differing in tissue tropism. Parasit Vectors 8, 605.	1230
1174	Jennings, Y. L., de Souza, A. A., Ishikawa, E. A., Shaw, J., Lainson, R., and Silveira,	doi: 10.1186/s13071-015-1217-3	1231
1175	F. (2014). Phenotypic characterization of Leishmania spp. causing cutaneous	Spath, G. F., and Beverley, S. M. (2001). A lipophosphoglycan-independent method for	1232
1176	putative hybrid parasite. Leishmania (Viannia) guvanensis x Leishmania	centrifugation <i>Exp. Parasitol</i> 99 (2), 97–103. doi: 10.1006/expr.2001.4656	1233
1177	(Viannia) shawi shawi. Parasite 21:39. doi: 10.1051/parasite/2014039	Tibayrenc, M., and Ayala, F. J. (2013). How clonal are Trypanosoma and	1234
1178	Kato, H., Caceres, A. G., and Hashiguchi, Y. (2016). First Evidence of a Hybrid of	Leishmania? Trends Parasitol 29 (6), 264-269. doi: 10.1016/j.pt.2013.03.007	1235
1179	Leishmania (Viannia) braziliensis/L. (V.) peruviana DNA Detected from the	Torrico, M. C., De Doncker, S., Arevalo, J., Le Ray, D., and Dujardin, J. C. (1999).	1236
1180	e0004336 doi: 10.1371/journal.pntd.0004336	Leishmania (Viannia) peruviana hybrids Acta Tran 72 (1) 99–110	1237
1181	Kato, H., Gomez, E. A., Seki, C., Furumoto, H., Martini-Robles, L., Muzzio, J., et al.	doi: 10.1016/s0001-706x(98)00076-x	1238
1182	(2019). PCR-RFLP analyses of Leishmania species causing cutaneous and	Turco, S., Descoteaux, A., Ryan, K., Garraway, L., and Beverley, S. (1994). Isolation	1239
1183	mucocutaneous leishmaniasis revealed distribution of genetically complex	of virulence genes directing GPI synthesis by functional complementation of	1240
1184	Trap Dis 13 (5), e0007403, doi: 10.1371/journal.pntd.0007403	Leisnmania. Braz. J. Med. Biol. Res. 27 (2), 155–158. Volf. P. Benkova, I. Myskova, I. Sadlova, I. Campino, L. and Ravel, C. (2007)	1241
1185	Kelly, J. M., Law, J. M., Chapman, C. J., Van Eys, G. J., and Evans, D. A. (1991).	Increased transmission potential of Leishmania major/Leishmania infantum	1242
1100	Evidence of genetic recombination in Leishmania. Mol. Biochem. Parasitol 46	hybrids. Int. J. Parasitol 37 (6), 589-593. doi: 10.1016/j.ijpara.2007.02.002	1245
1188	(2), 253–263. doi: 10.1016/0166-6851(91)90049-c		1244
1189	(2008). Quantification of the infectious dose of Leishmania major transmitted	conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a	1245
1190	to the skin by single sand flies. Proc. Natl. Acad. Sci. U.S.A. 105 (29), 10125-	potential conflict of interest.	1240
1191	10130. doi: 10.1073/pnas.0802331105		1248
1192	Kreutzer, R. D., Yemma, J. J., Grogl, M., Tesh, R. B., and Martin, T. I. (1994).	Copyright © 2020 Telittchenko and Descoteaux. This is an open-access article	1249
1193	(Kinetoplastida: Trypanosomatidae). Am. I. Trop. Med. Hyg 51 (3) 301-307	asservate under the terms of the Creative Commons Attribution License (CC BY). The use distribution or reproduction in other forums is permitted provided the	1250
1194	doi: 10.4269/ajtmh.1994.51.301	original author(s) and the copyright owner(s) are credited and that the original	1251
1195	Louradour, I., Ferreira, T. R., Ghosh, K., Shaik, J., and Sacks, D. (2020). In Vitro	publication in this journal is cited, in accordance with accepted academic practice. No	1252
1196	Generation of Leishmania Hybrids. Cell Rep. 31 (2), 107507. doi: 10.1016/	use, distribution or reproduction is permitted which does not comply with these terms.	1253
1197	J.Con Cp. 2020.05.07 1		1254

REFERENCES

- Abu-Dayyeh I, Hassani K, Westra ER, Mottram JC & Olivier M (2010) Comparative study of the ability of Leishmania mexicana promastigotes and amastigotes to alter macrophage signaling and functions. *Infection and immunity* 78(6):2438-2445.
- Abu-Dayyeh I, Shio MT, Sato S, Akira S, Cousineau B & Olivier M (2008) Leishmania-induced IRAK-1 inactivation is mediated by SHP-1 interacting with an evolutionarily conserved KTIM motif. *PLoS neglected tropical diseases* 2(12):e305.
- Aga E, Katschinski DM, van Zandbergen G, Laufs H, Hansen B, Muller K, Solbach W & Laskay T (2002) Inhibition of the spontaneous apoptosis of neutrophil granulocytes by the intracellular parasite Leishmania major. J Immunol 169(2):898-905.
- Akhoundi M, Downing T, Votypka J, Kuhls K, Lukes J, Cannet A, Ravel C, Marty P, Delaunay P, Kasbari M, Granouillac B, Gradoni L & Sereno D (2017) Leishmania infections: Molecular targets and diagnosis. *Molecular aspects of medicine* 57:1-29.
- Akopyants NS, Kimblin N, Secundino N, Patrick R, Peters N, Lawyer P, Dobson DE, Beverley SM & Sacks DL (2009) Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. *Science* 324(5924):265-268.
- Alexander J & Vickerman K (1975) Fusion of host cell secondary lysosomes with the parasitophorous vacuoles of Leishmania mexicana-infected macrophages. *The Journal of protozoology* 22(4):502-508.
- Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J & den Boer M (2012) Leishmaniasis worldwide and global estimates of its incidence. *PloS one* 7(5):e35671.
- Anderson CL, Shen L, Eicher DM, Wewers MD & Gill JK (1990) Phagocytosis mediated by three distinct Fc gamma receptor classes on human leukocytes. *The Journal of experimental medicine* 171(4):1333-1345.
- Antinori S, Schifanella L & Corbellino M (2012) Leishmaniasis: new insights from an old and neglected disease. *European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology* 31(2):109-118.
- Antoine JC, Prina E, Lang T & Courret N (1998) The biogenesis and properties of the parasitophorous vacuoles that harbour Leishmania in murine macrophages. *Trends in microbiology* 6(10):392-401.
- Antonin W, Holroyd C, Fasshauer D, Pabst S, Von Mollard GF & Jahn R (2000) A SNARE complex mediating fusion of late endosomes defines conserved properties of SNARE structure and function. *The EMBO journal* 19(23):6453-6464.
- Arandjelovic S & Ravichandran KS (2015) Phagocytosis of apoptotic cells in homeostasis. *Nature immunology* 16(9):907-917.
- Arango Duque G, Jardim A, Gagnon E, Fukuda M & Descoteaux A (2019) The host cell secretory pathway mediates the export of Leishmania virulence factors out of the parasitophorous vacuole. *PLoS pathogens* 15(7):e1007982.
- Atayde VD, Aslan H, Townsend S, Hassani K, Kamhawi S & Olivier M (2015) Exosome Secretion by the Parasitic Protozoan Leishmania within the Sand Fly Midgut. *Cell reports* 13(5):957-967.
- Atayde VD, da Silva Lira Filho A, Chaparro V, Zimmermann A, Martel C, Jaramillo M & Olivier M (2019) Exploitation of the Leishmania exosomal pathway by Leishmania RNA virus 1. *Nature microbiology* 4(4):714-723.
- Atayde VD, Hassani K, da Silva Lira Filho A, Borges AR, Adhikari A, Martel C & Olivier M (2016) Leishmania exosomes and other virulence factors: Impact on innate immune response and macrophage functions. *Cellular immunology* 309:7-18.

