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Abstract

The joint probability analysis of river water temperature (RWT) and low flow (LF) characteristics is essential as their combined

effect can negatively affect aquatic species, e.g., ectotherm fish. Traditional multivariate models may not be as effective as

copula-based methodologies. This study introduces a new multivariate approach, the nonparametric copula density framework,

free from any distribution assumption in their univariate margins and copula joint density. The proposed framework utilized

RWT and LF datasets collected at five different river stations in Switzerland. The study evaluates a nonparametric Gaussian

kernel with six bandwidth selectors to model marginal densities. It employs nonparametric-based Beta kernel density, Bernstein

estimator, and Transformation kernel estimator to approximate copula density with nonparametric and parametric margins.

The performance of some parametric copula densities was also compared. The most justifiable models were employed to

estimate bivariate joint exceedance probabilities and return periods (RPs). The Beta kernel copula with Gaussian kernel

margins outperformed other models for most stations; Bernstein and Transformation copula with Gaussian kernel margins were

better for only one station each. The univariate RPs (RWT or LF) are lower than the AND-joint but higher than OR joint case.

As the percentile value of LF events (serve as a conditioning variable) increases, the bivariate joint RPs of RWT also increase.

Higher values in RWT events result in higher RPs than lower values at the fixed percentile value of LF. All such estimated risk

statistics are beneficial to analyze their mutual risk in aquatic habitats and freshwater ecosystems.
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Abstract: 12 

The joint probability analysis of river water temperature (RWT) and low flow (LF) characteristics is essential as 13 
their combined effect can negatively affect aquatic species, e.g., ectotherm fish. Traditional multivariate models may 14 
not be as effective as copula-based methodologies. This study introduces a new multivariate approach, the 15 
nonparametric copula density framework, free from any distribution assumption in their univariate margins and 16 
copula joint density. The proposed framework utilized RWT and LF datasets collected at five different river stations 17 
in Switzerland. The study evaluates a nonparametric Gaussian kernel with six bandwidth selectors to model 18 
marginal densities. It employs nonparametric-based Beta kernel density, Bernstein estimator, and Transformation 19 
kernel estimator to approximate copula density with nonparametric and parametric margins. The performance of 20 
some parametric copula densities was also compared. The most justifiable models were employed to estimate 21 
bivariate joint exceedance probabilities and return periods (RPs). The Beta kernel copula with Gaussian kernel 22 
margins outperformed other models for most stations; Bernstein and Transformation copula with Gaussian kernel 23 
margins were better for only one station each. The univariate RPs (RWT or LF) are lower than the AND-joint but 24 
higher than OR joint case. As the percentile value of LF events (serve as a conditioning variable) increases, the 25 
bivariate joint RPs of RWT also increase. Higher values in RWT events result in higher RPs than lower values at the 26 
fixed percentile value of LF. All such estimated risk statistics are beneficial to analyze their mutual risk in aquatic 27 
habitats and freshwater ecosystems. 28 

Keywords:  29 

River water temperature, Low flow, Copulas, Beta kernel density, Bernstein estimator, Transformation kernel 30 
estimator, Joint return period, Conditional return period 31 

 32 

1. Introduction 33 

Compound events (or CE) can be defined by integrating the joint impact of two or more extreme or non-34 
extreme events that co-occur or are in close succession, which might be a few hours to days apart (Seneviratne et al., 35 
2012; Moftakhari et al., 2016; Zscheischler et al., 2018; Hendary et al., 2019). Such events might not be severe 36 
when defined individually, but when their effects are combined, they may be harmful. Interdependency between 37 
these events may be due to a common forcing mechanism driving the selected variables; thus, ignoring their 38 
collective impact or joint dependency would be risky. For instance, a rise in the river's temperature reduces the 39 
concentration of dissolved oxygen (Ficklin et al., 2013), and/or it can co-occur with low flows and doubly impact 40 
flora and fauna. Most water species (or aquatic organisms) have a specific temperature tolerance range. For 41 
example, there is a higher risk of proliferative kidney disease (PKD) in the brown trout population when 42 
temperatures rise above 15℃ (Strepparava et al., 2017). Vitellogenin (Vtg) concentration in brown trout's plasma, 43 



 

2 
 

an indicator of estrogenic exposure, varies as a function of river temperature and the associated changes in estrogen 44 
uptake may have impacts on reproduction and development (above 19℃) (Korner et al., 2008). High water 45 
temperatures can increase fish mortality or limit their resources (Elliott & Hurley, 2001; Lund et al., 2002; Caissie et 46 
al., 2007). Besides this, the low flow period (or water scarcity) can be ecologically stressful; it can harm fish habitats 47 
and marine life (Daigle et al., 2011) and may reduce habitat connectivity (Fullerton et al., 2010). Also, this river 48 
flow reduction can increase river water temperature (Sinokrot and Gulliver, 2000; Humphries and Baldwin, 2003; 49 
Booker and Whitehead, 2021). Several pieces of literature in the past, for instance, St-Hilaire et al., 2011; Joshi et 50 
al., 2016; Lee et al., 2017; Ouarda et al., 2018; Caissie et al., 2019; Alobaidi et al., 2021; Souaissi et al., 2021; 51 
Ouarda et al., 2022; Abidi et al., 2022, performed univariate probability analysis of either extreme river temperature 52 
or low flow characteristics. Because of the negative correlation, a multivariate joint probability density function 53 
(pdf), joint cumulative distribution function (cdf) and their associated joint exceedance probabilities (or return 54 
periods) can better describe their compound effect. Their joint probability of occurrence (or exceedance 55 
probabilities) can be different than considering univariate probability distribution or frequency analysis (FA) of river 56 
water temperature or low flow characteristics. 57 

The Modelling of CE usually considers the number of joint extremes or correlation structures between the 58 
variable of interest and highlights different extreme models (e.g.., Cloes and Twan, 1994; Coles et al., 1999; Coles, 59 
2001; Samuels and Burt, 2002; Heffernan and Tawn 2004; Sevensson and Jones 2004; Boldi and Davidson 2007 60 
and references therein). Recently, the copula function has been recognized as a highly flexible multivariate joint 61 
distribution tool frequently used in the Modelling of several hydrometeorological extremes (Joe, 1997; Nelsen, 62 
2006; Shiau 2006; Salvadori and De Michele 2010; Salvadori et al., 2011; Vernieuwe et al., 2015; Latif and Mustafa 63 
2020a; Chebana and Ouarda, 2021; Latif and Mustafa 2021; Latif and Simonovic 2022a, 2022b, 2022c and 64 
references therein). These studies frequently adopted parametric copula distribution settings, for instance, prior 65 
subjective assumptions about their univariate marginal probability density function (or PDF) and parametric class 66 
copulas (i.e., Archimedean, Elliptical or Extreme-value class etc.) in the joint pdf modelling. The parametric model 67 
incorporated in modelling univariate marginal density assumes that the random samples come from known 68 
populations whose pdf is predefined. No existing literature supports the selection of a fixed or specified distribution. 69 
Ideally, the random samples that typically follow different distributions need to be modelled separately without 70 
imposing any selected or fixed pdf a priori. In this regard, the data-driven model-based nonparametric kernel density 71 
estimations (KDE) can provide a bonafide distribution instead of a parametric density function and is free from any 72 
assumption (Silverman 1986; Adamowski 1989; Wand and Jones 1995; Kim et al. 2006, and references therein).  73 

Classic parametric-based joint density framework incorporates conventional parametric models (i.e., bivariate 74 
normal or Gumbel etc.) (Goel 1998; Yue et al. 1999); or parametric copula functions (Nelsen 1996; Joe 1997). The 75 
question of how precisely and accurately the selected parametric copulas (and parametric marginal density) 76 
approximate the joint dependence structure between variables of interest, i.e., river water temperature (RWT) and 77 
corresponding low flow (LF), can be raised. Earlier studies, for instance, Genest and Rivest (1995), Shih and Louis 78 
(1995), and Bouezmarni and Rombouts (2008) highlighted a combination of the nonparametric marginal density 79 
with parametric copula density, called semiparametric copula settings. A few studies incorporated this 80 
semiparametric framework in hydrometeorological case studies (Karmakar and Simonovic 2009, Rauf and 81 
Zeephongsekul 2014; Latif and Mustafa 2021). However, the semiparametric approach still includes the 82 
involvement of parametric copulas, which might still be problematic, resulting in underestimating the actual 83 
multivariate joint density, as already discussed by Charpentier et al. (2006) and Rauf and Zeephongsekul (2014). 84 
Some statistical challenges exist, for instance, (1) parametric copulas dependence parameter estimation is quite time-85 
consuming, (2) it would have spurious inferences if the hypothesis of fitted parametric copulas is violated, (3) it 86 
could demand extra precaution when selecting a suitable copula density for the given historical observations because 87 
different copulas capture the joint correlation structure differently, for instance, for Archimedean copula class, 88 
dependence parameter is restricted to some ' 'Kendall's tau 𝜏ఏ range. Such as, AMH copula is applicable to Kendall’s 89 
tau 𝜏ఏ [-0.181, 0.333], or Clayton or extreme value class Gumbel copula, is only valid for positive dependency 90 
measures. 91 

The nonparametric copula density estimation offers flexible alternatives and can adapt any joint mutual 92 
dependence structure without considering any specific probability density form for copulas and their univariate 93 
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marginal density. Some earlier works include, for instance, Deheuvels and Hominal (1979) (nonparametric via 94 
empirical copula with nonparametric marginals), Gijbels and Mielniczuk (1990) (smooth kernel-based 2-D copula 95 
simulations via reflection method), Chen and Huang (2007) (bivariate kernel copula density via local linear 96 
estimator) etc. Besides this, a few studies, such as Harrell and Davis (1982), Chen (1999) and Charpentier et al. 97 
(2006), highlighted a nonparametric framework called Beta kernel estimator in the copula-based multivariate joint 98 
density simulation for financial data. Few studies incorporated this model in hydrometeorological studies, for 99 
instance, for rainfall events (i.e., Rauf and Zeephongsekul (2014)), flood events (i.e., Latif and Mustafa (2020b)) and 100 
wind energy modelling (i.e., Han and Chu 2021; Liang et al., 2022). The Beta kernel copula estimator can produce a 101 
minimum variance during estimation and is free of boundary bias problems. Besides this, Sancetta and Satchell 102 
(2004), Pfeifer et al. (2009), and Dieres et al. (2012) highlighted the efficacy of another nonparametric copula 103 
density approximation, called the Bernstein estimator. Bernstein estimator-based multivariate simulation can 104 
facilitate a higher consistency rate without any boundary bias problem. It can better estimate underlying mutual 105 
dependence than empirical copula density (Kulpa 1999, Weiss and Scheffer 2012). The efficacy of the Bernstein 106 
estimator in economics and financial data analysis is referred to above citation but is rarely incorporated in joint 107 
distribution modelling of extreme hydrometeorological characteristics. Latif and Slobodan (2022c) first introduced 108 
the Bernstein copula estimator with Beta kernel copula density through a comparative assessment in the joint 109 
probability modelling of storm surge and rainfall events in the compound flood risk assessments. Besides the 110 
aforementioned density estimators, Geenenens et al. (2014) discussed transformation estimators based on classical 111 
bivariate kernel estimations in joint probability density modelling. 112 

