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Abstract

This study explored the application

of deep learning in second har-

monic generation (SHG) micros-

copy, a rapidly growing area. This

study focuses on the impact of glyc-

erol concentration on image noise in SHG microscopy and compares two image

restoration techniques: Noise-to-Void 2D (N2V 2D, no reference image restora-

tion) and content-aware image restoration (CARE 2D, full reference image resto-

ration). We demonstrated that N2V 2D effectively restored the images affected

by high glycerol concentrations. To reduce sample exposure and damage, this

study further addresses low-power SHG imaging by reducing the laser power by

70% using deep learning techniques. CARE 2D excels in preserving detailed

structures, whereas N2V 2D maintains natural muscle structure. This study

highlights the strengths and limitations of these models in specific SHG micros-

copy applications, offering valuable insights and potential advancements in the

field .
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1 | INTRODUCTION

Second harmonic generation (SHG) microscopy is a pow-
erful nonlinear optical microscopy technique that has
been successfully used in medical and nonmedical imag-
ing for years [1–4]. Image quality in microscopy crucially
depends on the signal-to-noise ratio (SNR), which is the
ratio of signal intensity to noise. Factors such as laser
power, exposure time, and the sample itself play crucial
roles in influencing the SNR. It is well known that an
increase in laser power while enhancing the SHG signal
risks thermal damage to the sample [5]. For example,
increasing the laser power can produce a higher SHG sig-
nal but may cause thermal damage to a sample [6–8].
Therefore, finding the optimal tradeoff between the laser
power and achieving an acceptable SNR (i.e., having the
sample structure visible with noise present) is critical. In
addition to the instrumental parameters, sample type is
another critical criterion that can affect the SNR in SHG
microscopy. While we observed strong SHG signals from
collagen-rich tissues [9] and skeletal muscles [10], some
samples, such as microtubules, inherently have a weak
SHG signal [11]. Samples with a lower SHG signal have a
low SNR, and their structure can be buried under back-
ground noise, depending on the experimental conditions.

Within the evolving landscape of SHG microscopy,
deep learning is a transformative tool for classification,
segmentation, and image restoration. We provide ample
examples of different studies focusing on different appli-
cations. In [12] a classification application, a method for
diagnosing ovarian cancer during surgery using SHG
imaging and deep learning techniques is introduced. By
training a convolutional neural network (CNN) on a vast
dataset of SHG images, the system can differentiate
between normal, benign, and malignant ovarian tissues
with 99.7% accuracy. In [13] a segmentation application,
the effectiveness of a U-Net CNN for improving the seg-
mentation of collagen fibers in SHG images was demon-
strated. The CNN successfully addressed the challenges
posed by varying the SHG image intensity across the
depths. This method consistently outperformed the tradi-
tional thresholding techniques, particularly in deeper tis-
sue sections. Although not focused solely on SHG, [14]
compared different denoising techniques to improve
the quality of nonlinear multimodal images in head
and neck tissue analysis. In this study, traditional
methods (e.g., median filter and Gerchberg-Saxton),
established deep learning networks (e.g., DnCNN), and
innovative networks (e.g., Noise2Noise, MIRNet, and
incSRCNN), specifically focusing on their ability to
reduce noise while preserving critical image details. In
another study, researchers introduced a fast large-area
multiphoton exoscope (FLAME) for imaging human

skin [15]. The FLAME system incorporates a deep-
learning-based image restoration technique using a
content-aware image restoration (CARE) model net-
work. This approach improves the quality of the images
captured by the system. These studies demonstrate the
broad potential of deep learning in SHG microscopy.
However, tissue-specific variations in signal intensity
and the impact of preparation techniques introduce
unique challenges for image restoration in SHG. The
application of deep learning techniques specifically tai-
lored for improving low-SNR SHG imaging has not
been extensively explored. This gap presents a unique
opportunity for research aimed at addressing the spe-
cific challenges associated with SHG microscopy, par-
ticularly in tissue-specific imaging under low-SNR
conditions.

Image restoration enhances the image quality by
eliminating noise, artifacts, and other distortions [16, 17]
without creating hallucinations (generation of visual struc-
tures that are not based on the actual information available
in the input image [18]). Deep learning image restoration
has been successfully applied to fluorescence- [16, 17],
super-resolution- [19, 20], structured illumination- [21], and
electron microscopy [22, 23]. It has also been applied to
multiphoton microscopy [14, 15].