- Bahr V, Stierhof YD, Ilg T, Demar M, Quinten M & Overath P (1993) Expression of lipophosphoglycan, high-molecular weight phosphoglycan and glycoprotein 63 in promastigotes and amastigotes of Leishmania mexicana. *Molecular and biochemical parasitology* 58(1):107-121.
- Banuls AL, Guerrini F, Le Pont F, Barrera C, Espinel I, Guderian R, Echeverria R & Tibayrenc M (1997)
 Evidence for hybridization by multilocus enzyme electrophoresis and random amplified
 polymorphic DNA between Leishmania braziliensis and Leishmania panamensis/guyanensis in
 Ecuador. *The Journal of eukaryotic microbiology* 44(5):408-411.
- Banuls AL, Jonquieres R, Guerrini F, Le Pont F, Barrera C, Espinel I, Guderian R, Echeverria R & Tibayrenc M (1999) Genetic analysis of leishmania parasites in Ecuador: are Leishmania (Viannia) panamensis and Leishmania (V.) Guyanensis distinct taxa? *The American journal of tropical medicine and hygiene* 61(5):838-845.
- Bates PA & Rogers ME (2004) New insights into the developmental biology and transmission mechanisms of Leishmania. *Current molecular medicine* 4(6):601-609.
- Belli AA, Miles MA & Kelly JM (1994) A putative Leishmania panamensis/Leishmania braziliensis hybrid is a causative agent of human cutaneous leishmaniasis in Nicaragua. *Parasitology* 109 (Pt 4):435-442.
- Berman JD, Fioretti TB & Dwyer DM (1981) In vivo and in vitro localization of Leishmania within macrophage phagolysosomes: use of colloidal gold as a lysosomal label. *The Journal of protozoology* 28(2):239-242.
- Berry ASF, Salazar-Sanchez R, Castillo-Neyra R, Borrini-Mayori K, Chipana-Ramos C, Vargas-Maquera M, Ancca-Juarez J, Naquira-Velarde C, Levy MZ & Brisson D (2019) Sexual reproduction in a natural Trypanosoma cruzi population. *PLoS neglected tropical diseases* 13(5):e0007392.
- Besteiro S, Williams RA, Coombs GH & Mottram JC (2007) Protein turnover and differentiation in Leishmania. *International journal for parasitology* 37(10):1063-1075.
- Binker MG, Cosen-Binker LI, Terebiznik MR, Mallo GV, McCaw SE, Eskelinen EL, Willenborg M, Brumell JH, Saftig P, Grinstein S & Gray-Owen SD (2007) Arrested maturation of Neisseria-containing phagosomes in the absence of the lysosome-associated membrane proteins, LAMP-1 and LAMP-2. *Cellular microbiology* 9(9):2153-2166.
- Biswas SK & Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. *Nature immunology* 11(10):889-896.
- Blanchette J, Racette N, Faure R, Siminovitch KA & Olivier M (1999) Leishmania-induced increases in activation of macrophage SHP-1 tyrosine phosphatase are associated with impaired IFN-gamma-triggered JAK2 activation. *European journal of immunology* 29(11):3737-3744.
- Boaventura VS, Santos CS, Cardoso CR, de Andrade J, Dos Santos WL, Clarencio J, Silva JS, Borges VM, Barral-Netto M, Brodskyn CI & Barral A (2010) Human mucosal leishmaniasis: neutrophils infiltrate areas of tissue damage that express high levels of Th17-related cytokines. *European journal of immunology* 40(10):2830-2836.
- Bogdan C, Donhauser N, Doring R, Rollinghoff M, Diefenbach A & Rittig MG (2000) Fibroblasts as host cells in latent leishmaniosis. *The Journal of experimental medicine* 191(12):2121-2130.
- Bonfante-Garrido R, Melendez E, Barroeta S, de Alejos MA, Momen H, Cupolillo E, McMahon-Pratt D & Grimaldi G, Jr. (1992) Cutaneous leishmaniasis in western Venezuela caused by infection with Leishmania venezuelensis and L. braziliensis variants. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 86(2):141-148.
- Bonilla FA & Oettgen HC (2010) Adaptive immunity. *The Journal of allergy and clinical immunology* 125(2 Suppl 2):S33-40.
- Botelho RJ, Teruel M, Dierckman R, Anderson R, Wells A, York JD, Meyer T & Grinstein S (2000) Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. *The Journal of cell biology* 151(7):1353-1368.

- Brittingham A, Morrison CJ, McMaster WR, McGwire BS, Chang KP & Mosser DM (1995) Role of the Leishmania surface protease gp63 in complement fixation, cell adhesion, and resistance to complement-mediated lysis. *J Immunol* 155(6):3102-3111.
- Brittingham A & Mosser DM (1996) Exploitation of the complement system by Leishmania promastigotes. *Parasitol Today* 12(11):444-447.
- Britto C, Ravel C, Bastien P, Blaineau C, Pages M, Dedet JP & Wincker P (1998) Conserved linkage groups associated with large-scale chromosomal rearrangements between Old World and New World Leishmania genomes. *Gene* 222(1):107-117.
- Bruhns P, Iannascoli B, England P, Mancardi DA, Fernandez N, Jorieux S & Daeron M (2009) Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. *Blood* 113(16):3716-3725.
- Bucci C, Parton RG, Mather IH, Stunnenberg H, Simons K, Hoflack B & Zerial M (1992) The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. *Cell* 70(5):715-728.
- Burza S, Croft SL & Boelaert M (2018) Leishmaniasis. Lancet 392(10151):951-970.
- Bussotti G, Gouzelou E, Cortes Boite M, Kherachi I, Harrat Z, Eddaikra N, Mottram JC, Antoniou M, Christodoulou V, Bali A, Guerfali FZ, Laouini D, Mukhtar M, Dumetz F, Dujardin JC, Smirlis D, Lechat P, Pescher P, El Hamouchi A, Lemrani M, Chicharro C, Llanes-Acevedo IP, Botana L, Cruz I, Moreno J, Jeddi F, Aoun K, Bouratbine A, Cupolillo E & Spath GF (2018) Leishmania Genome Dynamics during Environmental Adaptation Reveal Strain-Specific Differences in Gene Copy Number Variation, Karyotype Instability, and Telomeric Amplification. *mBio* 9(6).
- Calvo-Alvarez E, Alvarez-Velilla R, Jimenez M, Molina R, Perez-Pertejo Y, Balana-Fouce R & Reguera RM (2014) First evidence of intraclonal genetic exchange in trypanosomatids using two Leishmania infantum fluorescent transgenic clones. *PLoS neglected tropical diseases* 8(9):e3075.
- Camacho E, Rastrojo A, Sanchiz A, Gonzalez-de la Fuente S, Aguado B & Requena JM (2019) Leishmania Mitochondrial Genomes: Maxicircle Structure and Heterogeneity of Minicircles. *Genes* 10(10).
- Campbell KA, Ovendale PJ, Kennedy MK, Fanslow WC, Reed SG & Maliszewski CR (1996) CD40 ligand is required for protective cell-mediated immunity to Leishmania major. *Immunity* 4(3):283-289.
- Canton J, Neculai D & Grinstein S (2013) Scavenger receptors in homeostasis and immunity. *Nature reviews. Immunology* 13(9):621-634.
- Capela R, Moreira R & Lopes F (2019) An Overview of Drug Resistance in Protozoal Diseases. International journal of molecular sciences 20(22).
- Case ED, Smith JA, Ficht TA, Samuel JE & de Figueiredo P (2016) Space: A Final Frontier for Vacuolar Pathogens. *Traffic* 17(5):461-474.
- Casgrain PA, Martel C, McMaster WR, Mottram JC, Olivier M & Descoteaux A (2016) Cysteine Peptidase B Regulates Leishmania mexicana Virulence through the Modulation of GP63 Expression. *PLoS pathogens* 12(5):e1005658.
- Cavalcanti DP & de Souza W (2018) The Kinetoplast of Trypanosomatids: From Early Studies of Electron Microscopy to Recent Advances in Atomic Force Microscopy. *Scanning* 2018:9603051.
- Cellier MF, Courville P & Campion C (2007) Nramp1 phagocyte intracellular metal withdrawal defense. *Microbes and infection* 9(14-15):1662-1670.
- Chajbullinova A, Votypka J, Sadlova J, Kvapilova K, Seblova V, Kreisinger J, Jirku M, Sanjoba C, Gantuya S, Matsumoto Y & Volf P (2012) The development of Leishmania turanica in sand flies and competition with L. major. *Parasites & vectors* 5:219.
- Chakraborty D, Banerjee S, Sen A, Banerjee KK, Das P & Roy S (2005) Leishmania donovani affects antigen presentation of macrophage by disrupting lipid rafts. *J Immunol* 175(5):3214-3224.
- Chargui N, Amro A, Haouas N, Schonian G, Babba H, Schmidt S, Ravel C, Lefebvre M, Bastien P, Chaker E, Aoun K, Zribi M & Kuhls K (2009) Population structure of Tunisian Leishmania infantum and
evidence for the existence of hybrids and gene flow between genetically different populations. *International journal for parasitology* 39(7):801-811.

- Chavrier P, Parton RG, Hauri HP, Simons K & Zerial M (1990) Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. *Cell* 62(2):317-329.
- Christoforidis S, McBride HM, Burgoyne RD & Zerial M (1999) The Rab5 effector EEA1 is a core component of endosome docking. *Nature* 397(6720):621-625.

Clayton CE (2016) Gene expression in Kinetoplastids. *Current opinion in microbiology* 32:46-51.

