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Abstract—With the rapid advancements in SAR systems aiming
for operational capabilities, crop characterization using compact-
polarimetric synthetic aperture radar (CP-SAR) data has gained
considerable attention. This study thoroughly assesses the potential
usefulness of C-band SAR data in CP mode using the RADARSAT
Constellation Mission (RCM) for crop monitoring. The research
unfolds across two separate phases: 1) Extensive crop scattering
characterization and 2) Crop classification. In the first part, we
introduce three descriptors: compact-polarimetric SAR signature
(CPS), differential CPS (DCPS), and the geodesic distance (GD)
between signatures, to characterize the scattering pattern of four
crop types: soybean, hay, corn, and cereal. We, then, derive the
μ parameter and employ it in the μ − χ decomposition method.
Time-series investigation of the proposed descriptors and the three
power components: Ps, Pd, and Pv provide valuable insights into
the scattering responses exhibited by crops, facilitating a robust
assessment and tracking of their growing cycle, thus, enabling the
potential for improving crop discrimination. In the second part, we
employ the μ − χ and m − χ decompositions and wave descrip-
tors to extract a stack of CP features for crop mapping. Combining
diverse feature types and leveraging single- and multi-date RCM
images, classification experiments yield an optimal classification
map with an overall accuracy of 89.71%, particularly when uti-
lizing features extracted from multi-date datasets. This study il-
lustrates a substantial effort in crop classification, underscoring
the potential of the RCM CP-SAR mission. Furthermore, our
findings emphasize the potential of CP-SAR data from the RCM
mission in contributing to precision agriculture and sustainable
crop management practices.
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I. INTRODUCTION

THE introduction is organized into four sections. The
first three sections delve into comprehensive reviews

of crop mapping and characterization studies. They under-
score the overarching importance and utility of data derived
from the RADARSAT Constellation Mission (RCM) Compact-
Polarimetric Synthetic Aperture Radar (CP-SAR), providing
insights into existing research endeavors dedicated to crop clas-
sification using CP-SAR data. The fourth section succinctly
outlines the specific research objectives guiding this work.

A. Crop Mapping and Characterization

Crop mapping is one of the most traditional applications
of Earth observation (EO) in agriculture from both onboard
spaceborne and airborne platforms [1]. Crop mapping and
inventory serve as the foundation for numerous environmen-
tal and socio-economic applications [2], [3], including supply
chain management, crop insurance, yearly cropping patterns
change delineation, and crop production estimation [4], [5], [6],
[7]. Thus, providing accurate and reliable information about
crops and their acreage is particularly interesting to scientific
and operational applications and always presents a significant
challenge.

Satellite EO, either passive or active, can provide timely and
reliable information on crop conditions over vast areas, with
high revisit frequency and high resolution [8], [9]. Over the past
decades, remote sensing has made significant advancements in
identifying and monitoring crop growth, phenology, and other
biophysical parameters, though several issues remain to be re-
solved. As such, the use of EO for sustainable agricultural man-
agement and food security, and gathering farming information,
such as crop growth assessment and crop acreage estimation,
has become quite common [10], [11], [12].

Given the advent of new space instruments and rapid progress
of techniques for land cover discrimination, crop types can be
classified more accurately using EO techniques that observe the
land surface at wavelengths ranging from visible/near-infrared
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to microwave. With the help of data analytics, either seasonally
stable (e.g., soil type and land cover) or variable (e.g., weed
or insect infestation, crop stress, crop disease, crop yield, and
soil moisture) parameters can be mapped during the agricultural
growing season. Thanks to remote sensing imagery, a wide
variety of space-based sources of information are now avail-
able, empowering crop monitoring to be carried out on broader
scales [2]. As such, significant efforts have been made in the
remote sensing community to adequately utilize these sources
for crop characterization and classification throughout various
studies [13], [14], [15], [16].

B. RCM CP-SAR Data

Owing to its weather-, illumination-, and time-independent
characteristics, SAR data has been extensively used in the con-
text of crop type identification [17], [18], yield estimation [19],
[20], and biophysical parameter calculation [21], [22], as well as
vegetation indices formulation [23]. SAR components, particu-
larly the acquisition wavelength, polarization, and incidence an-
gle, strongly affect the reflected signals from the target [6], [24].
As a result, the collected backscattering SAR signals influenced
by vegetation and soil properties carry information related to
crop and soil’s geometric structure and dielectric properties [12],
[25].

In particular, the RCM imagery offers great crop char-
acterization and mapping opportunities. The RCM was de-
signed as the next generation of the Canadian RADARSAT
program, following the highly successful RADARSAT-1 and
RADARSAT-2 missions. This constellation configuration com-
prised three identical C-band SAR satellites launched in the
summer of 2019 into closely coordinated orbits, providing a
four-day repeat cycle [26], [27]. With RCM datasets, the po-
tential of CP emerged as a viable mode to address the needs of
users seeking wide swath coverage while preserving polarization
richness [28].

The RCM CP-SAR architecture transmits a circularly po-
larized signal and coherently records both the horizontal and
vertical components (H + V) of the backscattered signal, i.e.,
the circular-transmit and linear-receive (CL) configuration [27].
This configuration is achieved by simultaneously driving the H
and V feeds with a 90◦ phase difference [28]. By utilizing a single
transmit polarization, the power requirements are significantly
reduced compared with full polarimetric (FP) modes [29].

C. Review of CP Research for Crop Classification

Studies using simulated CP-SAR data have demonstrated
the potential of the CP acquisition mode described by [28] in
providing valuable sets of applications, such as wetland clas-
sification maps [30] and accurate crop inventories [29], [31].
Many published studies have simulated CP data from the FP
acquisition mode due to limited access to CP data, as most
studies have utilized FP data from RADARSAT-2 to accomplish
several applications.

For instance, Charbonneau et al. [31] studied the potential of
the CP mode for agricultural crop classification. The study used
four RADARSAT-2 images captured during the growing season
over the Agriculture and Agri-Food Canada (AAFC) over the

eastern Ontario region to generate and simulate CP datasets.
With the decision tree classifier applied to the multitemporal
Stokes vector parameters, end-of-season crop mapping pro-
duced high accuracy. Further, Stokes parameters from CP data
generated superior accuracy for early-season crop mapping than
dual-polarization (DP) and the Freeman–Durden decomposition
parameters. This study serves as a promising early indication of
the circular polarization’s (CP) potential for crop classification
within the agriculture community.

Brisco et al. [32] evaluated DP, FP, and simulated CP-SAR
data derived from four RADARSAT-2 images acquired over a
study site in China for rice mapping and performed classification
using the support vector machine classifier. The study revealed
that simulated CP data outperformed DP data, although it did
not reach the same level of accuracy as FP data. However, the
authors stated that the classification accuracy increases as one
goes up the polarization hierarchy. Xie et al. [33] conducted a
similar study to analyze DP, FP, and simulated CP-SAR data
response for different crop types for a test study in the Leizhou
Peninsula, southern China. The experiments were conducted
on time-series images acquired by X-band TerraSAR-X. The
classification results revealed a slight difference in the accuracy
of the simulated CP data with other acquisition modes. Using
four RADARSAT-2 images, Mahdianpari et al. [26] investigated
the effect of polarization difference between FP data. They
simulated CP-SAR data with a focus on mapping mid-season
crop productions in an agricultural region in Manitoba, Canada.
As outlined in their study, the CP-SAR data demonstrated higher
accuracy compared with DP data but fell short of the accuracy
achieved with FP data when classifying crop types using the
random forest (RF) classifier.

