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Short‑lead seasonal precipitation 
forecast in northeastern Brazil 
using an ensemble of artificial 
neural networks
Enzo Pinheiro * & Taha B. M. J. Ouarda 

This study assesses the deterministic and probabilistic forecasting skill of a 1‑month‑lead ensemble 
of Artificial Neural Networks (EANN) based on low‑frequency climate oscillation indices. The 
predictand is the February‑April (FMA) rainfall in the Brazilian state of Ceará, which is a prominent 
subject in climate forecasting studies due to its high seasonal predictability. Additionally, the study 
proposes combining the EANN with dynamical models into a hybrid multi‑model ensemble (MME). 
The forecast verification is carried out through a leave‑one‑out cross‑validation based on 40 years of 
data. The EANN forecasting skill is compared with traditional statistical models and the dynamical 
models that compose Ceará’s operational seasonal forecasting system. A spatial comparison showed 
that the EANN was among the models with the smallest Root Mean Squared Error (RMSE) and 
Ranked Probability Score (RPS) in most regions. Moreover, the analysis of the area‑aggregated 
reliability showed that the EANN is better calibrated than the individual dynamical models and has 
better resolution than Multinomial Logistic Regression for above‑normal (AN) and below‑normal 
(BN) categories. It is also shown that combining the EANN and dynamical models into a hybrid 
MME reduces the overconfidence of the extreme categories observed in a dynamically‑based MME, 
improving the reliability of the forecasting system.

Seasonal climate forecasting relies on the interactions of the atmosphere with slower components of the climate 
system, which yields modes of variability that have either a quasi-periodic evolution or a large  persistence1. The 
most well-known example is the El Niño–Southern Oscillation (ENSO), an ocean–atmosphere phenomenon in 
the equatorial Pacific Ocean with a periodicity of approximately four years, responsible for noteworthy atmos-
pheric and oceanic variations in several regions of the  globe2. ENSO teleconnections have been extensively 
studied; for instance, the phenomenon is associated with precipitation anomalies over large regions of  Canada3, in 
the United Arab Emirates (UAE)4,5, in northern  Tunisia6, in northern and southern  Brazil7, among other regions. 
Other large-scale climate oscillations, such as the North Atlantic  Oscillation8 or the Indian Ocean  Dipole9, are 
also known to have impacts worldwide.

The physical processes that bridge widely separated regions involve complex interactions of the Earth system 
 components10, yielding response times that range from weeks to several months  ahead11,12. Therefore, climate 
oscillations are powerful predictors and have been employed for empirical forecasting in several regions. In 
this context, artificial neural networks (ANN), universal approximation functions used for deriving unknown 
relationships between the variables of interest, have been widely used for long-term forecasting of hydroclimatic 
variables. For instance, a recurrent neural network based on climate indices was employed to forecast annual 
regional runoff, in terms of potential energy inflow, in northern Quebec and the Labrador  region13. This study 
demonstrated that using the Baffin Island-West Atlantic, an index that describes the temporal evolution of the 
Canadian Polar Trough, and Pacific-North American (PNA) indices improved the forecast ability compared to 
a nil scenario where only energy inflows are used. Moreover, a multi-layer perceptron ANN was employed for 
modelling the spring rainfall in Victoria, southeastern Australia, using lagged ENSO indices and the Dipole 
Mode  Index14. The results showed that the ANN model resulted in lower errors than multiple linear regression 
for the region. Another study carried out for short-to-long-term monthly rainfall forecasting in southeastern 
Australia showed that individual optimization of ANN models for each calendar month yields better results than 
conducting an optimization for all months  together15. Recently, a nonlinear canonical correlation analysis based 
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on ANN was employed to model the relationship between global climate indices and monthly wind speed in the 
 UAE16. They showed that the model predicted the monthly values with a relative error of around 5%. Another 
recent study evaluated five types of ANNs for monthly rainfall forecasting in Suez,  Egypt17. They showed that a 
general regression neural network represented better the rainfall variability and yielded more accurate forecasts 
than the other ANNs for the studied area.

