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Abstract  24 

Given climate change, trend detection is gaining increasing attention in the context of multivariate 25 

frequency analysis. In this paper, we propose new statistical tests for multivariate trend detection. 26 

The first one, a multivariate overall trend (MOT) test, is designed to detect trend in all components 27 

of the multivariate distribution (margins and dependence structure) whereas the second test is a 28 

multivariate dependence trend (MDT) test focusing on detecting trend in the dependence structure. 29 

A simulation study is used to evaluate the performance of the proposed tests. Results show that the 30 

proposed MOT test performs well when trend is present in margins, in the dependence structure 31 

and/or in both. Likewise, results of the proposed MDT test indicate an interesting power when the 32 

trend is in the dependence structure. Moreover, an application to a real dataset is provided. 33 

Performing the proposed tests with the univariate tests provides a complete overview of trend 34 

detection. 35 

Keywords: Trend, Hydrology, Multivariate, Non-stationarity, Copula, dependence structure. 36 

Highlights 37 

• Two multivariate trend tests for multivariate hydrological series are proposed. 38 

• New multivariate overall trend (MOT) test dealing with trend in all the components of the 39 

whole multivariate distribution.  40 

• New multivariate dependence trend (MDT) test focuses on trend in the dependence 41 

structure. 42 

•  Vast simulation study is considered to evaluate the performance of the tests. 43 

•  The developed tests show high performance, with increasing power observed as the trend 44 

slope and sample size increase.. 45 

Software and/or data availability 46 
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Software: 47 

• The code used for developing the multivariate trend tests and the simulation study 48 

scenarios, implemented in the R language, can be found on GitHub at the following 49 

link: https://github.com/GOUD05/Multivariate-Trend-Tests.git 50 

• Repository creator: Dorsaf Goutali. 51 

• Creation date: 2024.  52 

• Contact Information: Dorsaf.goutali@inrs.ca. 53 

• Program Language: R version 4.1.3 (64bit). 54 

• Required Software: R (Download from https://cran.r-project.org/), RStudio 55 

(Download from https://www.rstudio.com/). 56 

• Cost: free. 57 

• Required R Packages:  58 

- copula https://cran.r project.org/web/packages/copula/index.html,  59 

- Kendall , https://cran.r-project.org/web/packages/Kendall/index.html),  60 

- resample , https://cran.r-project.org/web/packages/resample/index.html,  61 

- VGAM: https://cran.r-project.org/web/packages/VGAM/index.html,  62 

- openxlsx: https://cran.r-project.org/web/packages/openxlsx/index.html,  63 

- gtools: https://cran.r-project.org/web/packages/gtools/index.html. 64 

• Used Hardware: Computer with Windows 10, Intel i5 8th Gen processor 8 GB RAM, 65 

256 GB storage. 66 

   Data:  67 

• This study relies on the generation of synthetic data as a requisite part of the 68 

methodology to conduct simulations study. The provided code on GitHub generates 69 

data and simultaneously calculates the performance of the tests. The data used in 70 

the illustrative applications will be available on request. 71 

72 
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1. Introduction 73 

 Hydrological frequency analysis (HFA) is widely used for modeling extreme hydro-74 

meteorological events like floods, droughts, and storms (e.g. Hamed & Rao, 1998). Such events 75 

are often identified by correlated features, such as peak, volume, and duration for floods (e.g. 76 

Chebana & Ouarda, 2021; Grimaldi & Serinaldi, 2006). These dependent features highlight the 77 

need for a multivariate HFA approach, supported by various studies (e.g. Genest & Chebana, 2017; 78 

Li et al., 2019; Requena et al., 2013). Univariate HFA can provide only limited assessment of 79 

extreme events and their probability of occurrence (e.g. Chebana & Ouarda, 2011; Joyce et al., 80 

2018). 81 

Commonly, HFA is based on the assumptions of stationarity, homogeneity, and serial 82 

independence. In the multivariate context, checking these assumptions, particularly stationarity, 83 

attracted less attention compared to modeling (e.g. Chebana & Ouarda, 2021; Gu et al., 2018). 84 

Ignoring the testing step of these assumptions can lead to inaccurate results and potentially wrong 85 

decisions (e.g. Chebana et al., 2013). Indeed, this step contributes to the choice of the appropriate 86 

model, which should integrate possible trends in some or all components of the multivariate 87 

distribution (margins and dependence structure). The stationarity assumption has long been 88 

compromised by climate change and human activities such as deforestation, and overuse of 89 

extraction from surface water and ground water (e.g. Milly et al., 2008; Tan & Gan, 2015; Vidrio-90 

Sahagún et al., 2024). Related to theoretical considerations, it is no longer valid to believe that the 91 

design flood is always stationary (e.g. Aissia et al., 2014; Kang et al., 2019; Milly et al., 2008). 92 

Therefore, in recent years, increasing attention has been paid to hydrological designs under non-93 

stationarity (NS) conditions and particularly in the multivariate setting (e.g. Chebana & Ouarda, 94 

2021; Li et al., 2016; Zhang et al., 2022).  95 
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A wide variety of parametric and non-parametric tests has been employed for trend detection (e.g. 96 

De Luca & Napolitano, 2023). The Mann-Kendall (MK) and the Spearman rank order correlation 97 

(SR) tests are among the most non-parametric considered univariate trend tests (e.g. Chong et al., 98 

2022; Conover, 1980; Kendall, 1975; Ouarda et al., 2018). In addition, Chebana et al. (2013) 99 

presented an overview of the available multivariate extensions of the univariate MK and SR tests. 100 

Being non-parametric and powerful is the main advantage of these multivariate tests. However, the 101 

latter were initially developed and designed for water quality analysis even though they have been 102 

directly employed later in HFA. Moreover, these multivariate tests are essentially based on their 103 

univariate counterparts (component-wise tests), do not take into account the dependence between 104 

the variables, and cannot identify the affected component . On the other hand, it seems that testing 105 

for trends in the dependence structure has not been explored yet.. Furthermore, upon reviewing the 106 

literature, it appears that there are no recently developed trend tests and recent studies (e.g. Chebana 107 

& Ouarda, 2021; Chebana et al., 2013; Jalili Pirani & Najafi, 2020; Kang et al., 2019; Karahacane 108 

et al., 2020; Modarres, 2018; Xu et al., 2023) consider multivariate tests reviewed by Chebana et 109 

al. (2013). In Table 1 the univariate and multivariate trend tests are summarised including their 110 

advantages and drawbacks. 111 

In order to overcome the drawbacks of the multivariate trend tests, the objective of the present 112 

paper is to propose two multivariate trend tests. The first proposed test is a multivariate overall 113 

trend (MOT) test dealing with trend in all the components of the whole multivariate distribution 114 

(margins and the dependence structure). The second proposed one, a multivariate dependence trend 115 

(MDT) test, focuses on trend in the dependence structure. Therefore, the proposed tests, along with 116 

the existing univariate trend tests, allow dealing with the multivariate distribution as whole as well 117 

as its components. 118 

Table 1: Overview of existing tests for trend in univariate and multivariate framework 
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Tests Advantages Drawbacks Some references 

                         

 

 

 

Univariate 

tests                   

 

Mann-Kendall 

(MK) 

 

 

Spearman's rho 

(SR) 

• Both tests have been recommended by 

the World Meteorological 

Organization as standard 

nonparametric procedures  

• Powerful 

• Robustness against missing values 

and outliers 

• Making very few assumptions  

• Detect increasing decreasing trend 

• Simple to apply 

• The existence of positive 

autocorrelation in the data 

increases the probability of 

detecting trends when 

actually none exist, and 

vice versa 

• Inability to detect non-

monotonic trend structures 

Mann (1945); Yue et al. 

