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Abstract: This work presents an estimate of the slip activation potential of existing fractures in
a remote northern community located on Canadian Shield rocks for geothermal purposes. To
accomplish this objective, we analyzed outcrop analogues and recorded geometrical properties of
fractures, namely the strike and dip. Then, we estimated the stress regime in the study area through
an empirical approach and performed a probabilistic slip tendency analysis. This allowed us to
determine the slip probability of the pre-existing fractures at the current state of stress, the orientation
of fractures that are most likely to be activated and the fluid pressures needed for the slip activation
of pre-existing fractures, which are key aspects for developing Enhanced Geothermal Systems. The
results of this simple, yet effective, analysis suggest that at the current state of stress, the pre-existing
natural fractures are relatively stable, and an injection pressure of about 12.5 MPa/km could be
required to activate the most optimally oriented fractures to slip. An injection of water at this pressure
gradient could open the optimally oriented pre-existing fractures and enhance the permeability of
the reservoir for geothermal fluid extraction. The information described in this paper provides a
significant contribution to the geothermal research underway in remote northern communities.

Keywords: Monte Carlo analysis; scanline sampling; fracture network; empirical stress regime;
geothermal energy; enhanced geothermal systems; Canadian Shield

1. Introduction

Canada is an energy-intensive and energetically contrasting country (Figure 1; [1]).
Canadians in the densely populated southern region are connected to a provincially in-
terconnected electricity grid, powered by a variety of energy sources. In the Northwest
Territories and the Yukon, most communities are connected to independent territorial grids
dominated by hydro power. The situation in Nunavut and Nunavik (an administrative re-
gion of Quebec) is however quite different as there are no territorial grids, and communities
generate their own electricity using generators connected to micro-grids [1,2]. Despite some
renewable power projects and several initiatives to diversify the Nunavut and Nunavik
communities’ energy portfolio, diesel is still their main source of energy [1–3].

Beyond being not connected to the provincial power grid, the communities in Nunavut
and Nunavik are also not connected by road. Airplanes and boats are the only means of
transportation for goods, materials, and people to reach the communities. The residents of
Nunavut and Nunavik are thus compelled to provide for themselves, since the communities
cannot share infrastructural assets and resources.
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Another particularity of the communities in Nunavut and Nunavik is that they are
located on the crystalline basement rocks of the Canadian Shield. Metamorphic and igneous
rocks, Archean to Paleoproterozoic in age, dominate the geology of these regions [4,5].

An assessment of the Canadian geothermal potential carried out by Grasby et al. [6]
suggested that engineered/enhanced geothermal systems (EGS) could be an option to ex-
tract the geothermal resource in the communities located on the Canadian Shield (Figure 1).
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Figure 1. Distribution of geothermal potential in Canada by end use and location of power grid
and remote communities (adapted from [6,7]). Provinces: BC—British Columbia; AB—Alberta;
SK—Saskatchewan; MB—Manitoba; ON—Ontario; QC—Quebec; NL—Newfoundland and Labrador;
NB—New Brunswick; NS—Nova Scotia; PE—Prince Edward. Territories: YT—Yukon Territory;
NT—Northwest Territories; NU—Nunavut.

EGS is an emerging technology that arose from a concept initiated in Los Alamos
(USA), Cornwall (UK), and Soultz-sous-Forêts (France) for exploiting geothermal resources
in low-permeability rocks [8–14]. The central concept is to engineer fluid flow pathways
between two or more wells to permit circulation of fluid through the reservoir rock mass to
extract heat at rates of commercial interest.

EGS technology is needed in low-porosity fractured crystalline rocks whose natural
permeability is very low due to poor hydraulic connectivity within the natural fracture
network, requiring stimulation to increase the permeability of the rock mass [12]. Generally,
hydraulic stimulation techniques are used for this objective.