Three of the many different types of available image
restoration techniques to remove noise are noise-
to-ground truth (N2GT) [16], noise-to-noise (N2N) [24],
and noise-to-void (N2V) [25]. N2GT refers to the removal
of noise from an image by comparison to a reference
image, also known as the ground truth image, which is
assumed to be noise-free and used as a guide in the
denoising process [16]. The availability of GT images is a
limitation of this method [16, 25]. N2N refers to remov-
ing noise from an image (low SNR) by comparing it to
another noisy image (high SNR) rather than to a GT
image [24, 26]. This method is more widely applicable
because it does not require a noise-free image [24]. One
model in this category is the CARE model based on the
U-net CNN [27]. It is among the models that require high-
and low-SNR image pairs to perform image restoration [26].
N2V refers to removing noise from an image by creating a
deep neural network to learn the statistical properties of
the noise and the signal within one image [25]. Unlike pre-
vious methods, which require an image pair, this method
does not require such a requirement and uses a single noisy
image for training.

Common methods for evaluating denoised image
quality include the Structural Similarity Index Metric
(SSIM) and peak SNR (PSNR) to ensure hallucination-
free image generation. Both metrics were used to com-
pare the similarities between the original and processed
images. The PSNR is calculated by taking the ratio of the
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maximum signal to the mean squared error between
the original and processed images. The higher the PSNR
value, the higher the quality of the processed image. The
SSIM is a metric that uses structural and textural infor-
mation. It compares structural information by measuring
the similarities between the original and processed
images' mean value, standard deviation, and cross-
covariance [28]. The value of SSIM ranges between 0 and
1, where 1 indicates perfect similarity, 0 indicates poor
similarity, and �1 indicates perfect anticorrelation. The
SSIM and PSNR metrics have different sensitivities to
image degradation [29–31].

Our study uniquely addressed the tissue-specific
imaging challenges of collagen and myosin within the
SHG microscopy domain, investigating the effects of glyc-
erol concentration on zebrafish fixation [32], and explor-
ing low-laser-power imaging across diverse biological
specimens, including muscle tissues from two zebrafish
strains, and the intricate extracellular matrix barrier of
tumor-bearing mouse mammary glands. This focus on
tissue specificity coupled with our tailored application of
advanced denoising techniques sets our research apart. By
applying CARE 2D and N2V 2D in such a targeted man-
ner and evaluating their effectiveness with mSSIM and
PSNR metrics, our study not only highlights the adaptabil-
ity and efficacy of deep learning for SHG microscopy but
also emphasizes its potential for tissue-specific imaging
under low-SNR conditions. This approach ensures the
preservation of structural details and effective noise elimi-
nation, contributing significantly to the advancement of
the field and opening new avenues for precision in bio-
medical imaging.

2 | METHODOLOGY

2.1 | Tissue preparation

Adult wild-type (WT) and mutant survival motor neuron
(smn) zebrafish (Danio rerio) were maintained at 28�C
under a light/dark cycle of 12/12 h according to the Wes-
terfield zebrafish book [32]. Embryos were raised at
28.5�C, collected, and staged as previously described [33].
All animal experiments were performed in compliance
with the Canadian Council for Animal Care guidelines
and approved by the INRS-LNBE ethics committee. Gen-
otyping of smn larvae was performed by high-resolution
melting analysis using genomic DNA extracted by a non-
invasive genotyping protocol [34]. Larval (5-day postferti-
lization) smn�/� (homozygous) and WT zebrafish were
fixed in 4% paraformaldehyde overnight at 4�C. After fix-
ation, the larvae were rinsed several times (1 h) with
PBS-Tween and mounted on slides in 50%–100% glycerol,

and finally, their muscles were imaged using SHG
microscopy.