It is useful to establish a multivariate joint framework by compounding the impact of high river water 113 
temperature and low flows as a better tool for better aquatic species management. The novelty of this study was to 114 
provide a methodological contribution, introducing and testing the efficacy of different nonparametric copula joint 115 
frameworks through a comparative assessment in the bivariate analysis of the above variable of interest. These 116 
nonparametric densities are tested for five different river stations in Switzerland. The nonparametric Gaussian KDE 117 
model with six different bandwidth selectors algorithms is proposed and compared with parametric class models in 118 
characterizing the univariate marginal pdfs of targeted variables. The proposed bivariate joint framework employed 119 
in this study, for instance, (1) a nonparametric Bernstein copula estimator with best-fitted nonparametric KDE 120 
margins, (2) a nonparametric Beta kernel copula density with best-fitted KDE margins, (3) a nonparametric 121 
Transformation estimator with best-fitted KDE margins, (4) Bernstein copula with best-fitted parametric class 122 
margins (5) Beta kernel copula density with best-fitted parametric margins, (6) Transformation estimator with best-123 
fitted parametric margins, (7) parametric class copula density with best-fitted parametric margins (8) parametric 124 
copula density with nonparametric KDE margins. The most justifiable bivariate framework selected for each station 125 
was employed in estimating joint cumulative density, their exceedance probabilities and associated return periods 126 
for river water temperature and corresponding low flow characteristics.  127 

The organization of this manuscript is as follows: Section 2 presents the theoretical background of the 128 
nonparametric bivariate joint probabilistic framework via Beta kernel copula density, Bernstein copula estimator, 129 
and Transformation kernel estimator. This section also discussed nonparametric kernel density estimation via the 130 
Gaussian function with different bandwidth selector approaches in modelling the marginal density of the variable of 131 
interest. Section 3 presents the study area details and delineation of bivariate random observations. Section 4 132 
provides the results and discussions. Lastly, Section 5 presents the research conclusions and future works. 133 

 134 

2. Methods 135 
 136 

2.1. Nonparametric bivariate joint probabilistic framework 137 
 138 

Examining the stress of river water temperature (RWT) or low flow (LF) individually may result in 139 
underestimating risk. The concept of multivariate joint exceedance probability and their associated return periods 140 
can provide a better assessment of the risk when considering the impact of both events jointly. The univariate 141 
probability approach would be confusing if correlated random variables (RWT and LF) describe the underlying 142 
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event of interest. The copula function allows the individual Modelling of univariate margins and their joint 143 
dependence structure; this allows higher flexibility to select the most justifiable density functions for each variable, 144 
not necessarily from the same distribution family (Joe 1997; Nelsen 2006). Section 1 already pointed out a few 145 
statistical challenges in the parametric copula joint density framework. This study examined the adequacy of the 146 
different nonparametric-based copula combined with nonparametric and parametric margins for the RWT and LF 147 
characteristics. Figure 1 illustrates the methodological workflow model adopted in this study. The present study 148 
tested the performance of different nonparametric joint density models and compared their performance with 149 
previously selected parametric-based models in the joint probability density functions (JPDFs) and joint cumulative 150 
distribution functions (JCDFs) (or joint non-exceedance probabilities) between RWT and LF events. In our previous 151 
study, Latif et al. (2023) recognized different parametric copulas with parametric marginal distribution for the same 152 
stations between the same variable of interest. Referring to Figure 1, the efficacy of the six different Gaussian-based 153 
nonparametric kernel density models was developed to approximate the univariate marginal density of RWT and LF 154 
events. We also compared them to the performance of the best-fitted parametric models from Latif et al. (2023) for 155 
both variables. The second modelling stage proposed different bivariate structures by introducing nonparametric 156 
copula density with 1-D kernel density estimation (KDE) and parametric class margins. Finally, each station's most 157 
parsimonious joint density structure was selected to estimate bivariate joint exceedance probabilities and their 158 
associated joint return periods. The joint exceedance probability or return periods of RWT events, conditional to LF 159 
events (for different percentile values), are also examined.  160 
 161 

Insert Figure 1 162 

 163 

2.1.1. Nonparametric copula density modelling 164 
 165 

 The copula function connects multivariate joint probability distribution to the univariate marginal 166 
probability distribution of multiple individual random variables (Nelsen 2006 and Joe 1997). Copula relaxes the 167 
restriction in selecting univariate marginal pdf and copula dependence individually in two stages. Thus, the chosen 168 
univariate and multivariate functions do not necessarily belong to the same family of distributions. According to the 169 
Saklar theorem (Saklar 1959), for any continuous bivariate distribution whose cumulative distribution function, CDF, 170 
is Fଡ଼ଢ଼, there exists a unique function 'C', called copula, such that 171 
 172 
                                                   Fଡ଼ଢ଼(x, y) = C൫Fଡ଼(x), Fଢ଼(y)൯,                                  ∀(x, y)ℝଶ                            (1) 173 
 174 
In equation (1), Fଡ଼(x), Fଢ଼(y) are the univariate marginal cumulative distribution functions (CDFs). 175 
 176 
This study incorporated a nonparametric copula density framework in the joint correlation structure and Modelling 177 
between RWT and LF events. Because the nonparametric copula framework is a distribution-free-based multivariate 178 
joint analysis, it can offer better flexibility than parametric copula settings. Through a comparative assessment, the 179 
adequacy of different bivariate joint probability frameworks is introduced. 180 
 181 
 182 

2.1.2. Nonparametric joint density via Beta kernel copula estimator 183 
 184 

The earlier study of the nonparametric approach in the copula density, i.e., Behnen et al. (1985), indicated 185 
that it could suffer from boundary bias problems, especially for symmetric kernels. The different nonparametric 186 
approaches for the joint copula density are selected based on procedures described in previous studies, for instance, 187 
Mirror image modification (Schuster 1985), transformed kernels (Wand et al. 1991), and boundary kernels (Müller 188 
1991). Beta kernel density is employed in this study to approximate the nonparametric copula density, cojoined with 189 
Kernel density margins and parametric class models separately. It is naturally free from boundary bias compared to 190 
other standard kernel estimators, as indicated by Chen (1999),  Brown and Chem (1999), and Renault and Scaliett 191 
(2004). Also, this estimator is much more consistent when the actual density is unbounded at the boundary. 192 



 

5 
 

Mathematically, if 𝑋ଵ, 𝑋ଶ … … , . 𝑋, are the univariate random samples with known contact support [0, 1], 193 
1-D Beta kernel density is estimated by (Charpentier et al., 2006); 194 

                                               d୦(x) =  ଵ୮ ∑ K(X୨, ୶୦ + 1, ଵି୶୦ + 1)୮୨ୀଵ                                          (2) 195 

                                                      K(x, s, t) = ୶౩(ଵି୶)౪(ୱ,୲) , x ∈ [0,1]                                            (3)       196 

Where 197 

                                                          B(s, t) = (ୱା୲)(ୱ)(୲)                                                                              (4)         198 

Also,    199 

                                                         K(x, s, t) = ୶౩(ଵି୶)౪(ୱ,୲) = (௦)(௧)௫ೞ(ଵି௫)(௦ା௧)                                              (5)  200 

where K(… , s and t) is the Beta density function with parameters s and t, and 'h' is the kernel bandwidth [refer to 201 
Equation (1)]. Using the product of Beta kernel densities, also called the Beta kernel copula, at a point (u, v) is 202 
defined as bivariate copula joint density  203 

                           c୦(x, y) = ଵ୮୦మ ∑ K(X୧୮୨ୀଵ ,  ୶୦ + 1,  ଵି୶୦ + 1) × K(Y୧,  ୷୦ + 1,  ଵି୷୦ + 1)                             (6)           204 

In the above Equations (1) and (5) 'h' is the bandwidth of the Beta kernel density function and is estimated by 205 
minimizing the AMISE (Asymptotic mean integrated square error) followed by the Rule of thumb (ROT) and is 206 
calculated by (Nagler 2014) 207 

                                                                            h = ቀ ଵ଼ ண(ୡ)ஞ(ୡ)ቁଵ ଷൗ nିଵ ଷൗ                                                  (7)                        208 

This approach considered the Frank copula as a reference copula and is indicated by 'c.'                                    209 

 210 

 211 
2.1.3. Nonparametric joint density via Bernstein copula estimator 212 

 213 
The adequacy of the Bernstein polynomial in the joint probability functions appeared in earlier studies, for 214 

instance, Vitale (1975) and Tenbuh (1994). The Bernstein copula estimator can lack boundary bias problems and 215 
provide a higher consistency rate with a better estimation of underlying joint dependence structure than empirical 216 
copula (Sancetta and Satchell 2004; Diers et al. 2012). Also, it can perform better for an asymmetric mutual 217 
dependence (Bouezmarni et al., 2013). 218 
 219 
Mathematically, the z-degree Bernstein polynomial is estimated by 220 
 221 
                                     B(z, a, b) = ൫ୟ൯bୟ(1 − b)ିୟ,        a = 0,1,2, … . . , z ∈ ℕ; 0 ≤ b ≤ 1                                   (8) 222 
 223 
Then, for the bivariate joint distribution case, the 2-D Bernstein copula density is estimated by. 224 
 225 
                                  c(xଵ, xଶ) ≔ ∑ ∑ p(aଵ, aଶ) ∏ d୧B൫d୨ − 1, a୨, x୨൯,            (xଵ, xଶ) ∈ [0,1]ଶଶ୨ୀଵୢమିଵୟమୀୢభିଵୟభୀ                                      226 
(9) 227 
where. 228 
 229 
                                        p(aଵ, aଶ) ≔ P(⋂ {X୧ = a୨})ଶ୍ୀଵ , (aଵ, aଶ)  ∈ [0,1]ଶ                                                                     230 
(10) 231 
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 232 
where 𝑋 = (𝑋ଵ, 𝑋ଶ) is the bivariate random samples having uniform margins over P୨ ∶= {0, 1, 2, … … … … , z୨} with 233 
grid size d୨ ∈ ℕ. 234 
 235 

 236 
2.1.4. Nonparametric density via Transformation method 237 

 238 
Charpentier et al., (2006) introduced this nonparametric approach to kernel copula density estimation based 239 

on the earlier work of Devroye and Gyorfi (1985). A standard kernel density estimator can estimate this 240 
nonparametric density framework. Mathematically, the derivation of the estimator for the bivariate copula density is 241 
calculated by. 242 
 243 c୬(xଵ, xଶ) = መ( షభ(୶భ),షభ(୶మ))థ(షభ(୶భ))(షభ(୶మ)),             (𝑥, 𝑦) ∈ [1, 2]ଶ                                                 (11) 244 

Where Φ is the standard Gaussian cumulative distribution function, CDF and 𝜙 is the first order derivative. 245 

 246 
The transformation estimator allows for a bandwidth matrix set by a rule of thumb (ROT), estimated by a normal 247 
reference rule on the transformed domain (Nagler et al., 2014). 248 
 249 
                                                                      BW = nିଵ ⁄ Σ.ହ                                         (12) 250 
 251 
Where Σ = empirical covariance matrix of Φିଵ(U୨) and Φିଵ(V୨),  j = 1, 2, … … … , n) 252 
  253 
  254 

 255 
2.2. Nonparametric fitting of the univariate marginal distribution 256 
 257 