In a recent study, Robertson et al. [29] used 17 RCM im-
ages acquired in CP mode for crop monitoring. They used the
Stokes and m− χ decomposition parameters within the RF
classifier. They asserted that examining scattering responses on
the Poincaré sphere unveils polarization changes corresponding
to crop phenology. This approach enhances the differentiation
of crop types, particularly during dynamic growth stages such
as mid-season.

Some studies have also reported the sensitivity of CP param-
eters toward agricultural crop characteristics. Kumar et al. [34]
noted that the growth patterns of wheat and corn significantly im-
pact CP parameters. In addition, Ballester-Berman and Lopez-
Sanchez [35] examined the time series of CP parameters across
crops, revealing multiple correlations between these parameters
and agricultural biophysical factors.

D. Research Objectives

Polarimetric decomposition is a vital technique for extracting
meaningful polarimetric parameters from SAR data, providing
insights into the physical characteristics of natural surfaces and
aiding in land cover mapping. As SAR technology advances, es-
pecially with the advent of regional coverage and high-resolution
data offered by RCM, innovative methodologies for crop moni-
toring have become increasingly relevant. This research focuses
on evaluating the significance of RCM CP-SAR data in crop
monitoring and characterization.
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Fig. 1. Processing flow diagram of the study with the focus on single-date and multi-date analysis of CP-SAR features for crop characterization.

The primary objective of this study is to explore the utility of
the recently introduced compact-polarimetric signature (CPS)
and assess its potential in enhancing crop monitoring using
RCM data. In addition, a secondary scientific objective aims
to expand the CPS concept by introducing novel descriptors,
namely, differential CPS (DCPS) and geodesic distance (GD)
between CPSs. Furthermore, a new decomposition technique is
introduced, and classification scenarios are designed based on
the decomposition parameters derived from a temporal stack of
CP features. The implications of this analysis with RCM imagery
extend not only to Canadian agricultural operations but also hold
promise for enhancing agricultural monitoring activities on a
regional and national scale.

The rest of this article is organized as follows. Section II
outlines the methodology for retrieving CPS, DCPS, GD, and
μ− χ decomposition powers using time-series RCM CP-SAR
data. An overview of the study area and the data sources is
provided in Section III. Section IV presents the analysis of the
time-series results, emphasizing the importance of the proposed
methodology. Finally, Section V concludes this article.

II. METHODOLOGY AND EXPERIMENTAL DESIGN

In this section, we present the formulation of the CPS,
DCPS, and GD between two CPSs. In addition, we introduce
a parameter μ derived from the CPS to formulate the μ− χ
decomposition. The overall stages of the proposed methodology
are illustrated in Fig. 1.

A. Compact-Polarimetric SAR Signature (CPS)

CP-SAR systems transmit a circularly polarized wave, either
left-handed (L) or right-handed (R) circular, and coherently
receive the linear horizontal (H) and vertical (V) polarized
components of the scattered wave. Following calibration and

processing, the scattered wave information can be represented
in terms of a 2 × 1 element complex Jones vector, denoted as �E,
for each pixel in the image for any arbitrary transmit wave. Note
that, in CP mode, we only measure a projection of the 2 × 2
complex scattering matrix S as [36]

�E =

[
ECH

ECV

]
=

1√
2

[
SHH SHV

SV H SV V

][
1

±i

]

=
1√
2

[
SHH ± iSHV

SV H ± iSV V

]
(1)

where the subscriptC represents the polarization of the transmit-
ted wave (L: left-handed or R: right-handed circular transmit)
and H and V represent the linear horizontal and vertical polariza-
tion of the received wave. Note that the + sign is for L circular
transmit, and − is for R circular transmit. As mentioned above,
the RCM data is acquired using R circular polarization mode,
thus, corresponding to a − sign for the subscript C.

Therefore, utilizing the elements of the complex Jones vector
�E, the 2 × 2 covariance matrix C2 can be derived as
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〉
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=
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With CP-SAR data, the elements of the C2 can be used to
compute the 4 × 1 Stokes vector of the scattered wave as
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The polarization structure of the scattered wave is determined
by two wave parameters: The “ellipticity angle” (χ) and the
“orientation angle” (ψ). One can describe the polarization state
of the scattered wave using the Stokes vector, gs. It should
be noted that the transmit and receive antenna’s polarization
basis are both synthesized for −45◦ ≤ χt,r ≤ 45◦, and −90◦ ≤
ψt,r ≤ 90◦ in the full-polarimetric signature (FPS). Hence, in
FPS, one measures the power received when the receiving an-
tenna’s polarization aligns with that of the transmitting antenna
(co-pol signature) and when the polarization of the transmitting
antenna is orthogonal to that of the receiving antenna (cross-pol
signature) [37].

In contrast to the FP mode, the CP mode maintains a constant
transmit antenna polarization (i.e., either L or R). Hence, in
this mode, we only synthesize the receive antenna’s polarization
state (−45◦ ≤ χr ≤ 45◦ and−90◦ ≤ ψr ≤ 90◦). Consequently,
Verma et al. [38], [39] extended the concept of polarization sig-
nature from FP-SAR data to DP- and CP-SAR data. Thus, once
the Stokes vector is determined, the received power of CP-SAR
mode can be synthesized for any receive antenna polarization
basis. This capability enhances the versatility of CP-SAR sys-
tems, enabling a detailed exploration of polarimetric signatures
under varying receive antenna polarization basis as

PCP(χr, ψr) = gT
r K gt

= gT
r gs

=

⎡
⎢⎢⎢⎣

1

cos 2χr cos 2ψr

cos 2χr sin 2ψr

sin 2χr

⎤
⎥⎥⎥⎦
T

gs (4)

where the Stokes vector gs = K gt describes the polarization
state of the scattered wave, and the superscript T denotes the
vector transpose. The Stokes vectors gt, and gr describe the
polarization state of the transmit and receive antennas, respec-
tively. We, then, represent the synthesized received power, PCP

(91× 181), using a 2-D plot. For visualization, we display the χ
and ψ along the x- and y-axis of the CPS. The magnitude of the
synthesized received power, obtained by varying the polarization
state of the receiving antenna, is presented using a color bar for
enhanced interpretation.

B. Differential Compact-Polarimetric Signature (DCPS)

The DCPS descriptor serves as a powerful tool for investi-
gating dynamic changes in scattering from targets over different
observation dates for all χr and ψr angles. Similar to the CPS,
the DCPS also provides a signature of the target (91 × 181). To
generate a DCPS, two sets of information from the C2 matrix
are required, either from two distinct targets or, as utilized in this
study, from a specific point location or parcel acquired at two
separate dates. In this study, we use the latter, i.e., the C2 matrix
of a point location acquired at two different dates. The two C2

are first used individually to generate two CPSs. Subsequently,

these two CPSs are used to generate the DCPS

DCPS = log10

(
PCP(t=n)

PCP(t=0)

)
(5)

where PCP(t=0) is the synthesized received power (of size 91×
181) at a reference data (example, the first acquisition data) and
PCP(t=n) is the synthesized received power (of size 91× 181) at
the nth acquisition (example, at second, third, and n acquisition
date).