Female BALB/c mice were purchased from Charles
River Laboratories. All animal experiments were con-
ducted according to the regulations established by the
Canadian Council of Animal Care under protocols
approved by the McGill University Animal Care and Use
Committee. The murine tumor-bearing samples used in
this study were derived from orthotopic injection of 4T1
cells into nulliparous mice. 4T1 cells were provided by
Dr. Peter Siegel (McGill University) and cultured in
DMEM (Wisent) supplemented with 10% FBS and antibi-
otics. Cells were maintained at a low passage number
prior to use. For both models, 1 � 105 cells were injected
into the fourth mammary fat pad and tumors were
allowed to grow for 2 weeks. Fourteen days postinjection,
the mice were euthanized, and the primary tumors and
surrounding stroma were removed. The samples were
fixed in 10% Neutral Buffered Formalin (VWR Interna-
tional LLC) for 48 h at 4�C, after which they were stored
in 70% ethanol. Following fixation, naïve and tumor-
bearing mammary glands were embedded in paraffin and
serially sectioned (5 μm thickness). The slides were
deparaffinized and rehydrated by submersion in three
rounds of xylene, two rounds of 100% ethanol, one round
of 95% ethanol, and one round of 70% ethanol (5 min per
round). The rehydrated slides were then rinsed for 5 min
in distilled water. Coverslips (VWR International LLC,
No. 1) were mounted onto slides using the Permount
mounting medium (Fisher). The slides were allowed to
dry overnight before downstream microscopy.

2.2 | SHG imaging setup

SHG microscopy was performed using a custom-stage
inverted scanning microscope, as shown in Figure 1. A
mode-locked Ti:Sa laser (Tsunami, Spectra-Physics)
pumped by a 12 W Millenia Pro laser (Spectra-Physics)
was used. This laser delivered pulses of approximately
810 nm with 150 fs pulse duration, at 80 MHz repetition
rate with an average power of 2.5 W. For power control,
a half-wave plate and a Glan-Thompson polarizer were
used to adjust the average power from 20 to 110 mW
(0.25–1.38 nJ pulse energy). Given the size of the samples
for imaging, sample scanning was performed using a
high-speed motorized XY scanning stage (MLS203, New-
ton, NJ). The focus was adjusted coarsely and finely by
using mechanical and piezoelectric motors (PI Nano-Z,
USA). An air objective (UplanSApo 20X, NA 0.75, Olym-
pus, Japan) was used for the illumination. A condenser
was used to collect the SHG signal of the sample, which
was detected using a photomultiplier tube (R6357,
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Hamamatsu Photonics) set at 800 V. The SHG signal was
isolated using two spectral filters that were placed before
the photomultiplier. A short-pass filter that blocks any
wavelength higher than 720 nm (i.e., the input funda-
mental laser light) was employed with a bandpass filter
centered at 405 nm to filter out any residual input light.
A multichannel I/O board (National Instruments) and
custom-written Python program were used for signal
acquisition and synchronization. Given the sample size
and acceleration and deceleration times of the motorized
scanning stage, each SHG image had an acquisition
time of a few minutes. Raw data were visualized using
Fiji-ImageJ software (NIH, USA).

2.3 | Image restoration using CARE 2D
and N2V 2D

Image restoration was performed using the CARE 2D
and N2V 2D models. The models were run using the
Jupyter notebook provided by the ZeroCostDL4Mic tool-
box [35] on Google Colaboratory. For the mammary
gland cancer samples, the N2V 2D model was trained
from scratch for 2000 epochs on 392 image patches
(image dimensions: [500,500], patch size: [64,64]) with a
batch size of 128. The CARE 2D model was trained from
scratch for 300 epochs on 200 image patches (image
dimensions: [500,500], patch size: [64,64]) with a batch
size of 16. The reason for having different numbers of
training epochs is to compensate for the limited amount
of available reference data and allow the N2V 2D model
to train for a longer time compared to the CARE 2D
model. This extended training duration is essential for
N2V 2D, as it leverages self-supervised learning, relying
on inherent noise patterns within the data to improve its
performance, which necessitates additional training to
effectively model and remove noise. For the zebrafish

samples, the N2V 2D model was trained from scratch for
2000 epochs on 800 image patches (image dimensions:
[333,1333], patch size: [64,64]) with a batch size of 128.
The CARE 2D model was trained from scratch for
300 epochs on 50 image patches (image dimensions:
[333,1333], patch size: [64,64]) with a batch size of 16.
Data augmentation was used in its default setting in all
cases, and for CARE 2D, the Augmentor was used [36].
The essential Python packages include TensorFlow,
Keras, CSBdeep, NumPy, and Cuda. The training was
accelerated using a Tesla T4 GPU on Google servers.