The nonparametric kernel density estimation (KDE) is free from any prior distributional assumption. The 258 
univariate KDE was employed in the analysis of the marginal probability density of annual maximum rive water 259 
temperature (AMRWT) and LF having the following statistical properties (Rosenblatt 1956; Silverman 1986; 260 
Adamowski 1989; Hardle 1991); 261 
 262 
                                                               K(x)dx = 1ାஶିஶ                                          (13) 263 
 264 
Where K(x) is the univariate kernel density function. The generalized equation for kernel function is given by; 265 
 266 
                                                                       K୦(x) = ଵ୦ K ቀ୶୦ቁ                                (14)                 267 
   268 
Where 'h' is the kernel bandwidth which can control the smoothness and roughness level in the kernel function's 269 
shape. Over-smoothing or under-smoothing can bypass actual content or can result in irregular density functions. 270 
By taking the mean of equation (14), the univariate kernel density estimator was estimated by 271 
 272 
                                                         f୦ (x) = ଵ୬୲ ∑ K୦ ቀ୶ିଡ଼୦ ቁ୬୧ୀଵ                         (15) 273 
 274 
In equation (15), n is the sample size, K(⋅) is the kernel function. Different bandwidth selection algorithms are 275 
discussed in the literature, with each method providing different estimates (Jones et al. 1996; Sharma et al. 1998; 276 
Sheather and John 1991; Chen et al. 2015). Selecting an appropriate bandwidth estimation is essential to control the 277 
shape of kernel density. This study tested the efficacy of Gaussian KDE with six different bandwidth selector 278 
algorithms in individually selecting the best-fitted univariate marginal pdfs for each station's RWT and LF variable 279 
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chosen separately. For instance, the rule-of-thumb (ROT) given by Silvermann (1986), the rule-of-thumb (ROT) by 280 
Scott (1992), solve-the-equation (STE) and direct-plug-in (DPI) by Sheather & Jones (1991), biased cross-validation 281 
(BCV) and unbiassed cross-validation (UCV) (Scott and Tereel 1987; Santhos and Srinivas 2014)). The Gaussian 282 
(or Normal) KDE is widely accepted and can be expressed as  283 

K୦ ቀ୶ିଡ଼୦ ቁ = ଵ√ଶగ 𝑒ି(ೣష)మమమ                     (16) 284 

Both Scott (1992) 's ROT (i.e., h = 1.06 ∗ σ ∗ nିଵ ହൗ ; σ is the standard deviation),  and Silverman's (1986) 's ROT 285 
(i.e., h = 0.9 ∗ min ቀσ, ୍୕ୖଵ.ଷହቁ ∗ nିଵ ହ⁄ ; IQR is the interquartile range), bandwidth estimators are straightforward to 286 
calculate, where the performance of the second bandwidth estimator is more robust than the first, as already 287 
observed from the previous study. The other nonparametric bandwidth selector, which is based on cross-validation 288 
methods, for instance, UCV and BCV, can also give a better estimate of multimodal distribution. Conversely, the 289 
Sheather and Jones data-based bandwidth estimators, for example, the DPI and STE approaches, are also much more 290 
promising and can perform well (Elisa and Cao 2008; Chen 2015). This approach utilized pilot estimation of 291 
derivatives to select bandwidth. Besides nonparametric KDE margins, this study compared the performance of 292 
selected 1-D parametric models which were chosen from our previous study (Latif et al., 2023), joined with 293 
nonparametric and parametric copulas. The vector of unknown statistical or distribution parameters of the fitted 294 
parametric class 1-D density function is estimated via maximum likelihood estimation (MLE).  295 

 296 

2.3 Model compatibility investigation 297 
 298 

The performance of fitted nonparametric models, both 1-D marginal pdfs and bivariate copula joint density 299 
functions, is examined by employing different goodness of fit (GOF) tests, for instance, RMSE (Root Mean Square 300 
Error), MSE (Mean Square Error), MAE (Mean Absolute Error), NSE (Nash-Sutcliffe efficiency), AIC (Akaike 301 
Information Criterion), BIC (Bayesian Information Criterion), HQC (Hannan-Quinn Information Criterion) (Akaike 302 
1974; Singh et al., 2004; Wilmot and Matsura 2005; Zhang and Singh 2007; Gupta et al., 2005; Schwarz 1978; 303 
Farrel and Stewart 2006; Bennett et al., 2013; Moriasi et al., 2007; Singh et al., 2004; Hannan et al., 1979). The 304 
fitted models' fitness consistencies or GOF statistics are examined by observing gaps and dispensaries between the 305 
theoretical and empirical non-exceedance probabilities or CDFs. The minimum value of the above GOF test 306 
statistics reveals a better fit (or satisfactory performance), except for the NSE test, where a test value closer to 1 307 
indicates the fitted (or theoretical) model is much closer to the empirical or optimal model. The NSE test values are 308 
numerically defined within a range of −∞ (indicates for inferior model performance) to 1 (means ideal 309 
performance). Also, when its values lie between 0 to 1, it can further indicate a good agreement between empirical 310 
and theoretical observations. On the other side, the AIC test statistics comprise the lack of fit of the model on the 311 
one hand and the model's unreliability on the other hand. All three information criteria statistics, AIC, BIC and 312 
HQC, usually highlighted the trade-off relationship between model uncertainty and a number of fitted parameters. 313 
The HQC criterion does not exhibit asymptotically efficient criteria but also indicates higher consistency levels than 314 
AIC and BIC criteria (Haggag 2014). Besides, other statistical metrics, such as RMSE, MSE and MAE test, usually 315 
defines error statistics in the units of constituents of interests. Such as, test values closer to zero must be indicated 316 
for optimal model performance. The MAE statistics can minimize bias towards the large event relative to RMSE 317 
statistics and can be considered a better approach than the latter (Willmott and Matsuura, 2005; Bennett et al., 2013). 318 
The RMSE test performs relatively better than the MAE test for normally distributed samples (Chai and Draxler 319 
2014), whereas MAE can perform somewhat better for skewed or multimodal distributed models. Besides, the NSE 320 
test compares data and residual variance structure.  321 

The efficacy of the fitted bivariate copula densities was analyzed analytically by employing some 322 
additional GOF test measures and the above-discussed fitness statistics. For instance, K-S (Kolmogorov-Smirnov), 323 
mNSE (modified Nash-Sutcliffe Efficiency), IA (Index of Agreement), R2 (Coefficient of Determinations) and 324 
PBIAS (Percent Bias) are evaluated for each fitted bivariate density model for each station (Sorooshian et al., 1993; 325 
Moriasi et al., 2007; Ouarda et al., 2015; Onyutha 2021; Hoshin et al., 2009; Krause et al., 2005; Willmott et al., 326 
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1985; Legates et al., 1999; Kim et al., 2016; Nash and Sutcliffe 1970 and references therein). PBIAS measures the 327 
mean tendency of the simulated values to be larger or smaller than their empirical ones, where their optimal value is 328 
0.0 (the positive value indicates overestimation bias or negative value for underestimation bias). Its low magnitude 329 
value must indicate for accurate model simulation or better fit. Besides, the coefficient of determination 𝑅ଶ (range 330 
from 0 to 1 (better fit)) gives the proportion of the variance of one variable that is predictable from other variables. 331 
Similarly, IA (values range from 0 (indicates no agreements at all) to 1 (means perfect match)) statistic is a 332 
standardized measure of the degree of model prediction error or ratio of the mean square error and the potential 333 
error. Besides, the empirical distribution function-based KS test statistics measures the largest vertices between 334 
empirical and theoretical observations. Minimum the value K-S statistics can indicate a better fit. It is considered 335 
one of the most practical and general nonparametric approaches for comparing two samples or in model 336 
performance evaluation. 337 

 338 

3. Study area and delineation of bivariate random samples 339 
 340 
The proposed nonparametric copula joint framework is modelled for different time series of river temperature 341 

from gauging stations in Switzerland (Figure 2). There is a variation in the average watershed elevation ranging 342 
from 502 m to 1833 m, with catchment areas varying from 314 km2 to a maximum of 6299 km2. The annual cycle of 343 
river flow is moderate, with a higher level of inter-annual variability, which depends upon regional precipitation 344 
patterns and snowmelt (Michel et al., 2020). 345 
 346 

Insert Figure 2 347 

This study uses the data extracted from previous studies (Souaissi et al., 2021; Latif et al., 2023). The annual 348 
maximum rive water temperature (AMRWT) series were extracted from the daily time series for the summer months 349 
(May 1 to October 31) provided by the Swiss Federal Office for the Environment (FOEN). Another variable, river 350 
discharge during the low flow (LF) period, was defined by selecting the discharge value at the same calendar date of 351 
the annual RWT. The sample sizes for all selected five stations varied from 36 to 53 years.  352 

 353 

 354 

4. Results and Discussion 355 
 356 

4.1. Modelling of nonparametric KDE marginals of AMRWT and LF 357 

Selecting a qualified marginal probability distribution is often a mandatory pre-requisite step before 358 
introducing it into a multivariate joint distribution framework. In this regard, the performance of different candidate 359 
models is often compared via the GOF test because multiple models would fit the data equally; however, it usually 360 
gives different quantile estimates, especially in distribution tails. The recent study by Latif et al. (2023) confirmed 361 
that AMRWT and corresponding LF exhibit zero serial correlation (or autocorrelation) for all selected stations. Also, 362 
the homogeneity test results show that both variables for all selected stations are homogenous except for station 363 
2044, where changes occurred within the time series of AMRWT. Also, the nonparametric-based Mann-Kendall (M-364 
K) test confirms nonstationarity (i.e., a significant positive trend) for the annual RWT series at stations 2044 and 365 
2084. 366 

The 1-D Gaussian KDE with six different bandwidth selector algorithms were fitted to historical time series to 367 
model univariate marginal probability distributions of AMRWT and corresponding LF series (refer to section 2.2). 368 
Supplementary Table (ST1) lists station-wise estimated bandwidth using different estimators. The compatibility of 369 
fitted candidate nonparametric 1-D models is compared for all selected stations using the various analytical-based 370 
GOF test statistics (refer to section 2.3). The empirical non-exceedance probabilities were estimated using the 371 
Gringgorten-based position-plotting formulae (Gringorten 1963) and were compared further with the theoretical 372 
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observations estimated from the fitted candidate models. sThe following quantitative results are summarised below 373 
(refer to Supplementary Tables (ST 2a-e)): 374 

1. Gaussian KDE with Silvermann ROT bandwidth estimator model was identified as the most parsimonious 375 
model in describing the univariate marginal distribution of AMRWT data at stations 2044, 2084, 2415 and 376 
2473. Such as the majority of fitness tests are in support of the selected model. For instance, at station 377 
2044, the selected model exhibits the minimum GOF test value of RMSE (0.0213 < RMSE of other 378 
candidate models), MSE (0.0004 < MSE of other candidate models), MAE (0.0161 < MAE of other 379 
candidate models), AIC (-405.65 < AIC of other candidate models), BIC (-403.68 < BIC of other candidate 380 
models), HQC (-404.89 < HQC of other candidate models) and higher values of NSE ( 0.9945 > NSE of 381 
other candidate models) statistics). For station 2106, the Gaussian KDE with UCV is the best model for the 382 
same variable, AMRWT. For instance, RMSE (0.0231 < RMSE of other candidate models), MSE ( 0.0005 383 
< MSE of other candidate models), MAE (0.0179 < MAE of other candidate models), NSE (0.9935 > NSE 384 
of other candidate models), AIC (-359.32 < AIC of other candidate models),  BIC (-357.45 < BIC of other 385 
candidate models), HQC (-358.62 < HQC of other candidate models).  386 