During hydraulic stimulation, a high-pressure fluid is injected through the wellbore
into the crystalline rock mass, leading to the shearing and opening of natural fractures,
enhancing the hydraulic connectivity of these pre-existing fractures in the reservoir far
field [11–13,15,16], and perhaps developing new fractures and extending existing fractures.
In a successful hydraulic stimulation treatment, geothermal wells become better connected
to the reservoir far field, and the geothermal resource can be exploited by circulating
fluid between wells through the newly stimulated reservoir where the newly conductive
fractures act as natural heat exchangers.
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Permeability enhancement via hydraulic stimulation is commonly associated with two
main mechanisms [15]: (1) hydraulic fracturing (opening of existing fractures and initiation
and propagation of new tensile fractures), and (2) hydraulic shearing (activation of existing
discontinuities in shear, leading to irreversible dilation). These two mechanisms are often
referred to as Mode I and Mode II fracturing and correspond to the “end members” of the
stimulation mechanisms while mixed-mode stimulation mechanisms can also occur [17,18].
This is because the pressure required for natural fractures to fail in shear may be lower than
the pressure required for pure tensile fracturing (Figure 2; [19]).
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Figure 2. Example of Mohr diagram showing the fields in which extension (1), hybrid (2) and
shear (3) fractures occur [20]. Reprinted/adapted with permission from Ref. [20]. Copyright 2021,
The Authors.

Fluid injection changes the in situ pore pressure, and the effective normal stresses
on the relatively weaker slip planes are reduced, diminishing the frictional strength. This
leads to the activation of slip along faults and joints within the fracture network that are
favorably aligned with the principal stress orientations (i.e., at a 30◦ ± 5◦ from the maximum
horizontal stress [21]). Shearing and dilation of natural pre-existing fractures result in a
permanent increase in the rock mass permeability to levels suitable for the extraction
of geothermal resources [12,13,15,16]. A review of hydraulic stimulation experiments
highlights that hydroshearing will be more effective in areas with high differential stresses
and hence high shear stress (Figure 2; [22]), a condition referred to as “critically stressed” if
the joint is close to the onset of the shear slip.

However, the activation of natural fractures can generate seismic events. In fact,
a major issue associated with hydraulic stimulation is induced seismicity, especially in
critically stressed crystalline basement rocks [23,24].

Monitoring of injection-induced seismicity is commonly used to assess how successful
hydraulic stimulation treatments were and to evaluate the development of flow pathways
within the reservoir. The microseismic event cloud collected as part of the monitoring
program helps in designing further drilling into the reservoir [13,25].
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Although induced seismicity is necessary for reservoir development, if not properly
assessed, predicted, and controlled, it can become a major barrier to the development of
geothermal energy [26]. Most induced events are of low magnitude (below local magnitude
ML = 2) and produce ground motions far below the threshold to be felt [27]. However,
large magnitude (ML > 2.5) events may be felt at the surface and lead to the suspension
of an EGS project [27], such as occurred with the Basel Deep Heat Mining project in
Switzerland [22,26].

A primary induced seismicity assessment tool is to test the likelihood of fracture
activation (i.e., shear slip) related to stress field perturbations [28]. This can be carried out
by applying the technique of slip tendency analysis [29] and Mohr diagrams to answer
fundamental questions that arise at early stages of geothermal exploration [20,30]:

1. What is the probability of shear slip on pre-existing fractures at the current state
of stress?

2. Which orientations of fractures are most likely to be activated?
3. What in situ fluid pressure is required to overcome the shear stress and activate

pre-existing fractures?

The propensity of a surface to undergo shear slip depends on its frictional charac-
teristics and the ratio of shear to normal effective stress acting on the surface—the slip
tendency [29]. Slip tendency analysis allows us to investigate slip potential along any
fracture orientation with respect to the ambient stress field, and consequently, assess the
slip probability subject to a pore pressure perturbation.

Usually, a slip tendency analysis is carried out in a deterministic manner, considering
a single analysis as definitive. However, subsurface conditions are uncertain and each
geomechanical parameter that influences the rate and magnitude of injection-induced
seismicity has inherent levels of uncertainty. Understanding this uncertainty is helpful
to make well-informed decisions regarding user-controlled parameters (e.g., injection
pressure, flow rate, fluid volume, etc.) [31]. Thus, a probabilistic slip tendency analysis is a
relevant risk management and mitigation tool [31].

A probabilistic slip tendency analysis considers the inherent uncertainties associated
with each input variable, including stress magnitudes and orientations, fault dip directions,
angles, and frictional strengths. In a probabilistic slip tendency analysis, the uncertain-
ties of the input variables (e.g., pressure, distance) are considered, allowing for a more
comprehensive evaluation of slip probability in various scenarios. The slip tendency is
directly influenced by the magnitude of the principal stresses, meaning that any changes
in these stresses will directly impact the outcome. Therefore, a probabilistic approach
provides a more thorough and suitable method for assessing the slip probability across
multiple scenarios.