3 | RESULTS AND DISCUSSION

3.1 | Fixation: Evaluation of the
dependence of noise as a function of
glycerol content

Sample preparation is essential for any microscopic
method [37]. The chemicals used in fixation can cause
image deterioration in SHG microscopy for some sam-
ples, such as microtubules [11]. Moreover, there is no
universal protocol for fixation and each tissue has a
unique method [3]. Three glycerol concentrations were
tested to determine the best fixation composition for the
SHG imaging of zebrafish samples. Because of the differ-
ent locations of the samples, different image sizes were
obtained with a laser input power of 75 mW at the focus
of the microscope objective. Figure 2 depicts the different
samples with different glycerol concentrations that were
imaged and their denoised counterparts.

Our study found a correlation between glycerol con-
centration and noise in the final image; the lower the
glycerol concentration, the better the image quality.
The minimum amount of glycerol that could be used
without disturbing the fixation process is 50%. We then

FIGURE 1 Layout of the SHG

inverted microscope. The microscope

and data acquisition were performed

using a unified custom Python

program.

4 of 12 AGHIGH ET AL.

 18640648, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jbio.202300565 by Institut N

ational D
e L

a R
echerche, W

iley O
nline L

ibrary on [08/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



tested N2V 2D and CARE 2D to denoise images with
higher glycerol concentrations. The CARE 2D model for
these samples resulted in overfitting [38, 39] during
model training and was not applicable. N2V 2D could
successfully restore images in both high-concentration
glycerol cases and retrieve the structural information of

the fish muscle, as shown in the right column. Given
the amount of time and effort required for sample prep-
aration, in some cases, deep learning tools can be used
to restore the image quality instead of restarting the
sample preparation to determine the perfect chemical
composition and physical location of the sample. The

FIGURE 2 Left column: SHG images of different zebrafish samples with (a) 50%, (b) 80%, and (c) 100% glycerol concentration in their

fixation alongside zoom in (d, e) for samples (b) and (c), respectively. As the glycerol content in the fixation increases, the SHG image

becomes noisier. Right column: Denoising based on the N2V 2D method was performed for 80% and 100% glycerol content, and it was

unnecessary for 50% concentration.
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intensity profiles for 80% and 100% glycerol are shown
in Figure 3.

For the intensity profile, we plotted the intensity
values of the pixels along the yellow line, as shown in
Figure 3. From this figure, we can see that for 80% glyc-
erol, the model enhances the contrast of the image. A
comparison with the original signal shows that it follows
the same overall intensity pattern as a cleaner (omission
of noise) signal. For 100% glycerol, the signal fits the
intensity profile of the original, but without noisy spikes.
Therefore, in cases where the chemicals in the fixation
cause noise in the sample images (glycerol content in our
case), N2V 2D is a perfect model for image restoration,
given that sample preparation and fixation are time con-
suming. Moreover, it can reduce the number of animals
that need to be sacrificed for sample preparation.

3.2 | CARE 2D and N2V 2D models on
tumor-bearing mammary glands

We created low- and high-SNR SHG images by varying
the laser input power at the focus of the objective lens.
Using this approach, we obtained a less noisy (ground
truth) measurement with 110 mW of input laser power at
the focus of the microscope objective. The CARE 2D and

N2V 2D models were applied to SHG images of the
boundary of a murine mammary gland tumor, and
Figure 4 shows the results generated by these models.

The original image in Figure 4B shows an extremely
poor SNR. Using the CARE 2D model, we can still extract
structural information about the boundary. However, this
method leads to “hallucinations,” in which a structure is
created within the tumor area that is absent. Moreover,
the N2V 2D model could not provide a clean image. The
original image in Figure 4C presents a low SNR; in this
case, CARE 2D provides the complete structure of the
collagen boundary around the tumor, with some fine
details being blurred. N2V 2D can only denoise the bright
spots in the image; a silhouette of the boundary is visible
but not usable for analysis. The original image in
Figure 4D presents good SNR. Here, CARE 2D enhances
the crispness of the SHG images obtained, and we observe
an improvement in the details and sharpness of the image.
The contrast was also improved, as shown by the intricate
details of the collagen boundary structure. In this case,
N2V 2D also performs well, and the details of the collagen
boundary structure are visible and patchy, with point-like
bright spots where the SHG signal is strong. The mSSIM
and PSNR parameters of the results are summarized in
Table 1.

