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Abstract: Regional flood frequency analysis (RFFA) is widely used to estimate design floods in
ungauged catchments. Most of the RFFA techniques are based on the annual maximum (AM) flood
model; however, research has shown that the peaks-over-threshold (POT) model has greater flexibility
than the AM model. There is a lack of studies on POT-based RFFA techniques. This paper presents
the development of POT-based RFFA techniques, using regularised linear models (least absolute
shrinkage and selection operator, ridge regression and elastic net regression). The results of these
regularised linear models are compared with multiple linear regression. Data from 145 stream
gauging stations of south-east Australia are used in this study. A leave-one-out cross-validation is
adopted to compare these regression models. It has been found that the regularised linear models
provide quite accurate flood quantile estimates, with a median relative error in the range of 37 to 47%,
which outperform the AM-based RFFA techniques currently recommended in the Australian Rainfall
and Runoff guideline. The developed RFFA technique can be used to estimate flood quantiles in
ungauged catchments in the study region.

Keywords: peaks over threshold; flood; regression models; LASSO; ridge regression; elastic net
regression; multiple linear regression

1. Introduction

Floods rank among the most severe natural disasters, resulting in substantial economic
losses and tragic loss of human life on an annual basis. Between 1980 and 2016, flood-related
incidents caused more than 240,000 deaths and caused damages amounting to almost USD
1 trillion [1]. The economic impact of floods in Australia is considerable, with the average
annual flood damage amounting to more than AUD 377 million and infrastructure that
necessitates design flood estimates valued at over AUD 1 billion per year. The New South
Wales and south-east Queensland floods of February and March 2022 alone accounted for
AUD 5.65 billion. This highlights the need for more accurate and reliable design flood
estimation methods, which can reduce the overall flood damage.

Flood frequency analysis is a critical component of flood risk assessment and manage-
ment, providing estimates of the frequency and magnitude of extreme flood events that are
crucial for designing infrastructure and making decisions related to flood risk. Traditionally,
flood frequency analysis has been based on the assumption that the flood data follow a
particular distribution (e.g., the Gumbel distribution) [2], which is then used to estimate
flood quantiles. However, this approach can be limiting, as it assumes a fixed distribution
that may not accurately capture the underlying flood characteristics, particularly for ex-
treme events [3,4]. To conduct flood frequency analysis, the two main models, the annual
maximum (AM) and the peaks-over-threshold (POT), are generally adopted [5–7]. The AM
model involves fitting a statistical distribution to the AM flood data. This method assumes
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that the largest flood in each year is representative of the maximum flood potential for that
year. While the AM method is simple and widely used, it considers many smaller flood
data points from relatively dry years and ignores some large data points from wet years [8].
The POT approach offers a more flexible and efficient way to estimate the tails of the flood
frequency distribution by modelling the exceedances over a site-specific threshold level [9].

Regional flood frequency analysis (RFFA) is a widely used approach to estimate
flood quantiles in ungauged catchments. It involves two steps: forming regions based on
similarities in hydrological characteristics and applying statistical techniques (such as the
index flood method or quantile regression technique) for design flood estimation. RFFA
enables transferring flood characteristics from gauged to ungauged sites within the same
region, providing a systematic means of estimating flood quantiles at any arbitrary location
within the region. AM-flood-based RFFA is widely adopted internationally, providing
a straightforward practice, and only limited research has focused on POT-based RFFA.
Recently, Pan et al. [10] developed a POT-based RFFA technique for south-east Australia and
found that ordinary least squares (OLS) performs better than the weighted-least-squares
(WLS)-based regression techniques.

While the POT-based RFFA method has shown great promise in estimating flood
quantiles at ungauged catchments, it can suffer from overfitting and poor generalisation
performance, with a large number of predictors or highly correlated predictors [11]. To
overcome these challenges, regularised linear models, such as least absolute shrinkage
and selection operator (LASSO) [12], ridge regression (RR) [13] and elastic net regression
(EN) [14] have been proposed as effective solutions. These models introduce a penalty
term to the loss function, which helps to avoid overfitting and to produce more stable and
reliable estimates of the regression coefficients. However, the performance of different
regularised linear models within the POT framework in RFFA has not been fully explored.
Table 1 presents number of studies published which have used the POT model in flood
research with at least one of the regularised linear models (LASSO, RR or EN).

Table 1. Results of search queries in different databases.