Minimum requirements to carry out a slip tendency analysis, either deterministic or
probabilistic, are an accurate knowledge of the stress field and of the geometrical properties
of fractures, namely the strike and dip.

In the absence of subsurface data, outcrop analogues are useful tools to acquire infor-
mation regarding the geometrical properties of fractures [32–35]. Care is necessary when
analyzing fractures from exposed outcrops, since these may be a result of exhumation
and stress relief and may not persist in the deep subsurface [32,35]. Nevertheless, outcrop
analogues are particularly useful in remote environments where subsurface data are un-
available, and it can be assumed that for a first-order analysis in crystalline rock masses,
there are no significant differences between rocks at the surface and at depth.

The International Society for Rock Mechanics (ISRM) suggests overcoring and hy-
draulic fracturing and/or hydraulic testing of pre-existing fractures as methods to estimate
rock stress [36–38]. However, in remote areas, these methods often cannot be applied, and
a first-order estimate of the stress field relies on a compilation of available structural and
rock mass fabric data and the application of empirical relationships. This is the first step to
establish an in situ stress model [39].
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The objective of this work is to estimate the slip activation potential of existing fractures
in subsurface crystalline basement rocks from outcrop analogues and empirical stress
predictions. The interactive computer tool developed by Yaghoubi et al. [31,40] for a
probabilistic assessment of the slip tendency of faults at the Alberta No. 1 geothermal
project site in Alberta, Canada, and in the Montney Formation, is used to make the necessary
calculations and to plot Mohr diagrams to analyze the relationships between stresses, fluid
pressure, and fractures, and provide a graphic representation of the effective stress states
and slip potential.

First, we present the results of the fracture network characterization based on outcrop
analogues, and the estimates of the stress field based on data compilation and empirical
relationships. This information is then used in the slip tendency analysis. The remote
community of Kuujjuaq in Nunavik (study area; Figure 1) is used as an example. This
community was selected since geothermal research has been previously conducted at this
location [41–50], and this work represents a further contribution.

2. Fracture Network Characterization

Geometrical properties of fractures (i.e., strike and dip) were sampled on exposed
outcrop surfaces using the scanline sampling method (Figure 3) and a transit compass
corrected for the−21◦1′ magnetic declination in Kuujjuaq [51]. Since no distinction between
joints and faults was made while collecting information, the term fracture is preferred and
used in this work to group joints and faults.
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Figure 3. Example of scanline sampling method on an exposed outcrop surface in the study area.

In this method, a tape is laid on the outcrop surface perpendicular to the fracture sets
observed [52,53]. Information about the strike and dip of each fracture intersecting the tape
is then recorded.

Six fracture sampling areas around the community of Kuujjuaq were selected (Figure 4)
considering their lithology, quality and extension of the rock exposure, and proximity to
the community.
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Figure 4. Geological map of Kuujjuaq (adapted from [5]) with indication of each fracture sampling
area (A1–A5) and rose diagrams produced from data collection. LP—Lac Pingiajjulik fault. The rose
diagrams were produced using the software GrapherTM version 19.3.323 26 March 2022, from Golden
Software [54].

Sampling areas A1 and A2 are paragneiss outcrops, sampling areas A3 and A4 are
outcrops of diorite, sampling area A5 is an outcrop in the paragneiss–tonalite contact, and
sampling area A6 is an outcrop showing the contact of tonalite with gabbro.

Sampling area A1 is characterized by two main fracture sets: E-W and NW-SE. Sam-
pling area A2 is also characterized by two main sets: E-W and NNE-SSW. Sampling area
A3 is characterized by one main fracture set oriented WNW-ESE and a minor set oriented
NW-SE. Sampling area A4 is characterized by one main fracture set oriented E-W and two
minor sets oriented NNW-SSE and NE-SW. Sampling area A5 is characterized by two main
sets, one oriented N-S and the other oriented NE-SW. In sampling area A6, three main sets
were identified: NW-SE, E-W, and NE-SW. Grouping fracture information from these six
sampling areas suggests four main fracture sets: F1—E-W; F2—N-S; F3—NNW-SSE; and
F4—NW-SE (Figure 5).
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Figure 5. (a) Stereographic projection of the poles to planes and 1% area contour, (b) rose diagram
and (c) relative frequency of the fracture strike planes. F—Lac Pingiajjulik fault plane. Stereographic
projection of the poles to planes and 1% area contour were produced using the software Stereonet
version 11.3.7 of Allmendinger et al. [55]. Rose diagram was produced using the software GrapherTM

version 19.3.323 26 March 2022, from Golden Software [54].