Ensemble learning is the process of training multiple prediction models to achieve the same task, which 
are combined to make a final  prediction18. Due to the improvement in computing capacity, ensemble learning 
techniques have become popular in hydroclimate forecasting studies. Ensemble models have the advantage of 
being more stable and provide a better generalization ability than single  models19,20. Additionally, such models 
allow quantifying the modelling uncertainties. A Canonical Correlation Analysis (CCA)-based ensemble of 
ANNs (EANN) model was proposed for flood quantile estimates at ungauged  sites21. The authors showed that 
the CCA-EANN outperformed the accuracy of several other statistical methods, including a CCA-single ANN 
model. To address the rainfall forecasting problem, an EANN, optimized through the Particle Swarm algorithm 
and using climate variables (sea surface temperature, geopotential height and air temperature) as predictors, was 
employed to forecast the April mean rainfall from 37 weather stations in Guangxi,  China22. The deterministic 
evaluation showed that the proposed model yielded more accurate predictions than multiple linear and step-
wise regressions. Nevertheless, the study did not assess the probabilistic performance of the EANN for climate 
forecasting. A recent  study23 evaluated the deterministic and probabilistic forecasting skills of an ensemble of 
machine-learning models based on climate indices for seasonal precipitation forecasting in China. They con-
cluded that the machine learning multi-model ensemble (MME) outperformed the North American Multi-Model 
Ensemble (NMME) in terms of deterministic and probabilistic performance for several lead times. Although 
this study provided a probabilistic evaluation of the proposed MME, only model accuracy was evaluated, leav-
ing out other important attributes of probabilistic forecasting, such as reliability and resolution, which are key 
to any operational forecasting system.

Northeastern Brazil is a prominent subject in seasonal forecasting because its climate variability is strongly 
driven by large-scale climate oscillations, resulting in high  predictability24,25. The Atlantic Intertropical Con-
vergence Zone (ITCZ) is the major meteorological system responsible for the northeastern Brazil precipitation 
regime during austral  fall26. On an interannual timescale, the ITCZ positioning is mainly controlled by an 
interhemispheric gradient of sea surface temperature (SST) anomalies in the tropical Atlantic, which in turn is 
formed by two modes of variability, i.e., the Tropical North (TNA) and South (TSA) Atlantic  modes27–29. Evidence 
suggests interdependency between the two  modes30 modulated by a feedback process between wind, evaporation 
and SST (WES)31, which maintains SST anomalies in the deep tropics during austral fall. Its life cycle is marked 
by an initial development in summer, peaking during fall and decaying  afterwards32.

Adjustments in the Walker circulation during ENSO years lead to vertical motion anomalies in a large area 
in northeastern Brazil, thus directly influencing the convective activity over the  region33. Furthermore, changes 
in the tropical Pacific deep convection excite the PNA  pattern34, which in turn impacts the air subsidence over 
the North Atlantic Subtropical  High35. In response, northeasterly trade anomalies are observed in the tropical 
North Atlantic, forcing the development of the TNA  mode27,35,36. Evidence shows that an increase in ENSO 
variability due to climate change can increase TNA SST variability and the frequency of extreme TNA  events37.

Several empirical modelling studies showed that reliable precipitation forecasts for northeastern Brazil are 
achieved using climate information from the tropical Pacific and Atlantic oceans. For instance, a Maximum 
Covariance Analysis (MCA) was applied to May–July Pacific and Atlantic SST anomalies to predict South Ameri-
can rainfall anomalies of the following November-January38. This model presented comparable probabilistic 
skill with a dynamical multi-model ensemble in the north of northeastern Brazil. Furthermore, a stepwise 
multiple regression based on October-January precipitation data from northeast Brazil rainfall monitoring sta-
tions and January SST and wind indices from the Pacific and Atlantic was used to predict March-June rainfall 
in the  region25. They concluded that the empirical model produced forecasts with smaller errors and bias than 
ECHAM4.5 postprocessed with model output statistics (MOS) methods.

Recently, a linear regression was employed to model the relationship between lagged global SST anomalies 
with the leading February-April (FMA) spatial precipitation modes in northeast Brazil derived from a Principal 
Component Analysis (PCA)39. The regression model was used to predict the leading PCA modes that were then 
transformed back to FMA precipitation and converted to probabilistic forecasts. The authors reported that the 
empirical model was better calibrated for the below-normal category than the NMME, whereas the reverse was 
true for the above-normal category.

A comprehensive evaluation of the ensemble learning approach for hydroclimate forecasting still constitutes 
a gap in this research field. Therefore, the present study aims to fill that gap by comprehensively evaluating an 
EANN model’s deterministic and probabilistic seasonal precipitation forecasting skill. The study also empha-
sizes the differences between EANN, traditional statistical and state-of-the-art dynamical models. In order to 
accomplish this, we evaluate the forecasting skill of a 1-month-lead EANN based on large-scale climate oscil-
lation indices to forecast the FMA precipitation spatial distribution in the Ceará state, northeastern Brazil. The 
term “month-lead” refers to the time difference in months between forecast time issuance and forecast time 
 validity40. The EANN performance is compared to traditional statistical and dynamical models that constitute 
Ceará’s operational seasonal forecasting system. Moreover, the advantages of combining ensemble learning and 
dynamical models into a hybrid MME are explored.