- Cohen-Freue G, Holzer TR, Forney JD & McMaster WR (2007) Global gene expression in Leishmania. International journal for parasitology 37(10):1077-1086.
- Collins HL, Schaible UE, Ernst JD & Russell DG (1997) Transfer of phagocytosed particles to the parasitophorous vacuole of Leishmania mexicana is a transient phenomenon preceding the acquisition of annexin I by the phagosome. *Journal of cell science* 110 (Pt 2):191-200.
- Contreras I, Gomez MA, Nguyen O, Shio MT, McMaster RW & Olivier M (2010) Leishmania-induced inactivation of the macrophage transcription factor AP-1 is mediated by the parasite metalloprotease GP63. *PLoS pathogens* 6(10):e1001148.
- Cortes S, Albuquerque-Wendt A, Maia C, Carvalho M, Lima IA, de Freitas LAR, Dos-Santos WLC & Campino L (2019) Elucidating in vitro and in vivo phenotypic behaviour of L. infantum/L. major natural hybrids. *Parasitology* 146(5):580-587.
- Cortes S, Esteves C, Mauricio I, Maia C, Cristovao JM, Miles M & Campino L (2012) In vitro and in vivo behaviour of sympatric Leishmania (V.) braziliensis, L. (V.) peruviana and their hybrids. *Parasitology* 139(2):191-199.
- Cotton JA, Durrant C, Franssen SU, Gelanew T, Hailu A, Mateus D, Sanders MJ, Berriman M, Volf P, Miles MA & Yeo M (2020) Genomic analysis of natural intra-specific hybrids among Ethiopian isolates of Leishmania donovani. *PLoS neglected tropical diseases* 14(4):e0007143.
- Courret N, Frehel C, Gouhier N, Pouchelet M, Prina E, Roux P & Antoine JC (2002) Biogenesis of Leishmania-harbouring parasitophorous vacuoles following phagocytosis of the metacyclic promastigote or amastigote stages of the parasites. *Journal of cell science* 115(Pt 11):2303-2316.
- Cupolillo E, Grimaldi G, Jr. & Momen H (1997) Genetic diversity among Leishmania (Viannia) parasites. Annals of tropical medicine and parasitology 91(6):617-626.
- Damatta RA, Seabra SH, Deolindo P, Arnholdt AC, Manhaes L, Goldenberg S & de Souza W (2007) Trypanosoma cruzi exposes phosphatidylserine as an evasion mechanism. *FEMS microbiology letters* 266(1):29-33.
- David CV & Craft N (2009) Cutaneous and mucocutaneous leishmaniasis. *Dermatologic therapy* 22(6):491-502.
- de Carvalho RVH, Lima-Junior DS, da Silva MVG, Dilucca M, Rodrigues TS, Horta CV, Silva ALN, da Silva PF, Frantz FG, Lorenzon LB, Souza MM, Almeida F, Cantanhede LM, Ferreira RGM, Cruz AK & Zamboni DS (2019) Leishmania RNA virus exacerbates Leishmaniasis by subverting innate immunity via TLR3-mediated NLRP3 inflammasome inhibition. *Nature communications* 10(1):5273.
- De Souza Leao S, Lang T, Prina E, Hellio R & Antoine JC (1995) Intracellular Leishmania amazonensis amastigotes internalize and degrade MHC class II molecules of their host cells. *Journal of cell science* 108 (Pt 10):3219-3231.
- de Vries HJ, Reedijk SH & Schallig HD (2015) Cutaneous leishmaniasis: recent developments in diagnosis and management. *American journal of clinical dermatology* 16(2):99-109.
- Delgado O, Cupolillo E, Bonfante-Garrido R, Silva S, Belfort E, Grimaldi Junior G & Momen H (1997) Cutaneous leishmaniasis in Venezuela caused by infection with a new hybrid between Leishmania (Viannia) braziliensis and L. (V.) guyanensis. *Memorias do Instituto Oswaldo Cruz* 92(5):581-582.

- Denise H, McNeil K, Brooks DR, Alexander J, Coombs GH & Mottram JC (2003) Expression of multiple CPB genes encoding cysteine proteases is required for Leishmania mexicana virulence in vivo. *Infection and immunity* 71(6):3190-3195.
- Dermine JF, Scianimanico S, Prive C, Descoteaux A & Desjardins M (2000) Leishmania promastigotes require lipophosphoglycan to actively modulate the fusion properties of phagosomes at an early step of phagocytosis. *Cellular microbiology* 2(2):115-126.
- Descoteaux A, Garraway L, Ryan KA, Garrity LK, Turco S & Beverley S (1994) Identification of genes by functional complementation in protozoan parasite Leishmania.
- Descoteaux A & Matlashewski G (1989) c-fos and tumor necrosis factor gene expression in Leishmania donovani-infected macrophages. *Molecular and cellular biology* 9(11):5223-5227.
- Desjardins M & Descoteaux A (1997) Inhibition of phagolysosomal biogenesis by the Leishmania lipophosphoglycan. *The Journal of experimental medicine* 185(12):2061-2068.
- Desjeux P (2004) Leishmaniasis: current situation and new perspectives. *Comparative immunology, microbiology and infectious diseases* 27(5):305-318.
- Dighal A, Mukhopadhyay D, Sengupta R, Moulik S, Mukherjee S, Roy S, Chaudhuri SJ, Das NK & Chatterjee M (2020) Iron trafficking in patients with Indian Post kala-azar dermal leishmaniasis. *PLoS neglected tropical diseases* 14(2):e0007991.
- Dingjan I, Paardekooper LM, Verboogen DRJ, von Mollard GF, Ter Beest M & van den Bogaart G (2017) VAMP8-mediated NOX2 recruitment to endosomes is necessary for antigen release. *European journal of cell biology* 96(7):705-714.
- Dong G, Filho AL & Olivier M (2019) Modulation of Host-Pathogen Communication by Extracellular Vesicles (EVs) of the Protozoan Parasite Leishmania. *Frontiers in cellular and infection microbiology* 9:100.
- Douanne N, Dong G, Douanne M, Olivier M & Fernandez-Prada C (2020) Unravelling the proteomic signature of extracellular vesicles released by drug-resistant Leishmania infantum parasites. *PLoS neglected tropical diseases* 14(7):e0008439.
- Downing T, Imamura H, Decuypere S, Clark TG, Coombs GH, Cotton JA, Hilley JD, de Doncker S, Maes I, Mottram JC, Quail MA, Rijal S, Sanders M, Schonian G, Stark O, Sundar S, Vanaerschot M, Hertz-Fowler C, Dujardin JC & Berriman M (2011) Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. *Genome research* 21(12):2143-2156.
- Doyle SE, O'Connell RM, Miranda GA, Vaidya SA, Chow EK, Liu PT, Suzuki S, Suzuki N, Modlin RL, Yeh WC, Lane TF & Cheng G (2004) Toll-like receptors induce a phagocytic gene program through p38. *The Journal of experimental medicine* 199(1):81-90.
- Dujardin JC, Banuls AL, Llanos-Cuentas A, Alvarez E, DeDoncker S, Jacquet D, Le Ray D, Arevalo J & Tibayrenc M (1995) Putative Leishmania hybrids in the Eastern Andean valley of Huanuco, Peru. *Acta tropica* 59(4):293-307.
- Elzanowska J, Semira C & Costa-Silva B (2020) DNA in extracellular vesicles: biological and clinical aspects. *Molecular oncology* 10.1002/1878-0261.12777.
- Esch KJ, Juelsgaard R, Martinez PA, Jones DE & Petersen CA (2013) Programmed death 1-mediated T cell exhaustion during visceral leishmaniasis impairs phagocyte function. *J Immunol* 191(11):5542-5550.
- Evans DA, Kennedy WP, Elbihari S, Chapman CJ, Smith V & Peters W (1987) Hybrid formation within the genus Leishmania? *Parassitologia* 29(2-3):165-173.
- Ezekowitz RA, Sastry K, Bailly P & Warner A (1990) Molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells. *The Journal of experimental medicine* 172(6):1785-1794.