Search Query with Boolean Operators
Number of Documents

Scopus
(Title, Abstract, Keyword)

Dimensions
(Title and Abstract)

Web of Science
(Topic 1)

“Peaks over threshold” 1394 1332 695

“Partial duration series” 301 251 291

(“Partial duration series” OR
“peaks over threshold”) 1673 1563 954

(“Partial duration series” OR
“peaks over threshold”) AND (flood) 437 384 307

(“Partial duration series” OR “peaks over
threshold”) AND (flood) AND (“Multiple Linear
Regression” OR “Least Absolute Shrinkage and
Selection Operator” OR LASSO OR “Ridge
Regression” OR “Elastic Net Regression”)

3 1 2

Note: 1 Searches title, abstract, author keywords and Keywords Plus.

Scopus has captured three articles [15–17] which meet the search criteria, whereas
Dimensions and Web of Science have found one [16] and two [15,16] published articles,
respectively. When we dive deep into these three articles, it is evident that none of them
fully meet the defined search criteria. The reason is that these three articles are selected
based on the keywords, titles and abstracts in the articles, to which the search query
was restricted; however, they did not apply any of the regularised linear models within
POT-based RFFA.
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This study aims to fill the current knowledge gap by comparing the performance of
different regularised linear models within the POT framework in RFFA. Specifically, we
focus on the ability of LASSO, RR and EN to accurately estimate design floods in ungauged
catchments. We evaluate these regularised linear models using flood and catchment
characteristics data from south-east Australia, based on a leave-one-out cross-validation
(LOOCV) technique.

2. Materials and Methods

The study involves several steps, as illustrated in Figure 1. Initially, study area and
catchments were selected. For each of the selected catchments, POT flow series was
extracted and flood quantiles were estimated. A catchment characteristics data set was
extracted for each of the catchments. For the selected flood quantiles, prediction equations
were developed by multiple linear regression and penalised regression analyses. A leave-
one-out cross validation (LOOCV) approach was adopted to evaluate the performance of
the developed prediction equations. R software was used to carry out the analyses [18].
These steps are described below.
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Figure 1. Flow chart explaining the adopted methodology.

2.1. Study Area and Data

This study selects 145 stream gauging stations across the south-east region of Australia.
The reason for selecting this region is the availability of high-quality streamflow data in this
region compared to other parts of Australia. Figure 2 shows the geographical location of the
selected stations. The catchment area of the selected stations ranges from 11 km2 to 1010 km2,
with an average of 360 km2 and a median of 310 km2. Records of streamflow data range from
27 to 83 years, with an average of 42 years. Among selected stations, 55 are from New South
Wales (NSW) and 90 are from Victoria (VIC), both of which are Australian states.

Application of the Hosking and Wallis [19] homogeneity test indicated that the stations
do not form homogeneous regions, as H statistics values were over 10. For a region to be
homogeneous, H statistics should be smaller than 1.00.

The selected stations are located on both sides of the Great Dividing Range (GDR) of
Australia, which measures approximately 3500 km, starting from the state of Queensland
and ending at the eastern edge of the state of Victoria. The GDR divides the coastal region
of south-eastern Australia into coastal and inland plains. The rationale for including both
areas is based on the previous studies of Ali and Rahman [20] and Zalnezhad et al. [21],
which suggest considering both inland and coastal as a single region for RFFA.
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Figure 2. Geographical locations of the selected 145 stream gauging stations in New South Wales and
Victoria, Australia.

A total of seven catchment characteristics are adopted as independent variables in
this study. The adopted independent variables, which include catchment area (A, km2),
mean annual rainfall (MAR, mm), catchment shape factor (SF, fraction), mean annual
evapotranspiration (MAE, mm), catchment stream density (SDEN, km−1), catchment
mainstream slope (S1085, m·km−1) and forest (FST, fraction), are summarised in Table 2.
Table 3 shows the correlation coefficients of the independent variables. It was found that
some of the variables were highly correlated. However, the Durbin–Watson statistics of the
developed regression equations were close to 2.00, indicating that they did not have much
impact on the regression analysis. Penalised regression (as adopted here) is more capable
of dealing with the highly correlated variables.
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Table 2. Descriptive statistics of the independent variables based on the selected 145 catchments in
New South Wales and Victoria, Australia.

Independent
Variable Minimum Maximum Mean Median Standard

Deviation

A (km2) 11.00 1010.00 360.21 310.00 258.77
MAR (mm) 485.32 1953.23 1001.80 926.96 327.85
SF (fraction) 0.26 1.43 0.77 0.77 0.21

MAE (mm) 932.70 1543.30 1111.25 1068.80 130.44
SDEN (km−1) 0.52 5.47 1.97 1.58 1.01

S1085 (m/km) 0.80 69.90 12.77 9.59 10.95
FST (fraction) 0.01 1.00 0.59 0.65 0.33

Table 3. Correlation coefficients (with their corresponding p-values) between the independent
variables (NA means not applicable).