A major issue in Kuujjuaq is that the majority of analyzed outcrops have only horizon-
tal surfaces. An exception is outcrop A6 (Figure 6). Here, a vertical surface was available
for the analysis, and the dip and dip direction of each fracture could be accurately char-
acterized. The fractures observed suggest a high-angle inclination, with the dip ranging
between 60 and 80◦.
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Figure 6. Outcrop on sampling area A6 fractures identified and stereonet canvas produced from
fracture interpretation [49]. Reprinted/adapted with permission from Ref. [49]. Copyright 2023, The
Authors. Red line in the stereonet indicates the outcrop orientation. Stereonet canvas produced using
the software Stereonet version 11.3.7 of Allmendinger et al. [55].
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3. Empirical Stress Regime Estimates

Stress data are almost nonexistent in remote northern regions in Canada (Figure 7a).
This, associated with the lack of recorded seismic events (Figure 7b), makes empirical stress
predictions a useful tool for a first-order assessment of the activation potential of fractures.
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Figure 7. (a) Stress map [56] and (b) seismic hazard map [57] of Québec province [48]. Reprinted/
adapted with permission from Ref. [48]. Copyright 2023, The Authors. The arrows in (a) indicate
the regional trend of the contemporary stress field and the orientation of the maximum horizontal
compression based on Adams [58].

The first step in assessing the stress regime through an empirical approach is to
compile the available information on the orientation and magnitude of the principal stress
components (Table 1). This compilation suggests a regional compression trend of NE–SW
for the maximum horizontal stress in the Canadian Shield [58–64], except at the Raglan
mining site where the maximum horizontal stress is oriented N–S [64]. The available stress
data suggest a reverse faulting regime [58,60,63–65]. The gradient of the vertical stress is
found to be about 26.0 MPa km−1 [59–66]. The gradient of the minimum horizontal stress
ranges between 23.0 and 37.8 MPa km−1, while the gradient for the maximum horizontal
stress is between 34.4 and 51.3 MPa km−1 [59,60,63–66].
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Table 1. Principal stresses in the Canadian Shield based on the literature review [59–66].

Principal
Stress Orientation Magnitude Observations Ref.

SV --- (0.0260–0.0324)z 0 < z < 2200 m

SV < SH,average [61,62]
SH,average ---

9.9 + 0.0371z 0 < z < 900 m

33.4 + 0.0111z 900 < z 2200 m

SV --- (0.0266 ± 0.008)z

60 < z < 1890 m SV < Shmin < SHmax [59]
SH,average --- 5.9 + 0.0349z

SHmax --- 8.2 + 0.0422z

Shmin --- 3.6 + 0.0276z

SV --- 0.0285z

0 < z < 2200 m SV < Shmin < SHmax [63]
S1 N248◦/10◦ 12.1 + (0.0403 ± 0.0020)z

S2 N300–340◦/0◦ 6.4 + (0.0293 ± 0.0019)z

S3 Vertical 1.4 + (0.0225 ± 0.0015)z

SV --- 0.0260z

0 < z < 6000 m SV < Shmin < SHmax [60]
S1 NE/horizontal 13.5 + 0.0344z

S2 NW/sub-horizontal 8.0 + 0.0233z

S3 Vertical 3.0 + 0.0180z

S1 N-S/horizontal 0.0513z

--- SV < Shmin < SHmax [65]S2 E-W/horizontal 0.0378z

S3 Vertical 0.0270z

SV --- (0.0258–0.0263)z

12 < z < 2552 m SV < Shmin < SHmax [64]
S1 N227◦/02◦ (0.040 ± 0.001)z − (9.2 ± 1.5)

S2 N310◦/08◦ (0.029 ± 0.001)z + (4.6 ± 1.159)

S3 N270◦/88◦ (0.021 ± 0.001)z − (0.8 ± 0.872)

SV --- 0.021z 0 < z < 1300 m

SV < Shmin < SHmax [66]
S1 --- 0.012z + 42.4

660 < z < 1300 mS2 --- 0.013z + 24.1

S3 --- 0.007z + 9.7

SV—vertical stress; SHmax—maximum horizontal stress; Shmin—minimum horizontal stress; SH,average—average

horizontal stress ( SHmax+Shmin
2 ); S1—maximum principal stress; S2—intermediate principal stress; S3—minimum

principal stress.