This work employs five RCM images acquired between July
and September 2021. The temporal datasets capture the crop
growth during the summer season. The images were coregistered
to ensure consistent analysis, and a common subset was consid-
ered to cover the same geographical region. For the multi-date
study of DCPS, one can consider the sequence of ascending
and descending images separately to ensure that factors such as
incidence angle will not affect the analysis. For instance, in this
study, we selected the RCM image of the first acquisition date in
ascending mode (i.e., 1 July 2021) as the master image, and the
remaining two ascending acquisitions, captured on 30 July and
27 August 2021, as slave images. The DCPS was then generated
based on the CPS of each slave image with the reference image
to assess change in the crop fields over time.

C. Geodesic Distance (GD) Between CPSs

In this work, we introduce another essential parameter de-
veloped to facilitate the discrimination of targets by leveraging
the entire space of CPS, represented as a matrix of dimensions
91 × 181. The computation of the GD between CPSs, denoted
as GDCPS is based on the formulation proposed in the work by
Ratha et al. [40]. The two signatures can either be computed
from the C2 matrices of two distinct targets or from the same
point location (or a particular parcel) acquired on two dates. The
GDCPS serves as an effective metric for assessing the dissimi-
larity between two CPSs. A high value of GDCPS infers that the
two CPSs are different, whereas a low value of GDCPS implies
similarity.

In the context of temporal analysis, a high value of GDCPS

indicates the dynamic scattering nature of the target. However,
a low value of GDCPS infers no significant change. For example,
built-up areas, permanent water bodies, etc., will result in low
GDCPS values, whereas croplands, forest areas, wetlands, etc.,
will result in high values of GDCPS. Thus, using two CPSs for a
target at two separate acquisition dates, we calculate the GDCPS

as

GDCPS =
2

π
cos−1 Tr(ATB)√

Tr(ATA)
√

Tr(BTB)
(6)

where A and B are the CPS (of size 91× 181) for the first
date (i.e., PCP(t=0)) and the nth acquisition date (i.e., PCP(t=n)),
respectively. Tr is the trace operator and the superscript T
denotes transpose.

Similar to DCPS, one needs a pair of images to compute
GDCPS. We selected the RCM image acquired on 1 July 2021 as
the master (reference) image. We used the other two ascending
RCM images acquired on 30 July and 27 August 2021 as slave



6312 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

images to compute the GDCPS between the two corresponding
dates. Therefore, for k acquired images, one will have (k − 1)
images of GDCPS. The GDCPS parameter quantifies the temporal
change of a target utilizing the entire CPS space.

D. Scattering Power Components

Numerous prior studies have introduced approaches to de-
compose the total scattered power into distinct components:
Even-bounce, odd-bounce, and random (or diffused) scattering
power components [36], [41], [42], [43], [44]. These approaches
help comprehend the prevalent scattering mechanisms exhibited
by a target, thereby, facilitating a more insightful characteriza-
tion.

In this work, we formulate a parameter, designate it as μ
using the CPS concept, and propose an alternative approach to
decompose the total power g0. We denote this alternate approach
as μ− χ. We define the parameter μ as the ratio of the total
polarized power to the maximum received power

μ = 1− Pmin

Pmax
=
Pmax − Pmin

Pmax
(7)

where Pmax and Pmin represent the maximum and minimum
received powers, respectively. The ratio Pmin/Pmax bears sim-
ilarity to the pedestal height obtained from FP co-pol signa-
ture [45]. The quantity Pmax − Pmin corresponds to the total
polarized power in the CP-SAR mode.

Note that although similar, the parameter μ is not the same as
the degree of polarization (m), which is the ratio of the polarized
power to the total scattered power (g0). In contrast, the parameter
μ is the ratio of the polarized power to the maximum received
power Pmax. These two quantities are equal when the scattered
wave is either completely polarized or completely unpolarized.
However, for partially polarized waves, the two quantities are
unequal: μ ≥ m. The parameter μ derived from CPS quantifies
the polarization structure with respect to the dominant scattering
phenomena.

Utilizing the parameter μ, we decompose g0 into two com-
ponents: the matched power μg0 and the unmatched power
(1− μ)g0. The maximum power Pmax is received when the
polarization state of the scattered wave aligns with the receiving
antenna’s polarization state. Conversely, the minimum power
Pmin is received when the polarization state of the scattered wave
is entirely unmatched (orthogonal) to the receiving antenna’s
polarization state. It is important to note that we can obtainPmax

andPmin by synthesizing all polarization bases using CPS in this
study.

We decompose the total power g0 using μ and parameters
derived from the Stokes vector gs as

Pv = g0 (1− μ) (8)

Ps =
1

2
μ g0 (1− DoC) (9)

Pd =
1

2
μ g0 (1 + DoC) (10)

where, Pv denotes the unmatched power, Ps corresponds to the
odd-bounce matched power, and Pd represents the even-bounce

TABLE I
OPTIMAL VALUES OF TUNING PARAMETERS FOR THE RF CLASSIFIER

matched power. The degree of circularity DoC = ± sin 2χ de-
pends upon the handedness of the transmitted circularly polar-
ized wave. The± sign signifies L circular and R circular transmit
polarization, respectively. The ellipticity angle of the scattered
wave is denoted by χ.

In contrast to previous works [41], [44], which decompose
the total power g0 into polarized and unpolarized components
with the help of degree of polarizationm, our approach involves
the separation of g0 into matched and unmatched power compo-
nents using μ. One can express the difference between the two
quantities as

Δ = g0(μ−m) ≥ 0 (11)

which is the excess power over polarized power.
In a fully polarized wave scenario, where μ = m = 1, the

parameter Δ = 0. Conversely, for a completely unpolarized
wave with μ and m equal to zero, Δ = 0 signifies no discrep-
ancy in power computed using the two methods. However, the
powers obtained using the two methods will differ for a partially
polarized wave, where μ > m.

E. Classification Scenarios

RF is a powerful machine learning classification technique
known for its robustness and accuracy in handling complex
datasets. By creating an ensemble of decision trees trained
on random subsets of data and features, RF aggregates results
for final predictions [46]. Noteworthy is its ability to handle
high-dimensional datasets, automatically selecting informative
features, reducing overfitting, and accommodating missing val-
ues and outliers [30], [47]. Particularly suited for remote sensing
mapping tasks, RF handles diverse data types, provides variable
importance estimates, and captures nonlinear relationships [48],
making it a valuable tool for generating reliable and interpretable
results in complex spatial patterns.

Various tuning parameters are used in RF implementation:
fraction of the input to bag per tree, the number of decision trees
to create per class, the number of variables per split, and the
minimum size of a terminal node [49]. This study utilizes a grid
search optimization process to determine the optimal values for
RF hyperparameters. The chosen parameter values are detailed
in Table I, providing a comprehensive overview of the specific
RF configuration employed in our research.