2. Similarly, for stations 2044, 2415 and 2473, the Gaussian KDE with ROT bandwidth selector model was 387 
the best fit for LF values. For instance, at station 2044, the selected density function exhibits a minimum 388 
value RMSE (0.0226< RMSE of other candidate models), MSE (0.0005 < MSE of other candidate models), 389 
MAE (0.0177 < MAE of other candidate models), AIC (-399.62 < AIC of other candidate models), BIC (-390 
397.65 < BIC of other candidate models), HQC ( -398.86 < HQC of other candidate models). It also 391 
exhibits a higher value of NSE (0.9938 >  NSE of other candidate models). For Station 2084, it was the 392 
Gaussian KDE with UCV model; for Station 2106, the Gaussian KDE with STE model was selected best. 393 
For instance, at station 2106, RMSE(RMSE2106 (Gaussian KDE with STE model) < RMSE2106 of other 394 
candidate models), MSE (MSE2106 (Gaussian KDE with STE model) < MSE2106 of other candidate models), 395 
MAE (MAE2106 (Gaussian KDE with STE model) < MAE2106 of other candidate models), AIC (AIC2106 396 
(Gaussian KDE with STE model) < AIC2106 of other candidate models), BIC (BIC2106 (Gaussian KDE with 397 
STE model) < BIC2106 of other candidate models), HQC (HQC2106 (Gaussian KDE with STE model) < 398 
HQC2106 of other candidate models), and NSE (NSE2106 (Gaussian KDE with STE model) > NSE2106 of 399 
other candidate models) respectively. 400 

The same tables also reveal that all selected KDE 1-D models outperformed the best-performing parametric 401 
distributions, which were fitted to both AMRWT and LF variables in our previous study for the same stations. For 402 
instance, the selected nonparametric Gaussian KDE with ROT model captures marginal behaviour for both variables 403 
at station 2044 much more effectively than the parametric-based Logistic-2P models (refer to ST 2a-e). For 404 
example, for AMRWT variable (RMSEGAUSSIAN ROT MODEL (0.0213) < RMSEPARAMETRIC LOGISTIC-2P MODEL (0.0222), 405 
MSEGAUSSIAN ROT MODEL (0.0004) < MSEPARAMETRIC LOGISTIC-2P MODEL (0.0005),  MAEGAUSSIAN ROT MODEL (0.0161) < 406 
MAEPARAMETRIC LOGISTIC-2P MODEL (0.0181), AICGAUSSIAN ROT MODEL (-405.65) < AICPARAMETRIC LOGISTIC-2P MODEL (-407 
399.33), BICGAUSSIAN ROT MODEL (-403.68) < BICPARAMETRIC LOGISTIC-2P MODEL (-395.39),  HQCGAUSSIAN ROT MODEL (-408 
404.89) < HQCPARAMETRIC LOGISTIC-2P MODEL (-397.81),  NSEGAUSSIAN ROT MODEL (0.9945) > NSEPARAMETRIC LOGISTIC-2P 409 
MODEL (0.994)), and variable LF (  RMSEGAUSSIAN ROT MODEL (0.0226) < RMSEPARAMETRIC LOGISTIC-2P MODEL (0.0282), 410 
MSEGAUSSIAN ROT MODEL (0.0005) < MSEPARAMETRIC LOGISTIC-2P MODEL (0.0008),  MAEGAUSSIAN ROT MODEL (0.0177) < 411 
MAEPARAMETRIC LOGISTIC-2P MODEL (0.0247), AICGAUSSIAN ROT MODEL (-399.62) < AICPARAMETRIC LOGISTIC-2P MODEL (-412 
374.03), BICGAUSSIAN ROT MODEL (-397.65) < BICPARAMETRIC LOGISTIC-2P MODEL (-370.09),  HQCGAUSSIAN ROT MODEL (-413 
398.86) < HQCPARAMETRIC LOGISTIC-2P MODEL (-372.52),  NSEGAUSSIAN ROT MODEL (0.9938) > NSEPARAMETRIC LOGISTIC-2P 414 
MODEL (0.9903)). Supplementary Table ST3 summarises the estimated parameters of the best-fitted parametric 415 
distribution for each station via the maximum likelihood estimator (MLE). Visual inspection confirms the adequacy 416 
of fitted nonparametric 1-D models using overlapped probability density function (PDF) plots (refer to 417 
Supplementary Figures (SF 1-2)). It was found that all selected KDE models adequately captured the distribution 418 
behaviour of the targeted random variables and supported the analytical investigation. In conclusion, these estimated 419 
results confirmed our initial hypothesis about the robustness of nonparametric KDE pdf over the parametric 420 
distributions in modelling the marginal distribution of AMRWT and LF events. 421 

 422 
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4.2. Nonparametrically joint correlation modelling between AMRWT and LF events 423 
 424 

Our recent study, Latif et al. (2023), confirmed, as expected, the existence of a negative correlation between LF 425 
and AMRWT events (Pearson, Kendall's and Spearman; significant at a 95% confidence interval). Graphically, 2-D 426 
scatter plots, Chi-plots, Kendall's or K-plot between the AMRWT and corresponding LF for the selected stations 427 
also confirmed the negative correlation. One of the most considerable statistical flexibilities of nonparametric copula 428 
density is that it can adapt to any type of mutual dependence structure to the given bivariate pairs without having 429 
any distributional assumption. The parametric copula models notoriously lack flexibility and can bear the risk of 430 
misspecification.  431 

Obtained Framework 1: Nonparametric margins with nonparametric copula (NPMNPC) models: 432 

The bivariate joint frameworks included the Beta kernel copula density, Bernstein copula estimator and 433 
Transformation estimator. All selected bivariate densities were joined with best-fitted 1-D nonparametric margins in 434 
the joint probability modelling between AMRWT and LF (refer to Equations 6, 9 and 11). The bandwidth of the 435 
fitted Beta kernel copula estimator is estimated by the Rule of thumb (ROT), followed by Equation 7 (refer to 436 
Method 2.1.1). In working with the Bernstein copula estimator, their coefficients are adjusted, followed by Weiss 437 
and Scheffer (2012). Also, the bandwidth matrix for the transformation kernel estimator was estimated by Equation 438 
(12). Tables 1(a-e) list the developed bivariate joint density models and the estimated bandwidth (only for Beta 439 
kernel copula and Transformation kernel density). 440 

Obtained Framework 2: Parametric margins with parametric copula (PMPC) model: 441 

This bivariate parametric joint framework introduces the best-fitted parametric class 2-D copulas selected 442 
from the previous study joined with best-fitted 1-D parametric marginal pdfs (refer to Supplementary Tables (ST 3, 443 
ST 4, and Tables 1(a-e)). For instance, rotated Clayton copula (90 degrees) (for station 2044), rotated BB8 copula 444 
(270 degrees) (for station 2084), rotated Joe copula (90 degrees) (for station 2106), rotated Tawn type-1 copula (90 445 
degrees) (for station 2415), and rotated Clayton copula (90 degrees) (for station 2473). The copula dependence 446 
parameters were estimated using the maximum pseudo-likelihood (MPL) estimator (Latif et al., 2023).  447 

Obtained Framework 3: Parametric margins with nonparametric copula (PMNPC) model: 448 

These semiparametric-based bivariate frameworks employed the Beta kernel copula, Bernstein copula 449 
estimator and Transformation kernel estimator density individually with selected best-fitted parametric margins 450 
(refer to Table 1(a-e) and ST3). 451 

Obtained Framework 4: Nonparametric margins with parametric copula (NPMPC) model: 452 

These semiparametric bivariate frameworks introduce the best-fitted KDE margins of the AMRWT and 453 
corresponding LF together with the most parsimonious 2-D parametric copulas (refer to Tables 1(a-e) and ST4). 454 

 455 

4.3. Model's performance comparison  456 

The efficacy of all the above nonparametric, semiparametric and parametric bivariate copula joint density 457 
frameworks was analyzed and compared, for each station individually, based on different GOF test statistics (refer 458 
to Tables 1(a-e)). The empirical bivariate joint non-exceedance probabilities or CDFs were obtained from the 459 
empirical copula, followed by Deheuvels (1979). Different model fitness test statistics were employed; refer to 460 
section 2.3. The nonparametric Analytical investigation reveals that Beta kernel copula density with KDE 461 
(GAUSSIAN-Silverman Rule-of-thumb ROT) margins was found to be the most justifiable density and best 462 
performance in capturing joint correlation structure between AMRWT and LF at stations 2044 and 2106. The 463 
selected joint density is in favour due to the majority of estimated GOF test values in support compared to other 464 
developed bivariate models at this station. For instance, the estimated GOF measures of the selected model at station 465 
2044 (K-SBETA GAUSS. ROT MODEL < K-SOTHER MODELS,  RMSEBETA GAUSS. ROT MODEL < RMSEOTHER MODELS,  MSEBETA 466 
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GAUSS. ROT MODEL < MSEOTHER MODELS, (NSE  & mNSE)BETA GAUSS. ROT MODEL > (NSE  & mNSE)OTHER MODELS, (AIC, 467 
BIC & HQC) BETA GAUSS. ROT MODEL < (AIC, BIC & HQC) OTHER MODELS, (IA & R2)BETA GAUSS. ROT MODEL > (IA & 468 
R2)OTHER MODELS. Besides, the estimated PBIAS value for this model is closer to zero, indicating less risk of 469 
overestimation bias than other bivariate density models. Similarly, for station 2084, the Bernstein copula with KDE 470 
(GAUSSIAN) Silverman Rule-of-thumb (ROT)- KDE (GAUSSIAN) Unbiased cross-validation (UCV) Scott and 471 
Terrell (1987) margin was recognized as the best-fitted model for that station. The transformation estimator with 472 
KDE (GAUSSIAN) UCV- KDE(GAUSSIAN) STE margins describe the most justifiable bivariate dependence at 473 
station 2415. For station 2473, the Beta kernel copula with parametric-based Logistic-2P and Lognormal-2P margins 474 
outperformed other bivariate densities. Overall, the Beta kernel copula density outperformed and was much more 475 
efficient than the Bernstein copula estimator and Transformation estimator for most stations when it is used with 476 
KDE marginal densities. Conversely, the Beta kernel copula surpassed other nonparametric joint densities when 477 
joined with parametric class marginal density for station 2473. Besides the selected bivariate model for each station, 478 
for instance, the performance of the Transformation kernel estimator with Gaussian KDE margins outperformed the 479 
Bernstein estimator at stations 2044 and 2106, while its performance was inferior at stations 2084 and 2473. Also, 480 
when  the nonparametric Beta kernel, Bernstein estimator and Transformation estimator functions were used with 481 
the best-fitted parametric margins, the performance was less robust and inferior to when the same copula density 482 
model was fitted with nonparametric margins for all stations, except for 2473 (Beta kernel copula with parametric 483 
class margins). For instance, at station 2044, refer to Table 1a, when comparing the estimated GOF statistics of 484 
fitted NPMNPC models versus PMNPC models, (K-SNPMNPC < K-SPMNPC), (RMSENPMNPC < RMSEPMNPC), 485 
(MSENPMNPC < MSEPMNPC), (MAENPMNPC < MAEPMNPC),  (NSE & mNSENPMNPC > Mnse & NSEPMNPC), (AIC, BIC & 486 
HQCNPMNPC < AIC, BIC & HQCPMNPC), (IANPMNPC > IAPMNPC). Besides, the estimated PBIS statistic is closer to zero 487 
for NPMNPC models than PMNPC models. 488 