- Flannagan RS, Cosio G & Grinstein S (2009) Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. *Nature reviews. Microbiology* 7(5):355-366.
- Flannagan RS, Jaumouille V & Grinstein S (2012) The cell biology of phagocytosis. *Annual review of pathology* 7:61-98.
- Forche A, Alby K, Schaefer D, Johnson AD, Berman J & Bennett RJ (2008) The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. *PLoS biology* 6(5):e110.
- Forget G, Gregory DJ & Olivier M (2005) Proteasome-mediated degradation of STAT1alpha following infection of macrophages with Leishmania donovani. *The Journal of biological chemistry* 280(34):30542-30549.
- Forget G, Gregory DJ, Whitcombe LA & Olivier M (2006) Role of host protein tyrosine phosphatase SHP-1 in Leishmania donovani-induced inhibition of nitric oxide production. *Infection and immunity* 74(11):6272-6279.
- Freeman SA & Grinstein S (2014) Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunological reviews 262(1):193-215.
- Gabriel C, McMaster WR, Girard D & Descoteaux A (2010) Leishmania donovani promastigotes evade the antimicrobial activity of neutrophil extracellular traps. *J Immunol* 185(7):4319-4327.
- Gaunt MW, Yeo M, Frame IA, Stothard JR, Carrasco HJ, Taylor MC, Mena SS, Veazey P, Miles GA, Acosta N, de Arias AR & Miles MA (2003) Mechanism of genetic exchange in American trypanosomes. *Nature* 421(6926):936-939.
- Gautam S, Kumar R, Singh N, Singh AK, Rai M, Sacks D, Sundar S & Nylen S (2014) CD8 T cell exhaustion in human visceral leishmaniasis. *The Journal of infectious diseases* 209(2):290-299.
- Gelanew T, Hailu A, Schonian G, Lewis MD, Miles MA & Yeo M (2014) Multilocus sequence and microsatellite identification of intra-specific hybrids and ancestor-like donors among natural Ethiopian isolates of Leishmania donovani. *International journal for parasitology* 44(10):751-757.
- Ghazizadeh S, Bolen JB & Fleit HB (1994) Physical and functional association of Src-related protein tyrosine kinases with Fc gamma RII in monocytic THP-1 cells. *The Journal of biological chemistry* 269(12):8878-8884.
- Ghiran I, Barbashov SF, Klickstein LB, Tas SW, Jensenius JC & Nicholson-Weller A (2000) Complement receptor 1/CD35 is a receptor for mannan-binding lectin. *The Journal of experimental medicine* 192(12):1797-1808.
- Ghorbani M & Farhoudi R (2018) Leishmaniasis in humans: drug or vaccine therapy? *Drug design, development and therapy* 12:25-40.
- Gibson W, Peacock L, Ferris V, Williams K & Bailey M (2008) The use of yellow fluorescent hybrids to indicate mating in Trypanosoma brucei. *Parasites & vectors* 1(1):4.
- Gomez MA, Contreras I, Halle M, Tremblay ML, McMaster RW & Olivier M (2009) Leishmania GP63 alters host signaling through cleavage-activated protein tyrosine phosphatases. *Science signaling* 2(90):ra58.
- Gordon S (2016) Phagocytosis: An Immunobiologic Process. *Immunity* 44(3):463-475.
- Gordon S & Martinez-Pomares L (2017) Physiological roles of macrophages. *Pflugers Archiv : European journal of physiology* 469(3-4):365-374.
- Gordon S & Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. *Immunity* 32(5):593-604.
- Gossage SM, Rogers ME & Bates PA (2003) Two separate growth phases during the development of Leishmania in sand flies: implications for understanding the life cycle. *International journal for parasitology* 33(10):1027-1034.

- Griffiths G, Hoflack B, Simons K, Mellman I & Kornfeld S (1988) The mannose 6-phosphate receptor and the biogenesis of lysosomes. *Cell* 52(3):329-341.
- Guimaraes-Costa AB, DeSouza-Vieira TS, Paletta-Silva R, Freitas-Mesquita AL, Meyer-Fernandes JR & Saraiva EM (2014) 3'-nucleotidase/nuclease activity allows Leishmania parasites to escape killing by neutrophil extracellular traps. *Infection and immunity* 82(4):1732-1740.
- Guimaraes-Costa AB, Nascimento MT, Froment GS, Soares RP, Morgado FN, Conceicao-Silva F & Saraiva EM (2009) Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. *Proceedings of the National Academy of Sciences of the United States of America* 106(16):6748-6753.
- Gutierrez MG (2013) Functional role(s) of phagosomal Rab GTPases. Small GTPases 4(3):148-158.
- Ha DS, Schwarz JK, Turco SJ & Beverley SM (1996) Use of the green fluorescent protein as a marker in transfected Leishmania. *Molecular and biochemical parasitology* 77(1):57-64.
- Handler MZ, Patel PA, Kapila R, Al-Qubati Y & Schwartz RA (2015) Cutaneous and mucocutaneous leishmaniasis: Clinical perspectives. *Journal of the American Academy of Dermatology* 73(6):897-908; quiz 909-810.
- Handman E & Bullen DV (2002) Interaction of Leishmania with the host macrophage. *Trends in parasitology* 18(8):332-334.
- Harrison RE, Bucci C, Vieira OV, Schroer TA & Grinstein S (2003) Phagosomes fuse with late endosomes and/or lysosomes by extension of membrane protrusions along microtubules: role of Rab7 and RILP. *Molecular and cellular biology* 23(18):6494-6506.
- Hassani K, Antoniak E, Jardim A & Olivier M (2011) Temperature-induced protein secretion by Leishmania mexicana modulates macrophage signalling and function. *PloS one* 6(5):e18724.
- Hassani K, Shio MT, Martel C, Faubert D & Olivier M (2014) Absence of metalloprotease GP63 alters the protein content of Leishmania exosomes. *PloS one* 9(4):e95007.
- Hato T & Dagher PC (2015) How the Innate Immune System Senses Trouble and Causes Trouble. *Clinical journal of the American Society of Nephrology : CJASN* 10(8):1459-1469.
- Heitman J (2010) Evolution of eukaryotic microbial pathogens via covert sexual reproduction. *Cell host & microbe* 8(1):86-99.
- Herre J, Marshall AS, Caron E, Edwards AD, Williams DL, Schweighoffer E, Tybulewicz V, Reis e Sousa C, Gordon S & Brown GD (2004) Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages. *Blood* 104(13):4038-4045.
- Hey AS, Theander TG, Hviid L, Hazrati SM, Kemp M & Kharazmi A (1994) The major surface glycoprotein (gp63) from Leishmania major and Leishmania donovani cleaves CD4 molecules on human T cells. *J Immunol* 152(9):4542-4548.
- Holm A, Tejle K, Magnusson KE, Descoteaux A & Rasmusson B (2001) Leishmania donovani lipophosphoglycan causes periphagosomal actin accumulation: correlation with impaired translocation of PKCalpha and defective phagosome maturation. *Cellular microbiology* 3(7):439-447.
- Huynh KK, Eskelinen EL, Scott CC, Malevanets A, Saftig P & Grinstein S (2007) LAMP proteins are required for fusion of lysosomes with phagosomes. *The EMBO journal* 26(2):313-324.
- Iantorno SA, Durrant C, Khan A, Sanders MJ, Beverley SM, Warren WC, Berriman M, Sacks DL, Cotton JA & Grigg ME (2017) Gene Expression in Leishmania Is Regulated Predominantly by Gene Dosage. *mBio* 8(5).
- Ilg T (2000) Lipophosphoglycan is not required for infection of macrophages or mice by Leishmania mexicana. *The EMBO journal* 19(9):1953-1962.
- Inbar E, Akopyants NS, Charmoy M, Romano A, Lawyer P, Elnaiem DE, Kauffmann F, Barhoumi M, Grigg M, Owens K, Fay M, Dobson DE, Shaik J, Beverley SM & Sacks D (2013) The mating competence

of geographically diverse Leishmania major strains in their natural and unnatural sand fly vectors. *PLoS genetics* 9(7):e1003672.