The second step of the empirical approach is applying empirical correlations for a first-
order approximation of the magnitude of the principal stresses and in situ fluid pressure.

The vertical stress component can be simply estimated based on the weight of the
overlying rock at depth as [67]

SV = ρgz (1)

where SV (Pa) is the vertical stress, ρ (kg m−3) is the density of the geological materials, g
(m s−2) is the gravitational acceleration, and z (m) is depth.

The horizontal stress components were estimated based on the horizontal to vertical
stress ratio as [68] {

SHmax = kmaxSV
Shmin = kminSV

(2)
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where k (–) is the stress ratio coefficient and SHmax and Shmin (Pa) are the maximum
and minimum horizontal stresses, respectively. Stress ratio expressions obtained for the
Canadian Shield (Table 2) were used in this work.

Table 2. Horizontal to vertical stress ratios inferred for the Canadian Shield [60–62].

Stress Ratio Coefficient Expression Reference

kmax
357

z + 1.46 [62]
kmin

167
z + 1.10 [62]

kmax
272±8

z + 1.72 [63]
kmin

30±4
z + 0.86 [63]

kmax 7.44z−0.198 [60]
kmin 2.81z−0.120 [60]

kmax—maximum horizontal to vertical stress ratio; kmin—minimum horizontal to vertical stress ratio; z—depth
in meters.

The in situ fluid pressure can be estimated based on the pore-fluid factor [69,70]:

Pp = 0.4× SV (3)

where Pp (Pa) is the in situ fluid pressure and 0.4 is the pore to fluid factor assuming a
hydrostatic regime.

The Monte Carlo-based sensitivity analysis carried out by Miranda et al. [48]
to estimate the magnitude of the principal stresses suggests the following gradients:
27 ± 1.3 MPa km−1 for the vertical stress, 42 ± 5.7 MPa km−1 for the maximum horizontal
stress, and 30 ± 3 MPa km−1 for the minimum horizontal stress (Table 3). The gradient for
the in situ fluid pressure was estimated as 11 ± 0.5 MPa km−1 (Table 3). The value on the
left side of the ± sign corresponds to the mean, while the value on the right side of the
± sign corresponds to one standard deviation. The choice of using gradient values, i.e.,
MPa km−1, instead of absolute values in the analysis was to make the results independent
of depth.

Since each stress was estimated individually, the distributions overlap (Figure 8),
and some scenarios may be unrealistic (e.g., a normal fault regime). The compilation
of stress data measured in the Canadian Shield suggests a reverse faulting regime, with
SHmax = S1 and SV = S3 (Table 1). This allows us to eliminate unrealistic scenarios: for
example, assuming that the SV distribution is realistic, then normal faulting regimes can
be eliminated. Similarly, scenarios where Shmin > SHmax arises because of the random
sampling are rejected.
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Table 3. Estimated stress components [47].

Depth
(km)

Statistical
Parameters

Principal Stresses

SV
(MPa)

Shmin
(MPa)

SHmax
(MPa)

Pp
(MPa)

1

Mean 27 30 42 11
St dev 1.3 3.0 5.7 0.5

Median 26.8 30.3 42.9 10.9
[Min–Max] [24–30] [22–38] [28–56] [10–12]

2

Mean 54 57 75 22
St dev 2.6 5.0 10.2 0.9

Median 53.7 57.0 75.7 21.7
[Min–Max] [48–61] [44–71] [49–98] [19–24]

3

Mean 81 83 107 33
St dev 3.9 6.8 14.4 1.3

Median 80.5 83.6 108.1 32.6
[Min–Max] [73–91] [65–103] [71–139] [29–36]

4

Mean 108 110 138 44
St dev 5.2 8.7 18.7 1.8

Median 107.4 109.9 140.0 43.5
[Min–Max] [97–122] [85–136] [93–185] [39–48]

5

Mean 135 136 170 54
St dev 6.6 10.7 22.7 2.2

Median 134.2 137.1 171.2 54.3
[Min–Max] [121–152] [107–168] [113–226] [49–61]

SV—vertical stress; SHmax—maximum horizontal stress; Shmin—minimum horizontal stress; Pp—in situ
fluid pressure.