Table II lists the features used in the classification task.
Numerous studies have demonstrated the ability of polarimet-
ric parameters derived from CP-SAR data for improved crop
classification using the RF classification technique [26], [29].
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TABLE II
LIST OF FEATURES EXTRACTED FROM THE RCM CP DATA AND INCLUDED IN THE CLASSIFICATION RUNS

TABLE III
DEFINED SCENARIOS FOR CROP MAPPING BY CP-SAR DATA IN THIS STUDY

Among them, scattering power components derived from de-
composition techniques, such as them− χ decomposition [41]
have been reported to yield better classification results [29], [50],
[51]. The temporal variation in these power components as the
crop advances helps the RF classifier with enhanced distinction
between the crop types. This study utilizes the scattering power
components obtained from the μ− χ decomposition technique
to classify various crops using the RF classifier.

Further, the conformity coefficient is a valuable metric in
discerning different scattering mechanisms from crops and has
proven beneficial in their mapping [26], [52]. In addition, studies
have also examined polarimetric parameters derived from sim-
ulated CP-SAR data, such as the degree of polarization, relative
phase, and the circular polarization ratio for crop monitoring
and biophysical parameter estimation [35], [53]. The RF clas-
sifier adeptly manages the diverse ranges of these polarimetric
parameters and, furthermore, provides feature importance esti-
mates. We discuss the feature importance of the various polari-
metric descriptors used in this study for crop classification in
Section IV-D3.

Table III summarizes the defined scenarios and the selected
feature combinations for crop mapping using CP-SAR data. In
this work, two image classification scenarios were designed to
evaluate and learn the influence of feature combinations on the
classification accuracy of four crop classes based on RF. The
classification results between the features extracted from μ− χ
and m− χ are compared in the first scenario. In the second
scenario, a comparative analysis of classification accuracy is

conducted, evaluating both single-date and multi-date feature
combinations. These combinations were used in this study to
compare and assess the capabilities of each type of data and their
combinations in classifying crop types. Moreover, integrating
the additional features in the second scenario was meant to
evaluate the effectiveness of data integration in SAR-based
crop mapping. Our study applied the same training and test-
ing samples to different feature combinations in RF classifica-
tion, allowing for direct accuracy comparison between different
scenarios using varying input features.

III. STUDY AREA AND DATASET

A. Study Area

The experiment was conducted in a sprawling agricultural
region situated in southern Quebec, Canada. Encompassing a
substantial geographical expanse ranging from W72◦46′50′′ to
W73◦8′0′′ longitude and N45◦55′30′′ to N46◦4′0′′ latitude, the
study area spans approximately 450 km2 . The area is visually
represented in Fig. 2. This agricultural terrain is characterized by
natural boundaries, with Lac Saint-Pierre Lake enveloping the
northern periphery, the Richelieu River delineating the western
edge, and the Saint-François River marking the eastern bound-
ary. The Yamaska River meanders through the study area from
south to north, ultimately converging with the Saint-Lawrence
River at Lac Saint-Pierre Lake. This diverse agricultural land-
scape hosts various crops, including soybean, hay, oats, wheat,
barley, and corn, among others.
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Fig. 2. Location of the study area with coverage and overlay of ascending and descending RCM acquisitions.

TABLE IV
THIS STUDY USES BOTH ASCENDING AND DESCENDING RCM IMAGES

B. RCM Time-Series Data and Preprocessing

In this work, we processed a set of five single look complex
RCM frames acquired between 1 July and 27 August 2021, span-
ning the duration of the crop growth. The images were captured
with a nominal spatial resolution of 5 m and with the supported
stripmap beam mode. The coverage areas of the employed RCM
images over the study area are depicted in Fig. 2, and their details
are tabulated in Table IV. For effective land cover classification
and other EO applications, preprocessing of SAR data plays a
critical role. In this study, we preprocessed the RCM images
in the SNAP software following the standard processing steps
outlined in [29]. The initial steps involve calibration, where we
transform the digital channels (RH, RV) data of the RCM images
into the sigma-naught backscattering coefficient (σ0) measured
in decibel. To reduce speckle noise and generate a ground range
square pixel, we multilook the images with two looks in azimuth
and range (2 × 2).

Subsequently, we derived the 2 × 2 covariance (C2) matrix
from each pixel of the SAR image using the “polarimetric matrix
generation” toolbox, facilitating the application of polarimetric
decomposition to determine various scattering mechanisms. The

inherent variability in radar look angles during SAR data acqui-
sition, coupled with the influence of topography, often leads
to distortions in the resulting images. To mitigate these distor-
tions, we performed terrain correction on the 2 × 2 C2 matrix.
This correction was executed using SNAP’s Range Doppler
Terrain Correction module, incorporating the SRTM 1
arcsec digital elevation model. The primary objective of this
terrain correction process is to rectify the geometric distortions
present in SAR imagery. By aligning the geometric representa-
tion of the images with the actual topography, we aim to enhance
the accuracy and reliability of the spatial information captured
in the imagery. This correction is crucial for ensuring that SAR
data better aligns with the real-world terrain features [46], [55].

Moreover, we implemented an average (boxcar) filtering pro-
cedure using a 3 × 3 pixel window to mitigate the influence
of speckle noise. Following the noise reduction step, the data
was subset to focus exclusively on the test site. We, then, per-
formed the coregistration process of the multitemporal images
to properly align them with a root-mean-square error of 1.12m.
The coregistration was performed using the first date RCM data,
acquired on 1 July 2021, as the master image while treating the
subsequent dates as slave images.
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TABLE V
DETAILS OF CROPLAND COVER TYPES DELINEATED IN THE GROUND-TRUTH DATA WITH THE NUMBER OF TRAINING AND TESTING

POLYGONS FOR EACH CROP PRODUCTION GROUP

C. Reference Data

The availability of ground-truth land cover labels is pivotal for
training and validating supervised classifiers in remote sensing.
The absence of such reference data can lead to suboptimal clas-
sification performance and challenges in result evaluation [4],
[56]. While ground-truth data is invaluable for supervised clas-
sification tasks, obtaining it presents significant challenges,
particularly for expansive areas. Ground-truth labels should be
collected through field surveys/visits to collect first-hand and
high-fidelity information [57], [58]. However, these endeavors
are constrained by the substantial investment of time and human
labor they demand. To address this challenge, one pragmatic
approach is to leverage well-established official products, such
as the BDPPAD (Base de données des parcelles et productions
agricoles déclarées), as a surrogate for ground-truth data.

The BDPPAD database of declared agricultural parcels and
productions contains a series of polygons provided in vector for-
mat to represent the outline of delineated agricultural parcels as-
sociated with the Agricultural Financial Corporation of Quebec
(FADQ) client files. The purpose of this database is to provide
the most reliable overview possible of the crops contained in
a plot for a given season. This data is used as the reference or
ground-truth information in this study, which covers a part of
the agricultural territory of Quebec. Since the primary purpose
of the current study is to characterize crops using the newly
proposed features/descriptors rather than generating a crop in-
ventory map, we made suitable adjustments in the reference
database of the study area. Thus, we selectively omitted/grouped

some classes in the following cases (rules for ground-truth codes
production).

1) Integration: A pragmatic approach has been adopted since
the agricultural production data from FADQ cannot be
treated as an updated ground-truth. In this regard, similar
crop yields have been grouped and aggregated into a single
class. Consequently, each parcel or shapefile is assigned
to only one crop type.