- Inbar E, Shaik J, Iantorno SA, Romano A, Nzelu CO, Owens K, Sanders MJ, Dobson D, Cotton JA, Grigg ME, Beverley SM & Sacks D (2019) Whole genome sequencing of experimental hybrids supports meiosis-like sexual recombination in Leishmania. *PLoS genetics* 15(5):e1008042.
- Isnard A, Shio MT & Olivier M (2012) Impact of Leishmania metalloprotease GP63 on macrophage signaling. *Frontiers in cellular and infection microbiology* 2:72.
- Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M, Sisk E, Rajandream MA, Adlem E, Aert R, Anupama A, Apostolou Z, Attipoe P, Bason N, Bauser C, Beck A, Beverley SM, Bianchettin G, Borzym K, Bothe G, Bruschi CV, Collins M, Cadag E, Ciarloni L, Clayton C, Coulson RM, Cronin A, Cruz AK, Davies RM, De Gaudenzi J, Dobson DE, Duesterhoeft A, Fazelina G, Fosker N, Frasch AC, Fraser A, Fuchs M, Gabel C, Goble A, Goffeau A, Harris D, Hertz-Fowler C, Hilbert H, Horn D, Huang Y, Klages S, Knights A, Kube M, Larke N, Litvin L, Lord A, Louie T, Marra M, Masuy D, Matthews K, Michaeli S, Mottram JC, Muller-Auer S, Munden H, Nelson S, Norbertczak H, Oliver K, O'Neil S, Pentony M, Pohl TM, Price C, Purnelle B, Quail MA, Rabbinowitsch E, Reinhardt R, Rieger M, Rinta J, Robben J, Robertson L, Ruiz JC, Rutter S, Saunders D, Schafer M, Schein J, Schwartz DC, Seeger K, Seyler A, Sharp S, Shin H, Sivam D, Squares R, Squares S, Tosato V, Vogt C, Volckaert G, Wambutt R, Warren T, Wedler H, Woodward J, Zhou S, Zimmermann W, Smith DF, Blackwell JM, Stuart KD, Barrell B & Myler PJ (2005) The genome of the kinetoplastid parasite, Leishmania major. *Science* 309(5733):436-442.
- Iwasaki A & Medzhitov R (2015) Control of adaptive immunity by the innate immune system. *Nature immunology* 16(4):343-353.
- Jaramillo M, Gomez MA, Larsson O, Shio MT, Topisirovic I, Contreras I, Luxenburg R, Rosenfeld A, Colina R, McMaster RW, Olivier M, Costa-Mattioli M & Sonenberg N (2011) Leishmania repression of host translation through mTOR cleavage is required for parasite survival and infection. *Cell host & microbe* 9(4):331-341.
- Jeffrey BM, Suchland RJ, Eriksen SG, Sandoz KM & Rockey DD (2013) Genomic and phenotypic characterization of in vitro-generated Chlamydia trachomatis recombinants. *BMC microbiology* 13:142.
- Jennings YL, de Souza AA, Ishikawa EA, Shaw J, Lainson R & Silveira F (2014) Phenotypic characterization of Leishmania spp. causing cutaneous leishmaniasis in the lower Amazon region, western Para state, Brazil, reveals a putative hybrid parasite, Leishmania (Viannia) guyanensis x Leishmania (Viannia) shawi shawi. *Parasite* 21:39.
- Johansson M, Rocha N, Zwart W, Jordens I, Janssen L, Kuijl C, Olkkonen VM & Neefjes J (2007) Activation of endosomal dynein motors by stepwise assembly of Rab7-RILP-p150Glued, ORP1L, and the receptor betalll spectrin. *The Journal of cell biology* 176(4):459-471.
- Johnson SA, Pleiman CM, Pao L, Schneringer J, Hippen K & Cambier JC (1995) Phosphorylated immunoreceptor signaling motifs (ITAMs) exhibit unique abilities to bind and activate Lyn and Syk tyrosine kinases. *J Immunol* 155(10):4596-4603.
- Joshi PB, Kelly BL, Kamhawi S, Sacks DL & McMaster WR (2002) Targeted gene deletion in Leishmania major identifies leishmanolysin (GP63) as a virulence factor. *Molecular and biochemical parasitology* 120(1):33-40.
- Julier Z, Park AJ, Briquez PS & Martino MM (2017) Promoting tissue regeneration by modulating the immune system. *Acta biomaterialia* 53:13-28.
- Kamhawi S (2006) Phlebotomine sand flies and Leishmania parasites: friends or foes? *Trends in parasitology* 22(9):439-445.

- Kato H, Caceres AG & Hashiguchi Y (2016) First Evidence of a Hybrid of Leishmania (Viannia) braziliensis/L. (V.) peruviana DNA Detected from the Phlebotomine Sand Fly Lutzomyia tejadai in Peru. *PLoS neglected tropical diseases* 10(1):e0004336.
- Kato H, Gomez EA, Seki C, Furumoto H, Martini-Robles L, Muzzio J, Calvopina M, Velez L, Kubo M, Tabbabi A, Yamamoto DS & Hashiguchi Y (2019) PCR-RFLP analyses of Leishmania species causing cutaneous and mucocutaneous leishmaniasis revealed distribution of genetically complex strains with hybrid and mito-nuclear discordance in Ecuador. *PLoS neglected tropical diseases* 13(5):e0007403.
- Kaur BP & Secord E (2019) Innate Immunity. *Pediatric clinics of North America* 66(5):905-911.
- Kaye PM, Rogers NJ, Curry AJ & Scott JC (1994) Deficient expression of co-stimulatory molecules on Leishmania-infected macrophages. *European journal of immunology* 24(11):2850-2854.
- Kelly JM, Law JM, Chapman CJ, Van Eys GJ & Evans DA (1991) Evidence of genetic recombination in Leishmania. *Molecular and biochemical parasitology* 46(2):253-263.
- Kim SY & Nair MG (2019) Macrophages in wound healing: activation and plasticity. *Immunology and cell biology* 97(3):258-267.
- Kimblin N, Peters N, Debrabant A, Secundino N, Egen J, Lawyer P, Fay MP, Kamhawi S & Sacks D (2008) Quantification of the infectious dose of Leishmania major transmitted to the skin by single sand flies. *Proceedings of the National Academy of Sciences of the United States of America* 105(29):10125-10130.
- Kinchen JM & Ravichandran KS (2008) Phagosome maturation: going through the acid test. *Nature reviews. Molecular cell biology* 9(10):781-795.
- Kobayashi T, Stang E, Fang KS, de Moerloose P, Parton RG & Gruenberg J (1998) A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. *Nature* 392(6672):193-197.
- Kreutzer RD, Yemma JJ, Grogl M, Tesh RB & Martin TI (1994) Evidence of sexual reproduction in the protozoan parasite Leishmania (Kinetoplastida: Trypanosomatidae). *The American journal of tropical medicine and hygiene* 51(3):301-307.
- Kulkarni MM, McMaster WR, Kamysz E, Kamysz W, Engman DM & McGwire BS (2006) The major surface-metalloprotease of the parasitic protozoan, Leishmania, protects against antimicrobial peptide-induced apoptotic killing. *Molecular microbiology* 62(5):1484-1497.
- Lambertz U, Oviedo Ovando ME, Vasconcelos EJ, Unrau PJ, Myler PJ & Reiner NE (2015) Small RNAs derived from tRNAs and rRNAs are highly enriched in exosomes from both old and new world Leishmania providing evidence for conserved exosomal RNA Packaging. *BMC genomics* 16:151.
- Lanotte G & Rioux JA (1990) [Cell fusion in Leishmania (Kinetoplastida, Trypanosomatidae)]. *Comptes* rendus de l'Academie des sciences. Serie III, Sciences de la vie 310(7):285-288.
- Laskay T, van Zandbergen G & Solbach W (2003) Neutrophil granulocytes--Trojan horses for Leishmania major and other intracellular microbes? *Trends in microbiology* 11(5):210-214.
- Levin R, Grinstein S & Canton J (2016) The life cycle of phagosomes: formation, maturation, and resolution. *Immunological reviews* 273(1):156-179.
- Lieke T, Nylen S, Eidsmo L, McMaster WR, Mohammadi AM, Khamesipour A, Berg L & Akuffo H (2008) Leishmania surface protein gp63 binds directly to human natural killer cells and inhibits proliferation. *Clinical and experimental immunology* 153(2):221-230.
- Linehan E & Fitzgerald DC (2015) Ageing and the immune system: focus on macrophages. *European journal of microbiology & immunology* 5(1):14-24.
- Lodge R & Descoteaux A (2005) Leishmania donovani promastigotes induce periphagosomal F-actin accumulation through retention of the GTPase Cdc42. *Cellular microbiology* 7(11):1647-1658.
- Lodge R, Diallo TO & Descoteaux A (2006) Leishmania donovani lipophosphoglycan blocks NADPH oxidase assembly at the phagosome membrane. *Cellular microbiology* 8(12):1922-1931.

Lopez Kostka S, Dinges S, Griewank K, Iwakura Y, Udey MC & von Stebut E (2009) IL-17 promotes progression of cutaneous leishmaniasis in susceptible mice. *J Immunol* 182(5):3039-3046.