 489 

It was also found that the best-fitted parametric copulas modelled with parametric marginals or PMPC 490 
models, selected from the previous study, had inferior performance or were less robust than nonparametric copulas' 491 
density or NPMNPC models for all selected stations (refer to same Tables 1a-e). However, when the same 492 
parametric copulas were used with the best-fitted nonparametric KDE margins or NPMPC models, their 493 
performances were much better than when parametric copulas were fitted to parametric margins or PMPC  for all 494 
selected stations. For instance, at station 2044, when comparing the performance based on their estimated fitness 495 
measures between PMPC and NPMPC models, (K-SNPMPC < K-SPMPC), (RMSENPMPC < RMSEPMPC), (MSENPMPC < 496 
MSEPMPC), (MAENPMPC < MAEPMPC),  (NSE & mNSENPMPC > Mnse & NSEPMPC), (AIC, BIC & HQCNPMPC < AIC, 497 
BIC & HQCPMPC), (IANPMPC > IAPMPC) etc. 498 

 499 

The performances of bivariate joint densities were examined graphically using an overlapped 2-D scatterplot 500 
between historical bivariate random pairs (indicated by the red colour) with a set of generated pairs (sample size, 501 
N=1000, indicated by the light-blue colour) estimated from fitted candidate bivariate densities. Refer to 502 
Supplementary Figures (SF 3(a-e)), it is illustrated that all the selected bivariate joint densities performed 503 
adequately; the generated random pairs (in light blue) overlapped with the natural mutual dependence of the 504 
historical samples (in red) for all selected stations. At this point, it is concluded that our initial hypothesis about the 505 
flexibility of nonparametric copula density in the joint dependency modelling exhibits is superior to fully parametric 506 
frameworks and is therefore deemed more suitable in the joint probability modelling of AMRWT and LF events. 507 
Supplementary Figure SF4 shows a 3-D scatterplot of the joint cumulative probability distributions, also called joint 508 
non-exceedance probabilities, derived from each station's best-fitted bivariate copula density using the historical 509 
observational events, AMRWT and corresponding LF. Besides, Supplementary Figures (SF 5a-e) and (SF 6) 510 
illustrate the surface density plots and contour plots of selected bivariate copula joint density fitted between 511 
AMRWT and LF events for each station.  512 

 513 

Insert Tables 1 (a-e) here 514 
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 515 

4.4. Risk evaluation via joint and conditional distributions 516 
 517 

4.4.1. Primary joint return period for OR and AND case 518 

The derived nonparametric copula density framework further examined the joint probability distribution 519 
relationship between AMRWT and corresponding LF events that can stress certain endemic fish species when both 520 
variables occur concurrently. Supplementary Figures (SF 7a-b) illustrate the univariate return periods of AMRWT 521 
and LF events estimated from best-fitted 1-D marginal distributions. The univariate approach in the risk evaluation 522 
would result in an underestimation. Their joint correlation behaviour was captured based on multivariate joint and 523 
conditional joint exceedance probabilities and their associated joint and conditional return periods. Two different 524 
joint probability cases and return periods are considered in this study (Salvadori, 2004; Graler et al., 2013; Reddy 525 
and Ganguli, 2012; Salvadori et al., 2015), as summarised below: 526 

1. When both annual maximum river water temperature (AMRWT) and concomitant low flow (LF) 527 
simultaneously exceed a specific threshold value (say amrwt and lf), i.e., 𝐴𝑀RWT ≥ amrwt AND LF ≥ lf), 528 
called the AND-joint case and the associate return periods are estimated by. 529 
 530 

                   Tୖ,ୈ = ଵଵି(ୖ)ି()ାେ(ୖ,   ) = ଵଵି((ୖ)ା()ି େ(ୖ,   ))                    (17) 531 
 532 

Where, F(AMRWT) and F(LF) are the best-fitted univariate marginal cdfs (or univariate non-exceedance 533 
probabilities); C(AMRWT,   LF) is the joint cdf values which are estimated using the best-fitted bivariate copula joint 534 
density framework. Equation (17) examined the risk when AMRWT and LF events coincide (simultaneous 535 
occurrence). Also, the denominator term "F(AMRWT) + F(LF) − C(AMRWT,   LF)" define the joint cumulative 536 
probability distribution or joint non-exceedance values in the simultaneous occurrence of AMRWT and LF event 537 
(refer to Supplementary Figure SF8).  538 
 539 

2. When AMRWT or LF exceed a specific threshold value (i.e., AMRWT ≥ amrwt  OR LF ≥ lf), called the 540 
OR-joint case, the associated return periods are estimated. 541 
 542 

                                                  Tୖ,ୖ = ଵଵିେ(ୖ,   )                                               (18) 543 

Tables 2(a-e) compare each station's estimated univariate versus bivariate return periods. In this Table, at first, the 544 
univariate design variable quantiles for AMRWT and corresponding LF events are calculated using the quantiles 545 
functions (from best-fitted KDE marginal models) for specified annual exceedance probabilities (AEP) or univariate 546 
return periods, for instance, 2, 5, 10, 20, 30, 50, 79, and 100 years. The bivariate OR and AND-joint return periods 547 
are estimated for the different combinations of designed AMRWT and LF (refer to same Tables 2 (a-e) and 548 
Supplementary Figure (SF9)). It is found that AND-joint return periods are higher than OR-joint case for any 549 
combination of bivariate design events at any station, i.e., Tୖ,ୈ > Tୖ,ୖ . It further reveals that there is 550 
less chance (i.e., less probable) or frequency in the occurrence of bivariate events simultaneously in the AND-joint 551 
case than in the OR-joint case. Also, OR-joint return periods are less than univariate return periods estimated by 552 
considering univariate marginal CDF of the best-fitted model for AMRWT or LF events, i.e., Tୖ,ୖ <553 (Tୖ୍ୖ୍ or T୍ୖ୍). Also, the joint return periods were estimated using the historical bivariate events for 554 
both joint cases and illustrated using 3-D scatterplots (referring to Supplementary Figures (SF10a-e)). For instance, 555 
on June 5, 2019, at station 2044, the bivariate events, AMRWT and LF, were  20.26 ℃ and 34.975 mଷ/sec, having 556 
AND and OR-joint return period were 112.20 years and 1 year. Similarly, at station 2473, on August 11 2019, 557 
AMRWT and LF events were 19.74 ℃ and 129.168  mଷ/sec, the AND and OR joint return periods were 196.23 558 
years and 1.29 years. 559 
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When the temperature rises above 19 ℃, it can stop the growth of brown trout (Salmo trutta) or influence 560 
the concentration of vitellogenin (Vtg) in brown trout's plasma. From the Supplementary Figures (SF11 a-b), it is 561 
inferred that the estimated AMRWT events exceed this threshold at the higher exceedance probability (or when its 562 
return period is 2 years or above) for all stations except station 2473. For instance, at 2-year and 10-year return 563 
periods, the estimated AMRWT is 25.06 ℃ and 26.82℃ (for station 2044), 18.56 ℃ and 20.89 ℃ (for station 2084), 564 
21.65 ℃ and 23.48 ℃ (for station 2106), 24.65 ℃ and 25.61 ℃ (for station 2415). However, for station 2473, at the 565 
same return periods, the AMRWT quantiles are 16.53 ℃ and 17.98 ℃, which attained its value above 19 ℃ 566 
(threshold) at 50 years or above return periods.  567 

During the low water periods, the small wetted areas lead to a decrease in available physical habitat that 568 
can also harm fish. From the same Table 2 (a-e), the absolute and specific discharge values are compared for 569 
different stations at different return periods. From Supplementary Figures (SF12) and (SF13), it is found that station 570 
2084 exhibits the highest value of specific discharge and station 2106 exhibits the lowest value as compared to other 571 
stations. For instance, at a return period of 30 years, the estimated LF was 25.99 mଷ/sec (with specific discharge = 572 
0.015204 (୫యୱୣୡ /kmଶ), with drainage surface area = 1709.42 mଶ), 28.16 mଷ/sec (with specific discharge = 573 

0.089465 (୫యୱୣୡ /kmଶ),, drainage surface area = 314.76 mଶ), 8.16 mଷ/sec (with specific discharge = 0.015204 (୫యୱୣୡ /574 kmଶ),  drainage surface area = 942.92 mଶ), and 292.82 mଷ/sec (with specific discharge = 0.046485 (୫యୱୣୡ /kmଶ), , 575 
drainage surface area = 6299.198 mଶ) at stations 2044, 2084, 2106, and 2473, respectively. In conclusion, it is found 576 
that considering only a univariate case of return periods would be problematic; it can mislead the risk assessments 577 
when compounding their joint correlation behaviour and would result in the underestimation of risk.  578 

Insert Tables 2 (a-e) 579 

 580 

4.4.2. Joint return periods of AMRWT events conditional to LF events  581 
 582 

The risk evaluation between AMRWT and LF events via conditional return periods relies on their 583 
conditional joint probability relationship. The joint return of AMRWT, given various percentile values of 584 
corresponding LF, are estimated using the best-fitted derived bivariate models for the case, 𝑇|ஸ (Shiau, 2006; 585 
Zhang and Singh, 2006; Salvadori and De Michele, 2010; Sraj et al., 2014) is estimated by 586 

 587 

                                                 Tୖ|ஸ୪ = ଵ(ଵିେ(୰୵୲,   ୪) (୪)⁄ )                                        (19) 588 

The conditional return periods of AMWRT were estimated considering different percentile values of LF events, for 589 
instance, 5th, 25th, 50th, 75th, 90th and 95th percentiles. Referring to Figures 3 (a-e), it is found that for all selected 590 
stations, return periods of AMRWT increase with an increase in percentile values of their corresponding LF events. 591 
For instance, at station 2044, on July 27, 1979, the AMRWT was 24.05 ℃, the joint return period for the 592 
aforementioned percentiles was 1.01 years (when corresponding LF ≤ 8.0456 m3/s (5th percentile)), 1.17 years (when 593 
corresponding LF ≤ 11.029 m3/s (25th percentile)), 1.20 years (when LF ≤ 20.4584 m3/s (90th percentile)), and 1.22 594 
years (when LF ≤ 21.7814 m3/s (95th percentile)). Similarly, at station 2473, the AWRWT was 16.21℃ on August 595 
11, 2019, and the joint return period was 1.24 years, 1.26 years, 1.46 years, 1.53 years when the corresponding LF ≤ 596 
value at the 5th percentile (123.43 m3/s), LF ≤ value at 25th percentile (140.84 m3/s), LF ≤ value at 75th percentile 597 
(217.53 m3/s) and LF ≤ value at 90th percentile (257.71 m3/s). Besides, for all selected stations, the higher bivariate 598 
return periods were obtained by fixing the percentile values with an increase in the value of AMRWT. For instance, 599 
at station 2106, by fixing the percentile value of the conditional variable, LF, say 75th (5.77 m3/s), the return period 600 
of AMRWT was 1.13 years (when AMRWT was 20.94 ℃ on June 23, 2002), 22.44 years (when AMRWT was 24.4 601 ℃ on August 13, 2003), 1.54 years (when AMRWT was 21.55 ℃ on August 2, 2004), 3.10 years (when AMRWT 602 
was 22.43 ℃ on July 21, 2006), 10.01 years (when AMRWT was 23.75 ℃ on July 7, 2015). 603 
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 604 