2) Simplification: Specific categories were excluded from
consideration to optimize processing efficiency and focus
on relevant classes for this study. Classes, such as vegeta-
bles not pertinent to the scope of this research and regions
with multiple crops in close proximity, were omitted and
designated as background.

3) Exclusion: Specific categories characterized by a limited
number of reference samples and minimal spatial coverage
were intentionally excluded from the database to mitigate
the challenges associated with differentiation and potential
misclassification.

In the comprehensive categorization of agricultural fields
within the study area, class codes have been organized into a
standardized set of four primary crop categories: 1) soybean,
(2) hay, (3) cereal, and (4) corn. Refer to Table V and Fig. 3
for a visual representation of these crop categories. This study,
therefore, aims to map and analyze the characteristics of these
essential food sources. Notably, corn and soybean emerge as
the predominant crop types, holding the largest share within the
study site. These crops are distributed across the study region,
with corn fields exhibiting characteristics of concentration in
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Fig. 3. Ground-truth data for agricultural fields.

certain instances. It is important to highlight that a supervised
classifier was employed as part of the methodology, with 20%
of the polygons (delineations) utilized for selecting training
samples, whereas the remaining 80% served as testing points
for the classifier.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This section presents a detailed analysis of the CPS for dif-
ferent crop types. Further, we utilize multitemporal RCM data
sets acquired over these crop types to compute the DCPS and
GD between two CPSs calculated from two images acquired at
two different dates. Here, we calculate the DCPS and GD by
considering the first acquired image, i.e., 1 July, as the reference
image. We, then, use parameters derived from CPS to compute
the three scattering power components. Furthermore, we classify
crop types using descriptors obtained from CPS and μ− χ
decomposition for different scenarios (Table III).

A. Analysis of CPS for Different Crop-Types

Leveraging the ground-truth data, we systematically identi-
fied and sampled pixels corresponding to soybean, hay, corn,
and cereal crops from the processed RCM images to generate
the CPS. The temporal variations in the CPS for these crops
are shown in Figs. 5–8, respectively. In the literature [59],
[60], scattering from crop canopy is usually modeled by a
cloud of randomly oriented, very thin, dipole-like scatterers.
It provides crucial insights into understanding the scattering
mechanism from the crops at their various growth stages. Thus,
for enhanced understanding of the scattering from the crops,
we display the CPS of volume models constituted by the
following:

1) a mixture of randomly oriented dipoles (RD);
2) a mixture of horizontal dipoles (HD);
3) a mixture of vertical dipoles (VD) in Fig. 4.
In Fig. 5(a), one can note that the CPS for soybean on 1

July exhibits a characteristic similarity to a trihedral target. It
is because for a R circular transmit (χ = −45◦) the sense of
the scattered wave from trihedral changes (orthogonally polar-
ized), and hence, the maximum power is received at around
χ = 45◦. Specifically, the maximum power (Pmax) is received

Fig. 4. CPS of different volume models constituted by (a) a mixture of
randomly oriented dipoles (RD), (b) a mixture of horizontal dipoles (HD), and
(c) a mixture of vertical dipoles (VD).

forχ = 22◦ andψ = 24◦ (Table VI). The distinctive CPS pattern
indicates prevalent surface scattering from soybean on 1 July.
This observation suggests that the incident wave interacts more
significantly with the underlying surface during the early crop
stage than with the plant components. In addition, the high values
ofμ = 0.85 further support the inference of pure scattering from
soybean during this period.

With progress in the crop stage, the CPS starts to change,
as seen from Fig. 5(b). On 30 July, μ decreased to 0.68 as the
scattering purity reduced due to the interaction of the incident
waves with the grown crop components. We observed high
values of received power for χ = 0◦ (i.e., for linear waves)
during this time (Table VI).

Further, as the soybean crop progressed, we found the μ to
reduce to 0.59. The low values of purity caused by uncertainty
in the determination of the polarization structure of the scattered
wave indicate random (or diffused) scattering from the crop
on 27 August. On comparing the observed CPS of soyabean
with volume models constituted of different mixtures of dipoles
(Fig. 4), we found it similar to the CPS of a mixture of vertical
dipoles. The maximum power was received for χ = −6◦ and
ψ = 71◦ (nearly linear vertical), indicating that the incident
waves interacted extensively with the vertically aligned crop
components during this time (Table VI).

The CPSs discussed above are generated using the ascending
orbit RCM images. However, for 30 July and 15 August, RCM
descending orbit images were also acquired over the test site.
Notably, a distinctive observation emerges for 30 July, where the
CPS generated from the ascending [Fig. 5(b)] and descending
[Fig. 5(d)] orbit RCM images exhibit marked differences. On
30 July, the CPS derived from the descending RCM image
showcases characteristic similarity to a vertical dipole. The
maximum received power during this time was observed for
χ = 10◦ and ψ = 92◦, as detailed in Table VI. It is possible
because, for the descending orbit, the orientation of the soybean
fields for the radar line of sight might have changed, resulting
in scattering similar to a vertical dipole.

The CPS for the hay crop, as shown in Fig. 6, exhibits temporal
variations that offer insights into the scattering characteristics
during different stages of crop growth. On 1 July, the CPS
suggests scattering from a random target, with low values of
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Fig. 5. Temporal variation of CPS for the soybean: (a) 1 July, (b) 30 July, (c) 27 August, (d) 30 July, and (e) 15 August. The vertical line separates the CPS of
the ascending and descending images.

TABLE VI
CPS RESPONSES OF SOYBEAN, HAY, CORN, AND CEREAL FOR SOME SPECIFIC ELLIPTICITY (χ) ANGLES AND ORIENTATION (ψ) ANGLES

μ = 0.46, indicative of random or diffused scattering from the
crop at that time.

As the hay crop progresses, on 30 July, the CPS takes
on characteristics similar to a vertical dipole [Fig. 6(b)]. The
maximum received power is observed for χ = 0◦ and ψ = 90◦

(linear vertical), signifying the interaction of incident waves with
the vertically aligned hay crops (Table VI). Subsequently, in
Fig. 6(c), high received power (0.97) is observed for χ = 45◦

(Table VI), likely attributed to surface scattering from the un-
derlying soil layer as the hay crop undergoes drying, affecting
its dielectric properties. Further, the increase in μ to 0.74 on

27 August indicates a transition to pure scattering from the hay
crop, emphasizing the evolving nature of the scattering behavior
with crop development.

The CPS of the hay crop, derived from the descending or-
bit RCM images, are presented in Fig. 6(d) and (e). These
descending orbit CPS offer complementary information about
the crop and its growth stages, enhancing our understanding
of the scattering characteristics. The observed variation in CPS
between ascending and descending orbits can be attributed to
changes in crop (field) orientation concerning the radar line of
sight and overall geometric differences.
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Fig. 6. Temporal variation of CPS for the hay crop: (a) 1 July, (b) 30 July, (c) 27 August, (d) 30 July, and (e) 15 August. The vertical line separates the CPS of
the ascending and descending images.

Fig. 7. Temporal variation of CPS for the corn crop: (a) 1 July, (b) 30 July, (c) 27 August, (d) 30 July, and (e) 15 August. The vertical line separates the CPS of
the ascending and descending images.