- Louradour I, Ferreira TR, Ghosh K, Shaik J & Sacks D (2020) In Vitro Generation of Leishmania Hybrids. *Cell reports* 31(2):107507.
- Magill AJ, Grogl M, Gasser RA, Jr., Sun W & Oster CN (1993) Visceral infection caused by Leishmania tropica in veterans of Operation Desert Storm. *The New England journal of medicine* 328(19):1383-1387.
- Martin S, Agarwal R, Murugaiyan G & Saha B (2010) CD40 expression levels modulate regulatory T cells in Leishmania donovani infection. *J Immunol* 185(1):551-559.
- Martinez-Calvillo S, Yan S, Nguyen D, Fox M, Stuart K & Myler PJ (2003) Transcription of Leishmania major Friedlin chromosome 1 initiates in both directions within a single region. *Molecular cell* 11(5):1291-1299.
- Martinez FO & Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. *F1000prime reports* 6:13.
- Martiny A, Meyer-Fernandes JR, de Souza W & Vannier-Santos MA (1999) Altered tyrosine phosphorylation of ERK1 MAP kinase and other macrophage molecules caused by Leishmania amastigotes. *Molecular and biochemical parasitology* 102(1):1-12.
- Matheoud D, Moradin N, Bellemare-Pelletier A, Shio MT, Hong WJ, Olivier M, Gagnon E, Desjardins M & Descoteaux A (2013) Leishmania evades host immunity by inhibiting antigen cross-presentation through direct cleavage of the SNARE VAMP8. *Cell host & microbe* 14(1):15-25.
- May RC, Caron E, Hall A & Machesky LM (2000) Involvement of the Arp2/3 complex in phagocytosis mediated by FcgammaR or CR3. *Nature cell biology* 2(4):246-248.
- McBride HM, Rybin V, Murphy C, Giner A, Teasdale R & Zerial M (1999) Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. *Cell* 98(3):377-386.
- McGwire BS, Chang KP & Engman DM (2003) Migration through the extracellular matrix by the parasitic protozoan Leishmania is enhanced by surface metalloprotease gp63. *Infection and immunity* 71(2):1008-1010.
- Medina-Acosta E & Cross GA (1993) Rapid isolation of DNA from trypanosomatid protozoa using a simple 'mini-prep' procedure. *Molecular and biochemical parasitology* 59(2):327-329.
- Meier CL, Svensson M & Kaye PM (2003) Leishmania-induced inhibition of macrophage antigen presentation analyzed at the single-cell level. *J Immunol* 171(12):6706-6713.
- Moafi M, Rezvan H, Sherkat R & Taleban R (2019) Leishmania Vaccines Entered in Clinical Trials: A Review of Literature. *International journal of preventive medicine* 10:95.
- Mogensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. *Clinical microbiology reviews* 22(2):240-273, Table of Contents.
- Monge-Maillo B, Norman FF, Cruz I, Alvar J & Lopez-Velez R (2014) Visceral leishmaniasis and HIV coinfection in the Mediterranean region. *PLoS neglected tropical diseases* 8(8):e3021.

Moradin N & Descoteaux A (2012) Leishmania promastigotes: building a safe niche within macrophages. Frontiers in cellular and infection microbiology 2:121.

- Morimoto A, Uchida K, Chambers JK, Sato K, Hong J, Sanjoba C, Matsumoto Y, Yamagishi J & Goto Y (2019) Hemophagocytosis induced by Leishmania donovani infection is beneficial to parasite survival within macrophages. *PLoS neglected tropical diseases* 13(11):e0007816.
- Mosser DM & Rosenthal LA (1993) Leishmania-macrophage interactions: multiple receptors, multiple ligands and diverse cellular responses. *Seminars in cell biology* 4(5):315-322.
- Mukkada AJ, Meade JC, Glaser TA & Bonventre PF (1985) Enhanced metabolism of Leishmania donovani amastigotes at acid pH: an adaptation for intracellular growth. *Science* 229(4718):1099-1101.

- Murray HW, Berman JD, Davies CR & Saravia NG (2005) Advances in leishmaniasis. *Lancet* 366(9496):1561-1577.
- Neves BM, Silvestre R, Resende M, Ouaissi A, Cunha J, Tavares J, Loureiro I, Santarem N, Silva AM, Lopes MC, Cruz MT & Cordeiro da Silva A (2010) Activation of phosphatidylinositol 3-kinase/Akt and impairment of nuclear factor-kappaB: molecular mechanisms behind the arrested maturation/activation state of Leishmania infantum-infected dendritic cells. *The American journal of pathology* 177(6):2898-2911.
- Nolder D, Roncal N, Davies CR, Llanos-Cuentas A & Miles MA (2007) Multiple hybrid genotypes of Leishmania (viannia) in a focus of mucocutaneous Leishmaniasis. *The American journal of tropical medicine and hygiene* 76(3):573-578.
- Odiwuor S, De Doncker S, Maes I, Dujardin JC & Van der Auwera G (2011) Natural Leishmania donovani/Leishmania aethiopica hybrids identified from Ethiopia. *Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases* 11(8):2113-2118.
- Okuda K, Tong M, Dempsey B, Moore KJ, Gazzinelli RT & Silverman N (2016) Leishmania amazonensis Engages CD36 to Drive Parasitophorous Vacuole Maturation. *PLoS pathogens* 12(6):e1005669.
- Okwor I & Uzonna J (2016) Social and Economic Burden of Human Leishmaniasis. *The American journal* of tropical medicine and hygiene 94(3):489-493.
- Okwor I & Uzonna JE (2013) The immunology of Leishmania/HIV co-infection. *Immunologic research* 56(1):163-171.
- Papayannopoulos V (2018) Neutrophil extracellular traps in immunity and disease. *Nature reviews. Immunology* 18(2):134-147.
- Patel SN, Serghides L, Smith TG, Febbraio M, Silverstein RL, Kurtz TW, Pravenec M & Kain KC (2004) CD36 mediates the phagocytosis of Plasmodium falciparum-infected erythrocytes by rodent macrophages. *The Journal of infectious diseases* 189(2):204-213.
- Peacock CS, Seeger K, Harris D, Murphy L, Ruiz JC, Quail MA, Peters N, Adlem E, Tivey A, Aslett M, Kerhornou A, Ivens A, Fraser A, Rajandream MA, Carver T, Norbertczak H, Chillingworth T, Hance Z, Jagels K, Moule S, Ormond D, Rutter S, Squares R, Whitehead S, Rabbinowitsch E, Arrowsmith C, White B, Thurston S, Bringaud F, Baldauf SL, Faulconbridge A, Jeffares D, Depledge DP, Oyola SO, Hilley JD, Brito LO, Tosi LR, Barrell B, Cruz AK, Mottram JC, Smith DF & Berriman M (2007) Comparative genomic analysis of three Leishmania species that cause diverse human disease. *Nature genetics* 39(7):839-847.
- Peacock L, Ferris V, Bailey M & Gibson W (2014) Mating compatibility in the parasitic protist Trypanosoma brucei. *Parasites & vectors* 7:78.
- Peters NC, Egen JG, Secundino N, Debrabant A, Kimblin N, Kamhawi S, Lawyer P, Fay MP, Germain RN & Sacks D (2008) In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. *Science* 321(5891):970-974.
- Pitt A, Mayorga LS, Stahl PD & Schwartz AL (1992) Alterations in the protein composition of maturing phagosomes. *The Journal of clinical investigation* 90(5):1978-1983.
- Podinovskaia M & Descoteaux A (2015) Leishmania and the macrophage: a multifaceted interaction. Future microbiology 10(1):111-129.
- Poon IK, Lucas CD, Rossi AG & Ravichandran KS (2014) Apoptotic cell clearance: basic biology and therapeutic potential. *Nature reviews. Immunology* 14(3):166-180.
- Poteryaev D, Datta S, Ackema K, Zerial M & Spang A (2010) Identification of the switch in early-to-late endosome transition. *Cell* 141(3):497-508.
- Rabinovitch M, Topper G, Cristello P & Rich A (1985) Receptor-mediated entry of peroxidases into the parasitophorous vacuoles of macrophages infected with Leishmania Mexicana amazonensis. *Journal of leukocyte biology* 37(3):247-261.