We chose the Ceará state because it is inserted in one of the most predictable regions on the planet in terms 
of seasonal  forecasting24,25, where both empirical and dynamical models have overall good seasonal forecasting 
skills. Moreover, the analysis is carried out in the FMA season due to its high interannual variability (Supple-
mentary Fig. 1). Finally, the Ceará Foundation for Meteorology and Water Resources (Funceme) provides a daily 
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precipitation gridded data set based on the interpolation of its dense rainfall monitoring network. This network 
has been subject to several  studies25,41–47.

The remainder of the paper is organized as follows: Sect. "Data" presents the data sets. Section "Methods" 
describes the methodology used to construct the EANN and the verification procedure. The comparison between 
statistical and dynamical models is discussed in section "Results", followed by an evaluation of possible MME 
combinations. Finally, Section "Summary and discussion" presents a summary, a discussion of the main results, 
and recommendations for future empirical modelling studies.

Data
Gridded daily precipitation data
The Funceme’s daily precipitation data set is a gridded data set with a spatial resolution of 0.15° × 0.15°, which 
spans from 1974 to the present. It is constructed based on an ordinary kriging interpolation of the 550 non-
recording rain gauges that cover all 184 municipalities of Ceará. When transmitted to the institute, the observa-
tions go through an internal consistency check, and prior to the interpolation, they are submitted to an outlier’s 
filter (personal communication, 2022). This gridded data set is updated daily and is one of the main monitoring 
tools used by the institute to assess the temporal and spatial distribution of precipitation over several  timescales48.

The following will briefly describe the stations’ geographical distribution and density per grid cell (Supple-
mentary Fig. 2). A detailed evaluation of the Funceme gridded data set is beyond the scope of this paper. In the 
first decade, the coverage was coarse, and most stations were in the northern coast, northwestern, and southern 
parts of Ceará (Supplementary Fig. 2a)—only 26% of the grid cells comprised at least one station during this 
period. Through the 1980s (Supplementary Fig. 2b and g) and 1990s (Supplementary Fig. 2c and h), the number 
of rain gauges increased across all regions of Ceará, and the number of grid cells with at least one station grew to 
37% and 44%, respectively. The period between 2000 and 2009 depicted the network’s most significant expan-
sion, and the rain gauge spatial distribution became more homogeneous (Supplementary Fig. 2d). The station 
density also considerably improved, and the number of grid cells comprising at least one station increased to 
55% (Supplementary Fig. 2i). In the last decade, the stations’ geographical distribution and density remained 
unchanged (Supplementary Figs. 2e and j).

Explanatory and response variables
The response variable of the present study is the FMA total precipitation over the Ceará state, computed at each 
grid point of Funceme’s daily gridded data set. As explanatory variables, October–November-December (OND) 
averaged values of the Oceanic Niño Index (ONI), TNA and TSA indices are used. The Extended Reconstructed 
SST  v549 and 10 m wind from ERA5  reanalysis50 are used to compute the indices. The linear trend is removed 
from all gridded data sets at each grid point before the analysis.

The ONI is computed as a 3-month running mean of the SST anomalies in the Niño 3.4 region. Both Atlantic 
indices are derived from an MCA applied to SST and 10-m wind anomalies over the tropical  Atlantic30. In the 
original paper, the MCA applied to SST and 10 m wind between 1948 and 2001 depicts the Atlantic Meridi-
onal  Mode51 as the leading mode. In the present study, an MCA applied to the period between 1982 and 2015 
reveals the TNA and TSA as the first and second modes, respectively. Therefore, the TNA and TSA indices are 
constructed by projecting the first and second pattern coefficients onto the SST anomalies. When applied to the 
period between 1952 and 2001, we obtained similar results to the original paper.

Maps of Spearman correlation are used to measure the monotonic relationship between OND climate indices 
and FMA precipitation anomalies at each grid point. The Spearman correlation is simply the Pearson correlation 
computed using the ranks of data, which can be simplified to

where  Di is the difference in ranks between the ith of n data pairs.

Dynamical models forecasts
The NMME is a coupled ocean–atmosphere forecast system that produces real-time forecasts on the seasonal-
to-interannual time scales since August 2011. The ensemble comprises coupled dynamical models from several 
institutions in the United States and Canada. We use 1982–2021 January initializations of the February, March 
and April forecasts of monthly precipitation rates from three models that constitute the latest version of the 
NMME (NMME4)  project52. These values are converted to FMA total precipitation. The other four models that 
constitute the NMME4 are not used because the 2021 January initializations were not available for download by 
the time the analysis was conducted.

We also use the FMA total precipitation forecasts issued in January from the ECHAM4.6 model, an Atmos-
pheric Global Circulation Model developed at Max Planck Institute for Meteorology and configured at T42 spec-
tral truncation, giving a spatial resolution of approximately 2.8°, and with 19 vertical levels from the surface to 
10 hPa. A 20-member ECHAM4.6 ensemble was operationally implemented at Funceme’s data center to produce 
real-time seasonal forecasts in 2011. An AMIP-type run models the initial conditions of the atmosphere (starting 
in 1961), and the model is forced by persisted monthly observed SSTs (NOAA Optimum Interpolation SST V2)53.