Notably, the CPS exhibits similarities to a trihedral target for
the descending orbit between 30 July and 15 August. This resem-
blance may arise from the incident waves primarily interacting
with the top canopy layer of the crop for the descending orbit,
resulting in surface scattering. Supporting this interpretation
are the high values of μ = 0.87 observed for the hay crop
during this period, indicating a predominant surface scattering
contribution.

In Fig. 7, the temporal evolution of the CPS for corn, showing
changes in the crop stage, is presented. Fig. 7(a) indicates that
the CPS of the corn crop on 1 July resembles that of a horizontal
dipole. This could be attributed to the incident waves interacting
more prominently with the underlying ground and the crop’s
small stems during the initial growth stages. This interaction
results in a combination of odd-bounce and even-bounce scat-
tering, with maximum power received for χ = 0◦ and ψ = 0◦

indicating strong returns when waves are horizontal (refer to
Table VI).

As the crop progresses, the CPS transforms, as shown in
Fig. 7(b) and (c), resembling similar to a trihedral target on
30 July and 27 August. This shift is attributed to the limited
penetration capability of incident C-band waves; thus, mainly
interacting with the broad corn leaves and resulting in surface

scattering. This interpretation aligns with the observed high
values of received power for χ = 45◦ (see Table VI).

The CPS of corn, generated from descending orbit RCM im-
ages, exhibits noteworthy characteristics. On 30 July [Fig. 7(d)],
the CPS appears similar to a horizontal dipole, with the maxi-
mum power received for χ = 12◦ and ψ = 176◦. This suggests
an extended interaction of the incident wave with the horizontal
crop components (refer to Table VI). Similarly, on 15 August
[Fig. 7(e)], the CPS takes on the form of a trihedral, with
the maximum power received for χ = 30◦. This indicates the
dominant surface scattering from the crop during this period.

The CPS of cereal crops, as illustrated in Fig. 8, exhibits
notable variations. On 1 July, when the cereal crops were heading
toward the flowering growth stage, Fig. 8(a) suggests random
scattering depicted in the CPS, resembling a mixture of hor-
izontal dipoles [as shown in Fig. 4(b)]. This is supported by
a low value of μ = 0.45, with the maximum power received at
χ = 16◦ andψ = 174◦ indicating scattering close to a horizontal
dipole (see Table VI).

As the crop advances to the fruit development stage, the
C-band incident wave interaction is limited to the top canopy
layers; the CPS on 30 July takes on characteristics similar to a
trihedral target [Fig. 8(b)]. The observedμ = 0.89 indicates pure
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Fig. 8. Temporal variation of CPS for the cereal crops: (a) 1 July, (b) 30 July, (c) 27 August, (d) 30 July, and (e) 15 August. The vertical line separates the CPS
of the ascending and descending images.

scattering from the cereal crop during this time. The maximum
power is received forχ = 36◦, indicating surface scattering from
the cereal crop on 30 July.

On 27 August, as the cereal crops reach their senescence stage,
the CPS infers a mixture of scattering resembling both a trihedral
and a vertical dipole target [Fig. 8(c)]. This could be attributed to
the extended interaction of the incident wave with cereal crops
during this stage. The maximum power is received at χ = 21◦

and ψ = 71◦, with a corresponding μ value of 0.62 (refer to
Table VI).

However, the CPS generated from the descending RCM image
indicates predominant random (or diffused) scattering from the
cereal crop on 30 July [Fig. 8(d)]. This observation aligns closely
with the CPS of a random mixture of dipoles [as depicted in
Fig. 4(a)]. In addition, the low value of μ = 0.32 during this
time, as detailed in Table VI, further supports this interpretation.
This discrepancy in scattering behavior between ascending and
descending orbits suggests that changes in crop orientation
(fields) due to changes in satellite orbit passes can influence the
interaction of incident waves with the crop canopy. This change
results in diffused scattering and a predominance of random
scattering characteristics.

B. Analysis of DCPS and GD for Different Crop-Types

This section quantifies variations between the CPS generated
for two observation dates using the DCPS descriptor. The DCPS
provides information as a signature plot similar to the CPS
represented as a matrix of dimensions 91 × 181, exemplified
in Fig. 9. The goal is to assess the differences between two
CPSs through the GD metric, yielding a scalar quantity between
0 and 1. For DCPS, when two CPSs exhibit similar scattering
mechanisms, the values will be close to 0 across all combinations
of χ and ψ. However, maximum values will be observed at χ
and ψ with an orthogonal scattering mechanism between the
two CPSs. Similarly, GD will have a value of 0 for two similar
scattering scenarios, whereas two CPSs indicating orthogonal
scattering mechanisms will yield a value of 1.

It is important to note that the analysis utilizes three ascending
orbit RCM images for DCPS and GD assessments. Fig. 9(a)

and (b) illustrate the DCPS of soybean between CPSs of 1 July
– 30 July and 1 July – 27 August, respectively. The maximum
variation between the CPSs on 1 July and 30 July is observed
aroundχ = −20◦ andψ = 110◦. This is attributed to the change
in scattering from soybean during the acquisition dates, transi-
tioning from trihedral to vertical dipole scattering. Similarly,
between 1 July and 27 August, the DCPS exhibits maximum
values around χ = −18◦ and ψ = 110◦.

Similarly, in the case of the hay crop, the maximum variation
between the CPS on 1 July and 30 July was observed around
χ = 10◦ and ψ = 82◦. The DCPS analysis reveals a transition
from trihedral to vertical dipole scattering during this period
[Fig. 9(c)]. Examining the DCPS of the hay crop between 1 July
and 27 August indicates a shift from random to surface scattering
[Fig. 9(d)].

For corn, the DCPS analysis indicates a significant alteration
in scattering between 1 July and 30 July, primarily around χ =
7◦ and ψ = 87◦ [Fig. 9(e)]. Similarly, from 1 July to 27 August,
the most substantial change in scattering was observed around
χ = 18◦ and ψ = 103◦. This shift is attributed to the advanced
crop stage, where the CPS exhibited similarity to a trihedral due
to the limited penetration of incident C-band waves.

Similarly, the DCPS analysis of cereal crops between 1 July
and 30 July reveals a shift in scattering from random to surface
phenomena [Fig. 9(g)]. This transformation is attributed to the
prevalence of random scattering on 1 July during the heading to
the flowering stage, whereas surface scattering became dominant
with further crop advancement. Likewise, the DCPS of cereal
crops between 1 July and 27 August indicates a change in
scattering from random to vertical dipole [Fig. 9(h)].

Moreover, the varied ranges of GD values for each crop
type across the two time intervals offer crucial insights into
the subtle temporal changes in their CPS. GD values present
a quantitative and sensitive approach to discern the temporal
alterations in crop scattering behaviors, especially in the context
of crop discrimination and monitoring. An illustrative example
of GD computation between the RCM images acquired on 1 July
and 30 July is presented in Fig. 10.

Fig. 11 presents box plots of the GD values for various crop
types between two sets of RCM images. It is evident that hay
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Fig. 9. Dynamic change analysis of crop types over time using DCPS concept and based on ascending RCM images considering the image acquired on 1 July
(time 1) as the reference and the other two images acquired on 30 July (time 2) and 27 August (time 3) as slave. (a) and (b) soybean, (c) and (d) hay, (e) and (f)
corn, and (g) and (h) cereal.