(2002) 

Bihrat and Bayazit (2003) 

Yue and Pilon (2004) 

Rutkowska (2015) 

Wang et al. (2020) 

Hamed and Rao (1998) 

                          

                         

       

 

Multivariate 

component 

wise tests           

Covariance- 

Inversion test 

(CIT) 

 

Covariance-          

Eigenvalue test 

(CET) 

 

Covariance 

Sum test (CST) 

 

 

• Non-parametric tests do not make any 

assumption or precondition about the 

models 

• Detect increasing/decreasing trends 

• Simple to apply 

 

• Designed for water quality 

analysis and not for 

hydrological fields, 

existing comparisons and 

evaluations of these tests 

are often based on 

scenarios that do not align 

with the hydrological 

context (e.g. sample size, 

distributions) 

• Essentially based on their 

univariate counterparts 

(component-wise tests) 

• Simple combinations of 

univariate tests and do not 

take into account the 

dependence between the 

variables 

• Cannot identify the 

affected components 

Dietz and Killeen (1981) 

Hirsch and Slack (1984) 

Lettenmaier (1988) 

Loftis et al. (1991) 

Smith et al. (1993) 

Thas et al. (1998) 

Chebana et al. (2013) 

 119 

The developed tests, MOT and MDT, are based on multivariate extension of Kendall's τ and not 120 

on combinations of univariate statistic tests. A simulation study to evaluate and compare the 121 

performances of the proposed tests is presented. The proposed tests are general and can be 122 

considered in other contexts and applications dealing with trends. 123 

The paper is organized as follows. A brief theoretical background, related to the developed tests, 124 

is presented in Section 2. The proposed statistical tests for trend are described in Section 3. The 125 

simulation study to evaluate the performance of the tests is given in Section 4. The conclusions are 126 

reported to Section 5. 127 

2. Available multivariate trend tests 128 

In this section, we briefly present the available univariate and multivariate tests for trend. In 129 

statistical hydrology, mainly two non-parametric rank-based statistical tests are considered, namely 130 
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the MK and SR tests. Even though, they have the same aim and similar performance, the univariate 131 

SR tests are less employed than MK ones (e.g. Sneyers, 1990; Yue et al., 2002). More details about 132 

multivariate SR tests are provided in Chebana et al. (2013). In the following, we focus on 133 

presenting MK tests. Either in the univariate or multivariate settings, the null hypothesis of no trend 134 

T𝑅  is 𝐻0 : 𝑇𝑅 = 0 against the general alternative hypothesis of a monotonic trend  𝐻1 : 𝑇𝑅 ≠ 0 and 135 

there exists at least a component 𝑢 such that 𝑇𝑅(𝑢)is monotonic (e.g. Chebana et al., 2013).  136 

The univariate MK test is the most used test to detect monotonic univariate trends. Given a data 137 

series (𝑥1, 𝑥2, , … , 𝑥n) of length n, the MK test statistic is given by 138 

𝑀 = ∑ ∑ 𝑠𝑔𝑛 (𝑥𝑗 − 𝑥𝑖) 
  

𝑛

𝑗=𝑖+1 

𝑛−1

𝑖=1

(1) 139 

where 𝑥𝑗 and 𝑥𝑖 are both values in the series, and sgn (.) is a sign function: 140 

𝑠𝑔𝑛 (𝑥) =  −1  if 𝑥 <  0, = 0 if 𝑥 = 0, = 1 if 𝑥 >  0 (2) 141 

Under H0, the test statistic M has asymptotically normal distribution with mean 𝐸(𝑀) = 0 and  142 

 143 

𝑉𝑎𝑟(𝑀) =
𝑛(𝑛 −  1)(2𝑛 +  5)

18
 (3) 144 

 145 

Multivariate extensions of the univariate MK tests have been established to analyze multivariate 146 

trends in the hydrological context. Table 2 gives an overview of the main properties of those 147 

existing multivariate MK tests covering their expression and the asymptotic distributions.   148 

For all the tests presented in Table 2, let 𝑀(𝑢) be the univariate MK test statistic for the observed 149 

time series 𝑋𝑖
(𝑢)

, 𝑖 = 1, … , 𝑛 and component 𝑢 = 1, … , 𝑑.
 
For a given u, 𝑀(𝑢) is defined as: 150 

 𝑀(𝑢) =  ∑ 𝑠𝑔𝑛

1≤𝑖≤𝑗≤𝑛

(𝑥𝑗
(𝑢)

− 𝑥𝑖
(𝑢)

) (4) 151 
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Under the null hypothesis 𝐻0  of no trend, 𝑀(𝑢) is asymptotically d-dimensional normal with zero 152 

mean and covariance matrix 𝐶𝑀 = (𝐶𝑢,𝑣)𝑢,𝑣=1,…,𝑑 with  𝐶𝑢,𝑣= cov(𝑀(𝑢),𝑀(𝑣)) which is estimated 153 

by 154 

 Ĉ𝑢,𝑣 =
𝑡 𝑢,𝑣  +  𝑟 𝑢,𝑣

3
  for 𝑢 ≠ 𝑣   (5) 155 

where   156 

𝑡 𝑢,𝑣 = ∑ 𝑠𝑔𝑛 ((𝑥𝑗
(𝑢)

− 𝑥𝑖
(𝑢)

)(𝑥𝑗
(𝑣)

− 𝑥𝑖
(𝑣)

))

1≤𝑖≤𝑗≤𝑛

  (6)
 157 

𝑟 𝑢,𝑣 = ∑ 𝑠𝑔𝑛

𝑛

𝑖,𝑗,𝑘=1

  ((𝑥𝑘
(𝑢)

− 𝑥𝑗
(𝑢)

)(𝑥𝑘
(𝑣)

− 𝑥𝑖
(𝑣)

))                                 (7) 158 

 159 

Expression of the test statistic Asymptotic distribution under  H0  

and decision rule 

Covariance Inversion test (CIT) 

 
𝐷 =  𝑀′𝐶𝑀

−1𝑀 (8) 

 

where 𝐶𝑀
−1is the inverse matrix of 𝐶𝑀   

• It is asymptotically 𝜒2(𝑞) distributed under  H0 , where q 

is  the rank of the matrix  

1 ≤ q ≤ d. 

• The null hypothesis is rejected: if the value of D 

exceeds the critical threshold determined according to 

𝜒2(𝑞) distribution quantile, depending on the fixed 

significance level α. 

Covariance Sum test (CST) 

 

𝐻 =  ∑ 𝑀(𝑢)

𝑑

𝑢=1

 (9) 

• The statistic H is asymptotically normal under  H0, with 

mean E(H) = 0 and variance: 

 

𝑣𝑎𝑟(𝐻) =  ∑ 𝑣𝑎𝑟
𝑑

𝑢=1
(𝑀𝑢) + 2 ∑ 𝐶𝑢,𝑣

𝑑,𝑣−1

𝑣=1,𝑢=1
  (10) 

 

where 

 C𝑢,𝑣 = cov (𝑀(𝑢), 𝑀(𝑣)) (11) 

with an estimator as given in (5) 

• The null hypothesis is rejected: similar to CIT  

Covariance Eigenvalue test (CET) 

 

𝐿 = ∑(𝑀(𝑢)

𝑑

𝑢=1

)2 (12) 

  

• The statistic(𝑀(𝑢)) for u=1,…,d are asymptotically 

normally distributed with zero mean and the approximate 

variance is  

  𝜎2 = 𝑣𝑎𝑟 (𝑀(𝑢)) as in (3) 

• If (𝑀(𝑢) are independent, The statistic L would be 

asymptotically σ2𝜒2(𝑞)- distibuted under  H0   where q is the 

rank of the covariance matrix as given in (5) 

Notations: n is the sample size and d is the dimension or the number of components. More details about multivariate 160 
tests are provided in Chebana et al. (2013) 161 

Table 2: Summary of the available multivariate MK-based trend tests 
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3. Proposed multivariate trend tests 162 

To overcome the drawbacks mentioned above, the developed multivariate tests rely on two main 163 

aspects. The first one is the multivariate extension of the rank correlation coefficient Kendall’s τ. 164 

This idea draws from Kendall’s τ relationship with the univariate MK trend test statistic. The 165 

second ingredient is the moving window technique over the dependence. 166 

Kendall’s τ and univariate MK test  167 

Kendall’s τ is defined, in the bivariate and usual case, as the difference between the probabilities 168 

of concordance and discordance between two variables X and Y respectively with series 𝑥1 , 𝑥2 169 

…𝑥𝑛 and 𝑦1, 𝑦2,…,𝑦𝑛 (e.g. Kendall & Gibbons, 1990): 170 

𝜏(𝑋, 𝑌)𝑛 =
2

𝑛(𝑛 − 1)
 ∑ 𝑠𝑔𝑛 (𝑥𝑗 − 𝑥𝑖)(𝑦𝑗 − 𝑦𝑖)

(𝑖<𝑗)
 (13) 171 

Hence, the statistic of the univariate MK test statistic is a particular case of Kendall’s τ (e.g. Dietz 172 

& Killeen, 1981; Hamed & Rao, 1998). Indeed, Kendall’s τ has also been used to test the 173 

significance of trends in univariate data if the values in Y are replaced by T the time order of the 174 

time series X, i.e. T = 1, 2,..., n,. In that case, the test is called as Mann-Kendall test and the 175 

equations in (1) and (13) become the same (e.g. Hamed & Rao, 1998; Hirsch & Slack, 1984). 176 

Therefore, in an analogous way, the multivariate proposed test statistics are based on multivariate 177 

extension of Kendall’s τ.  178 

Kendall’s τ in d-dimension and the proposed tests 179 

In the literature, two extensions of Kendall’s τ have been proposed in higher dimensions (e.g. 180 

Genest et al., 2011). Consider a random vector X taking values in ℝ𝑑 with cdf H(x) = ℙ(X ≤ x) and 181 

continuous marginal distribution F1,..., Fd. Referring to Joe (1990), the first option of d-variate 182 

version of Kendall’s τ for H is defined by: 183 
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τd(𝑋) =
2𝑑𝔼𝐻{𝐻(𝑋)} − 1