A MAR SF MAE SDEN S1085 FST

A
1.000

NA

MAR
−0.140 1.000

0.093 NA

SF
−0.009 −0.073 1.000

0.914 0.383 NA

MAE
−0.080 0.346 0.038 1.000

0.338 0.000 0.652 NA

SDEN
−0.219 0.347 0.067 0.615 1.000

0.008 0.000 0.424 0.000 NA

S1085
−0.463 0.206 −0.004 −0.097 0.161 1.000

0.000 0.013 0.962 0.247 0.054 NA

FST
0.015 0.328 0.048 −0.022 0.173 0.437 1.000

0.863 0.000 0.566 0.791 0.037 0.000 NA

2.2. At-Site Flood Frequency Analysis

The dependent variable selected in the regression model is QT (flood discharge for
T-year return period), which is estimated by at-site flood frequency analysis.

The initial step in any at-site flood frequency analysis is the fitting of a probability
distribution to the observed flood data. The generalised Pareto (GPA) distribution, along
with its reduced form, the exponential distribution, remains a widely favoured choice for
flood frequency analysis based on a POT approach [22–25]. The employment of extreme
value theory, as introduced by Pickands III [26], has been deemed appropriate for this
purpose. Among these distributions, the two-parameter GPA distribution is preferred in
POT-based flood frequency analysis over the one-parameter exponential distribution due
to its enhanced modelling flexibility, and, hence, GPA was adopted in this study. Six return
periods or average recurrence intervals (ARIs) are considered in this study, which are 2, 5,
10, 20, 50 and 100 years.

The at-site flood quantile estimates in this study were derived on the assumption of
a Poisson process for arrival, coupled with fitting of the GPA distribution. The Poisson
arrival hypothesis assumes that the occurrence of flood peaks surpassing a predetermined
threshold at a given site follows a Poisson distribution, where flood peaks are identically
and independently distributed. A salient feature of this Poisson arrival concept is its
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extensibility: if a model adheres to a Poisson distribution with a given threshold value X,
then the values exceeding X similarly adhere to the Poisson process [27–29]. Cunnane [30]
made a recommendation for the utilisation of POT1.63, which is 1.63 events per year on
average, as a means to reduce sampling variance. Also, Lang et al. [31] introduced a
practical guideline suggesting an annual average of one to three events per year on average
(POT1 to POT3) for POT modelling in flood frequency analysis. In previous applications in
Australia, it was found that POT3 provided more accurate flood quantile estimates than
POT1, POT2, POT4 and POT5 cases [10]. Hence, POT3 was adopted in this study.

2.3. Linear Regression Analysis

A regression model was developed for each of the six flood quantiles, using flood
quantile as the dependent variable and catchment characteristics as independent variables.
We used two types of regression models: linear regression and penalised linear regression.
Multiple linear regression (MLR) was used for linear regression, whereas LASSO, RR and
EN were used to implement penalised linear regression. We evaluated the performance
of the regression models by using leave-one-out cross-validation (LOOCV) and several
statistical indices, median absolute relative error (REm), relative error (REr), coefficient of
determination (R2) and ratio of predicted and observed flood quantile (Ratio).

Multiple Linear Regression (MLR) is the traditional statistical technique to build a
relationship between a dependent variable and multiple independent variables. It is widely
adopted in RFFA. The objective of MLR is to estimate the coefficients of the regression
equation (b0, b1, b2, . . .) by minimising the sum of squared errors (E) between the predicted
and observed value of the dependent variable using a set of independent variables, X. The
MLR model can be expressed by Equation (1):

Qi = b0 + b1Xi1 + b2Xi2 + bjXij + . . . + buXiu + Ei (1)

Penalised Linear Regression
A regularised linear model or penalised linear regression is a variation on traditional

linear regression, which introduces a penalty term into the regression equation to control the
complexity of the prediction equation and to prevent overfitting. The penalised regression
approach is widely adopted in data science, such as machine learning and deep learning.

Least Absolute Shrinkage and Selection Operator (LASSO) penalises the MLR model
by introducing the absolute value of the L1 norm (Equation (2)) as penalty terms. The
operation of LASSO shrinks and sets the model’s coefficient towards zero and sets zero for
the selection of important independent variables.