Fig. 10. Illustration of the GD between CPS of two ascending RCM images
acquired on 1 July and 30 July.

fields demonstrate comparatively higher GD values between
RCM images acquired on 1 July and 30 July, indicating sig-
nificant changes in scattering characteristics. This observation
aligns with the nature of hay crops, which may undergo rapid
growth in plant structure and alterations in moisture content.
Conversely, crops like cereal exhibit lower GD values, suggest-
ing relatively stable scattering behaviors over time.

These differences underscore the efficacy of GD values in
discriminating between various crop types by capturing their
distinct temporal behavior patterns. By utilizing the entire re-
ceived power space (91 × 181), GD considers subtle variations

Fig. 11. Comparing the GDCPS values for the crop types, considering the
ascending RCM image acquired on 1 July (time 1) as the reference and the other
two ascending images acquired on 30 July (time 2) and 27 August (time 3) as
slave.

in the temporal scattering behavior of crops, making it beneficial
for their accurate classification.

C. Analysis of Scattering Power Components for Different
Crop-Types

In this section, we explore the temporal variations in the
three scattering power components of various crop types, which
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TABLE VII
TEMPORAL VARIATION OF POWER COMPONENTS BASED ON μ− χ DECOMPOSITION METHOD

Fig. 12. RGB illustration of the three scattering power components of μ− χ
model during the peak of the growing season extracted from ascending RCM
image acquired on 30 July, where red corresponds to Pd, green to Pv , and blue
to Ps.

prove valuable in their classification. We employ the parameter
μ derived from the CPS to extract the three scattering power
components mentioned. These components, namely, Pd, Ps,
and Pv represent the even-bounce matched power, odd-bounce
matched power, and unmatched power, respectively.

In Fig. 12, we present the RGB composite of the three
scattering power components derived from an ascending RCM
image captured over the study area on 30 July. A zoomed-in area
featuring four distinct crops is also depicted for enhanced inter-
pretation. It is evident from Fig. 12 that the scattering powers
exhibit substantial variations for different crops, reflecting the

dominance of specific scattering characteristics associated with
each crop.

We, then, quantitatively assess the temporal variations in
the three scattering power components for different crops
(Table VII). During the initial stage of soybean growth, we
observed the dominance ofPs power (approximately 51%). This
dominance could be attributed to the incident C-band waves
penetrating the small soybean plants, interacting more with the
underlying ground, and resulting in prevalent surface scattering.

The unmatched powerPv was at 35.64%, indicating marginal
interaction of the incident waves with the small crop components
(Table VII). As the crop progressed, we observed a significant
increase in the Pv power to 47.45% on 30 July and 53.51% on
27 August.

Similarly, the Ps power exhibited a significant reduction
during this period (Table VII). The notable increase in the
Pv power component could be attributed to the interaction of
the incident wave with the matured crop components, resulting
in random (or diffused) scattering. Interestingly, the scattering
powers derived from the descending pass RCM images showed a
dominant Ps power on 30 July and 15 August. This observation
may be attributed to changes in the orientation of the soybean
crop (field) with respect to the radar line of sight, facilitating
increased interaction of the incident wave with the underlying
ground surface.

Further, for the hay crop, we observed a high Pv (59.50%)
on 1 July, suggesting the dominance of random (or diffused)
scattering (Table VII). However, on 30 July, we observed a
dominance of Ps power (43.89%). During this time, the CPS
was also close to a vertical dipole, indicating the interaction
of the incident wave with the vertically aligned hay crops. As
the crop progressed, the incident waves interacted more with
the top canopy layer, resulting in dominant surface scatter-
ing. Consequently, we observed an increase in Ps to 45.98%
during this period. The scattering power components derived
from descending orbit RCM images exhibited dominant surface
scattering. Accordingly, we observed Ps power to be 45.73% on
30 July and 45.51% on 15 August, respectively.
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Over corn fields, the CPS on 1 July exhibited characteristics
similarity to a horizontal dipole. We observed a mixture of
odd-bounce (Ps = 24.91%) and even-bounce (Pd = 34.53%)
scattering from corn fields during this period (Table VII). It is
important to note that the combination of these two scattering
mechanisms results in scattering similar to a horizontal dipole.
This observation may be attributed to the interaction of the
incident waves with the underlying ground and the small stems
of the crop during the initial growth stages.

As the corn crop advanced, we observed the dominance of
Pv = 49.19%, indicating random scattering from the crop’s
canopy during 30 July and 27 August (Table VII). One can also
note significant surface scattering from the corn crops during this
period. The observation aligns with the limited penetration of
incident C-band waves, primarily interacting with the broad corn
leaves, resulting in surface scattering. Similarly, the scattering
power components derived from descending orbit RCM images
indicated dominant Pv = 48.31% and Ps = 46.80% power on
30 July and 15 August, respectively.

For cereal crops on 1 July, the dominant scattering was
characterized by Pv = 47.59% (Table VII). This suggests the
prevalence of random scattering from the crop, particularly
during the heading to the flowering stage. As the crop progressed
to the fruit development stage on 30 July, Ps = 51.87% became
dominant, signifying interaction mainly with the top canopy
layer and resulting in surface scattering. At the senescence stage,
extended interaction of incident waves with crop canopy layers
caused an increase in Pv to 41.87%.

Nevertheless, the scattering powers derived from the descend-
ing orbit RCM image resulted in dominant random scattering
(Pv = 57.45%) on 30 July. In the descending pass, the incident
waves possibly interacted more with the crop canopy, leading
to diffusion and random scattering. Further, during 15 August,
we found the Ps power to increase to 48.78% (Table VII). This
increase suggests more interaction of the incident waves with
the ground surface during the ripening stage.

D. Classification Results

Finally, the classification results obtained from the two de-
fined scenarios are presented. The evaluation of image classifica-
tion accuracy involves comparing the classification results with
actual measurements. This study employs widely used metrics,
such as precision, recall, F1-score, and overall accuracy (OA) to
assess the classification results in different scenarios. In addition,
z-score values are utilized to indicate the significance of each
feature in the classification process.

1) Scenario-1 (S1) Accuracy Assessment: In the first sce-
nario, the supervised RF classification method was employed,
utilizing two different feature sets in separate runs: the combina-
tion of RCM intensity channels andm− χ components and the
combination of RCM intensity channels andμ− χ components.
The same training areas were employed to generate classification
results for both feature sets. A total of 275 individual polygon
areas representing soybean, hay, cereal, and corn classes were
selected from the available reference data for training the ma-
chine learning classifier. The classification accuracy of Scenario

1 (S1) is shown in Fig. 13, and detailed results are presented in
Table VIII. These decomposition techniques were compared to
assess improvements in land cover classification. Notably, in
the results obtained from S1, one significant misclassification
was observed where cereal areas were inaccurately classified as
corn. This misclassification was more pronounced when using
the m− χ decomposition method.

2) Scenario-2 (S2) Accuracy Assessment: In the second sce-
nario, maps were generated by combining all the features listed
earlier (refer to Table II) for both single-date and multi-date
RCM images. When considering a single-date image, Scenario
2 (S2) demonstrated superior classification performance com-
pared with S1, achieving an OA of 80.51% (Fig. 14(a) and
Table IX). It demonstrated commendable capability in distin-
guishing between the hay and cereal crop areas. However, it
should be noted that not all crop types could be accurately
classified using a single-date feature combination. This scenario
illustrates the optimal accuracy achievable with a single-date
RCM image in our study.