For the CARE 2D model, we observed a negligible
improvement in SSIM between the original and denoised
images in the 20 mW case, and the PSNR remained the
same. For 30 mW, we see the highest improvement, as
the mSSIM metric almost doubles between the original
and denoised images, while the PSNR has a substantial
boost. For 70 mW, although some improvement in mSSIM
and PSNR is observed, it is not as drastic as in the case of
30 mW. For the N2V 2D model, we see a substantial
improvement in the mSSIM for the 30 mW case, but the
PSNR decreases. We can see that the image did not improve
in terms of details and structural information with visual
inspection. For the 70 mW case, the mSSIM and PSNR of
the denoised image are lower than those of the original
image, and a visual inspection reveals the patchy and dis-
jointed nature of the denoised image. In addition to the
quality control metrics, we also considered a random region
of interest and measured the performance of the models by
plotting the intensity profile in Figure 4.

For 20 mW (see Figure 5A,B), we can see that the
original intensity profile contains many noise spikes,
while the denoised model can smoothen these spikes
and provide a profile closer to the ground truth image
with overshoots in some places. CARE 2D provides a
good fit that smoothens out the original signal and
remains close to the ground truth intensity profile, but
with some peaks that are smoothed. At 30 mW (see
Figure 5A,C), the performance of CARE outshines N2V

FIGURE 3 The intensity profile of 80% and 100% glycerol

content fixation was imaged at 75 mW input laser power for the

original (black dotted line) and denoised (red solid line) images.
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2D, and we can see that the intensity profile for CARE
resembles the ground truth image's intensity profile.
N2V 2D, however, only provides some spots with high
intensities in both the region of interest and the inten-
sity profile. At 70 mW (see Figure 5A,D), the perfor-
mances of both models are comparable, and they both
provide an intensity profile that fits close to the ground

truth image. Both models exhibited enhanced contrast,
characterized by more pronounced peaks and deeper
valleys in the denoised images, indicating a clearer dif-
ferentiation between features.

Overall, we conclude that the CARE 2D model per-
forms better than N2V 2D because of the additional infor-
mation input available during training in the form of a

FIGURE 4 CARE 2D and N2V 2D models were applied to the collagen structure at the tumor boundary of a tumor-bearing mammary

gland. (a) The reference “ground-truth image is used to denoise the images using CARE 2D and for visual comparison. (b, c) present low

SNR SHG images, and (d) presents a high SNR SHG image.

TABLE 1 mSSIM and PSNR metric

for CARE 2D and N2V 2D model

applied to the SHG imaging of the

boundary of tumor-bearing mammary

glands.

Model CARE 2D N2V 2D

Laser power (mW) 20 30 70 30 70

Original vs. GT mSSIM 0.33 0.38 0.85 0.38 0.85

Denoised vs. GT mSSIM 0.34 0.79 0.89 0.55 0.80

Original vs. GT PSNR (dB) 20.83 23.12 29.73 23.12 29.74

Denoised vs. GT PSNR (dB) 20.83 27.57 30.01 21.81 24.44
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ground-truth image. Nevertheless, in the higher SNR
cases, the performances of both models were comparable.
Therefore, for exceptionally low SNR cases, CARE 2D is
a better choice for denoising the detailed structures, espe-
cially in the case demonstrated in this section. For higher
SNR cases, both models performed well in denoising the
image and providing structural details. In the next sec-
tion, we examine the performance of these models in the
case of myosin, another common biological structure
imaged using SHG microscopy.

3.3 | CARE 2D and N2V 2D for denoising
zebrafish muscle structures

The CARE 2D and N2V 2D models were also applied to
two zebrafish strains: WT and smn-/-. The results are
shown in Figure 6.

For WT samples at 20 and 30 mW, the predicted
images appear to have improved in terms of pure SHG
intensity when compared to their original counterparts.
However, there was also a noticeable loss of detail in
muscle structure. The CARE 2D smoothens the distinct
muscle structure, resulting in a more uniform appear-
ance. In terms of muscle structure preservation, N2V 2D
outperformed CARE 2D in all the cases. While some
muscle structure distinctions can still be seen at 70 mW

with CARE 2D, most of them have been smoothed out.
However, N2V 2D does not deliver the same SHG inten-
sity restoration as CARE 2D, except at 70 mW. Despite
this, N2V 2D is preferred in muscle structure studies as it
focuses on the morphology and structural changes in dif-
ferent samples, as well as in intensity.