‖x‖1 = |x1| + |x2| + . . . + |xn| (2)

Ridge Regression (RR) penalises the model for having a large coefficient, forces the
model to select the most important independent variables and reduces the associated
impact of independent variables, which have less predictive power or are highly correlated
with other independent variables. RR differs from LASSO in its adoption and operation of
penalty terms. The operation involves proportioning the square of L2 norm (Equation (3))
as a penalty term, and it shrinks the coefficient towards zero but never sets it to exact zero.

||x||2 =
√
(x12 + x22 + . . . + xn2) (3)

LASSO performs feature selection by setting less important coefficients to zero, resulting
in a sparse coefficient vector. In contrast, RR does not perform explicit feature selection.
LASSO regression is more sensitive to the choice of predictors and can be unstable with
highly correlated variables. RR is more stable in handling multicollinearity. LASSO provides
a more interpretable model with selected features, while RR retains all predictors. In terms of
computational cost, LASSO regression is generally more computationally expensive due to its
iterative nature compared to the closed-form solution of RR.
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Elastic Net Regression (EN) is another variation of linear regression technique, which
combines the L1 and L2 norm (Equations (2) and (3)) and aims to remove individual
limitations. There are two hyperparameters introduced, alpha (λ) and rho (ρ). Alpha
controls the strength of the L1 and L2 penalties, which balance the contribution of operations
from LASSO and RR techniques. Rho controls the ratio between L1 and L2 penalties.
Through adjustment of hyperparameters, alpha and rho, a balanced compromise between
LASSO and RR is proposed through optimisation process.

In LASSO regression, the hyperparameter lambda was optimised using a five-fold
cross-validation process to determine the best value. A similar approach was employed for
ridge regression (RR) to identify the optimal model. In elastic net (EN) regression, both
alpha and lambda hyperparameters were systematically evaluated across a range of values,
and the best combination was selected for modelling.

2.4. Model Construction

A total of 24 regression models are constructed and evaluated in this study for the
selected 6 return periods. The selected independent variables based on different return
periods are based on at-site flood frequency analysis of fitting the GPA distribution to
observed POT-3 series, as noted above. Adopting a logarithmic scale of variables in
regression analysis is common in RFFA, and, hence, it was adopted.

2.5. Model Evaluation

Leave-one-out cross-validation (LOOCV) is a statistical technique, which is used
to evaluate the performance of a prediction equation. It has been widely adopted in
hydrology [32–34]. In LOOCV, the model is trained using all the selected stations but one,
then the model is tested to the left-out station, and the procedure is repeated until all the
individual stations are tested.

Median absolute relative error (REm) is a statistical measure for evaluating the pre-
diction performance of a proposed model. The difference between the predicted flood
quantile (QPred) and observed flood quantile (QObs) is divided by QObs for each of the
stations following LOOCV. The median value of the absolute values considering all the
stations is then calculated, as shown in Equation (4):

REm(%) = median
∣∣∣∣QPred −QObs

QObs

∣∣∣∣ ∗ 100% (4)

Relative error (REr) measures the difference between QPred and QObs to reflect under-
and over-estimation of the model, as shown in Equation (5):

REr(%) =
QPred −QObs

QObs
∗ 100% (5)

Coefficient of determination (R2) is a statistical metric used to evaluate the goodness-
of-fit of a regression equation. It quantifies the proportion of the total variability in the
dependent variable that can be explained by the selected independent variables. The higher
the R2 value, the better the goodness-of-fit of the model, and a value of 1 indicates a perfect
model. It is defined by Equation (6):

R2 = 1− Sum of squares of residuals
Total sum of squares

(6)

Ratio is defined by Equation (7), where a value of 1 indicates perfect match between
QPred and QObs at a given station, a value smaller than 1 indicates an underestimation and
a value greater than 1 indicates an overestimation by the developed prediction equation.

Ratio =
QPred
QObs

(7)
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3. Results and Discussion

The developed prediction equations contained seven predictor variables; among these,
A was the most important predictor, followed by MAR, SDEN, MAE, S1085, FST and SF.
The predicted flood quantiles by the selected regression models were obtained by LOOCV
and are compared with the observed flood quantiles in a number of ways, as presented
below. The predicted and observed flood quantiles for ARIs of 2, 20 and 100 years are
plotted in Figure 3 for different regression techniques. Figure S1 (in the Supplementary
Section) shows the plots of the predicted versus observed flood quantiles for ARIs of 5, 10
and 50 years. Overall, all four regression models show a similar degree of scatter around the
45-degree reference line. However, as the ARI increases, the scatter around the 45-degree
reference line increases, which indicates that higher ARI quantiles are associated with
greater uncertainty. This in particular is true when streamflow data length is limited.
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Figure 4 shows the quantile–quantile (Q–Q) plots of the residuals for ARIs of 2, 20 and
100 years for the four regression models (the plots for other ARIs are shown in Figure S2).
Upon initial observation, across all the selected ARIs, a relatively linear trend can be found,
with most of the data points closely aligned along the 45-degree reference line, which
indicates a high degree of agreement between the sample and theoretical distributions of
the residuals. This suggests that the underlying model assumption of regression analysis
(that residuals are normally distributed) is largely satisfied. It is also found that at a smaller
ARI (2 years), there is a large degree of deviation from the reference line, particularly
in lower and upper tails of the distribution. Despite the tailed behaviour, across all the
selected ARIs, the majority of the data falls into the range of +/−2, which is assuring.