The outputs of each dynamical model are bilinearly interpolated onto Funceme’s precipitation data set grid 
resolution for forecast verification. The relevant information about the models used in this study is shown in 
Supplementary Table 1.

(1)r = 1−
6
∑n

i=1 D
2
i

n
(

n2 − 1
) ,



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:20429  | https://doi.org/10.1038/s41598-023-47841-y

www.nature.com/scientificreports/

Methods
Ensemble of artificial neural networks
Machine learning models such as ANN can learn complex nonlinear relationships between explanatory and 
response variables. ANN is one of the most frequently used nonlinear regression methods since it can approxi-
mate every sufficiently smooth function of the inputs, yielding low-bias  estimates19. On the other hand, ANNs 
are considered unstable predictors because they are sensitive to small changes, for instance, in their topology, 
initial weights and training  set54. Changing one or several of these aspects results in a different network with 
different generalization patterns (high variance). A successful way to address this problem is combining multiple 
networks with small changes among them to accomplish the same  task21,55,56. Each ensemble member is known 
to make different errors, but when combined, their similarities (signal) are highlighted, whereas their differences 
(noise) are  diminished18.

This study employs the multi-layer perceptron ANN, a feedforward network consisting of three layers: input, 
hidden and output. Each ANN is trained using the standard backpropagation  algorithm57, which updates the 
weight matrix using the gradient of the loss function and a learning rate parameter set as  10–1. The ANN archi-
tecture comprises one input layer with a number of units equal to the number of explanatory variables, one 
hidden layer with three units and one output layer with one unit. L2 regularization is used to reduce overfitting, 
which inflates the loss function by adding the squared magnitude of coefficients multiplied by a regularization 
constant set as  10–3. The hyperbolic tangent and linear activation functions are used in the hidden and output 
layers, respectively. The network training stops when the gradient of the loss function is less than  10–2 or reaches 
up to 10,000 epochs. The models are implemented using Tensorflow and Keras libraries for Python 3.9.

The ensemble members are derived using the Bagging algorithm, an approach based on the bootstrap statis-
tical resampling to create diverse subsets from the original training  set58. The subsets have the same size as the 
original training set and are created by random sampling with replacement of the n instances. Each instance has 
a probability 1/n of being chosen to populate a subsample.

An ANN ensemble is trained at each precipitation data set grid point. The number of ensemble members is set 
to 30. As shown in the results (subsection "Effect of the ensemble size"), this number is enough to achieve good 
generalization ability. The same ANN hyperparameters are used in every grid point and were defined through 
trial and error. Specifically, the leave-one-out cross-validation (described in subsection "Forecast verification and 
evaluation metrics") is conducted for different combinations of hyperparameters. The combination that gives 
the best cross-validated RMSE results is shown in this paper. A flowchart illustrating the training and prediction 
procedures is shown in Fig. 1.

Traditional statistical models
A multiple linear regression (MLR) based on the ordinary least squares algorithm is implemented for determin-
istic  forecasts59. For probabilistic forecasts, a multinomial logistic regression (MNLR) is  implemented60. This 
extension of the binary logistic regression supports multi-class classification problems. The MNLR parameters 
are optimized by maximizing the log-likelihood function.

Forecast verification and evaluation metrics
The evaluation of each ensemble is conducted through leave-one-out cross-validation. This procedure uses all 
observations of the predictand to estimate the prediction errors in a way that allows each observation to be 
treated, one at a time, as independent  data61.

For each dynamical model, we employ leave-one-out cross-validation between 1982 and 2021 to compute 
standardized anomalies. The held-out year is subtracted from the model’s long-term mean and then divided by 
its long-term standard deviation, both computed on the remaining 39 years. The evaluation metrics are then 
computed on each held-out standardized anomaly and then averaged. Using the model’s long-term mean and 
standard deviation when computing the anomalies corrects for both systematic bias in the mean and spread of 
the  model62.

For the EANN, each year between 1982 and 2021 is left out, and the long-term mean and standard deviation 
are computed on the remaining 39 years. Subsequently, the standardized anomalies are computed for those 
39 years and the years between 1975 and 1981, yielding 46 training samples. The period between 1982 and 2021 
was used to compute the long-term statistics for consistency with the computation of the dynamical model stand-
ardized anomalies. Moreover, the anomalies for the held-out year are also computed using the same long-term 
statistics as the training set. Following, the training samples are resampled 30 times with Bagging, and a model is 
fitted for each sub-sample. The fitted models are used to predict the omitted observation, yielding 30 predictions. 
Finally, these predictions are combined through a simple mean and counting method (described below), and the 
evaluation metrics are computed between the final predicted value and the omitted observation. The training 
and prediction procedures are illustrated in Fig. 1. This process is repeated for each held-out year, resulting in 40 
independent error values, and the model’s true performance is computed by averaging those errors.