Our study also aimed to evaluate the performance of
the CARE 2D and N2V 2D models for the smn-/- fish,
which has a lower SHG intensity than the WT samples.
In low-power cases, both models performed poorly with
patchy and choppy muscle representations, although
CARE 2D showed better performance than N2V 2D at
20 and 30 mW. At 70 mW, both models performed com-
parably, with CARE 2D delivering more SHG intensity,
whereas N2V 2D preserved more muscle details. Surpris-
ingly, N2V 2D outperformed CARE 2D in terms of mus-
cle detail preservation and denoising of zebrafish muscle
structures, even though it did not have a reference image
for training. Therefore, N2V 2D is the preferred model
for these applications. Based on Figure 6, CARE 2D
matches the GT image intensity for WT samples at low
power but at the cost of smoothing out most of the signal.
N2V 2D, however, provides an intensity profile that is
closer to the original image in terms of preserving details.
At 70 mW, CARE 2D provides the same intensity value
as the original image while reducing noise spikes, and
N2V 2D again falls in the middle between the CARE 2D

FIGURE 5 Intensity profile of a random region of interest (ROI) at the tumor boundary. where (a) represents the visual representation

of the ROI for the different power profiles. The intensity profiles for the ROIs can be seen at 20 mW (b), 30 mW (c), and 70 mW (d). The

legends correspond to the original structure (black solid line), GT (blue dotted line), CARE (red solid line), and N2V (orange solid line).
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FIGURE 6 (A) Wild-type (WT) and (B) smn-/- fish along their intensity profiles from a random region of interest (ROI). The ROI was

identical across all samples. The legends correspond to the original structure (black solid line), GT (blue dotted line), CARE (red solid line),

and N2V (orange solid line). The scale bar for all images is 200 μm.
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model and the original signal in terms of the intensity
value while following the patterns of the original image
signal. For the smn-/- samples, CARE 2D excels at pro-
ducing the same intensity profile as the GT image at
20 mW. However, for the other samples, CARE 2D over-
shoots the intensity values, and N2V 2D performs better
at fitting the intensity pattern of the denoised image to
the GT image.

The mSSIM and PSNR metrics of the CARE 2D and
N2V 2D models are summarized in Table 2.

From Table 2, we can see a significant improvement
across the board, and all predicted images are better than
their original counterparts, as reflected in the mSSIM and
PSNR metrics. However, the loss of detail in the muscle
structure is visually evident in Figure 6.

To summarize, both CARE 2D and N2V 2D success-
fully reduced the noise in low-SNR SHG images. How-
ever, CARE 2D often outperforms N2V 2D when laser
power is a major constraint, enabling details even at very
low-power settings, as demonstrated in our mammary
gland images (Figure 5). While this holds true for mam-
mary gland tissue, N2V 2D may better retain intricate
details such as striated muscle fibers in zebrafish when
image noise is less severe (Figure 6). These nuanced
denoising outcomes across tissue types suggest that while
CARE 2D excels with more homogenous patterns of stro-
mal tissues, N2V's self-supervised learning is advanta-
geous for handling diverse and variable patterns in
muscular tissues. This observation is supported by the
visual distinction in the muscle structure preserved by
N2V, indicating its ability to maintain important biologi-
cal details that are not fully captured by traditional met-
rics such as mSSIM and PSNR. The variability in
performance can be tied to the representativeness of the

training data, adaptability of the algorithms to different
noise distributions, and different tissues.

4 | CONCLUSION

Although deep learning image restoration has been
explored in the context of SHG microscopy, our study
provides novel insights by directly comparing the perfor-
mance of CARE 2D and N2V 2D on SHG collagen and
myosin images, revealing their tissue-specific strengths
and weaknesses. Deep learning in image restoration has
gained traction over the past few years but has not yet
been thoroughly applied to SHG microscopy. SHG
microscopy relies on many parameters for high-quality
imaging [5], which can be tedious and time-consuming
in some scenarios. As demonstrated here, deep learning
image restoration can be an alternative solution to
enhance SHG imaging during post-processing. Our study
highlights the importance of considering a sample's spe-
cific characteristic when choosing a denoising method.
CARE 2D and N2V 2D are powerful models used in
image restoration that work with (CARE 2D) and with-
out (N2V) high-quality reference images [25, 26].