Insert Figures 3(a-e) 605 

5. Research Conclusions 606 
 607 
Compounding the joint impact of river water temperature (RWT) and low flow (LF) events that can potentially 608 

harm the aquatic habitat provides more significant information to managers than just considering these events 609 
individually. Both variables exhibited a negative dependence structure already confirmed by a previous study (Latif 610 
et al., 2023). Thus, incorporating a multivariate joint probability distribution framework and the notations of joint 611 
and conditional joint return periods can comprehensively measure the risk associated with these bivariate events. 612 
The applicability of traditional multivariate parametric models or copulas in joint density modelling would have 613 
some statistical limits regarding prior distribution assumptions in their univariate margins and copula joint pdf, 614 
which also can lack flexibility. Also, if the underlying statical hypothesis is violated, it could lead to 615 
misspecification. This study provided a methodological contribution by incorporating a new approach via a 616 
nonparametric-based copula distribution approach in joint probability density modelling of AMRWT and LF for five 617 
different river locations in Switzerland. The nonparametric copula framework is free from any distribution 618 
assumption. It can adapt any joint mutual correlation structure without assuming any fixed or specific probability 619 
density form for either copula or univariate margins.  620 

The joint probability analysis proposed different nonparametric copula densities through comparative 621 
assessments: Beta kernel density, Bernstein copula estimator, and Transformation kernel estimator. All such 622 
nonparametric copula densities were combined with nonparametric and parametric class marginal densities in 623 
establishing a joint dependence structure. The performance of parametric copulas joined with best-fitted 624 
nonparametric KDE and parametric class margins were also tested and compared in the joint dependence between 625 
AMRWT and LF events. The Gaussian KDE with six different bandwidth estimators were introduced and compared 626 
with parametric margins in modelling the univariate marginal pdfs of AMRWT and LF events. Model compatibility 627 
investigation confirmed that nonparametric KDE margins outperformed parametric class marginal density for all 628 
selected stations. Also, the ROT Silvermann bandwidth estimator with Gaussian KDE performed better for both 629 
variables at most stations than other models. Based on different GOF test statistics and also graphical visual 630 
inspection, a comprehensive model performance investigation confirmed that the nonparametric copula joint 631 
framework (i.e., nonparametric copulas with nonparametric margins) outperformed the other models for all selected 632 
stations. For instance, Beta kernel copula with Gaussian KDE-Silvermann ROT margins captured the mutual 633 
correlation between AMRWT and LF events in a better manner at station 2044. At station 2473, the same Beta 634 
copula density performed well when joined with parametric marginal densities than nonparametric Gaussian KDE 635 
margins. Overall, Beta kernel copula density satisfied the most justifiable for most of the stations. 636 
The best-fitted bivariate joint density was selected for each station to estimate the joint return period for OR and 637 
AND joint cases. The return periods were observed for different combinations of designed RWT and LF events 638 
estimated at different univariate return periods. It is found that the chance of simultaneous occurrence of both 639 
AMRWT and LF events is lower or less in AND joint case compared to OR joint case for all selected stations. The 640 
accountability of only univariate return periods in the risk evaluation would result in underestimation when multiple 641 
random variables significantly impact when they occur jointly. The univariate return periods considering AMRWT 642 
or LF events are found to be less than the AND-joint case but higher than the OR joint case.  643 

The derived nonparametric models estimated the conditional joint return period of AMRWT events given 644 
various percentile values of LF events for case T_(AMRWT|LF≤lf), for all stations. It is found that the return 645 
periods of bivariate events increase with an increase in the percentile value of LF. It is also found that, for all 646 
stations, the higher value in AMRWT events will result in high bivariate return periods compared to a lower value at 647 
the fixed percentile value of LF (conditioning variable). In conclusion, the estimated return periods could provide 648 
insight into the relative mutual dependence behaviour of river thermal-low flow risk for aquatic species in Swiss 649 
rivers. 650 

 651 
 652 
 653 
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 981 

Figure 1: Methodological workflow in the nonparametric copula-based joint density modelling for 982 
annual maximum river water temperature and corresponding low flow events 983 
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 984 

Figure 2: Geographical location of study area with river water gauge stations 985 
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 994 

(e) 995 

Figure 3. Bivariate joint return periods of annual maximum river water temperature given various percentile values 996 
of corresponding low flow for (a) station 2044 (b) station 2084 (c) station 2106 (d) station 2415 (e) station 2473 997 
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Table 1: Model compatibility or fitness investigation in fitting bivariate joint probability framework for annual maximum river water temperature 
and corresponding low flow series (a) station 2044 (b) station 2084 (c) station 2106 (d) station 2415 (e) station 2473 

Joint distribution 
framework (Station 
2044) (a) 

Bivariate joint 
density frameworks 

Estimated 
bandwidth 

K-S (Kolmogorov-
Smirnov) 

RMSE 
(Root 
Mean 
Squared 
Error) 

MSE 
(Mean 
Squared 
Error) 

MAE 
(Mean 
Absolute 
Error) 

NSE (Nash-
Sutcliffe 
Efficiency) 

mNSE 
(modified 
Nash-
Sutcliffe 
Efficiency)  

AIC (Akaike 
Information 
Criterion) 

BIC (Bayesian 
Information 
Criterion) 

HQC (Hannan-
Quinn 
Information 
Criterion) 

IA (Index of 
Agreement) 

R2 (Coefficient of 
Determinations) 

PBIAS  
(Percent 
Bias) 

Statistics p-
value 

Nonparametric 
margins 

nonparametric 
copula (NPMNPC) 

mode [ 
Nonparametric 

copulas distribution 
settings] 

Beta kernel copula 
density with KDE 

(GAUSSIAN-
Silverman Rule-of-

thumb ROT) 
margins model* 

0.073 0.120 0.58 0.0200 0.00040 0.0171 0.980 0.839 -412.34 -410.37 -411.58 0.994 0.98 3.1 

Bernstein copula 
with KDE 

(GAUSSIAN-
Silverman Rule-of-

thumb (ROT)) 
margins model 

NA 0.169 0.42 0.0203 0.00041 0.0175 0.977 0.835 -410.68 -408.71 -409.92 0.993 0.98 3.2 

Transformation 
estimator with KDE 

(GAUSSIAN-
Silverman Rule-of-

thumb ROT) 
margins model 

0.519 0.000 

-0.366 0.357 
0.132 0.74 0.0203 0.00042 0.0161 0.977 0.848 -410.85 -408.87 -410.09 0.994 0.98 -6 

Parametric margins 
with parametric 

copula (PMPC) model 
[Parametric copulas 

settings] 

r90Clayton copula 
with Logistic-

Logistic margins 
NA 0.150 0.58 0.0278 0.00077 0.0228 0.957 0.786 -377.47 -375.50 -376.71 0.989 0.96 -6.6 

Parametric margins 
with nonparametric 

copula (PMNPC) 
model 

Beta kernel copula 
with Logistic-

Logistic margins 
model 

0.073 0.169 0.42 0.0270 0.00073 0.0227 0.960 0.787 -380.65 -378.68 -379.90 0.990 0.96 3.8 



[Semiparametric 
copulas distribution 

settings] 

Bernstein copula 
with Logistic-

Logistic marginal 
model 

NA 0.188 0.30 0.0278 0.00077 0.0239 0.958 0.776 -377.63 -375.66 -376.87 0.989 0.96 5.6 

Transformation 
estimator with 
Logistic-Logistic 
margins model 

0.519 0.000 

-0.372 0.363 
0.132 0.74 0.0275 0.00075 0.0208 0.959 0.804 -378.83 -376.86 -378.07 0.989 0.96 -5.6 

Nonparametric 
margins parametric 

copula (NPMPC) 
model [ 

Semiparametric 
copula distribution 

settings] 

r90Clayton copula 
with KDE 

(GAUSSIAN)-
Silverman Rule-of-

thumb (ROT) 
margins model 

NA 0.132 0.74 0.0211 0.00044 0.0176 0.975 0.835 -406.71 -404.74 -405.95 0.993 0.98 -6.3 

Note: Beta kernel copula density with KDE (GAUSSIAN-Silverman Rule-of-thumb ROT) Marginal (indicated by bold letter with an asterisk) identified as most parsimonious bivariate joint density framework. Majority of GOF test statistics 
are in favour of the selected bivariate joint density framework for AMRWT and LF events 

 

Joint distribution 
framework (Station 
2084) (b) 

Bivariate joint 
density frameworks  

Estimated 
Bandwidth 

K-S (Kolmogorov-
Smirnov) 

RMSE 
(Root 
Mean 
Squared 
Error) 

MSE 
(Mean 
Squared 
Error) 

MAE 
(Mean 
Absolute 
Error) 

NSE (Nash-
Sutcliffe 
Efficiency) 

mNSE 
(modified 
Nash-
Sutcliffe 
Efficiency)  

AIC (Akaike 
Information 
Criterion) 

BIC (Bayesian 
Information 
Criterion) 

HQC (Hannan-
Quinn 
Information 
Criterion) 

IA (Index of 
Agreement) 

R2 (Coefficient of 
Determinations) 

PBIAS  

(Percent 
Bias)% Statistics p-value 

Nonparametric 
margins 
nonparametric 
copula (NPMNPC) 
mode [ 
Nonparametric 
copulas distribution 
settings] 

Beta kernel copula 
density with KDE 

(GAUSSIAN)-
Silverman Rule-of-
thumb (ROT)- KDE 

(GAUSSIAN)-
Unbiased cross-
validation (UCV) 
Scott and Terrell 
(1987) Margins 

0.102 0.130 0.82 0.0201 0.00040 0.0168 0.980 0.852 -357.36 -355.53 -356.67 0.994 0.98 -0.9 

Bernstein copula 
with KDE 

(GAUSSIAN)-
Silverman Rule-of-

NA 0.108 0.94 0.0198 0.00039 0.0165 0.981 0.855 -358.78 -356.95 -358.10 0.995 0.98 -2.4 



thumb (ROT)- KDE 
(GAUSSIAN)-

Unbiased cross-
validation (ucv) 
Scott and Terrell 
(1987) Margins* 

Transformation 
estimator with KDE 

(GAUSSIAN)-
Silverman Rule-of-
thumb (ROT)- KDE 

(GAUSSIAN)-
Unbiased cross-
validation (UCV) 
Scott and Terrell 
(1987) Margins 

0.544    0.000 

-0.289 0.453 
0.152 0.66 0.0216 0.00046 0.0179 0.975 0.842 -350.66 -348.833 -349.977 0.994 0.98 -6.8 