2𝑑−1 − 1
  (14) 184 

where 𝔼𝐻 denotes the expectation with respect to H. Note that 𝔼𝐻{H(X)} = 𝔼𝐶{C (U)}, where C 185 

is the copula of H and U = (F1 (X1), ..., Fd (Xd)). The second option was established by Kendall and 186 

Smith (1940). It is defined as the average value of Kendall’s τ taken over all possible pairs (Xr, Xs), 187 

with r, s =1, …, d and r ≠ s, viz. and 𝐻𝑟,𝑠 is the bivariate cdf of (Xr, Xs): 188 

𝑡𝑑(𝑋) =
1

𝑑(𝑑 − 1)
 ∑ 𝜏 

𝑟 ≠ 𝑠

(𝑋𝑟, 𝑋𝑠) (15) 189 

To develop the proposed tests, we used the d-variate extension given in the first option in (14). 190 

Indeed, this extension has the advantage to be expressed in terms of copulas. The use of copula 191 

allows to take into account the whole dependence structure instead of only dependence between 192 

pairs as in (16) (e.g. Genest et al., 2011; Li et al., 2011). Further, Nelsen (1996) mentioned that 193 

when d = 3, both extensions (14) and (15) coincide leading to:  194 

𝜏3 =  t3 =  
1

3
 {𝜏 (𝑋1 ,𝑋2) + 𝜏 (𝑋1 ,𝑋3) + 𝜏 (𝑋2 ,𝑋3)} (16) 195 

In our developed tests, the moving window technique has been employed in order to take into 196 

account the dependence evolution according to time. Indeed, contrary to the margins, the evolution 197 

of the dependence structure cannot be directly seen (e.g. Chebana & Ouarda, 2021). Moreover, the 198 

result of Kendall’s τ between two series is a single value that represents the strength of the 199 

dependence and not the evolution of the dependence structure over time. Consequently, in order to 200 

bring out the aspect of the trend in dependence, Kendall’s τ should be used in a series. This has 201 

been achieved by employing a moving window technique. The chosen window size, denoted s, 202 

should be selected in a way to be neither too large nor too small, in order to perform reliable 203 

analysis and adequate number of values for the identification of the dependence structure (e.g. 204 

Bender et al., 2014; Chebana et al., 2013).  205 
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Based on multivariate extension of Kendall’s τ 𝜏3 in equation (16) developed by Joe (1990), let's 206 

substitute 𝑋1 with X, 𝑋2 with Y, and replace 𝑋3 with the time order T = 1, 2,..., n,. Let 𝜏𝑛 denote 207 

the empirical version of bivariate Kendall’s τ. In this context, we introduce the first proposed test 208 

statistic, 𝑇𝑀𝑂𝑇 is given by: 209 

𝑇𝑀𝑂𝑇 =  
1

3
 ( 𝜏𝑛(𝑋, 𝑇)2 + τ𝑛 (𝑌, 𝑇)2 +  τ𝑛 (τ𝑛𝑤(𝑋, 𝑌), 𝑇′)2) (17) 210 

where 𝜏𝑛𝑤  is the series of the empirical Kendall’s τ obtained through moving window for 211 

corresponding series X and Y (see Figure 1). 𝑇′ is the new series of time order that has the same 212 

length of 𝜏𝑛𝑤. Note that the length q of the obtained series 𝜏𝑛𝑤 is related to the sample size n and 213 

the width s of the window as q = n ‒ s + 1. Choosing the size of s involves a trade-off. On one 214 

hand, a small s increases the number of rolling window series q for reliable analysis. On the other 215 

hand, a large s is necessary to have a sufficient number of values to identify the dependence 216 

structure, but this might decrease q (e.g. Bender et al., 2014; Chebana & Ouarda, 2021). In addition, 217 

the selection of the width s of the windows is a common challenge to various tests (e.g. Bücher et 218 

al., 2019; Chebana, 2022). To the best of our knowledge, and considering the existing literature, 219 

formal statistical inference procedures specifically designed to address this purpose appear to be 220 

not clearly established (e.g. Bücher et al., 2019; Kojadinovic & Yan, 2011). 221 

 Note that the window step in the moving windows shifts point-by-point in this study. Previous 222 

studies by Vidrio-Sahagún and He (2022) have shown that a potential bias is introduced due to the 223 

fact that data points located in the center of the series would be counted more times than those 224 

located at the bounds, thereby exerting a significant influence on the estimates. 225 

We employed the square of each term in order to avoid them cancelling each other  or reduce the 226 

final value of the statistics. This is similar when passing from the test CST in (10) to the test in 227 

(12). This test is designed to test overall trend in a multivariate series. Indeed, the first two terms 228 
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 𝜏𝑛(𝑋, 𝑇)2 and τ𝑛 (𝑌, 𝑇)2
   focus on the univariate trends in the variables X and Y, respectively, with 229 

respect to the time order T.  However, the last term τ𝑛 (τ𝑛𝑤(𝑋, 𝑌), 𝑇′)2
 introduces a distinctive 230 

multivariate perspective by considering the Kendall’s τ between X and Y with a moving window 231 

applied through 𝑇′. Unlike other available multivariate trend tests, this term allows to integrate the 232 

dependence between the variables in the proposed test. Hence, the developed  overall multivariate 233 

trend test 𝑇𝑀𝑂𝑇 considers the trend both in margins and in the dependence structure.  234 

In order to focus on the trend in the dependence structure, the following multivariate dependence 235 

trend (𝑇𝑀𝐷𝑇) test is proposed:  236 

𝑇𝑀𝐷𝑇 =  𝜏𝑛 (𝜏𝑛𝑤(𝑋, 𝑌), 𝑇′)   (18) 237 

It represents the last term in (17) dealing only with dependence. 238 
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 239 

To evaluate the p-values corresponding to the proposed tests, the bootstrap procedure is considered 240 

(e.g. Good, 2005). The asymptotic distribution of the proposed statistics is beyond the framework 241 

of this paper since the distributions of these statistics  𝑇𝑀𝑂𝑇 and 𝑇𝑀𝐷𝑇 under the null hypothesis 242 

depend on the unknown copula. Moreover, asymptotic results could be inappropriate in the context 243 

of HFA, and other fields dealing with extreme values, since the series are usually very short (e.g. 244 

Nasr & Chebana, 2019; Rutkowska, 2015). 245 

The methodology of the proposed tests is based on two well-known notions in statistics and 246 

applications, i.e. Kendall’s τ extension and the moving window technique. Regarding the moving 247 

window technique, used to integrate the evolution of the dependence structure, it has been 248 

Figure 1: Illustration of evolution of the dependence structure obtained through moving 

windows for corresponding series X and Y 
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considered in other studies for different reasons, such as in econometrics (e.g. Selvin et al., 2017), 249 

in finance (e.g. Siami-Namini & Namin, 2018), in medicine (e.g. Dinh et al., 1999) and in statistic 250 

(e.g. Genest & Rémillard, 2004).  251 

The proposed tests have several conceptual advantages (along with their performance presented 252 

below). Indeed, they allow overcoming some drawbacks of the existing multivariate tests (Table 253 

1). In fact, the proposed overall statistic test 𝑇𝑀𝑂𝑇 is designed to detect the trend in different 254 

components (both margins and dependence structure) and it is not componentwise. The second 255 

proposed test 𝑇𝑀𝐷𝑇 is constructed to focus on detecting trend in dependence structure. Then, the 256 

use of the proposed tests 𝑇𝑀𝑂𝑇 and 𝑇𝑀𝐷𝑇,  along with the univariate testing for each margin, 257 

provides an attractive and complete procedure for testing trend in the multivariate framework. Even 258 

though the proposed tests are introduced and evaluated as part of multivariate HFA, they can be 259 

considered in other fields and application dealing with multivariate trends such as economics, 260 

finance, medicine, and climatology. It is important to recall that these tests are designed to test 261 

monotonic trends only. 262 

4. Simulation study 263 

A Monte Carlo simulation study is conducted to evaluate the performance of the proposed 264 

multivariate trend tests (e.g. Hirsch et al., 2015; Hirsch & Slack, 1984) and compare them with the 265 

existing multivariate tests. Since the test CST has already lower performance compared than those 266 

of CIT and CET (e.g. Modarres, 2018), then CST test is not considered. In addition, CET test is 267 

the one recommended among the available multivariate ones (e.g. Chebana & Ouarda, 2021; 268 

Chebana et al., 2013; Lettenmaier, 1988; Modarres, 2018).  269 
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4.1 Simulation design 270 