We found that the glycerol concentration during fixa-
tion can lead to noisy images. At higher glycerol concen-
trations, N2V 2D can be used to restore SHG images
despite this additional noise. Therefore, deep learning
image restoration opens the possibility of fixing the sig-
nificant noise and image deterioration caused by fixation
chemicals. In addition, it can reduce the number of ani-
mal sacrifices required for sample preparation. Another
crucial experimental aspect of SHG imaging of bio-
samples is limiting the input laser power to reduce the

TABLE 2 mSSIM and PSNR metric for CARE 2D and N2V 2D models applied to different zebrafish strains.

Laser power (mW) Model
Sample
type

Original vs.
GT mSSIM

Denoised vs.
GT mSSIM

Original vs.
GT PSNR (dB)

Denoised vs.
GT PSNR (dB)

20 CARE WT 0.07 0.58 17.38 21.03

30 CARE WT 0.15 0.56 17.7 20

70 CARE WT 0.44 0.66 19.96 22.67

20 N2V WT 0.07 0.44 17.37 19.87

30 N2V WT 0.15 0.5 17.7 20.24

70 N2V WT 0.44 0.6 19.96 21.26

20 CARE smn 0.04 0.36 18.66 20.84

30 CARE smn 0.05 0.29 18.71 20.19

70 CARE smn 0.22 0.39 19.68 21.51

20 N2V smn 0.04 0.15 18.66 19.33

30 N2V smn 0.05 0.27 18.71 20.44

70 N2V smn 0.22 0.39 19.68 21.49
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possibility of sample damage at the cost of image SNR.
This 70% decrease in the input laser power is also particu-
larly useful for shifting the imaging from fixed to live
samples. Moreover, at 30 mW, we can see the full layout
of the structure at 110 mW. Given that the SHG signal is
quadratically proportional to the input laser power, the
input power can be significantly reduced using deep
learning without loss in the SHG signal.

The nuanced denoising outcomes for 2D and N2V
CARE across tissue types demonstrate their unique capa-
bilities. While CARE 2D excels with more homogenous
patterns of stromal tissues owing to its training on well-
represented datasets, it can sometimes lead to over-
smoothing, obscuring fine details. N2V's self-supervised
learning, on the other hand, allows it to maintain impor-
tant structural nuances in tissues with variable patterns
like muscle, even if this approach sometimes results in
lower quantitative metrics. This observation is supported
by the visual distinction in the muscle structure preserved
by N2V, indicating its ability to maintain important biolog-
ical details that are not fully captured by traditional met-
rics such as mSSIM and PSNR. The variability in
performance can be tied to the representativeness of the
training data and adaptability of the algorithms to differ-
ent noise distributions. A hybrid approach that com-
bines reference-based learning of CARE 2D with the
self-learning capabilities of N2V could potentially har-
ness the strengths of both methods, leveraging CARE
2D's structure-preserving capabilities in consistent-
pattern tissues while utilizing N2V's detail-retaining
flexibility in variable-pattern tissues. An algorithm
trained to classify tissue types can enable dynamic
switching between CARE 2D and N2V 2D based on
image characteristics, providing a more robust and ver-
satile denoising approach.

Future research directions could include developing
an adaptive framework that initially classifies tissue types
and then applies the most suitable denoising techniques.
Machine learning algorithms can be deployed to dynami-
cally select between CARE 2D and N2V 2D based on the
visual and noise characteristics of the tissue, potentially
guided by an ensemble of metrics that include both tradi-
tional scores and assessments of structural fidelity. In
summary, the optimal denoising strategy may vary not
only with the tissue type but also with the specific struc-
tural features and noise characteristics present in the
SHG images. Balancing quantitative assessment with
qualitative visual analysis is essential to advance the
application of deep learning in SHG imaging denoising.
Looking ahead, we envision a composite model that
synergizes CARE 2D's structural precision with N2V 2D
flexible adaptation to varied noise profiles governed by
real-time, sample-specific algorithmic decisions. This

paradigm shift necessitates the construction of compre-
hensive datasets, fostering model generalization across
SHG applications. The broader implications of our work
suggest a transformative impact on live imaging method-
ologies, advocating minimal laser usage to preserve the
sample integrity. Ultimately, this study lays foundational
groundwork, steering future explorations toward more
sophisticated and versatile imaging solutions.
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