Spatial distribution is widely adopted to visualise the model performance across
geographical area. Figure 5 plots the spatial distribution of absolute REr values for the
2-year ARI for the four regression models. No significant spatial trend is noticed. There are
several stations located in the inland region with very high absolute REr for both NSW and
VIC. A similar pattern is also observed at the state boundary between NSW and VIC in the
coastal region. Further study is needed to identify why these stations are associated with
higher REr. It should be noted that the RFFA model recommended in ARR showed similar
results; i.e., some stations had higher REr values in model validation [35]. A slightly higher
value for REr is observed for the MLR model, which is located in the upper region of NSW.
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(b) ARI = 20 years; (c) ARI = 100 years.

Figure 6 plots absolute REr values for the selected regression models for the 20-year
ARI. A similar spatial distribution is observed between MLR and penalised regression
models. A few stations located along the coastline of southern VIC are found to have a
larger value for REr, in particular for MLR and LASSO. Further study is needed to find
out the reason for these higher REr values. A larger portion of the inland region in VIC
is found to have a greater REr value for the 20-year ARI. On the other hand, the spatial
plot of the 20-year ARI is identical to the 2-year ARI at the boundary between NSW and
VIC. Figures S3 and S4 plot the absolute REr values for ARIs of 5 and 10 years, respectively.
A similar distribution pattern of REr values is observed in coastal regions of the selected
stations for these ARIs. In Figures S3 and S4, there are a few stations with larger values of
absolute REr, unlike Figure 5.

Figures 6 and 7 plot the spatial distribution of absolute REr values for the 20- and
100-year ARIs, respectively. A broad agreement between the penalised regression models
is found for both of these ARIs. In contrast, the traditional MLR model shows a slight
reduction in absolute REr for the inland region of VIC. Figure S5 plots the absolute REr for
the 50-year ARI, which shows a similar pattern as ARIs of 20 and 100 years. Overall, the
difference in absolute REr across selected regression models is minimal, as can be seen in
Figure 8.
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Figure 8. Cumulative count of stations having a range of different REr (%) for different regression
models: (a) ARI = 2 years; (b) ARI = 20 years; (c) ARI = 100 years.
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Figure 8 illustrates the cumulative count of sites based on different ranges of absolute
REr values for ARIs of 2, 20 and 100 years. There are four classes based on a 25% interval
of absolute REr values. Overall, broad agreement between MLR and penalised regression
models can be seen across all the selected ranges of absolute REr. For the 2-year ARI,
the MLR model accounts for a minimum of 40 stations (REr < 25%), while the EN model
accounts for 42 stations. A small variability across all the selected ARIs of the stations
counted is noted for all four regression models. Figure S6 plots the cumulative site count
for ARIs of 5, 10 and 50 years for all the selected regression models. A distribution similar
to that in Figure 8 is identified in Figure S6.

Figure 9 illustrates the R2 values of the selected regression models based on LOOCV
for ARIs of 2, 20 and 100 years. Among various regression models for the 2-year ARI, MLR
shows a median R2 of 0.642, while the LASSO and EN models show a slightly reduced
value. The RR model shows a median R2 value of 0.645. For the 20-year ARI, the MLR
model has the lowest median R2 value of 0.575, while all the penalised models show median
R2 values larger than 0.58. Based on the distribution of R2 in the boxplots, for the 2-year
ARI, the best model is RR, which is followed by MLR, EN and LASSO. For the 20-year ARI,
the best model is RR, which is followed by EN, LASSO and MLR. For the 100-year ARI,
the best model is MLR, which is followed by RR, EN and LASSO. Figure S7 plots the R2

values for the 5-, 10- and 50-year ARIs. Similar to Figure 9, in Figure S7, there is no model
showing the best performance across all the ARIs.
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Figure 9. Distribution of R2 values for different regression models: (a) ARI = 2 years; (b) ARI = 20 years;
(c) ARI = 100 years.

Figure 10 plots the QPred/QObs ratio (Equation (7)) for the regression models for ARIs
of 2, 20 and 100 years. All the models show a median ratio value around the 1:1 line,
which represents a broader agreement between the predicted and observed flood quantiles,
without notable bias. Furthermore, the distribution of the ratio values (as shown by the
boxplots) for all four models are very similar. Figure S8 plots the ratio values for ARIs of 5,
10 and 50 years, which broadly represent similar results to those in Figure 10.
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Figure 10. Distribution of QPred/QObs ratio (Equation (7)) for different regression models: (a) ARI =
2 years; (b) ARI = 20 years; (c) ARI = 100 years.