Given that a multivariate distribution can be composed of margins and dependence structure, a 271 

trend can affect these components in different ways. Therefore, we considered the following 272 

scenarios for the bivariate case:  273 

a) Trend only in the dependence structure 274 

b) Trend only in one margin 275 

c) Trend in both margins with the same direction (increasing)  276 

d) Trend in both margins with different directions 277 

e) Trend in both margins and also in the dependence structure.  278 

The above scenarios were considered in different levels and values in order to evaluate the possible 279 

effects on the performances of the considered trend tests with different factors (direction and 280 

magnitudes of the trend, degrees of dependence and sample size). 281 

Data are generated from representative margins and copulas in hydrometeorology analyses to 282 

evaluate the performance of the considered tests (e.g. Nasr & Chebana, 2019; Salvadori & De 283 

Michele, 2010; Zhang & Singh, 2006). The employed copulas are in two groups: Archimedean 284 

(Clayton, Frank, Joe and Gumbel), and Extreme-Value (Galambos and Husler-Reiss).  285 

.Even though, a large number of univariate distributions are available, the generalized extreme 286 

value (GEV), lognormal (LN2) and three-parameter lognormal (LN3) have been those developed 287 

in non-stationarity hydrological framework (e.g. Chebana & Ouarda, 2021). In this study, we have 288 

opted for the GEV as the marginal distribution as by previous studies (e.g. El Adlouni et al., 2007; 289 

Gado, 2016). 290 

The GEV distribution is parameterized with location (μ), scale (σ), and shape (ξ) parameters. As 291 

in previous studies, the non-stationary aspect is introduced by allowing the location parameter to 292 
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be linear function of time (𝜇𝑡), while keeping the scale and shape parameters constant (𝜇0 + 𝜇1t, σ, 293 

ξ) where t is the time order.  294 

In this study, the location parameter that characterize the non-stationarity are selected to have weak 295 

trends, a condition frequently observed in hydrometeorological series (e.g. El Adlouni et al., 2007; 296 

Gado, 2016). As in Gado (2016), the location parameter was chosen in the range of -0.3 ≤  𝜇1≤ 297 

+0.5 and 𝜇0 = 0 in order to test the sensitivity of the proposed tests to the values of a variety of 298 

trends. The scale and shape parameters were fixed at σ=1 and ξ= -0.1 respectively (e.g. El Adlouni 299 

et al., 2007). Other values of the shape parameter, such as -0.3 as considered by El Adlouni et al. 300 

(2007), have been checked. The obtained results showed no significant changes leading to similar 301 

conclusions (for space limitations, those results are not presented).Note that, given the main 302 

contribution of the present study is in the multivariate framework, the focus is not on univariate 303 

aspects (e.g. selection of marginal distributions and their parameters). 304 

In order to consider trend in the dependence structure, we generated random samples from time-305 

dependent copula 𝐶𝑡 where the corresponding parameter 𝜃𝑡 in terms of Kendall’s τ 𝜏𝑡 is assumed 306 

to be linear with respect to time, similarly to Nasri et al. (2019). Each copula has a specific 307 

parameter range and related to Kendall’s τ (e.g. Chebana, 2022). On the other hand, in the majority 308 

of flood events, the Kendall’s τ is between 0.3 and 0.8 (e.g. Nasr & Chebana, 2019; Requena et al., 309 

2013; Zhang & Singh, 2007). Hence, we considered three values of 𝜏 = 0.2, 0.6, 0.8, representing 310 

weak, moderate, and strong dependence respectively. 311 

Different factors could affect the performance of a trend test, either univariate or multivariate, 312 

specifically the sample size n and magnitudes of the trend (e.g. Bihrat & Bayazit, 2003; 313 

Lettenmaier, 1988; Rutkowska, 2015; Yue et al., 2002). Moreover, the proposed tests could be 314 

affected by dependence strength and copula type (e.g. Quessy et al., 2013). Hydrologic series are 315 
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usually characterized by small sample sizes. Hence, we considered sample sizes of n =30, 50 and 316 

100 as in other studies (e.g. Barth et al., 2017; Nasr & Chebana, 2019; Santhosh & Srinivas, 2013). 317 

Since the size s of the rolling window series is related to the sample size n (e.g. Chebana & Ouarda, 318 

2021), the window size s is selected respectively as 𝑠 = 10, 15, 20 for n = 30, 50, 100 similarly to 319 

Nasr and Chebana (2019). This is short enough to have large rolling window series and lengthy 320 

enough to have an adequate number of values for identifying the dependence structure (e.g. Bender 321 

et al., 2014). While the challenge of choosing the size s of moving windows is common to other 322 

tests in the literature, formal statistical inference procedures for this purpose are lacking in the 323 

literature (e.g. Kojadinovic & Yan, 2011). However, Bücher et al. (2019) discussed this matter and 324 

suggest, considering values such as s = 2, 3, or 4 and depending on the ultimate interest, one might 325 

also consider choosing s differently. Chebana and Ouarda (2021) consider s =12 for 27-sample 326 

size. In the case of Bender et al. (2014), the time window length is set to s = 50 years for 191 years.  327 

It is important to note that, across all scenarios,  𝑁𝑠𝑖𝑚 =1000 samples are generated to ensure stable 328 

results. Preliminary trials were conducted to assess convergence, and stability in results was achieved 329 

with  𝑁𝑠𝑖𝑚 =1000 samples. Note that, no significant differences have been observed with other values 330 

greater than  𝑁𝑠𝑖𝑚 = 1000 such as 𝑁𝑠𝑖𝑚 = 5000.The first kind error, or nominal level, 𝛼 is set to the 331 

usual value 𝛼 = 5%. To compare the considered tests, we evaluate their ability to estimate 𝛼 as 332 

well as to quantify their power (1-𝛽). Figure 2 summaries the conducted simulation study.  333 

 334 

4.2 Simulation results  335 

This section presents the obtained results of simulation study by estimating the nominal level and 336 

evaluation the power of the considered tests. 337 

Figure 2: Diagram of the simulation study 
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4.2.1. Nominal level estimation 338 

This section reports the estimates 𝛂 ̂ of 𝛼 for the proposed tests 𝑇𝑀𝑂𝑇 , 𝑇𝑀𝐷𝑇 along with the 339 

multivariate existing tests CIT and CET for different factors: sample sizes, dependence strengths 340 

and different copula types as presented in Table 3. From Table 3, we observe that the proposed 341 

tests 𝑇𝑀𝑂𝑇 and 𝑇𝑀𝐷𝑇 provide estimates 𝛂 ̂ close to the selected significance level α = 5 % for 342 

different factors. The first type error should be close to the chosen significance level α to be exact 343 

which is the main advantage of proposed tests.  344 

Results from Table 3 show that the proposed tests 𝑇𝑀𝑂𝑇 and 𝑇𝑀𝐷𝑇 are generally not sensitive to 345 

different factors. First, it can be seen that the proposed tests are almost insensitive to the copula 346 

type regarding the estimation of . Indeed, as an example, for 𝑇𝑀𝑂𝑇  and 𝑇𝑀𝐷𝑇  tests, 𝛂̂ is 347 

respectively in the range 3.8-5.9%, and 3.8-5.5%, for  = 0.6 and n = 50 for different copula type.  348 

Regarding the dependence strength, for a given sample size, it has almost no effect on the 349 

estimation of  by 𝑇𝑀𝑂𝑇  and 𝑇𝑀𝐷𝑇 tests. As an example, when considering the Frank copula with 350 

n = 50, the estimation ranges between 3.5-4.5% for 𝑇𝑀𝑂𝑇  and 3.9-5.3% for 𝑇𝑀𝐷𝑇, for different 351 

values of . We have similar results regarding the effect of the sample size n. For example, 352 

considering a dependence strength 𝜏 of 0.6 and employing the Clayton copula, estimated 𝛂 ̂ for 353 

𝑇𝑀𝑂𝑇 ranges from 5.1-5.9%, and for 𝑇𝑀𝐷𝑇, it varies between 3.8-5.0% across different sample sizes.   354 

As we can see under 𝐻0, the results presented in Table 3 indicate that existing multivariate CIT 355 

and CET tests lead to estimates 𝛂̂  close to the selected significance level α = 5 % for different 356 

factors (in the range 3.1-6.6%). Not that, in the context of water quality, Lettenmaier (1988) found 357 

that CIT and CET tests provide under-estimations of the nominal values. 358 

Table 3: First type error estimates (%) by the proposed multivariate tests (𝑻𝑴𝑶𝑻,𝑻𝑴𝑫𝑻) and 

the existing ones (CIT, CET)  
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 359 

4.2.2. Power evaluation 360 

In this section, we examine the power of the proposed tests in detecting the trend in the margins 361 

and dependence structure (combined or separately).  362 

a) Trend in the dependence only 363 

The power of the proposed tests in detecting the trend in the dependence structure is studied. 364 

Results for different sample sizes, different copulas and dependence strengths, are displayed in 365 