4. Slip Tendency Analysis and Reactivation Potential

A well-established method for assessing the fracture slip tendency under different
stress conditions is using Mohr diagrams and the Mohr–Coulomb yield criterion [29,71].
The method involves calculating the shear strength of a fracture and comparing it with
the maximum shear stress that the fracture can withstand before it slips [71]. The basic
equation for the Mohr–Coulomb yield criterion is

τ = c + (σ n − Pp
)
× tan(φ) (4)

where τ (Pa) is the shear stress acting on the fracture, c (Pa) is the cohesion of the fracture,
σn (Pa) is the normal stress acting on the fracture, Pp (Pa) is the pore pressure in the fracture
and φ (◦) is the angle of internal friction of the fracture. φ is equal to the friction coefficient
(µ) as

µ = tan(φ) (5)

For a cohesionless fracture, i.e., c = 0, the equation for the Mohr–Coulomb yield
criterion becomes

τ = µ(σ n − Pp
)

(6)

The fracture is unstable and will slip when the resolved shear stress becomes greater
than the effective normal stress multiplied by the friction coefficient acting on the fracture plane:

τ > µ(σ n − Pp
)

(7)

Meeting this condition generally requires the fracture to be hydraulically connected to
a source of pore pressure perturbation but also mechanically unstable, potentially leading
to the generation of seismic events as the slip takes place. The shear and normal stress
acting on a fracture plane can be estimated using mathematical equations that take into
account the stress tensor and the orientation of the fracture [71].
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Figure 9 shows the 3D Mohr diagram produced considering the average stress magni-
tude gradients based on the empirical stress regime estimates described in the previous
section (SHmax 42.1 MPa km−1, Shmin 30 MPa km−1, Sv 27 MPa km−1).
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with each principal stress component.

A point in the 3D Mohr diagram can represent a fracture plane with shear stress (τ) and
normal stress (σn) acting on it. The stability of the plane can be assessed by comparing the
shear and normal stresses to the Mohr–Coulomb yield criterion. For the case in our study,
with respect to the average stress magnitude gradient, the minimum required coefficient of
friction is 0.35 (Figure 9). This indicates that the ratio of shear stress (τ) to normal stress
(σn) acting on the most likely fracture to slip should be less than 0.35 for the rock mass to
remain stable.

This coefficient of friction is smaller than the typical coefficient of friction for joint and
fault surfaces in crystalline rock; usually it ranges between 0.6 and 1.0 [72]. Considering
the minimum required coefficient of friction is 0.35, most fractures are considered stable,
meaning they are not prone to slip under the existing stress conditions. However, the
stability of fractures is contingent upon the state of stress remaining constant. If the stress
conditions change, for example through thermoelastic processes as well as pore pressure
changes, the stability of fractures can be altered [73].

The pore pressure parameter in the Mohr–Coulomb yield criterion can be changed by
human intervention and thus alter the state of stress surrounding the fractures. This occurs
during hydraulic stimulation techniques used to increase the productivity of geothermal
reservoirs. Fluid injection increases the pore pressure in the surrounding interconnected
fractures, resulting in a reduction of the effective normal stress, thereby allowing stressed
fractures in the right orientation to slip more easily (Equation (9)). Furthermore, hydraulic
stimulation of the rock mass is intended to create new pathways for fluid flow [22], so that
a pore pressure perturbation can affect more distant fractures and potentially a critically
stressed fault. As the flow efficiency of the geothermal reservoir is improved by creating
better fracture conductivity in the natural fracture system, more structures are involved in
the pressure perturbation.

The critical pore pressure perturbation to trigger slip is expressed as

∆P = Pinjection − Pp (8)

where Pinjection (Pa) is the fluid pressure of the injected fluid.
Figure 10, displayed as a lower hemisphere stereonet, provides a visual representation

of the changes in pore pressure required for fractures to initiate slip considering the most
likely stress regime. Each point on the stereonet corresponds to a fracture in a particular
orientation; the color indicates the magnitude of the necessary pore pressure perturbation
for slip initiation. Fractures in the red regions require the smallest ∆P perturbation to cause
slip, while those in blue tones require the largest perturbation.
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Figure 10. Lower hemisphere stereonet showing critical injection pressure perturbation leading to
fracture slip. Each point in the graph represents a fracture pole identified in the field.