Figure 11 shows the boxplots of REr values for ARIs of 2, 20 and 100 years. The median
REr values match very well with the 0:0 line, which indicates that the developed regression
models are mostly unbiased. The distribution of REr values is quite similar for all the
regression models (a very similar result is noticed for ARIs of 5, 10 and 50 years, as shown
in Figure S9). It should be noted that for a few stations all the regression models show an
overestimation of the predicted quantiles (shown as outliers in the boxplots).
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The REm values (Equation (4)) for the four regression models for all six ARIs are shown
in Table 4. Although the REm values are not remarkably different across the four regression
models, LASSO has the smallest REm values overall. The REm values for LASSO are 37%,
44%, 43%, 44%, 43% and 46%, which are generally smaller than similar RFFA studies, such
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as that by Zalnezhad et al. [21], who reported REm values of 42%, 33%, 36%, 40%, 44% and
54% for ARIs of 2, 5, 10, 20, 50 and 100 years, respectively, for an artificial neural networks
(ANN)-AM-based RFFA model for south-east Australia. Zalnezhad et al. [21] reported
median QPred/QObs ratio values in the range of 0.94 to 1.57, which are very close to 1.00 in
this study. The REm values for LASSO are also smaller than those recommended by the
Australian Rainfall and Runoff AM-based RFFA model [35], which reported REm values
in the range of 57–64% for ARIs of 2 to 100 years. The current study provides a more
accurate prediction than the study of Aziz et al. [36], who reported REm values in the range
of 39% to 91% and median QPred/QObs ratio values in the range of 0.17 and 1.82 for an
ANN-AM-based RFFA model in south-east Australia.

Table 4. Median relative error (REm%) values for the four regression models.

ARI (Years) MLR LASSO RR EN

2 39 37 38 37
5 43 43 43 45
10 44 43 44 46
20 47 44 44 44
50 45 43 43 44

100 44 46 46 47

4. Conclusions

The study presents the development of POT-based RFFA models for south-east Aus-
tralia, using regularised linear models (least absolute shrinkage and selection operator
(LASSO), ridge regression (RR) and elastic net regression (EN)). It has been found that the
regularised linear models provide more accurate flood quantile estimates (with a median
relative error in the range of 37 to 47%) as compared to the AM-based RFFA techniques
currently recommended in the Australian Rainfall and Runoff guideline. The results of our
study provide valuable insights into the performance of regularised linear models in the
context of RFFA and highlight the potential benefits of incorporating these models within
the POT framework. Our findings contribute to the ongoing efforts to improve the accuracy
and reliability of POT-based RFFA, which is crucial for effective flood risk management and
decision-making, in particular for smaller return periods. These regularised linear models
should be tested in other Australian states, using both the AM and POT models, and should
be compared with existing RFFA techniques, which will assist in recommending a more
accurate RFFA technique for Australia.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w15213808/s1, Figure S1. Observed versus predicted flood quantiles
(m3/s) for different regression models: (a) ARI = 5 years; (b) ARI = 10 years; (c) ARI = 50 years;
Figure S2. Residual quantile–quantile plot for different regression models: (a) ARI = 5 years;
(b) ARI = 10 years; (c) ARI = 50 years; Figure S3. Spatial distribution of absolute REr values for
different regression models for ARI = 5 years: (a) RR; (b) EN; (c) LASSO; (d) MLR; Figure S4. Spatial
distribution of absolute REr values for different regression models for ARI = 10 years: (a) RR; (b) EN;
(c) LASSO; (d) MLR; Figure S5. Spatial distribution of absolute REr values for different regression
models for ARI = 50 years: (a) RR; (b) EN; (c) LASSO; (d) MLR; Figure S6. Cumulative count of sites
having a range of different REr (%) for different regression models: (a) ARI = 5 years; (b) ARI = 10 years;
(c) ARI = 50 years; Figure S7. R2 plots based on LOOCV for different regression models: (a) ARI = 5 years;
(b) ARI = 10 years; (c) ARI = 50 years; Figure S8. Ratio plots using leave-one-out cross-validation based
on POT3 model: (a) ARI = 5 years; (b) ARI = 10 years; (c) ARI = 50 years; Figure S9. Boxplot of REr
values for different regression models: (a) ARI = 5 years; (b) ARI = 10 years; (c) ARI = 50 years.