Table 4. One can see overall from Table 4 that the proposed tests 𝑇𝑀𝑂𝑇 and 𝑇𝑀𝐷𝑇 stand out with 366 

high power, in contrast to the CIT and CET tests. 367 

Test Copula under 

H0 

τ = 0.2 τ = 0.6 τ = 0.8 

  
𝑇𝑀𝑂𝑇 

n =30 n =50 n =100 n =30  n =50 n =100 n =30 n = 50 n =100 

Clayton 4.0 4.9 5.6 5.9 5.2 5.1 3.2 5.6 3.9 

Frank 4.9 4.5 4.6 4.5 4.5 6.1 4.6 3.5 4.5 

Joe 4.7 5.2 4.9 6.1 5.9 4.8 4.3 4.3 4.4 

Gumbel 5.8 3.9 5.4 3.8 4.9 4.7 3.8 4.7 5.0 

Galambos 4.6 4.7 6.3 4.9 4.4 4.5 4.9 4.9 4.1 

Husler-Reiss 4.2 5.1 4.9 3.3 3.8 5.5 2.9 4.4 5.4 

  
𝑇𝑀𝐷𝑇 

Clayton 5.3 4.7 4.8 5.0 3,8 3.9 3.9 3.5 6.0 

Frank 4.8 5.3 4.3 3.4 4.1 4.0 3.6 3.9 6.5 

Joe 4.2 5.2 5.4 3.6 5.4 5.4 3.6 4.5 4.8 

Gumbel 3.9 4.9 3.9 4.4 4.4 4.2 3.6 4.0 5.3 

Galambos 4.2 5.3 4.5 4.4 5.5 5.2 4.9 4.2 3.7 

Husler-Reiss 4.3 5.2 4.7 4.5 4.9 4.6 4.3 5.6 4.4 

CIT 

Clayton 4.6 6.1 6.1 4.2 5.2 5.3 4.7 4.8 4.5 

Frank 3.1 3.7 5.9 5.5 5.7 3.9 3.5 4.4 6.0 

Joe 5.1 4.7 5.5 4.9 4.8 5.3 4.6 4.4 5.8 

Gumbel 4.6 5.1 4.9 4.1 5.3 5.2 5.6 4.4 5.7 

Galambos 4.7 4.6 4.6 6.1 5.4 5.4 4.9 5.3 4.7 

Husler-Reiss 5.7 5.3 6.0 3.8 4.5 5.4 3.9 4.4 5.9 

CET 

Clayton 5.1 6.3 5.7 4.6 4.9 5.5 5.8 5.3 3.7 

Frank 3.1 4.6 6.1 5.5 6.6 3.9 4.7 5.3 4.5 

Joe 5.5 4.2 4.9 5.1 5.2 6.1 5.5 4.1 5.0 

Gumbel 5.3 5.6 4.9 4.2 5.7 5.0 4.5 4.8 5.4 

Galambos 5.4 5.2 4.3 6.0 5.0 6.5 4.4 5.9 4.8 

Husler-Reiss 6.0 6.0 5.9 5.2 5.9 3.8 4.4 5.9 5.8 
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From Table 4, one first notes that the type of the copulas and dependence strength seems to have 368 

little influence on the power of the 𝑇𝑀𝑂𝑇 and 𝑇𝑀𝐷𝑇 tests; it is rather the sample size that have a 369 

significant impact. Indeed, we can see that the power of the tests 𝑇𝑀𝑂𝑇 and 𝑇𝑀𝐷𝑇 is increasing with 370 

the sample size. For instance, for 𝑇𝑀𝑂𝑇 test with Clayton copula, the power increases from 37.0% 371 

when n = 30 to 94.7% when n = 100 (similarly for 𝑇𝑀𝐷𝑇 from 36.7 % to 95.5%). These results 372 

align with the results from other tests, which also observed that power increase with the sample 373 

size (e.g. Hirsch et al., 1982). 374 

It is also of interest to note that the power of 𝑇𝑀𝑂𝑇 and 𝑇𝑀𝐷𝑇 has less variability regarding copula 375 

type. For instance, for 𝑇𝑀𝑂𝑇 test with n = 50, powers are 66.6% and 64.4% when considering 376 

Clayton copula and Frank copula respectively. As another example, in the 𝑇𝑀𝐷𝑇 test with n = 100, 377 

the powers are 95.5% for the Clayton copula and 94.8% for the Galambos copula. These values are 378 

considerably high. Moreover, the power of 𝑇𝑀𝑂𝑇 and 𝑇𝑀𝐷𝑇, remains well regardless of the trend 379 

direction in the dependence structure. No significant differences were observed in the powers when 380 

considering various trend directions. For the sake of simplicity and brevity, the results pertaining 381 

to the decreasing trend direction are not presented.  382 

Overall, with some exceptions, both proposed tests lead to similar powers. According to the sample 383 

size, the power is low values (roughly 30 to 45%), moderate (55 to 67%) to very high (88 to 95%). 384 

In trend or non-stationarity studies, it is important and appropriate to have n as high as possible. 385 

Hence, the proposed tests are adapted to this context. 386 

In the comparison of performance between the proposed tests(𝑇𝑀𝑂𝑇 ,𝑇𝑀𝐷𝑇)  and the existing tests 387 

CIT and CET, a notable observation is that the latter exhibit inability to detect any trend in the 388 

dependence structure across all examined scenarios. For instance, for CET test, the power estimate 389 

Table 4: Power estimates (%) of the proposed tests (𝑻𝑴𝑶𝑻, 𝑻𝑴𝑫𝑻) and existing tests (CIT, 

CET)-trend in in the dependence structure 
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consistently ranges between 3.8%-8.8%, close to those in Table 3. These very low values are 390 

expected since these tests ignore the dependence structure explicitly in their construction.  391 

Sample 

size 
Test 

Archimedean ExtremeValue 

Clayton Frank Joe Gumbel* Galambos 
Husler-

Reiss 

  𝑇𝑀𝑂𝑇 37.0 38.3 41.9 36.3 43.2 32.2 

  𝑇𝑀𝐷𝑇 36.7 35.0 43.9 37.6 45.6 31.5 

n=30 𝐶𝐼𝑇 8.8 4.0 6.5 5.2 6.1 5.1 

  𝐶𝐸𝑇 6.8 4.7 8.0 4.7 4.9 4.7 

  𝑇𝑀𝑂𝑇 66.6 64.4 64.1 59.6 67.2 55.6 

  𝑇𝑀𝐷𝑇 67.2 59.1 65.5 59.7 67.5 56.1 

n=50 𝐶𝐼𝑇 6.9 5.5 7.3 4.9 4.8 4.9 

  𝐶𝐸𝑇 6.0 5.1 6.6 4.6 3.8 3.9 

  𝑇𝑀𝑂𝑇 94.7 92.3 92.3 90.1 95.3 87.5 

  𝑇𝑀𝐷𝑇 95.5 92.1 94.7 88.3 94.8 88.3 

n=100 𝐶𝐼𝑇 5.4 5.2 6.3 5.5 5.5 4.3 

  𝐶𝐸𝑇 5.0 4.3 6.2 5.3 4.2 3.8 

This table presents the power of the proposed test at significance level 𝛼=5%, for different scenarios.  The Gumbel* copula belongs 392 
both to the class of Archimedean and extreme value copulas 393 

b) Power evaluation: trend in one margin only 394 

The results corresponding to this scenario are presented in Table 5. Since in this section we are 395 

only interested in the marginal distributions, we consider only two families of copula (Clayton and 396 

Galambos) with fixed Kendall’s τ, τ = 0.6.  397 

Table 5 show higher powers of the statistical test 𝑇𝑀𝑂𝑇 as both the sample size and the trend slope 398 

increase, eventually reaching 100%. These high power values demonstrate the efficacy of 𝑇𝑀𝑂𝑇 in 399 

detecting trends in one margin. From Table 5, we can see that the impact of sample size n on the 400 

power. For a given slope of location parameter 𝜇t and a copula, the power increases with n. For 401 

instance, we consider the case with a location parameter slope 𝜇1 = 0.1, generated from a Clayton 402 

copula. In this case, the power of the 𝑇𝑀𝑂𝑇 test rises notably from 17.5% at n = 30 to 100% at n = 403 

100. These high powers, highlighting the effectiveness of the 𝑇𝑀𝑂𝑇 test in detecting trend within 404 
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one margin. In addition, no differences in growth are observed between different copulas.  For 405 

example, for n =100 and  = 0.6, powers of 𝑇𝑀𝑂𝑇 tests are 100% for Clayton and Galambos 406 

copulas. 407 

Table 5 shows also high powers of the 𝑇𝑀𝑂𝑇 test, particularly when the trend slope increases. 408 