- Ranasinghe S, Wickremasinghe R, Munasinghe A, Hulangamuwa S, Sivanantharajah S, Seneviratne K, Bandara S, Athauda I, Navaratne C, Silva O, Wackwella H, Matlashewski G & Wickremasinghe R (2013) Cross-sectional study to assess risk factors for leishmaniasis in an endemic region in Sri Lanka. *The American journal of tropical medicine and hygiene* 89(4):742-749.
- Ravel C, Cortes S, Pratlong F, Morio F, Dedet JP & Campino L (2006) First report of genetic hybrids between two very divergent Leishmania species: Leishmania infantum and Leishmania major. *International journal for parasitology* 36(13):1383-1388.
- Real F, Florentino PT, Reis LC, Ramos-Sanchez EM, Veras PS, Goto H & Mortara RA (2014) Cell-to-cell transfer of Leishmania amazonensis amastigotes is mediated by immunomodulatory LAMP-rich parasitophorous extrusions. *Cellular microbiology* 16(10):1549-1564.
- Real F & Mortara RA (2012) The diverse and dynamic nature of Leishmania parasitophorous vacuoles studied by multidimensional imaging. *PLoS neglected tropical diseases* 6(2):e1518.
- Real F, Mortara RA & Rabinovitch M (2010) Fusion between Leishmania amazonensis and Leishmania major parasitophorous vacuoles: live imaging of coinfected macrophages. *PLoS neglected tropical diseases* 4(12):e905.
- Real F, Pouchelet M & Rabinovitch M (2008) Leishmania (L.) amazonensis: fusion between parasitophorous vacuoles in infected bone-marrow derived mouse macrophages. *Experimental parasitology* 119(1):15-23.
- Regev-Rudzki N, Wilson DW, Carvalho TG, Sisquella X, Coleman BM, Rug M, Bursac D, Angrisano F, Gee M, Hill AF, Baum J & Cowman AF (2013) Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. *Cell* 153(5):1120-1133.
- Ribeiro-Gomes FL, Peters NC, Debrabant A & Sacks DL (2012) Efficient capture of infected neutrophils by dendritic cells in the skin inhibits the early anti-leishmania response. *PLoS pathogens* 8(2):e1002536.
- Ricklin D, Reis ES, Mastellos DC, Gros P & Lambris JD (2016) Complement component C3 The "Swiss Army Knife" of innate immunity and host defense. *Immunological reviews* 274(1):33-58.
- Rink J, Ghigo E, Kalaidzidis Y & Zerial M (2005) Rab conversion as a mechanism of progression from early to late endosomes. *Cell* 122(5):735-749.
- Rochette A, Raymond F, Ubeda JM, Smith M, Messier N, Boisvert S, Rigault P, Corbeil J, Ouellette M & Papadopoulou B (2008) Genome-wide gene expression profiling analysis of Leishmania major and Leishmania infantum developmental stages reveals substantial differences between the two species. *BMC genomics* 9:255.
- Rogers KA & Titus RG (2003) Immunomodulatory effects of Maxadilan and Phlebotomus papatasi sand fly salivary gland lysates on human primary in vitro immune responses. *Parasite immunology* 25(3):127-134.
- Rogers MB, Downing T, Smith BA, Imamura H, Sanders M, Svobodova M, Volf P, Berriman M, Cotton JA & Smith DF (2014) Genomic confirmation of hybridisation and recent inbreeding in a vectorisolated Leishmania population. *PLoS genetics* 10(1):e1004092.
- Rogers MB, Hilley JD, Dickens NJ, Wilkes J, Bates PA, Depledge DP, Harris D, Her Y, Herzyk P, Imamura H, Otto TD, Sanders M, Seeger K, Dujardin JC, Berriman M, Smith DF, Hertz-Fowler C & Mottram JC (2011) Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. *Genome research* 21(12):2129-2142.
- Rogers ME (2012) The role of leishmania proteophosphoglycans in sand fly transmission and infection of the Mammalian host. *Frontiers in microbiology* 3:223.
- Romano A, Inbar E, Debrabant A, Charmoy M, Lawyer P, Ribeiro-Gomes F, Barhoumi M, Grigg M, Shaik J, Dobson D, Beverley SM & Sacks DL (2014) Cross-species genetic exchange between visceral and cutaneous strains of Leishmania in the sand fly vector. *Proceedings of the National Academy of Sciences of the United States of America* 111(47):16808-16813.

- Rosales C & Uribe-Querol E (2017) Phagocytosis: A Fundamental Process in Immunity. *BioMed research international* 2017:9042851.
- Ross GD, Reed W, Dalzell JG, Becker SE & Hogg N (1992) Macrophage cytoskeleton association with CR3 and CR4 regulates receptor mobility and phagocytosis of iC3b-opsonized erythrocytes. *Journal of leukocyte biology* 51(2):109-117.
- Rougeron V, De Meeus T & Banuls AL (2017) Reproduction in Leishmania: A focus on genetic exchange. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases 50:128-132.
- Rougeron V, De Meeus T, Hide M, Waleckx E, Bermudez H, Arevalo J, Llanos-Cuentas A, Dujardin JC, De Doncker S, Le Ray D, Ayala FJ & Banuls AL (2009) Extreme inbreeding in Leishmania braziliensis. *Proceedings of the National Academy of Sciences of the United States of America* 106(25):10224-10229.
- Roy S, Kumar GA, Jafurulla M, Mandal C & Chattopadhyay A (2014) Integrity of the actin cytoskeleton of host macrophages is essential for Leishmania donovani infection. *Biochimica et biophysica acta* 1838(8):2011-2018.
- Sacks D & Kamhawi S (2001) Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis. *Annual review of microbiology* 55:453-483.
- Sadlova J, Yeo M, Seblova V, Lewis MD, Mauricio I, Volf P & Miles MA (2011) Visualisation of Leishmania donovani fluorescent hybrids during early stage development in the sand fly vector. *PloS one* 6(5):e19851.
- Saha B, Das G, Vohra H, Ganguly NK & Mishra GC (1995) Macrophage-T cell interaction in experimental visceral leishmaniasis: failure to express costimulatory molecules on Leishmania-infected macrophages and its implication in the suppression of cell-mediated immunity. *European journal of immunology* 25(9):2492-2498.
- Savoia D (2015) Recent updates and perspectives on leishmaniasis. *Journal of infection in developing countries* 9(6):588-596.
- Scharton TM & Scott P (1993) Natural killer cells are a source of interferon gamma that drives differentiation of CD4+ T cell subsets and induces early resistance to Leishmania major in mice. *The Journal of experimental medicine* 178(2):567-577.
- Schmid-Hempel R, Salathe R, Tognazzo M & Schmid-Hempel P (2011) Genetic exchange and emergence of novel strains in directly transmitted trypanosomatids. *Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases* 11(3):564-571.
- Schwabl P, Imamura H, Van den Broeck F, Costales JA, Maiguashca-Sanchez J, Miles MA, Andersson B, Grijalva MJ & Llewellyn MS (2019) Meiotic sex in Chagas disease parasite Trypanosoma cruzi. *Nature communications* 10(1):3972.
- Scianimanico S, Desrosiers M, Dermine JF, Meresse S, Descoteaux A & Desjardins M (1999) Impaired recruitment of the small GTPase rab7 correlates with the inhibition of phagosome maturation by Leishmania donovani promastigotes. *Cellular microbiology* 1(1):19-32.
- Seabra SH, de Souza W & Damatta RA (2004) Toxoplasma gondii exposes phosphatidylserine inducing a TGF-beta1 autocrine effect orchestrating macrophage evasion. *Biochemical and biophysical research communications* 324(2):744-752.
- Seblova V, Myskova J, Hlavacova J, Votypka J, Antoniou M & Volf P (2015) Natural hybrid of Leishmania infantum/L. donovani: development in Phlebotomus tobbi, P. perniciosus and Lutzomyia longipalpis and comparison with non-hybrid strains differing in tissue tropism. *Parasites & vectors* 8:605.
- Seguin O & Descoteaux A (2016) Leishmania, the phagosome, and host responses: The journey of a parasite. *Cellular immunology* 309:1-6.

- Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT & Sahebkar A (2018) Macrophage plasticity, polarization, and function in health and disease. *Journal of cellular physiology* 233(9):6425-6440.
- Shepherd VL, Stahl PD, Bernd P & Rabinovitch M (1983) Receptor-mediated entry of beta-glucuronidase into the parasitophorous vacuoles of macrophages infected with Leishmania mexicana amazonensis. *The Journal of experimental medicine* 157(5):1471-1482.
- Silverman JM, Clos J, de'Oliveira CC, Shirvani O, Fang Y, Wang C, Foster LJ & Reiner NE (2010a) An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages. *Journal of cell science* 123(Pt 6):842-852.
- Silverman JM, Clos J, Horakova E, Wang AY, Wiesgigl M, Kelly I, Lynn MA, McMaster WR, Foster LJ, Levings MK & Reiner NE (2010b) Leishmania exosomes modulate innate and adaptive immune responses through effects on monocytes and dendritic cells. J Immunol 185(9):5011-5022.
- Simonsen A, Gaullier JM, D'Arrigo A & Stenmark H (1999) The Rab5 effector EEA1 interacts directly with syntaxin-6. *The Journal of biological chemistry* 274(41):28857-28860.
- Sousa MAd, Pereira MCdS & Côrte-Real S (1997) Leishmania major: Parasite Interactions Suggesting Sexuality. *Memorias do Instituto Oswaldo Cruz* 92:761-766.
- Spath GF & Beverley SM (2001) A lipophosphoglycan-independent method for isolation of infective Leishmania metacyclic promastigotes by density gradient centrifugation. *Experimental parasitology* 99(2):97-103.
- Spath GF, Garraway LA, Turco SJ & Beverley SM (2003) The role(s) of lipophosphoglycan (LPG) in the establishment of Leishmania major infections in mammalian hosts. *Proceedings of the National Academy of Sciences of the United States of America* 100(16):9536-9541.
- Sterkers Y, Crobu L, Lachaud L, Pages M & Bastien P (2014) Parasexuality and mosaic aneuploidy in Leishmania: alternative genetics. *Trends in parasitology* 30(9):429-435.
- Sterkers Y, Lachaud L, Crobu L, Bastien P & Pages M (2011) FISH analysis reveals aneuploidy and continual generation of chromosomal mosaicism in Leishmania major. *Cellular microbiology* 13(2):274-283.
- Strazzulla A, Cocuzza S, Pinzone MR, Postorino MC, Cosentino S, Serra A, Cacopardo B & Nunnari G (2013) Mucosal leishmaniasis: an underestimated presentation of a neglected disease. *BioMed research international* 2013:805108.
- Suchland RJ, Sandoz KM, Jeffrey BM, Stamm WE & Rockey DD (2009) Horizontal transfer of tetracycline resistance among Chlamydia spp. in vitro. *Antimicrobial agents and chemotherapy* 53(11):4604-4611.
- Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM & Chilvers ER (2010) Neutrophil kinetics in health and disease. *Trends in immunology* 31(8):318-324.
- Sunter J & Gull K (2017) Shape, form, function and Leishmania pathogenicity: from textbook descriptions to biological understanding. *Open biology* 7(9).
- Svobodova M, Alten B, Zidkova L, Dvorak V, Hlavackova J, Myskova J, Seblova V, Kasap OE, Belen A, Votypka J & Volf P (2009) Cutaneous leishmaniasis caused by Leishmania infantum transmitted by Phlebotomus tobbi. *International journal for parasitology* 39(2):251-256.
- Tacchini-Cottier F, Zweifel C, Belkaid Y, Mukankundiye C, Vasei M, Launois P, Milon G & Louis JA (2000) An immunomodulatory function for neutrophils during the induction of a CD4+ Th2 response in BALB/c mice infected with Leishmania major. *J Immunol* 165(5):2628-2636.
- Takai T (2002) Roles of Fc receptors in autoimmunity. *Nature reviews. Immunology* 2(8):580-592. Takeuchi O & Akira S (2010) Pattern recognition receptors and inflammation. *Cell* 140(6):805-820.
- Tang YC & Amon A (2013) Gene copy-number alterations: a cost-benefit analysis. *Cell* 152(3):394-405.
- Tauber AI (2003) Metchnikoff and the phagocytosis theory. *Nature reviews. Molecular cell biology* 4(11):897-901.

