Dépôt numérique
RECHERCHER

Permafrost degradation and soil erosion as drivers of greenhouse gas emissions from tundra ponds.

Téléchargements

Téléchargements par mois depuis la dernière année

Plus de statistiques...

Préskienis, Vilmantas ORCID logoORCID: https://orcid.org/0000-0002-8176-2263; Fortier, Daniel ORCID logoORCID: https://orcid.org/0000-0003-0908-6157; Douglas, Peter M J. ORCID logoORCID: https://orcid.org/0000-0002-4282-6615; Rautio, Milla ORCID logoORCID: https://orcid.org/0000-0002-2375-9082 et Laurion, Isabelle ORCID logoORCID: https://orcid.org/0000-0001-8694-3330 (2024). Permafrost degradation and soil erosion as drivers of greenhouse gas emissions from tundra ponds. Environmental Research Letters , vol. 19 , nº 1. 014072. DOI: 10.1088/1748-9326/ad1433.

[thumbnail of P4415.pdf]
Prévisualisation
PDF
Télécharger (1MB) | Prévisualisation

Résumé

Climate change poses a serious threat to permafrost integrity, with expected warmer winters and increased precipitation, both raising permafrost temperatures and active layer thickness. Under ice-rich conditions, this can lead to increased thermokarst activity and a consequential transfer of soil organic matter to tundra ponds. Although these ponds are known as hotspots for CO 2 and CH 4 emissions, the dominant carbon sources for the production of greenhouse gases (GHGs) are still poorly studied, leading to uncertainty about their positive feedback to climate warming. This study investigates the potential for lateral thermo-erosion to cause increased GHG emissions from small and shallow tundra ponds found in Arctic ice-wedge polygonal landscapes. Detailed mapping of fine-scale erosive features revealed their strong impact on pond limnological characteristics. In addition to increasing organic matter inputs, providing carbon to heterotrophic microorganisms responsible for GHG production, thermokarst soil erosion also increases shore instability and water turbidity, limiting the establishment of aquatic vegetation—conditions that greatly increase GHG emissions from these aquatic systems. Ponds with more than 40% of the shoreline affected by lateral erosion experienced significantly higher rates of GHG emissions (∼1200 mmol CO 2 m −2 yr −1 and ∼250 mmol CH 4 m −2 yr −1 ) compared to ponds with no active shore erosion (∼30 mmol m −2 yr −1 for both GHG). Although most GHGs emitted as CO 2 and CH 4 had a modern radiocarbon signature, source apportionment models implied an increased importance of terrestrial carbon being emitted from ponds with erosive shorelines. If primary producers are unable to overcome the limitations associated with permafrost disturbances, this contribution of older carbon stocks may become more significant with rising permafrost temperatures.

Type de document: Article
Mots-clés libres: carbon dioxide; greenhouse gas emissions; ice-wedge polygons; methane; permafrost erosion; thermokarst; tundra ponds
Centre: Centre Eau Terre Environnement
Date de dépôt: 06 févr. 2024 21:14
Dernière modification: 06 févr. 2024 21:14
URI: https://espace.inrs.ca/id/eprint/14188

Gestion Actions (Identification requise)

Modifier la notice Modifier la notice