Indeed, for sample size n =50 and Galambos copula, power estimates of the 𝑇𝑀𝑂𝑇 test increase 409 

from 42.2% to 100% when slope 𝜇1 passes from 0.1 to 0.3. This finding is expected and it is in 410 

agreement with the literature dealing with univariate trend (e.g. Yue et al., 2002). Moreover, from 411 

Table 5, when considering a Galambos copula with n = 100, the 𝑇𝑀𝑂𝑇 test demonstrates very high 412 

powers, reaching 100% for both increasing trend (𝜇1 = 0.1) and decreasing trend (𝜇1 = -0.1). This 413 

result demonstrates the effectiveness of the 𝑇𝑀𝑂𝑇 test, highlighting its ability to capture trends in 414 

margins irrespective of their direction. 415 

Results from Table 5 show that the proposed test 𝑇𝑀𝐷𝑇 is not able to detect any trend in margins. 416 

In all cases, the power estimates are less than 3.7%. This is not surprising since this test is intended 417 

to capture trend only in dependence structure.  418 

 419 

Test Copula  

𝜏 = 0.6 

𝜇1 = 0.1t 𝜇1 = 0.3t 𝜇1 = 0.5t 𝜇1 = -0.1t 

n=30 n=50 n=100 n=30 n=50 n=100 n=30 n=50 n=100 n=30 n=50 n=100 

 𝑇𝑀𝑂𝑇 
Clayton 17.5 40.8 100 96.6 100 100 100 100 100 17.0 39.4 100 

Galambos 15.0 42.2 100 96.0 100 100 100 100 100 17.3 42.5 100 

 𝑇𝑀𝐷𝑇 
Clayton 2.9 2.8 3.1 1.1 0.8 0.6 0.4 0.4 0.0 3.7 1.9 1.6 

Galambos 2.9 2.1 1.3 0.6 0.6 0.0 0.5 0.3 0.1 2.6 2.2 2.1 

CIT 
Clayton 99.9 100 100 100 100 100 100 100 100 99.7 100 100 

Galambos 100 100 100 100 100 100 100 100 100 100 100 100 

Table 5: Power estimates (%) of the proposed tests (𝑻𝑴𝑶𝑻, 𝑻𝑴𝑫𝑻) and existing tests (CIT, CET)-

trend in one margin only 
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CET 
Clayton 94.3 100 100 100 100 100 100 100 100 94.4 100 100 

Galambos 94.0 100 100 100 100 100 100 100 100 93.7 100 100 

This table presents the power of the proposed test at significance level 𝛼=5% 420 

As part of comparison, Table 5 reports also the performance for the existing CIT and CET tests.  421 

Through Table 5, those tests have high power values almost always 100%. These high power values 422 

of CIT and CET tests are different from the literature (e.g. Hirsch & Slack, 1984; Lettenmaier, 423 

1988). This can be attributed to distinct simulation conditions. Initially developed for monthly 424 

water quality data, the CET and CIT tests are not specifically adapted for hydrological data, as in 425 

our case. The primary purpose of these tests is the detection of trends in time series, not the 426 

frequency analysis of hydrological data. This dissimilarity in objectives and context introduces 427 

several differences in simulation conditions. For instance, Hirsch and Slack (1984) and Lettenmaier 428 

(1988) based their analyses on sample sizes ranging from 5 to 20, with a slope value from 0.0065 429 

to 0.05, specifically chosen to match the features of water quality time series. When we applied 430 

some of these features (n = 20, slope = 0.05), the power of the CET test decreased significantly to 431 

11%.  432 

c) Power evaluation: trend in both margins  433 

We present the power values here when trend is present in both margins. Table 6 shows that 434 

except 𝑇𝑀𝐷𝑇, the power of all tests is very high and can reach 100%. The high power of the 435 

developed multivariate 𝑇𝑀𝑂𝑇 test clearly emphasizes its effectiveness in detecting trends in both 436 

margins. Moreover, 𝑇𝑀𝑂𝑇 power significantly increases with n. For instance, with a Galambos 437 

copula and slopes 𝜇1 = -0.1 and 𝜇2 = -0.1, the power values for the 𝑇𝑀𝑂𝑇 test increase from 56.4% 438 

at n = 30 to a 100% at n = 100. 439 

Table 6 demonstrates also the impact of the trend direction between both margins on the power of 440 

𝑇𝑀𝑂𝑇. Regardless of whether the trend is increasing or decreasing, the 𝑇𝑀𝑂𝑇 test exhibits high 441 
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power. As an example, when examining different trend directions for both margins with location 442 

parameters set at 𝜇1 =0.3, 𝜇2 =-0.3, and considering Clayton copulas, the power remains at a high 443 

level of 100% across all sample sizes n. This high power demonstrates the effectiveness of the 444 

𝑇𝑀𝑂𝑇 test in detecting trends across both margins under diverse directions. 445 

Table 6 provides also insights about the effect of the trend slope on the power on the power of the 446 

proposed tests. In fact, the proposed test 𝑇𝑀𝑂𝑇  performs clearly better when the slope of trend 447 

increases. As an example, considering n = 30 and Clayton copula, the test power increases from 448 

53.2% if slope are 𝜇1 = -0.1, 𝜇2 = -0.1 to 100 % when the slopes are 𝜇1  = 0.3, 𝜇2 = 0.3.  449 

The powers here increased (except for the 𝑇𝑀𝐷𝑇) compared to Table 5 specifically for 𝑇𝑀𝑂𝑇. The 450 

reason is that we have additional component with trend in the margins. Moreover, 𝑇𝑀𝐷𝑇 as designed 451 

and expected, is not detecting such a trend. CET and CIT continue to slowly increasing to reach 452 

100% in all cases which similar to the previous case (Table 5). However, importantly, 𝑇𝑀𝑂𝑇 is 453 

adapted to the situation with an increase that is realistic. The reason that tests, except  𝑇𝑀𝐷𝑇, reach 454 

100% is that the trend in the margins is dominating the non-trend in the dependence (e.g. Bender 455 

et al., 2014). 456 

As part of comparison, the two classical tests CIT and CET are able to detect the trend in both 457 

marginal distributions with a high performance =100% in all cases. These obtained results are 458 

different from the literature and the reasons are explained in the previous case (trend in one margin 459 

only). As anticipated, Table 6 affirms that the proposed statistic  𝑇𝑀𝐷𝑇 is not able to detect any 460 

trend in both margins, aligning with its specific design focused on capturing trend solely within the 461 

dependence structure. In all instances, the powers remain below 7.8%. 462 

Table 6: Power estimates (%) of the proposed tests (𝑻𝑴𝑶𝑻, 𝑻𝑴𝑫𝑻) and existing tests (CIT,  

CET)-trend in both margins  
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Test Copula 

τ = 0.6 

𝜇1 = -0.1t 𝜇1 = 0.3t 𝜇1 = 0.3t 𝜇1 =0.3t 

𝜇2 = -0.1t 𝜇2 =-0.3t 𝜇2 = -0.1t 𝜇2 = 0.3t 

n=30 n=50 n=100 n=30 n=50 n=100 n=30 n=50 n=100 n=30 n=50 n=100 

𝑇𝑀𝑂𝑇  
Clayton 53.2 99.8 100 100 100 100 100 100 100 100 100 100 

Galambos 56.4 100 100 97.0 100 100 99.9 100 100 100 100 100 

𝑇𝑀𝐷𝑇 
Clayton 3.2 5.1 5.4 3.6 0.1 6,8 2.4 1.3 0.5 3.4 4.8 5.5 

Galambos 4.9 4.6 5.2 1.5 0.3 7.8 1.7 1.4 1.7 5.0 4.2 5.2 

CIT 
Clayton 100 100 100 100 100 100 100 100 100 100 100 100 

Galambos 100 100 100 100 100 100 100 100 100 100 100 100 

CET 
Clayton 100 100 100 100 100 100 100 100 100 100 100 100 

Galambos 100 100 100 100 100 100 100 100 100 100 100 100 

This table presents the power of the proposed test at significance level 𝛼=5% 463 

d) Power evaluation: trend in both margins and dependence 464 

In this case, we considered a large number of possibilities since all the components of the bivariate 465 

distribution have trends. Note that similar results are obtained when examining either an increasing 466 

or a decreasing trend in the dependence structure, as well as for the direction of the trend 467 

(increasing/decreasing) in both margins. For the sake of brevity, we do not present all the results. 468 

Form, results highlight the high power of the  𝑇𝑀𝑂𝑇 tests across various copulas and sample sizes. 469 

Notably, the  𝑇𝑀𝑂𝑇 test exhibits high performance, reaching 100% power even with weak slopes 470 

and short sample sizes. 471 

Notably, as shown in Table 7, similar to the preceding scenario, the performance of trend  𝑇𝑀𝑂𝑇 472 

tests is influenced by the sample size. Specifically, a larger sample size correlates with higher 473 

power. This observation is most apparent for a very weak slope 𝜇𝑡 = -0.1 for both margins. As an 474 

example, considering Gumbel copula, the test power increases from 83.9 % for a sample size n =475 