Parametric margins 
with parametric 
copula (PMPC) model 
[Parametric copulas 
settings] 

r270BB8 copula 
with Normal-

Lognormal margins 
NA 0.173 0.48 0.0321 0.00103 0.0275 0.947 0.759 -312.25 -308.598 -310.885 0.994 0.98 -6.8 

Parametric margins 
with nonparametric 
copula (PMNPC) 
model 
[Semiparametric 
copulas distribution 
settings] 

Beta kernel copula 
with Normal-
Lognormal margins 

0.1022 0.108 0.94 0.0270 0.00073 0.0217 0.962  0.810 -330.03 -328.206 -329.35 0.990 0.97 1.7 

Bernstein copula 
with Normal-
Lognormal margins 

NA  0.108 0.94 0.0256 0.00065 0.0206 0.966 0.819 -334.87 -333.046 -334.19 0.991 0.97  -0.2 

Transformation 
estimator with 
Normal-Lognormal 
margins 

0.534 0.000 

 -0.278 0.455 
0.130 0.82 0.0265 0.00070 0.0220  0.963 0.807 -331.99 -330.168 -331.312  0.991 0.97  -4.6 

Nonparametric 
margins parametric 
copula (NPMPC) 
model [ 
Semiparametric 
copula distribution 

r270BB8 copula 
with KDE 
(GAUSSIAN)-
Silverman Rule-of-
thumb (ROT)- KDE 
(GAUSSIAN)-
Unbiased cross-

NA 0.195 0.34 0.0301 0.00090  0.0249 0.953 0.782 -318.47 -314.82 -317.108 0.991 0.97  -4.6 



settings] validation (UCV) 
Scott and Terrell 
(1987) Margins 

Note: Bernstein copula with KDE (GAUSSIAN)-Silverman Rule-of-thumb (ROT)- KDE (GAUSSIAN)-Unbiased cross-validation (ucv) Scott and Terrell (1987) Margins (indicated by bold letter with an asterisk) describe most parsimonious joint 
density structure between AMRWT and LF events for station 2084. Majority of GOF test are in favour of the selected joint density. 

 

Joint distribution 
framework (Station 

2106) (c) 

Bivariate joint 
density 

frameworks 

Estimated 
bandwidth 

K-S (Kolmogorov-
Smirnov) RMSE (Root 

Mean 
Squared 

Error) 

MSE (Mean 
Squared Error) 

MAE (Mean 
Absolute 

Error) 

NSE (Nash-
Sutcliffe 

Efficiency)

mNSE 
(modified 

Nash-
Sutcliffe 

Efficiency)  

AIC (Akaike 
Information 

Criterion) 

BIC (Bayesian 
Information 

Criterion) 

HQC (Hannan-
Quinn 

Information 
Criterion) 

IA (Index of 
Agreement)

R2 (Coefficient of 
Determinations) 

PBIAS
  
(Percent 
Bias)% Statistics p-value

Nonparametric 
margins 

nonparametric 
copula (NPMNPC) 

mode [ 
Nonparametric 

copulas distribution 
settings] 

Beta kernel 
copula density 

with KDE 
(GAUSSIAN)-

Unbiased cross-
validation (UCV) 
Scott and Terrell 

(1987)-KDE 
(GAUSSIAN)-
Sheather and 

John via (ste-solve 
the equation) 

Marginal Model 

0.059  0.187 0.36 0.0219 0.00048 0.0172 0.973 0.829 -364.75 -362.87 -364.04 0.993  0.97  4.3 

Bernstein copula 
with KDE 

(GAUSSIAN)-
Unbiased cross-
validation (UCV) 
Scott and Terrell 

(1987)-KDE 
(GAUSSIAN)-

Sheather and John 
via (ste-solve the 

equation) 
Marginal Model  

NA 0.229 0.16  0.0262  0.00069 0.0210 0.961 0.792 -347.34 -345.47 -346.63 0.990 0.97 9.3 

Transformation 
estimator with 

KDE (GAUSSIAN)-
Unbiased cross-
validation (ucv) 
Scott and Terrell 

(1987)-KDE 

0.525 0.000 
-0.411 0.343 0.166 0.51 0.0220 0.00049  0.0167  0.972 0.834 -364.50 -362.63 -363.80 0.993  0.97  -3.9 



(GAUSSIAN)-
Sheather and John 
via (STE-solve the 

equation) 
Marginal Model  

Parametric margins 
with parametric 
copula (PMPC) 

model [Parametric 
copulas settings] 

r90Joe copula 
with Logistic-

Gumbel marginals 
NA 0.166 0.51 0.0318 0.00101 0.0244  0.943 0.758 -328.91 -327.03 -328.20  0.985 0.95 -5.5 

Parametric margins 
with nonparametric 

copula (PMNPC) 
model 

[Semiparametric 
copulas distribution 

settings] 

Beta kernel copula 
with Logistic-

Gumbel marginals 
 0.059 0.208 0.24 0.0326  0.00106  0.0238  0.940 0.764 -326.45 -324.58 -325.75  0.984 0.94 4 

Bernstein copula 
with Logistic-

Gumbel marginals 
NA 0.250 0.09  0.0361  0.00130 0.0268  0.926 0.734 -316.61 -314.74 -315.90 0.980 0.93 7.3 

Transformation 
estimator with 

Logistic-Gumbel 
marginals 

 0.536 0.000 
-0.406 0.343 0.166 0.51 0.0335 0.00112  0.0255 0.937 0.747 -324.03 -322.16 -323.32  0.983  0.94 -3.8 

Nonparametric 
margins parametric 

copula (NPMPC) 
model [ 

Semiparametric 
copula distribution 

settings] 

r90Joe copula 
with KDE 

(GAUSSIAN)-
Unbiased cross-
validation (UCV) 
Scott and Terrell 

(1987)-KDE 
(GAUSSIAN)-

Sheather and John 
via (ste-solve the 

equation) 
Marginal Model 

NA 0.187  0.36 0.0224 0.00050  0.0175 0.971 0.827 -362.45 -360.58 -361.74 0.992  0.97  -5.6 

Note: Beta kernel copula density with KDE (GAUSSIAN)-Unbiased cross-validation (UCV) Scott and Terrell (1987)-KDE (GAUSSIAN)-Sheather and John via (STE-solve the equation) margins Model margins (indicated by bold letter with an 
asterisk) describe most parsimonious joint density structure for station 2106 

 

 

 

 

 



Joint distribution 
framework (Station 

2415) (d) 
 

Bivariate models 
 

Estimated 
bandwidth 

K-S (Kolmogorov-
Smirnov) RMSE 

(Root 
Mean 

Squared 
Error) 

MSE 
(Mean 

Squared 
Error) 

MAE (Mean 
Absolute 

Error) 

NSE (Nash-
Sutcliffe 

Efficiency) 

mNSE 
(modified 

Nash-
Sutcliffe 

Efficiency)  

AIC (Akaike 
Information 

Criterion) 

BIC (Bayesian 
Information 

Criterion) 

HQC (Hannan-
Quinn 

Information 
Criterion) 

IA (Index of 
Agreement) 

R2 (Coefficient of 
Determinations) 

PBIAS  
(Percent 
Bias) % Statistics p-

value

Nonparametric 
margins 

nonparametric copula 
(NPMNPC) mode [ 

Nonparametric 
copulas distribution 

settings] 

Beta kernel copula 
density with KDE 

(GAUSSIAN)-
Silverman Rule-of-

thumb (ROT) 
marginals Model* 

0.153  0.113 0.02  0.0253 0.00064  0.0196 0.983 0.877 -321.54 -319.76 -320.88  0.995 0.98 -1.3 

Bernstein copula 
with KDE 

(GAUSSIAN)-
Silverman Rule-of-

thumb (ROT) 
marginals Model 

NA 0.091 0.98  0.0256 0.00065  0.0212 0.982  0.867 -320.31 -318.52 -319.65  0.995 0.99 -4.1 

Transformation 
estimator with KDE 

(GAUSSIAN)-
Unbiased cross-
validation (ucv) 
Scott and Terrell 

(1987)-KDE 
(GAUSSIAN)-

Sheather and John 
via (ste-solve the 

equation) Marginal 
Model  

0.538 0.000 
-0.165 0.504 0.090 0.99 0.0248 0.00061  0.0209 0.984  0.880 -323.14 -321.35 -322.48 0.996  0.99 -4.5 

Parametric margins 
with parametric 

copula (PMPC) model 
[Parametric copulas 

settings] 

r90Tawn Type 1 
copula with Logistic-

GEV marginals 
NA 0.204 0.31  0.0311 0.00097 0.0243 0.974 0.848 -301.19 -297.62 -299.86 0.993  0.98 -3.8 

Parametric margins 
with nonparametric 

copula (PMNPC) 
model 

[Semiparametric 
copulas distribution 

settings] 

Beta kernel copula 
with Logistic-GEV 

marginals 
 0.153 0.092  0.98 0.0302 0.00091 0.0232 0.975 0.855 -305.73 -303.94 -305.07 0.994 0.98 1 

Bernstein copula 
with Logistic-GEV 

marginals 
NA 0.092 0.98 0.0295 0.00087 0.0226 0.976  0.859 -307.78 -306.00 -307.12  0.994 0.98 -0.1 

Transformation 
estimator with 

Logistic-GEV 
marginals 

 0.538 0.000 
-0.166 0.557 0.113 0.93 0.0289 0.00083 0.0218 0.977 0.863 -309.70 -307.91 -309.04  0.995 0.98 -1.8 



Nonparametric 
margins parametric 

copula (NPMPC) 
model [ 

Semiparametric 
copula distribution 

settings] 

R90 Tawn Type 1 
copula with KDE 

(GAUSSIAN)-
Silverman Rule-of-

thumb (ROT) 
marginals Model 

NA 0.227 0.20  0.0277 0.00077  0.0241 0.980  0.849 -311.39 -307.82 -310.07 0.995 0.99  -6.8 

Note: Transformation estimator with KDE (GAUSSIAN) Unbiased cross-validation (UCV) Scott and Terrell (1987)-KDE (GAUSSIAN) Sheather and John via (ste-solve the equation) margins model * (indicated by bold letter with an asterisk) 
describe most parsimonious joint density structure for station 2415 

 

Joint distribution 
framework (Station 

2473) (e) 
Bivariate models Estimated 

bandwidth 

K-S (Kolmogorov-
Smirnov) RMSE (Root 

Mean 
Squared 

Error) 

MSE (Mean 
Squared Error) 

MAE (Mean 
Absolute 

Error) 

NSE (Nash-
Sutcliffe 

Efficiency) 

mNSE 
(modified 

Nash-
Sutcliffe 

Efficiency)  

AIC (Akaike 
Information 

Criterion) 

BIC (Bayesian 
Information 

Criterion) 

HQC (Hannan-
Quinn 

Information 
Criterion) 

IA (Index of 
Agreement) 

R2 (Coefficient of 
Determinations) 

PBIAS
  
(Percent 
Bias)% Statistics p-value 

Nonparametric 
margins 

nonparametric 
copula (NPMNPC) 

mode [ 
Nonparametric 

copulas distribution 
settings] 

Beta kernel copula 
density with KDE 

(GAUSSIAN)-
Silverman Rule-of-

thumb (ROT) 
marginals Model 

 0.096 0.16667 0.6994 0.02376916 0.000564973  0.02002345  0.9665337 0.7968216 -267.234 -265.651 -266.682 0.9918376 0.98  -8.1 