Deterministic forecasts are formed by simple ensemble mean. Probabilistic forecasts are formed by count-
ing the number of members that fall in each of the equiprobable categories above normal (AN), near normal 
(NN) and below normal (BN) and dividing by the total number of members. We assume that FMA precipita-
tion anomalies in the Ceará state follow a Gaussian distribution. Thus, standardized anomalies above + 0.43 are 
considered AN, between + 0.43 and − 0.43 are considered NN and below − 0.43 are considered BN. This is a 
reasonable assumption since the Yule-Kendall skewness index for FMA precipitation is near zero in this  region39.

The deterministic evaluation metrics used are the Bias, which expresses the mean error of the forecasts, and 
the Root Mean Squared Error (RMSE), which measures the accuracy of the forecasts
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where ( yi , oi ) are the ith of the n pairs of ensemble average and observation.
The probabilistic performance is measured through the Ranked Probability Score (RPS), which is an evalu-

ation metric for multicategory events defined as

where  yi,j and  oi,j are the ith of the n forecast and observation pairs for the jth category of the J categories.
Reliability and sharpness diagrams are used to assess three important aspects of probabilistic forecasts: reli-

ability, resolution and sharpness. Reliability measures the consistency between the forecast probabilities and the 
relative frequency of the observed outcomes. Resolution quantifies the degree to which the observed outcomes 
change as the forecasts change. Sharpness expresses how often each forecast probability is  issued63. This study’s 
reliability and sharpness diagrams are based on a binning of K = 10 forecast probabilities over the whole geo-
graphic domain (area aggregated). Reliability and resolution of probabilistic forecasts can also be described as 
scalars by decomposing the Brier  score64:
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Figure 1.  Flowchart illustrating the training and prediction procedures. In the training phase, the training 
sample is resampled with replacement to create 30 sub-samples. Subsequently, each sub-sample is used to train 
an ANN. All ANNs use the same hyperparameters. In the prediction phase, a new sample goes in the trained 
ANNs, generating 30 different predictions. The predictions are combined through mean and counting methods, 
respectively, resulting in a deterministic and probabilistic forecast. The indices lat and lon represent the latitude 
and longitude of a specific grid point, indicating a point-wise training and prediction process.
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where  Nk is the number of times each forecast  yk is used in the collection of K forecasts being verified, with 
N =

∑K
k=1Nk . The conditional average observation ok , is expressed as

where ol = 1 if the event occurs for the lth forecast-event pair, ol = 0 otherwise, and the summation is over 
only those values of l corresponding to occasions when the forecast  yk was issued. The sample climatology, o , 
is given by

The reliability and resolution terms are negatively and positively oriented, respectively.
Confidence intervals for the reliability diagram statistics, reliability and resolution terms are determined 

using  bootstrapping65. The forecast-observation grid point pairs are resampled 1000 times, and the statistics 
are computed for each resulting sampling. The 2.5th and 97.5th percentiles determine the confidence intervals.

Results
Effect of the ensemble size
This section explores the effect of the ensemble size on the errors’ spatial distribution. Supplementary Fig. 3 
shows boxplots summarizing the changes of cross-validation Bias (top panel), RMSE (middle panel), and RPS 
(bottom panel) over all the grid points with respect to the ensemble size.

Both Bias (Supplementary Fig. 3—top panel) minimum and maximum values are almost reduced by half as 
the number of members increases from 1 to 5. They are further reduced and then stabilized with a 30-member 
ensemble. An interesting aspect of the bias distribution is that the median does not change, suggesting that the 
single model is enough to produce low-bias estimates in some grid points. Nevertheless, increasing the ensemble 
size results in a bias reduction in most of the grid points, evidenced by the narrowing of the distribution.

For the RMSE (Supplementary Fig. 3—middle panel) and RPS (Supplementary Fig. 3—bottom panel), not 
only do the distributions become narrower with the increase of the ensemble size but the median is also reduced, 
suggesting that there is an overall improvement in the generalization ability. As in the bias case, stability is 
achieved with an ensemble of 30 members.

Comparison of empirical and dynamical models
Deterministic evaluation of individual models
The deterministic accuracy, measured as RMSE, is shown in Fig. 2. The statistical models performance in the 
northern Ceará resembles the best dynamical models, i.e., the CanCM4i and the GEM-NEMO. The EANN has 
better accuracy than the MLR close to the coast. The TSA index has the highest Spearman correlation with FMA 
precipitation (Supplementary Fig. 4) in this region. Other studies also confirm that lagged SST anomalies in the 
southern tropical Atlantic have good correlations with FMA precipitation anomalies in northern Ceará39,66,67.