 30 to 100% when n =100. These powers are considerably high. In this instance, the presence of 476 

trends in all components (margins and dependence structure) leads to a rapid increase in 477 

performance compared to the previous Tables (Table 5 and Table 6).  478 
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Moreover, the power of  𝑇𝑀𝑂𝑇 increases with the slope of the trend. For instance, considering 479 

Husler-Reiss copula with n = 30, the power is 88.6% when 𝜇1 = -0.1, 𝜇2 = -0.1 and increases to 480 

100% when 𝜇1 = 0.3, 𝜇2 = 0.3. However, no significant differences were found between powers 481 

when considering different copulas. Indeed, as an example, for n = 30 and 𝜇1 = -0.1, 𝜇2 = -0.1, 482 

the test power is between 83.9% and 94.0% for all different copulas.  483 

From Table 7, we can see also that power of 𝑇𝑀𝑂𝑇 is very high when considering the same trend 484 

direction in margins and dependence. As an example, from Table 7 when considering time-varying 485 

location parameters for 𝜇1 = 0.3, 𝜇2 = 0.3t, and increasing trend in dependence structure, the 486 

power is always 100%. Further, it can be seen from the same Table 7 that power estimates of the 487 

proposed test 𝑇𝑀𝑂𝑇 is not sensitive to the different direction of trend between both margins and 488 

dependence. For instance, when both margins exhibit a decreasing trend (𝜇1 =-0.1, 𝜇2 =-0.1) and 489 

the dependence shows an increasing trend, the power ranges from 83.9% to 100% across different 490 

sample sizes n and copula types. Moreover, it is important to emphasise that the proposed statistic 491 

 𝑇𝑀𝑂𝑇 performs well in detecting trend even when considering different directions between both 492 

margins. For instance, for time-varying location parameters of 𝜇1 = 0.3, 𝜇2 = -0.3 and increasing 493 

trend in dependence structure, the power estimates are 100% for all different sample size and 494 

copulas. This is because of the terms in the test  𝑇𝑀𝑂𝑇 are squared to avoid cancelling the trend 495 

with different signs. Through Table 7, considering overall test 𝑇𝑀𝑂𝑇 it is very important to note that 496 

the powers are around 100% in the majority of simulation cases. The first column is the only one 497 

that does not reach 100% for the different copula types. Indeed, the power range between 83.9% 498 

and 94% when n = 30. This is because this column represents the lowest slope (-0.1). This is a high 499 

results despite the weak slopes of marginal distributions were chosen according to the hydrological 500 

flood context and only the location parameter (𝜇𝑡) is assumed to be a linear function of time.   501 
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Test Copula 

𝜇1 = -0.1t 
𝜇2 = -0.1t 

𝜇1 = 0.3t 
𝜇2 = 0.3t 

𝜇1 = 0.5t 
𝜇2 = 0.3t 

𝜇1 = 0.3t 
𝜇2 = -0.3t 

n= 30 n= 50 n= 100 n= 30 n= 50 n= 100 n= 30 n= 50 n= 100 n= 30 n= 50 n= 100 

𝑇𝑀𝑂𝑇

  

Clayton 93.1 99.8 100 100 100 100 100 100 100 100 100 100 

Frank 94.0 100 100 100 100 100 100 100 100 100 100 100 

Joe 92.0 100 100 100 100 100 100 100 100 100 100 100 

Gumbel 83.9 100 100 100 100 100 100 100 100 100 100 100 

Galambos 92.4 100 100 100 100 100 100 100 100 100 100 100 

Husler-Reiss 88.6 100 100 100 100 100 100 100 100 100 100 100 

𝑇𝑀𝐷𝑇 

Clayton 25.4 37.6 70.5 26.5 34.9 78.4 11.0 20.2 50.4 7.2 9.6 15.4 

Frank 31.4 59.3 91.8 22.7 36.3 79.8 14.2 22.4 54.1 8.4 10.3 19.6 

Joe 30.4 58.6 93.7 26.5 47.8 84.5 18.7 28.4 61.7 7.2 11.5 11.5 

Gumbel 34.9 55.4 92.1 29,5 49.4 89.1 16.4 27.8 59.5 7.8 12.1 17.8 

Galambos 29.8 63.3 95.2 37.6 60.8 95.0 14.0 25.3 62.6 6.5 11.3 14.4 

Husler-Reiss 21.7 47.8 89.0 28.3 47.7 90.3 13.5 23.9 54.3 5.7 10.1 15.7 

This table presents the power of the proposed test at significance level 𝛼=5% 502 

Regarding the second proposed test, 𝑇𝑀𝐷𝑇, as observed in Table 7, we can see that the power 503 

substantially increases with a higher sample size, specifically reaching up to 95.2% when the 504 

sample size is elevated to n = 100. For example, generated data from a Gumbel copula and a slope 505 

𝜇1 = 0.3,  𝜇2 = 0.3 and trend in dependence structure, the test power increase from 29.5% for a 506 

series of length n = 30 to 89.1% when n =100. It is also important to note that exceptions are 507 

observed concerning 𝑇𝑀𝐷𝑇. Table 7 reveals that the 𝑇𝑀𝐷𝑇 test's power increases as the slope of both 508 

margins decreases. For instance, with the Clayton copula and n = 50, the test power increases from 509 

50.4% when the location parameters are set to 𝜇1 = 0.5 and 𝜇2 = 0.3 to 78.4% when 𝜇1 = 0.3 and 510 

𝜇2 = 0.3.  Moreover, 𝑇𝑀𝐷𝑇 test’s performance is better when the directions of the margins are the same 511 

compared to case where they differ. For example, considering the Frank copula and n = 50, the 512 

Table 7: Power estimates (%) of the proposed tests 𝑻𝑴𝑶𝑻  and 𝑻𝑴𝑫𝑻 − trend in both margins 

and the dependence structure 
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power estimates increase from 10.3% when location parameters are set to 𝜇1 = 0.3, 𝜇2 = -0.3 to 513 

36.3% when 𝜇1 = 0.3, 𝜇2 = 0.3. This exceptions on results can be explained by the fact that 514 

incorporating trends in the margins can dilute or mask the trend in the dependence, especially when 515 

the trend in the margins is stronger than the trend in the dependence (e.g. Bender et al., 2014). 516 

In order to have an overview of the power of the proposed tests, 𝑇𝑀𝑂𝑇 test performs well, especially 517 

with more data and stronger trends. It is flexible, width different trend directions. However, 𝑇𝑀𝐷𝑇 's 518 

power varies more, improving with larger sample sizes but sometimes decreasing with stronger 519 

trends in margins. The 𝑇𝑀𝐷𝑇 test seems to have some exception associated with varying directions 520 

in margins trends. Comparatively, existing tests (CIT and CET) have high powers when trends are 521 

only in margins but fall short in spotting trends in the dependence. This highlights the importance 522 

of 𝑇𝑀𝑂𝑇 and 𝑇𝑀𝐷𝑇, which consider both margins and dependence for a more complete picture. 523 

Note that the performance of the existing multivariate tests CIT and CET is not interesting in this 524 

scenario (trend in both margins and dependence). Notably, Table 4 demonstrate that both CIT and 525 

CET do not identify any trend in the dependence structure. This demonstrates that current existing 526 

multivariate tests fall short in capturing trends across the entire system, encompassing both margins 527 

and the dependence structure. In particular, they neglect to discern whether a trend is present or 528 

absent in the dependence structure. 529 

It is important to extract information from different tables (4, 5, 6, and 7) in order to quantify the 530 

trend in all components. We chose Clayton copula and slope of trend equal to -0.1 for both margins. 531 

Considering 𝑇𝑀𝑂𝑇 test, powers of the cases of trend in both margins and dependence are higher 532 

than in trend on the only the dependence or only in the margins. This can be explained by the fact 533 

that the higher the trend in terms of the number components, the higher the power will be.  534 
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From Figure 3 we can see for n = 30 that the power of the 𝑇𝑀𝑂𝑇, test increases from 17.5% when 535 

trend in one margin, 53.2% when trend in both marginal distributions and to 93.1 % when trend in 536 

all components. This test allows a quantification of the trend since it detects it in all components 537 

unlike the multivariate existing tests. Through Figure 3, it is clear to see that 𝑇𝑀𝐷𝑇 test performs 538 

well when a trend in dependence structure and in both components (margins and dependence 539 

structure). Moreover, we can see that the presence of the trend in the margins influences the 540 

performance of 𝑇𝑀𝐷𝑇 test. For example, for n =100, Figure 3 show that the power of test increase 541 

from 70.5% when trend in both margins and dependence, to 95.5% when trend only in dependence 542 

structure. We note that CET test not able to detect the trend in the dependence structure. The high 543 

power of the CET is misleading and once a gain it ignores that there is no trend in the dependence. 544 