- Teixeira DE, Benchimol M, Rodrigues JC, Crepaldi PH, Pimenta PF & de Souza W (2013) The cell biology of Leishmania: how to teach using animations. *PLoS pathogens* 9(10):e1003594.
- Thiakaki M, Kolli B, Chang KP & Soteriadou K (2006) Down-regulation of gp63 level in Leishmania amazonensis promastigotes reduces their infectivity in BALB/c mice. *Microbes and infection* 8(6):1455-1463.
- Tibayrenc M & Ayala FJ (2013) How clonal are Trypanosoma and Leishmania? *Trends in parasitology* 29(6):264-269.
- Torres EM, Williams BR & Amon A (2008) Aneuploidy: cells losing their balance. *Genetics* 179(2):737-746.
- Torrico MC, De Doncker S, Arevalo J, Le Ray D & Dujardin JC (1999) In vitro promastigote fitness of putative Leishmania (Viannia) braziliensis/Leishmania (Viannia) peruviana hybrids. *Acta tropica* 72(1):99-110.
- Tosi MF (2005) Innate immune responses to infection. *The Journal of allergy and clinical immunology* 116(2):241-249; quiz 250.
- Turco S, Descoteaux A, Ryan K, Garraway L & Beverley S (1994) Isolation of virulence genes directing GPI synthesis by functional complementation of Leishmania. *Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas* 27(2):133-138.
- Ubeda JM, Legare D, Raymond F, Ouameur AA, Boisvert S, Rigault P, Corbeil J, Tremblay MJ, Olivier M, Papadopoulou B & Ouellette M (2008) Modulation of gene expression in drug resistant Leishmania is associated with gene amplification, gene deletion and chromosome aneuploidy. *Genome biology* 9(7):R115.
- Ueno N & Wilson ME (2012) Receptor-mediated phagocytosis of Leishmania: implications for intracellular survival. *Trends in parasitology* 28(8):335-344.
- van der Kant R, Fish A, Janssen L, Janssen H, Krom S, Ho N, Brummelkamp T, Carette J, Rocha N & Neefjes J (2013) Late endosomal transport and tethering are coupled processes controlled by RILP and the cholesterol sensor ORP1L. *Journal of cell science* 126(Pt 15):3462-3474.
- van Zandbergen G, Bollinger A, Wenzel A, Kamhawi S, Voll R, Klinger M, Muller A, Holscher C, Herrmann M, Sacks D, Solbach W & Laskay T (2006) Leishmania disease development depends on the presence of apoptotic promastigotes in the virulent inoculum. *Proceedings of the National Academy of Sciences of the United States of America* 103(37):13837-13842.
- van Zandbergen G, Klinger M, Mueller A, Dannenberg S, Gebert A, Solbach W & Laskay T (2004) Cutting edge: neutrophil granulocyte serves as a vector for Leishmania entry into macrophages. *J Immunol* 173(11):6521-6525.
- Vasconcelos CO, Coelho ZC, Chaves Cde S, Teixeira CR, Pompeu MM & Teixeira MJ (2014) Distinct cellular migration induced by Leishmania infantum chagasi and saliva from Lutzomyia longipalpis in a hemorrhagic pool model. *Revista do Instituto de Medicina Tropical de Sao Paulo* 56(1):21-27.
- Veras PS, de Chastellier C & Rabinovitch M (1992) Transfer of zymosan (yeast cell walls) to the parasitophorous vacuoles of macrophages infected with Leishmania amazonensis. *The Journal of experimental medicine* 176(3):639-646.
- Veras PS, Topilko A, Gouhier N, Moreau MF, Rabinovitch M & Pouchelet M (1996) Fusion of Leishmania amazonensis parasitophorous vacuoles with phagosomes containing zymosan particles: cinemicrographic and ultrastructural observations. *Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas* 29(8):1009-1018.
- Viana AG, Magalhaes LMD, Giunchetti RC, Dutra WO & Gollob KJ (2017) Infection of Human Monocytes with Leishmania infantum Strains Induces a Downmodulated Response when Compared with Infection with Leishmania braziliensis. *Frontiers in immunology* 8:1896.

- Vieira OV, Botelho RJ, Rameh L, Brachmann SM, Matsuo T, Davidson HW, Schreiber A, Backer JM, Cantley LC & Grinstein S (2001) Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. *The Journal of cell biology* 155(1):19-25.
- Vieira OV, Bucci C, Harrison RE, Trimble WS, Lanzetti L, Gruenberg J, Schreiber AD, Stahl PD & Grinstein S (2003) Modulation of Rab5 and Rab7 recruitment to phagosomes by phosphatidylinositol 3kinase. *Molecular and cellular biology* 23(7):2501-2514.
- Vinet AF, Fukuda M, Turco SJ & Descoteaux A (2009) The Leishmania donovani lipophosphoglycan excludes the vesicular proton-ATPase from phagosomes by impairing the recruitment of synaptotagmin V. *PLoS pathogens* 5(10):e1000628.
- Vivier E, Tomasello E, Baratin M, Walzer T & Ugolini S (2008) Functions of natural killer cells. *Nature immunology* 9(5):503-510.
- Volf P, Benkova I, Myskova J, Sadlova J, Campino L & Ravel C (2007) Increased transmission potential of Leishmania major/Leishmania infantum hybrids. *International journal for parasitology* 37(6):589-593.
- Wade N, Bryant NJ, Connolly LM, Simpson RJ, Luzio JP, Piper RC & James DE (2001) Syntaxin 7 complexes with mouse Vps10p tail interactor 1b, syntaxin 6, vesicle-associated membrane protein (VAMP)8, and VAMP7 in b16 melanoma cells. *The Journal of biological chemistry* 276(23):19820-19827.
- Wanderley JLM, Thorpe PE, Barcinski MA & Soong L (2013) Phosphatidylserine exposure on the surface of Leishmania amazonensis amastigotes modulates in vivo infection and dendritic cell function. *Parasite immunology* 35(3-4):109-119.
- Weedall GD & Hall N (2015) Sexual reproduction and genetic exchange in parasitic protists. *Parasitology* 142 Suppl 1:S120-127.
- WHO (2020) *Leishmaniasis*. World Health Organization, <u>https://www.who.int/news-room/fact-sheets/detail/leishmaniasis</u>
- Wilson J, Huynh C, Kennedy KA, Ward DM, Kaplan J, Aderem A & Andrews NW (2008) Control of parasitophorous vacuole expansion by LYST/Beige restricts the intracellular growth of Leishmania amazonensis. *PLoS pathogens* 4(10):e1000179.
- Yatim KM & Lakkis FG (2015) A brief journey through the immune system. *Clinical journal of the American Society of Nephrology : CJASN* 10(7):1274-1281.
- Zabala-Penafiel A, Todd D, Daneshvar H & Burchmore R (2020) The potential of live attenuated vaccines against Cutaneous Leishmaniasis. *Experimental parasitology* 210:107849.
- Zanetti M (2005) The role of cathelicidins in the innate host defenses of mammals. *Current issues in molecular biology* 7(2):179-196.