In the western Ceará, all three indices have important signals, although each has its highest correlation values 
in different areas. TSA is the most important index in the northern area, close to the coast, with correlations 
above 0.4 in most grid points, followed by ONI. TNA does not play an important role there. All models present 
similar error patterns in this area, except CCSM4. ONI is the most important predictor in the central-western 
region, followed by TSA. TNA correlations increase, ranging between -0.2 to -0.4 in most of this area. All models 
perform similarly, although ECHAM4.6 and CCSM4 have slightly better performance. Further south, TNA is the 
index with the highest correlation values, followed by ONI and TSA. In this region, CCSM4 is the model with 
the lowest RMSE, whereas CanCM4i and GEM-NEMO present the highest error values.

In the eastern and central regions of Ceará, the indices have smaller correlations with precipitation than in 
the western and northern parts. ONI and TSA have absolute correlation values ranging from 0.2 to 0.4 in most 
grid points, while TNA correlations are between − 0.2 and 0 overall. ECHAM4.6 and GEM-NEMO are the two 
models with the smallest errors in the northeastern region, whereas CCSM4 and the statistical models perform 
better in the central region.

In the southern Ceará, both Atlantic indices have absolute correlation coefficients below 0.2, and most of the 
diminished skill comes from ONI. This is a high-altitude region and far from the Atlantic. Although the Atlantic 
ITCZ mainly controls the rainfall regime there, orography and the influence of frontal systems also play impor-
tant  roles68, which could explain the small correlation coefficients. The limited climate indices signal results in 
the worst performance of the statistical models in terms of RMSE, except for the eastern boundary, where ONI 
presents moderate correlations (− 0.6 to − 0.4) with precipitation. CCSM4 and ECHAM4.6 have the highest 
accuracy in this region, and CanCM4i has the lowest, followed by the EANN and the MLR.
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A summary of the deterministic accuracy is shown in Table 1. CCSM4 has the lowest median RMSE, followed 
by the statistical models. CanCM4i has the highest median error. A two-sample t-test at a 5% significance level 
is performed to assess the null hypothesis of equal population mean among models’ forecasts (Supplementary 
Table 2). The EANN is statistically different from three out of the five models. ECHAM4.6 and GEM-NEMO 
are statistically different from every other model, whereas CanCM4i and the MLR are only different from two 
of the other models.

Probabilistic evaluation of individual models
The maps of cross-validation RPS (Fig. 3) resemble those of RMSE. Overall, the statistical models have more accu-
racy in the central-northern region of Ceará than most of the dynamical models (northward of 5°S). Nevertheless, 

Figure 2.  Cross-validation RMSE maps of the EANN (top left), MLR (bottom left), ECHAM4.6 (top 
middle), GEM-NEMO (bottom middle), CanCM4i (top right) and CCSM4 (bottom right). The colorbar is in 
standardized units.

Table 1.  A summary of the median metrics of the field forecasts. These metrics are computed over each grid 
point and averaged over time.

Model

Metric

RMSE RPS

EANN 0.71 0.38

ECHAM4.6 0.72 0.40

CanCM4i 0.75 0.40

MLR/MNLR 0.71 0.39

GEM-NEMO 0.72 0.37

CCSM4 0.70 0.41
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GEM-NEMO outperforms all other models in this region, except for the northern border, where the EANN 
stands out. CCSM4 has the best accuracy between 5° and 7°S, reproducing the RMSE pattern. All models present 
high RPS in the southmost region, with the EANN having overall higher values than the other models.

The reliability and sharpness diagrams, along with the reliability (REL) and resolution (RES) terms for each 
equiprobable category, are shown in Fig. 4. The statistical models provide the best-calibrated probabilistic fore-
casts for BN and AN categories, supported by the smallest area-aggregated reliability values. When comparing 
statistical models, the MNLR has a lower REL, while the EANN has a better RES. This difference can be under-
stood by examining their sharpness diagrams. Most of the MNLR probability density is close to the climatological 
probability (0.33), resulting in a low-resolution term (bars in the bottom-left panel of Fig. 4). On the other hand, 
the EANN sharpness diagram (bars in the top-left panel of Fig. 4) shows that the extreme probabilities are issued 
more often than the climatological probability. For instance, the AN largest probabilities (0.9–1.0) are issued 
almost as many times as the probability range containing the climatology (0.3–0.4).