The proposed tests, although with lower power, provide realistic and representative results in 545 

detecting trends. 546 

Figure 3: Quantification of trend by statistics 𝑇𝑀𝑂𝑇, 𝑇𝑀𝐷𝑇 and CET test for Clayton copulas and 547 

slope of margins equal to -0.1. 548 
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5. Applications to Hydrological Data 549 

In this section, the purpose is to assess the appropriateness of the proposed tests for practical use. 550 

We apply the developed and existing tests to three real-world hydrological datasets in Canada. 551 

They have been chosen to cover different affected components of trends. The first data series 552 

correspond to the Southwest Margaree River. The second data series correspond to the Long Creek 553 

stations. This station exhibits regulated flow regimes and located below Boundary dam Reservoir. 554 

Note that reservoir construction is one of the primary factors contributing to changes in the 555 

characteristics of natural river flow regimes (e.g. Ekka et al., 2022). The same series was 556 

considered in Tan and Gan (2015) to study the contribution of human change impacts to changes 557 

in streamflow of Canada. The third data series correspond to Athabasca River. The same station 558 

has been previously employed in analysis of hydrological univariate trends and variability by 559 

numerous studies (e.g. Bawden et al., 2014; Das et al., 2020). Figure 4 and Table 8 present 560 

respectively the geographical location and general information about the considered stations. 561 

Table 8: General information about the stations 562 

Station name Province Station number Period of records (years) Part of RHBN* 

Southwest Margaree River Nova Scotia 01FB003 1960-2021 (61) Yes 

Long Creek near Estevan Saskatchewan 05NB001 1970-2023 (53) No 

Athabasca River below Fort McMurray Alberta 07DA001 1970-2021 (51) Yes 

* Reference Hydrometric Basin Network (RHBN), which consists of a set of stations with long records and minimal human impacts 563 
intended for climate change studies  564 
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Figure 4: Geographical location of stations 01FB003, 05NB001 and 07DA001 565 

Based on hydrological literature, our emphasis is on the flood peak (Q) and volume (V) series (e.g. 566 

Gaál et al., 2015). All the applications considered a significance level of 5%. The results are given 567 

in Table 9.  568 

Table 9: Univariate and multivariate stationarity testing results 569 

 

Station 

Univariate MK test Multivariate MK tests 

Variable p-value CST CIT CET* MOT MDT 

01FB003 
Q 0.627 

0.668 0.528 0 0.008 0.029 
V 0.713 

05NB001 
Q 0.000052 

0.00523 0.000040 1 0.026 0.574 
V 0.000011 

07DA001 
Q 0.0184 

0,138 0,060 1 0.017 0.037 
V 0.026 

The bold character indicates the rejection of corresponding null hypothesis at the 5% level.* Note that, instead of the p-value, for the CET-test the 570 

conclusion is presented as: 1 if there is a trend, 0 if not, since this test is based on critical thresholds. 571 
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For station 01FB003, first, results show no trend detected in the margins (as confirmed from Figure 572 

5). In addition, a significant trend in the dependence structure detected by the proposed MDT test, 573 

which is consistent with Figure 6. In contrast, the existing multivariate tests (CST, CIT and CET) 574 

were unable to detect the trend in the dependence structure. This confirms the efficacy of MDT in 575 

detecting trend in dependence structure. Furthermore, the MOT test also indicates a significant 576 

overall trend, which confirm its ability to detect trends some components (here in the dependence 577 

structure). Given that, this station is part of the RHBN, the presence of trends in the dependence 578 

structure is driven by climate changes. It is noteworthy that Burn and Whitfield (2023) have 579 

observed changes in the nival fraction at the same station. 580 

Figure 5: Plot of Peak, volume of the series Q (left) and V (right) with the associated regression 581 

lines (01FB003) 582 
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 583 

Figure 6: Plot of Peak, volume and rolling window of Kendall's τ (KT) between them against year 584 

(01FB003) 585 

In station 05NB001, we observe that all multivariate existing tests are in agreement with a 586 

significant trend. The proposed multivariate test MOT also indicated overall trend. This can also 587 

be verified from Figure 7. Trends are also detected by MK univariate for each variable. Given that 588 

this station is non-RHBN and located below Boundary dam Reservoir, the observed trend detection 589 

in the margins may be attributed to anthropogenic activity and/or potential climate change impacts. 590 

It should be noted that no visually clear monotonic trend in the dependence structure is observable, 591 

as shown in Figure 8, as confirmed by the MDT test. 592 
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Figure 7: Plot of Peak, volume of the series Q (left) and V (right) with the associated regression 593 

lines (05NB001) 594 

Figure 8: Plot of Peak, volume and rolling window of Kendall's τ (KT) between them against year 595 

(05NB001) 596 
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 For 07DA001, we observe that the univariate MK test indicates the presence of trends in both 597 

variables simultaneously (as confirmed by Figure 9). Additionally, the MDT test detects a trend in 598 

the dependence structure, which can also be confirmed from Figure 10. The proposed multivariate 599 

MOT test confirms an overall multivariate trend. Among the existing multivariate tests, only CET 600 

detects the existence of a trend in the margins. The CIT statistic value is very close to the threshold. 601 

The CST test does not detect any trend. This confirms findings in the literature that the CST test 602 

has lower performance compared to CIT and CET (e.g. Modarres, 2018), and the CET test is 603 

recommended among the available multivariate tests (e.g. Chebana & Ouarda, 2021). This station 604 

is a part of the RHBN. Thus, the observed multivariate trends in the margins and dependence 605 

structure could be driven by climate change. Note that, recent decades have seen significant 606 

changes in the hydrological and meteorological conditions of the Athabasca River (e.g. Bawden et 607 

al., 2014; Beltaos & Carter, 2009).  608 

Figure 9: Plot of Peak, volume of the series Q (left) and V (right) with the associated regression 609 

lines (07DA001 610 
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Figure 10: Plot of Peak, volume and rolling window of Kendall's τ (KT) between them against year 611 

(07DA001) 612 

6. Conclusions and Perspectives 613 

In the literature dealing with multivariate frequency analysis, in general, the stationarity assumption 614 

is not verified. This is in part due to the absence of powerful and effective tests. However, 615 

nowadays in climate and hydrological changing context, it is more and more important to consider 616 

multivariate tests that can detect non-stationarity either in the margins or in the dependence 617 

structure. 618 

The aim of the present paper is to develop new tests for multivariate trend to fill a gap in the 619 

statistical and hydrological literature. The first test 𝑇𝑀𝑂𝑇 is designed to detect trend in the affected 620 

component (margins and dependence), and the second test 𝑇𝑀𝐷𝑇 is conceived to focus on trend in 621 

the dependence structure. In comparison to existing multivariate tests, simulation results show very 622 

promising performances in terms of first type error and power.  623 
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The proposed multivariate tests are adopted to hydrological context due to their good performance 624 

when the trend is very weak and the series is short, which often happens in hydrological series. The 625 

existing tests where not able to detect trend in the dependence structure alone or with the margins.  626 

The mutual application of the proposed tests 𝑇𝑀𝐷𝑇 and 𝑇𝑀𝑂𝑇 with univariate MK test provides an 627 

attractive procedure for testing multivariate trend and to discriminating its potential source.  628 

In this paper, the proposed multivariate trend tests were theoretically justified and practically 629 

demonstrated through both a comprehensive simulation study and practical illustrative 630 

applications. However, certain limitations were observed for the developed tests. Indeed, they are 631 

designed for monotonic trends whereas other forms of trends may exist. Thus, for a more flexible 632 

trend detection, there is a need to advance the development of non-monotonic trend tests. 633 

Moreover, the presence of autocorrelation in the data can influence the outcomes of tests to detect 634 

trends. Consequently, Hamed and Rao (1998) proposed a modified univariate MK-test. Similarly, 635 

in the multivariate framework, it would of interest to develop multivariate trend tests suited for 636 

autocorrelated data. 637 
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Figure 1: Diagram of the simulation study 
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Figure 2: Plot of Peak, volume of the series Q (left) and V (right) with the associated 

regression lines (01FB003) 

Figure 3: Plot of Peak, volume and rolling window of Kendall's τ (KT) between them 

against year (05NB001) 
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Figure 4: Plot of Peak, volume and rolling window of Kendall's τ (KT) between them 

against year (07DA001) 
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• Two multivariate trend tests for multivariate hydrological series are proposed. 

• New multivariate overall trend (MOT) test dealing with trend in all the 

components of the whole multivariate distribution.  

• New multivariate dependence trend (MDT) test focuses on trend in the 

dependence structure. 

• Vast simulation study is considered to evaluate the performance of the tests. 

• The developed tests show high performance, with increasing power observed as 

the trend slope and sample size increase. 
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