Across all cases, multi-date crop mapping in S2 demonstrated
a significant improvement in classification accuracy. As shown
in Fig. 14(b) and detailed in Table IX, the results obtained using
multitemporal features in S2 achieved a high OA of 89.71%.
This represents the highest classification accuracy for each crop
type, benefiting from a relatively large dataset as input.

The superior performance of S2 can be attributed to the
generalization of data, reducing the impact of noise. Moreover, it
underscores the importance of feature extraction during different
phenological stages of crop cycles, contributing to enhanced
crop classification results. Notably, the two dominant crop types,
soybean and corn, were consistently the most accurately pre-
dicted classes overall in both scenarios, likely due to a relatively
larger number of training samples for these two groups.

Our exploration of crop classification using multi-date images
especially included examining the potential impact of chrono-
logical order on OA. Our results suggest that the order of
predictors, i.e., polarimetric parameters derived from time series
SAR datasets, does not introduce significant bias in classification
accuracy. This chronological independence can be attributed to
the design of the RF algorithm. Each tree in the ensemble is con-
structed from a random subset of the input features, introducing
feature randomization. This ensures temporal independence, and
consequently, any change in the order of input parameters does
not adversely affect the accuracy of the model.

3) Feature Importance for Crop Classification: The RF clas-
sifier offers a significant advantage in evaluating input variables
and determining their importance and contribution to classifica-
tion accuracy. In the context of all input features and four land
cover classes, the S2 scenario utilized RF-computed predictor
importance values to assess the significance of features.

Fig. 15 presents the normalized average importance of all
input variables, revealing the overall contribution of features.
Through statistical analysis, it becomes evident that thePv com-
ponent of the μ− χ method emerges as the most crucial input
variable influencing the accuracy of crop mapping. Following
closely, the volumetric component of them− χ decomposition
stands out as the next most significant factor. This prominence
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Fig. 13. Best classification maps obtained in S1 using the combination of (a) m− χ features and (b) μ− χ features.

TABLE VIII
CROP GROUPS DISCRIMINATION ACCURACY ASSESSMENT BASED ON SINGLE-DATE IMAGERY IN S1

TABLE IX
CROP GROUPS DISCRIMINATION ACCURACY ASSESSMENT USING S2
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Fig. 14. Comparative evaluation of classification results based on S2. (a) Single-date. (b) Multi-Date.

Fig. 15. Feature importance ranking obtained in S2.

can be attributed to the fact that volumetric scattering compo-
nents dominate vegetation canopy interactions.

The RF classifier’s evaluation of input variables reveals the
importance of different features in the classification process. In
this context, the RH intensity channel of RCM data demon-
strates comparable significance to the RV intensity channel.
Meanwhile, three parameters, Ps, δ, and GDCPS, portray lower
importance than the intensity channels but still contribute ef-
fectively to the classification. Notably, the μc parameter holds a
higher importance value than μ0 in this analysis.

4) z-Score Values: We utilized the z-score values to pro-
vide an objective measure for an integrative assessment. This
approach indicates the distance and direction of a variable’s
deviation from the average value of the distribution, expressed
in terms of the standard deviation. Higher z-score values suggest
a more significant impact on evaluation performance. As shown
in Fig. 16, μ− χv and m− χv exhibit the highest z-score
values among all variables when dominant crops (e.g., corn)
reach the mature stage. Intensity channels also proved effec-
tive in crop classification. In addition, the GDCPS descriptor
demonstrated relevance during both green and yellow leaves
periods.

Fig. 16. z-score chart for the four crop classes of interest. Colors, ranging
along the red to green gradient, represent the importance level of features,
with red indicating lower influence and green reflecting higher influence. The
horizontal and vertical axes of the z-score chart represent the feature and time
domains, respectively.

Statistical significance testing of per-pixel classification ac-
curacy results using the z-score revealed that integrated feature
sets comprisingμ− χ andm− χ powers outperformed all other
tested input features. In summary, the effectiveness ranking
of the employed features is as follows: μ− χ components >
m− χ components > intensity channels > GDCPS > wave
descriptors.
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V. CONCLUSION

The study introduced three descriptors, CPS, DCPS, and GD,
to analyze the scattering behavior exhibited by four crop types
(soybean, hay, cereal, and corn) throughout the growing season
using five RCM images acquired in CP StripMap mode over a
test site in Quebec, Canada, with two primary objectives: The
characterization of crop-type scattering and crop discrimination.

The analysis of time-series CPS has yielded insightful obser-
vations. Notably, during the active season marked by evolving
vegetation structures, the variations in scattered waves have
unveiled distinct scattering mechanisms inherent to different
crop types. This emphasizes the potential sensitivity of CPS
to physical and structural changes in plants. Notably, the dis-
cernible differences in wave ellipticity and orientation angles at
the maximum polarization point (Pmax) across these crops are
noteworthy.

In particular, the polarization states and the concept of scat-
tering purity (μ) for agricultural fields add an additional dimen-
sion to assessing the agricultural landscape. For instance, the
polarization states of the incident waves tend to be preserved
for soybean during the initial growth phase. In contrast, for hay
and corn crops, this preservation of polarization states becomes
more pronounced during the later stages of the growth cycle.

The DCPS descriptor provides complementary information to
CPS analysis, offering insights into the dis/similarity between
any consecutive two CPSs of a given crop type. It informs
about changes in scattering patterns, aligning with variations or
growth in the foliage of crop plants. For instance, in cereal fields,
where random scattering is predominant from the heading to the
flowering stage, the DCPS descriptor between acquisitions on 1
July and 30 July indicates the shift from random to surface scat-
tering. Meanwhile, for soybean, the transition is from trihedral
to vertical dipole scattering during the same period. In addition,
the GD target discrimination descriptor, measuring dis/similarity
between two CPSs across the study area, proves valuable in the
context of crop classification.

This study extensively examined CP-SAR data, and diverse
parameters were extracted for crop classification using the RF
classifier. Multiple classification runs were conducted across
two scenarios, testing various combinations of CP inputs. The
multi-date crop mapping approach achieved an impressive OA
of 89.71%, highlighting the effectiveness of integrating features
from CP data. Notably, the random scattering component of the
μ− χ decomposition emerged as a critical feature. In addition,
the GD descriptor demonstrated a relatively high level of impor-
tance in the classification process.

It is imperative to undergo rigorous validation and sensitivity
assessments to enhance the operational agricultural crop char-
acterization using SAR observations, particularly when dealing
with multifrequency observations, especially at L-band. This
strategic approach offers a unique opportunity to delve into the
frequency-dependent behavior of croplands, considering vary-
ing penetration depths and responses to biophysical variables.
Collecting field data for crop fields and capturing crucial pheno-
logical features, such as the percentage of canopy coverage and
growth stage becomes indispensable. These assessments play a
pivotal role in fortifying the reliability of proposed methods and

contribute to developing more robust operational crop monitor-
ing frameworks, thereby, shaping the trajectory of future studies
in this domain.
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