The EANN reliability diagram reveals a good agreement between forecast probabilities and their relative 
observed frequencies for forecast bins between 0 and 0.8 of the BN category, although with small under-forecast-
ing biases (red line in Fig. 4—top-left panel). The AN category is also well-calibrated for forecast bins between 
0 and 0.7 (blue line in Fig. 4—top-left panel). However, for large forecast probabilities (> 70% for AN and > 80% 
for BN), the EANN presents over-forecasting biases. The sharpness diagram reveals that the model often used 
the BN and AN smallest probabilities (0–0.1), which is expected since in the presence of a strong signal (a strong 
El Nino or La Nina, for instance), the model members usually agree that one of the extreme categories has a low 
likelihood of  occurrence69. Nevertheless, because of the high variance of ANN models, there is hardly a general 
agreement among all members that the opposite tercile is the most likely one, with some falling in the NN cat-
egory. This is supported by the low frequency of the largest probability bin (0.9–1.0) of both extreme terciles and 
the smallest probability bin (0–0.1) of the NN tercile in the EANN sharpness diagram (Fig. 4—top-left panel).

The dynamical models have calibration-function slopes shallower than the 1:1 reference line for BN and AN 
categories, indicating overconfident forecasts. CCSM4 (Fig. 4—bottom-right panel) and GEM-NEMO (Fig. 4—
bottom-middle panel) provide the best-calibrated probabilities for BN (red line) and AN (blue line) categories 
among the dynamical models, evidenced by their low REL term. GEM-NEMO features higher RES terms of the 
extreme categories than the other models (except for the BN category of ECHAM4.6), indicating good discerning 
between different observed situations. ECHAM4.6 presents over-forecasting biases associated with probabilities 

Figure 3.  Same as Fig. 2 but for RPS.
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above 0.3 of the AN category (blue line in Fig. 4—top-middle panel). CanCM4i and GEM-NEMO have similar 
biases, although to a lesser degree than ECHAM4.6. All dynamical models often use the largest and smallest 
probabilities of BN and AN categories, consistent with overconfidence. Overall, they all have better resolution 
than the EANN.

Both empirical and dynamical models depict a bad-calibrated NN category with poor resolution. This is a 
well-known deficiency of seasonal forecasting systems since strong signals do not substantially influence prob-
abilities in the NN category as in the extreme categories and, thus, are less likely to fall beyond the climatology 
 forecast69,70.

A summary of the probabilistic accuracy is shown in Table 1. GEM-NEMO has the lowest median RPS, fol-
lowed by the EANN. CCSM4 has the highest median RPS.

Forecast verification of multi‑model ensembles
The MME made of the individual NMME models results in an overall reduction of the RMSE (Fig. 5—left 
map) and RPS (Fig. 6—left map). Consequently, RES and REL terms of all equiprobable categories also improve 
(Fig. 7—top panel). The most striking impact of using the MME is the reduction of conditional biases, evidenced 
by calibration functions (lines in Fig. 7—top panel) that deviate less from the reference 1:1 line than the indi-
vidual models.

Nevertheless, using only dynamical models in the MME still results in overconfident forecasts, depicted by 
calibration-function slopes shallower than the reference 1:1 line. Calibration of overconfident forecasts relies 
on adjusting the extreme probabilities to be less  extreme61. Including the EANN in the MME improves this 
aspect by inhibiting the excessive use of the largest probabilities. This can be observed by a reduction of the last 
forecast bin on the sharpness diagram of both AN (blue bars) and BN (red bars) categories when the EANN is 
combined with the NMME models (Fig. 7—middle panel). This reduction is more pronounced in the BN than in 
the AN category, which is explained by the higher frequency of the latter category than the former in the EANN 
sharpness diagram. Both REL and RES terms are improved. Another study also found that combining an MCA 
forecasting model and dynamical models from the DEMETER project improved the reliability and resolution of 
seasonal rainfall forecasts in northeastern Brazil compared to individual  predictions38. Moreover, including the 
EANN in the MME leads to an overall reduction of RMSE (Table 2—middle column) and RPS (Table 2—right 
column), especially in the central and northern areas (Fig. 5 and Fig. 6—middle maps).

Incorporating ECHAM4.6 into the hybrid MME further reduces the RMSE (Fig. 5—right map, Table 2—mid-
dle column) and RPS (Fig. 6—right panel, Table 2—right column). Nevertheless, a degradation of the REL term 
is observed due to an increase of middle-range probabilities over-forecasting bias of both BN (red line) and AN 
(blue line) categories (Fig. 7—bottom panel).

As in the case of the individual models, a two-sample t-test is performed to check whether the MMEs forecasts 
are different in the population mean (Supplementary Table 3). Only the NMME-EANN and the NMME-EANN-
ECHAM4.6 are statistically different.