Author Contributions: Data analysis and manuscript drafting: X.P. and G.Y.; conceptualisation,
editing and supervision: A.R., K.H. and T.B.M.J.O. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no funding.

https://www.mdpi.com/article/10.3390/w15213808/s1
https://www.mdpi.com/article/10.3390/w15213808/s1


Water 2023, 15, 3808 18 of 19

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this study can be obtained from Australian Govern-
ment Authorities by paying a prescribed fee.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Doeffinger, T.; Rubinyi, S. Secondary benefits of urban flood protection. J. Environ. Manag. 2023, 326, 116617. [CrossRef]
2. Gumbel, E.J. Statistics of Extremes; Columbia University Press: New York, NY, USA, 1958.
3. Kidson, R.; Richards, K.S. Flood frequency analysis: Assumptions and alternatives. Prog. Phys. Geogr. Earth Environ. 2005, 29,

392–410. [CrossRef]
4. Zhang, X.; Duan, K.; Dong, Q. Comparison of nonstationary models in analyzing bivariate flood frequency at the Three Gorges

Dam. J. Hydrol. 2019, 579, 124208. [CrossRef]
5. Zeng, L.; Bi, H.; Li, Y.; Liu, X.; Li, S.; Chen, J. Nonstationary annual maximum flood frequency analysis using a conceptual

hydrologic model with time-varying parameters. Water 2022, 14, 3959. [CrossRef]
6. Durocher, M.; Zadeh, S.M.; Burn, D.H.; Ashkar, F. Comparison of automatic procedures for selecting flood peaks over threshold

based on goodness-of-fit tests. Hydrol. Process. 2018, 32, 2874–2887. [CrossRef]
7. Önöz, B.; Bayazit, M. Effect of the occurrence process of the peaks over threshold on the flood estimates. J. Hydrol. 2001, 244,

86–96. [CrossRef]
8. Bezak, N.; Brilly, M.; Šraj, M. Comparison between the peaks-over-threshold method and the annual maximum method for flood

frequency analysis. Hydrol. Sci. J. 2014, 59, 959–977. [CrossRef]
9. Todorovic, P.; Rousselle, J. Some problems of flood analysis. Water Resour. Res. 1971, 7, 1144–1150. [CrossRef]
10. Pan, X.; Rahman, A.; Haddad, K.; Ouarda, T.B.; Sharma, A. Regional Flood Frequency Analysis Based on Peaks-Over-Threshold

Approach: A Case Study for South-Eastern Australia. J. Hydrol. Reg. Stud. 2023, 47, 101407. [CrossRef]
11. Deidda, R.; Puliga, M. Performances of some parameter estimators of the generalized Pareto distribution over rounded-off

samples. Phys. Chem. Earth Parts A/B/C 2009, 34, 626–634. [CrossRef]
12. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 1996, 58, 267–288. [CrossRef]
13. Hoerl, A.E.; Kennard, R.W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 1970, 12, 55–67.

[CrossRef]
14. Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67, 301–320.

[CrossRef]
15. Guru, N. Implication of partial duration series on regional flood frequency analysis. Int. J. River Basin Manag. 2022, 1–20.

[CrossRef]
16. Hamdi, Y.; Duluc, C.M.; Bardet, L.; Rebour, V. Development of a target-site-based regional frequency model using historical

information. Nat. Hazards 2019, 98, 895–913. [CrossRef]
17. Pan, X.; Rahman, A.; Haddad, K. Regional flood estimation for very frequent floods based on peaks-over-threshold approach:

A case study for south-East Australia. In Hydrology & Water Resources Symposium 2022 (HWRS 2022): The Past, the Present, the
Future: The Past, the Present, the Future; Engineers: Brisbane, Australia, 2022; pp. 265–276.

18. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,
2022. Available online: https://www.R-project.org/ (accessed on 3 July 2023).

19. Hosking, J.R.M.; Wallis, J.R. Some statistics useful in regional frequency analysis. Water Resour. Res. 1993, 29, 271–281. [CrossRef]
20. Ali, S.; Rahman, A. Development of a kriging-based regional flood frequency analysis technique for South-East Australia. Nat.

Hazards 2022, 114, 2739–2765. [CrossRef]
21. Zalnezhad, A.; Rahman, A.; Nasiri, N.; Vafakhah, M.; Samali, B.; Ahamed, F. Comparing performance of ANN and SVM methods

for regional flood frequency analysis in South-East Australia. Water 2022, 14, 3323. [CrossRef]
22. Bobee, B.; Cavadias, G.; Ashkar, F.; Bernier, J.; Rasmussen, P. Towards a systematic approach to comparing distributions used in

flood frequency analysis. J. Hydrol. 1993, 142, 121–136. [CrossRef]
23. Madsen, H.; Rosbjerg, D. The partial duration series method in regional index-flood modeling. Water Resour. Res. 1997, 33,