Bernstein copula 
with with KDE 
(GAUSSIAN)-

Silverman Rule-of-
thumb (ROT) 

marginals Model 

NA 0.16667 0.6994  0.02479328 0.0006147066  
0.0210321  0.9635877  0.7865869 -264.197 -262.614 -263.644 0.9912055 0.98 -9 

Transformation 
estimator with 

KDE (GAUSSIAN)-
Unbiased cross-
validation (UCV) 
Scott and Terrell 

(1987)-KDE 
(GAUSSIAN)-

Sheather and John 
via (ste-solve the 

equation) 
Marginal Model  

0.563 0.000 
-0.354 0.440 0.19444  0.5041 0.03136543 0.0009837901 0.02749136  0.9417249 0.7210446 -247.268 -245.684 -246.715 0.9856768  0.98  -14.8 

Parametric margins 
with parametric 
copula (PMPC) 

r90 Clayton copula 
with Logistic-

Lognormal 
NA 0.25 0.2106 0.03646772 0.001329894 0.0303152 0.9212233 0.6923911 -236.416 -234.832 -235.863  0.9819633 0.96 -12.4 



model [Parametric 
copulas settings] 

marginals 

Parametric margins 
with nonparametric 

copula (PMNPC) 
model 

[Semiparametric 
copulas distribution 

settings] 

Beta kernel 
copula with 

Logistic--
Lognormal 

marginals model* 

0.096 0.13889 0.8782  0.02354294  0.0005542702 0.01948145 0.9671677 0.8023213 -267.923 -266.339 -267.37  0.9923001  0.98 -4.2 

Bernstein copula 
with Logistic-

Lognormal 
marginals 

NA 0.13889 0.8782 0.02480537 0.0006153063 0.02060802 0.9635522  0.79089 -264.162 -262.579 -263.609 0.9915322 0.98 -5.1 

Transformation 
estimator with 

Logistic--
Lognormal 
marginals 

0.558 0.000 
-0.352 0.432 0.16667, 0.6994  0.0285316 0.000814052 0.02450298 0.9517794 0.7513678 -254.086 -252.502 -253.533 0.988637 0.98  -11.1 

Nonparametric 
margins parametric 

copula (NPMPC) 
model [ 

Semiparametric 
copula distribution 

settings] 

r90 Clayton copula 
with KDE 

(GAUSSIAN)-
Silverman Rule-of-

thumb (ROT) 
marginals Model 

NA 0.25  0.2106  0.03567015 0.00127236 0.03014981 0.9246314 0.6940692 -238.008 -236.424 -237.455  0.988637  0.97  -16 

Note: Beta kernel copula with Logistic--Lognormal marginals (indicated by bold letter with an asterisk) describe most parsimonious joint density structure for station 2473

 
 

Table 2: Comparing bivariate joint (both OR- and AND case) versus univariate return periods for (a) station 2044 (b) station 2084 (c) station 2106 (d) station 
2415 (e) station 2473 

(a) Station 2044 

RPs (years) 
AEP (Annual 
Exceedance 

probabilities) 

 ANEP (Annual 
Non-Exceedance

Probability) 

Annual Maximum 
River Water 

Temperature 
(AMRWT) (℃) 

Corresponding Low 
Flow (LF) (mଷ/sec) 
(Specific discharge 

(
୫యୱୣୡ /𝑘𝑚ଶ)) 

Joint cumulative 
distribution 

function (JCDF) 

Univariate 
Return periods, Tୖ  (YEARS)

Univariate 
Return periods, T (YEARS) 

Tୖ , ୖ  (OR-
JRP) (YEARS)

Tୖ , ୈ  (AND-
JRP) (YEARS) 

2 0.5 0.5 25.06 14.86 (0.008693) 0.163778 1.99 2.00 1.19 6.10 
5 0.2 0.8 26.24 19.09 (0.011168) 0.605622 4.99 5.00 2.53 177.87 

10 0.1 0.9 26.82 21.26 (0.012437) 0.801147 9.99 9.99 5.02 870.47 
20 0.05 0.95 27.25 23.66 (0.013841) 0.900564 20.00 20 10.05 1775.88 
30 0.033333 0.966667 27.45 25.99 (0.015204) 0.933731 30.00 29.99 15.09 2515.09 



50 0.02 0.98 27.67 30.09 (0.017602) 0.960254 50.00 49.99 25.16 3937.00 
79 0.012658 0.987342 27.84 34.06 (0.019925) 0.974851 79.00 78.99 39.76 5980.86 

100 0.01 0.99 27.92 34.82 (0.020369) 0.980134 99.99 99.99 50.33 7457.12 

 

(b)                                                                                         Station 2084 

RPs (years) 
AEP (Annual 
Exceedance 

probabilities) 

 ANEP (Annual 
Non-Exceedance

Probability) 

Annual Maximum 
River Water 

Temperature 
(AMRWT) (℃) 

Corresponding Low 
Flow (LF) (mଷ/sec) 
(Specific discharge 

(
୫యୱୣୡ /𝑘𝑚ଶ) 

Joint cumulative 
distribution 

function (JCDF) 

Univariate 
Return periods, Tୖ  (YEARS)

Univariate 
Return periods, T (YEARS) 

Tୖ , ୖ  (OR-
JRP) (YEARS)

Tୖ , ୈ  (AND-
JRP) (YEARS) 

2 0.5 0.5 18.56 8.46 (0.026878) 0.180105 2.00 2.00 1.21 5.55 
5 0.2 0.8 20.05 15.15 (0.048132) 0.609638 5.00 5.00 2.56 103.78 

10 0.1 0.9 20.89 19.01 (0.060395) 0.801274 9.99 10.00 5.03 784.55 
20 0.05 0.95 21.67 25.68 (0.081586) 0.900338 20 20.00 10.03 2962.96 
30 0.033333 0.966667 22.03 28.16 (0.089465) 0.933537 30.00 29.99 15.04 4909.18 
50 0.02 0.98 22.37 74.43 (0.236466) 0.960119 49.99 50 25.07 8396.30 
79 0.012658 0.987342 22.61 76.45 (0.242883) 0.974759 79.00 78.99 39.61 13227.51 

100 0.01 0.99 22.73 76.97 (0.244536) 0.98006 99.99 99.99 50.14 16694.49 
 

 

(c)                                                                                                   Station 2106 

RPs (years) 
AEP (Annual 
Exceedance 

probabilities) 

 ANEP (Annual 
Non-Exceedance 

Probability) 

Annual Maximum 
River Water 

Temperature 
(AMRWT) (℃) 

Corresponding Low 
Flow (LF) (mଷ/sec) 
(Specific discharge 

(
୫యୱୣୡ /𝑘𝑚ଶ)) 

Joint cumulative 
distribution 

function (JCDF) 

Univariate 
Return periods, Tୖ  (YEARS) 

Univariate 
Return periods, T (YEARS) 

Tୖ , ୖ  (OR-
JRP) (YEARS) 

Tୖ , ୈ  (AND-
JRP) (YEARS) 

2 0.5 0.5 21.65 4.31 (0.008693) 0.140403 2.00 2.00 1.16 7.12 
5 0.2 0.8 22.66 6.10 (0.011168) 0.606825 5.00 4.99 2.54 146.53 

10 0.1 0.9 23.48 7.07 (0.012437) 0.80129 10.00 10 5.03 775.61 
20 0.05 0.95 24.13 7.80 (0.013841) 0.900493 20.00 19.99 10.04 2028.80 
30 0.033333 0.966667 24.45 8.16 (0.015204) 0.933654 30.00 30.00 15.07 3126.95 
50 0.02 0.98 25.00 8.54 (0.017602) 0.96019 50.00 49.99 25.11 5252.10 
79 0.012658 0.987342 25.38 8.82 (0.019925) 0.974804 78.99 79.00 39.68 8312.55 

100 0.01 0.99 25.49 8.95 (0.020369) 0.980095 99.99 99.99 50.23 10515.25 



 

(d)                                                                                        Station 2415 

RPs (years) 
AEP (Annual 
Exceedance 

probabilities) 

 ANEP (Annual 
Non-Exceedance 

Probability) 

Annual Maximum 
River Water 

Temperature 
(AMRWT) (℃) 

Corresponding Low 
Flow (LF) (mଷ/sec) 
(Specific discharge 

(
୫యୱୣୡ /𝑘𝑚ଶ)) 

Joint cumulative 
distribution 

function (JCDF) 

Univariate 
Return periods, Tୖ  (YEARS) 

Univariate 
Return periods, T (YEARS) 

Tୖ , ୖ  
(OR-JRP) 
(YEARS) 

Tୖ , ୈ  (AND-
JRP) (YEARS) 

2 0.5 0.5 24.65 4.77 (0.011414) 0.216528 2.00 1.99 1.25 4.98 

5 0.2 0.8 25.27 6.29 (0.015051) 0.625661 5.00 5.00 2.62 53.85 
10 0.1 0.9 25.61 7.73 (0.018496) 0.804999 10.00 9.99 5.05 474.00 
20 0.05 0.95 25.95 9.33 (0.022325) 0.901077 20.00 20.00 10.01 5367.68 
30 0.033333 0.966667 26.20 10.01 (0.023952) 0.933796 29.99 30.00 15.01 19801.98 
50 0.02 0.98 26.60 11.17 (0.026728) 0.960169 50.00 49.99 25.00 78125 
79 0.012658 0.987342 26.84 11.71 (0.02802) 0.974756 79.00 78.99 39.50 227272.72 

100 0.01 0.99 26.92 11.87 (0.028403) 0.980048 99.99 100.00 50.00 400000 
 

(e)                                                                           Station 2473 

RPs (years) 
AEP (Annual 
Exceedance 

probabilities) 

 ANEP (Annual 
Non-Exceedance 

Probability) 

Annual Maximum 
River Water 

Temperature 
(AMRWT) (℃) 

Corresponding Low 
Flow (LF) (mଷ/sec) 
(Specific discharge 

(
୫యୱୣୡ /𝑘𝑚ଶ)) 

Joint cumulative 
distribution 

function (JCDF) 

Univariate 
Return periods, Tୖ  (YEARS) 

Univariate 
Return periods, T (YEARS) 

Tୖ , ୖ  
(OR-JRP) 
(YEARS) 

Tୖ , ୈ  (AND-
JRP) (YEARS) 

2 0.5 0.5 16.53 178.26 (0.028299) 0.182559 2.00 2.00 1.22 5.47 
5 0.2 0.8 17.44 223.86 (0.035538) 0.611167 5.00 5 2.57 89.55 

10 0.1 0.9 17.98 252.16 (0.04003) 0.801489 10.00 9.99 5.03 671.72 
20 0.05 0.95 18.47 278.21 (0.044166) 0.900412 20.00 20 10.04 2426.59 
30 0.033333 0.966667 18.75 292.82 (0.046485) 0.93358 30.00 30.00 15.05 4065.04 
50 0.02 0.98 19.09 310.77 (0.049335) 0.96014 50.00 50 25.08 7127.58 
79 0.012658 0.987342 19.40 326.53 (0.051837) 0.974771 79.00 79.00 39.63 11428.57 

100 0.01 0.99 19.56 334.56 (0.053112) 0.980069 100 100 50.17 14513.79 
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