Figure 4.  Reliability and sharpness diagrams of the EANN (left), ECHAM4.6 (top middle), GEM-NEMO 
(bottom middle), CanCM4i (top right) and CCSM4 (bottom right). Blue lines and bars represent forecasts in the 
above tercile, green the normal and red the below. Alphanumeric insets show the reliability (REL) and resolution 
(RES) terms of the Brier Score. Error bars and values in parenthesis indicate 95% bootstrap confidence intervals.
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Summary and discussion
This study assessed the deterministic and probabilistic performance of a 1-month-lead EANN using OND 
climate indices from the Atlantic and Pacific Oceans to forecast the FMA precipitation anomalies in Ceará, 
northeast Brazil. We also proposed integrating the forecasts of the EANN and dynamical models and analyzed 
the advantages of using this hybrid MME.

The EANN deterministic and probabilistic performance closely followed the lagged correlation between 
climate indices and precipitation. Its performance is better in regions where at least one index has moderate 
correlation coefficients (e.g., northern Ceará) or where multiple indices are less correlated with FMA precipita-
tion (e.g., eastern Ceará). On the other hand, the model’s worst performance is observed in the southern region, 
where only ONI has a weak signal. A spatial comparison of the EANN with traditional statistical models and 
the dynamical models that currently constitute the operational seasonal forecasting system of Ceará showed that 
the EANN was among the models with the smallest RMSE and RPS in most regions.

The analysis of area-aggregated probabilistic statistics showed that the EANN is a well-calibrated model with 
intermediate confidence. Its sharpness diagrams revealed that it issues fewer probability forecasts close to the 
climatology than the MNLR, resulting in its better resolution but worse reliability. On the other hand, the EANN 
issues fewer large probabilities than dynamical models, resulting in a worse resolution but a better calibration of 
the former. Further analysis of the EANN sharpness diagram indicated underconfidence in issuing the largest 
probabilities (0.9–1.0) of AN and BN categories due to its high inter-member variance that hindered a general 
agreement among all single networks. Good forecasting requires both reliability and resolution, but neither attrib-
ute alone is sufficient. Therefore, achieving a balance between them is a favorable characteristic of the EANN.

The MME composed of NMME models improved the deterministic and probabilistic forecasting skills across 
all regions of Ceará compared to the results of individual models. It also led to better-calibrated forecasts. Nev-
ertheless, the MME composed only of dynamical models yielded overconfident forecasts. Integrating the EANN 

Figure 5.  Cross-validation RMSE maps of the MME combinations made of: NMME models (left), NMME 
models and EANN (middle) and NMME models, EANN and ECHAM4.6 (right). The colorbar is in 
standardized units.

Figure 6.  Same as Fig. 5 but for RPS.
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Figure 7.  Same as Fig. 4 but for the MMEs made of: NMME models (top), NMME models and EANN 
(middle) and NMME models, EANN and ECHAM4.6 (bottom).
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improved this aspect by preventing the excessive use of the highest probabilities of both BN and AN categories, 
enhancing reliability and resolution terms. An overall reduction of RMSE and RPS was also observed, especially 
in the central and northern regions. Furthermore, adding ECHAM4.6 to the hybrid MME further improved 
forecasting skills. However, the extreme categories area-aggregated reliability was degraded due to an increase 
of middle-range probabilities over-forecasting bias.

According to these results, the EANN is a powerful seasonal forecasting tool with different forecasting char-
acteristics from traditional statistical and dynamical models. In addition, the EANN is being easy to implement 
and computationally cheaper than dynamical models. Moreover, we also show that integrating ensemble learning 
and dynamical models into a hybrid MME leads to better probabilistic forecasts. This result encourages further 
research and application of such hybrid forecasting systems.

Further steps include evaluating the seasonal forecasting skill of the EANN for longer lead times and other 
regions of the globe and improving aspects of the modelling procedure. For instance, an MOS method could 
replace the nonparametric count method for better-calibrated probabilistic  forecasts71. Moreover, the predictors 
used were indices that require prior knowledge of the climate modes that impact the regional climate variability 
and exhaustive testing of potential methods to compute those indices. Therefore, improvements could be achieved 
using a more generalized input variable selection method. For instance, a recent study defined the predictors 
as a linear combination of global temperature field (SST over ocean and 2-m air temperature over land)72. In 
this method, the point-wise correlation of the temperature field and the predictand worked as weights for the 
linear combination.

Data availability
The datasets generated and/or analysed during the current study are available in the Funceme, NOAA and 
Copernicus repositories, http:// www3. funce me. br/ web/ stora ge/ obs/ inter polat ion_ krigi ng_ funce me_ valid_ rain/, 
https:// www. ncei. noaa. gov/ produ cts/ exten ded- recon struc ted- sst, https:// cds. clima te. coper nicus. eu/ cdsapp# !/ 
datas et/ reana lysis- era5- single- levels- month ly- means? tab= overv iew.
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