737–746. [CrossRef]
24. Silva, A.T.; Naghettini, M.; Portela, M.M. On some aspects of peaks-over-threshold modeling of floods under nonstationarity

using climate covariates. Stoch. Environ. Res. Risk Assess. 2016, 30, 207–224. [CrossRef]
25. Silva, A.T.; Portela, M.M.; Naghettini, M. On peaks-over-threshold modeling of floods with zero-inflated Poisson arrivals under

stationarity and nonstationarity. Stoch. Environ. Res. Risk Assess. 2013, 28, 1587–1599. [CrossRef]
26. Pickands, J., III. Statistical inference using extreme order statistics. Ann. Stat. 1975, 3, 119–131.
27. Water Resources Council (US); Hydrology Committee. Guidelines for Determining Flood Flow Frequency (No. 17); US Water

Resources Council, Hydrology Committee: Washington, DC, USA, 1975.

https://doi.org/10.1016/j.jenvman.2022.116617
https://doi.org/10.1191/0309133305pp454ra
https://doi.org/10.1016/j.jhydrol.2019.124208
https://doi.org/10.3390/w14233959
https://doi.org/10.1002/hyp.13223
https://doi.org/10.1016/S0022-1694(01)00330-4
https://doi.org/10.1080/02626667.2013.831174
https://doi.org/10.1029/WR007i005p01144
https://doi.org/10.1016/j.ejrh.2023.101407
https://doi.org/10.1016/j.pce.2008.12.002
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1080/15715124.2022.2114486
https://doi.org/10.1007/s11069-018-3237-8
https://www.R-project.org/
https://doi.org/10.1029/92WR01980
https://doi.org/10.1007/s11069-022-05488-4
https://doi.org/10.3390/w14203323
https://doi.org/10.1016/0022-1694(93)90008-W
https://doi.org/10.1029/96WR03847
https://doi.org/10.1007/s00477-015-1072-y
https://doi.org/10.1007/s00477-013-0813-z


Water 2023, 15, 3808 19 of 19

28. Bernardara, P.; Mazas, F.; Weiss, J.; Andreewsky, M.; Kergadallan, X.; Benoît, M.; Hamm, L. On the two step threshold selection
for over-threshold modelling. Coast. Eng. 2012, 2, 1–6. [CrossRef]

29. Coles, S.; Bawa, J.; Trenner, L.; Dorazio, P. An Introduction to Statistical Modeling of Extreme Values; Springer: London, UK, 2001;
Volume 208, p. 208.

30. Cunnane, C. A particular comparison of annual maxima and partial duration series methods of flood frequency prediction.
J. Hydrol. 1973, 18, 257–271. [CrossRef]

31. Lang, M.; Ouarda, T.; Bobée, B. Towards operational guidelines for over-threshold modeling. J. Hydrol. 1999, 225, 103–117.
[CrossRef]

32. Persiano, S.; Salinas, J.L.; Stedinger, J.R.; Farmer, W.H.; Lun, D.; Viglione, A.; Blöschl, G.; Castellarin, A. A comparison between
generalized least squares regression and top-kriging for homogeneous cross-correlated flood regions. Hydrol. Sci. J. 2021, 66,
565–579. [CrossRef]

33. Lee, J.; Lee, O.; Choi, J.; Seo, J.; Won, J.; Jang, S.; Kim, S. Estimation of Real-Time Rainfall Fields Reflecting the Mountain Effect of
Rainfall Explained by the WRF Rainfall Fields. Water 2023, 15, 1794. [CrossRef]

34. Srinivas, V.; Tripathi, S.; Rao, A.R.; Govindaraju, R.S. Regional flood frequency analysis by combining self-organizing feature map
and fuzzy clustering. J. Hydrol. 2008, 348, 148–166. [CrossRef]

35. Rahman, A.; Haddad, K.; Kuczera, G.; Weinmann, E. Regional flood methods. Australian Rainfall and Runoff: A Guide to Flood
Estimation. In Book 3, Peak Flow Estimation; Australian Government: Canberra, Australia, 2019; pp. 105–146.

36. Aziz, K.; Rahman, A.; Fang, G.; Shrestha, S. Application of artificial neural networks in regional flood frequency analysis: A case
study for Australia. Stoch. Environ. Res. Risk Assess. 2013, 28, 541–554. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.9753/icce.v33.management.42
https://doi.org/10.1016/0022-1694(73)90051-6
https://doi.org/10.1016/S0022-1694(99)00167-5
https://doi.org/10.1080/02626667.2021.1879389
https://doi.org/10.3390/w15091794
https://doi.org/10.1016/j.jhydrol.2007.09.046
https://doi.org/10.1007/s00477-013-0771-5

	Introduction 
	Materials and Methods 
	Study Area and Data 
	At-Site Flood Frequency Analysis 
	Linear Regression Analysis 
	Model Construction 
	Model Evaluation 

	Results and Discussion 
	Conclusions 
	References