The stereonet suggests that fractures oriented perpendicular to the maximum horizon-
tal stress with a low dip angle, i.e., 30 ± 10◦, are under the most critical stress conditions.
Specifically, for this scenario, the injection pressure should be approximately ∆P = 10 MPa km−1

higher than the current estimated in situ fluid pressure of 10.9 MPa km−1.
However, the fractures observed in the field have high dip angles (60–80◦), making

them less critically stressed. Optimally oriented sets that require less injection fluid pressure
to be activated are WNW-ESE and N-S (∆P about 12.5 MPa km−1). The fracture sets striking
E-W and NE-SW would require a ∆P of about 17.5 MPa km−1 to induce slip. The least
slip-sensitive set is NW-SE, which is oriented parallel to the minimum horizontal stress.

The slip tendency of a fracture is expressed as

τ

(σ n − Pp
) ≥ µ (9)

In a Mohr–Coulomb shear slip assessment, different input parameters (e.g., stress,
friction angle) can be treated as random variables with specific statistical parameters. The
probabilities of slip can then be described as

Pfailure = P(τ − (σ n − Pp
)
×µ ≤ 0) (10)

This probabilistic slip tendency approach becomes particularly useful when dealing
with large uncertainty in each input parameter. As previously mentioned, and discussed by
Miranda et al. [48], there are uncertainties associated with the magnitude and orientation
of each principal stress as well as the value of pore pressure. These uncertainties associated
with the magnitude of three principal stresses are shown by the green error bars in Figure 9.
Uncertainties in the dip direction and dip angle of fractures also exist. A joint/fault is
seldom a straight discontinuity plane: it can have different shapes and orientations, ranging
from straight or planar fractures to irregular or curved cracks. The latter have even lower
slip tendencies because of their macroscopic roughness (deviation from planarity).

To account for these uncertainties in stress, pore pressure and fracture properties, we
utilized Monte Carlo probabilistic methods to generate a range of possible outcomes. The
Mohr–Coulomb yield criterion was then applied to each of these outcomes to determine
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the probability of fracture slip. This approach allowed for a more comprehensive analysis
of the potential for fracture slip, considering the different uncertainties in the system.
Figure 9 and Table 3 present distributions of three principal stress magnitudes and pore
pressure as inputs to the analysis. Recall that a constraint was imposed to neglect unrealistic
stress scenarios. Our analysis assumes that the friction coefficient ranges between 0.5 and
0.7 and that fracture dip direction and dip angle deviate by up to 5◦ compared to the
field measurement. This analysis was conducted using 10,000 random combinations of
parameters for each mapped fracture segment to assess the conditional probability of slip
as a function of pore pressure perturbation (∆P).

Using the uncertainty distributions and fracture properties as randomly selected
inputs, the distribution of critical injection pressure calculated from 10,000 scenarios shows a
wide range (Figure 11). The curve shows the cumulative probability of exceeding the critical
injection pressure, with higher probabilities indicating a greater likelihood of fracture slip.
The distribution can be used to estimate the range of injection pressures that are likely
to cause fracture slip, as well as the probability of such events occurring under different
injection scenarios. Results of the analysis indicate a very low probability of fracture slip
that increases with increasing pore pressure. However, when the injection pressure is raised
to 26 MPa/km, the probability of slip increases to 68%, which further escalates with a
higher injection pressure.
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Figure 11. Each curve represents the cumulative probability function of slip on each fracture at
current pressure. The hot color curve represents fractures with a higher slip tendency. The higher the
injection pressure, the more likely the fractures are to slip. An injection pressure of 30 MPa/km is
expected to result in a 95% fracture slip.

Tornado plots were used to visualize the sensitivity of injection pressure to slip for
each input parameter to evaluate the impact of uncertainties in specific parameters on the
slip tendency of a particular fracture plane. The parameters considered are ranked based
on the extent of variation in the resulting pore pressure to induce slip. The magnitude
of the variation indicates which parameters exert the most significant influence on the
calculated pore pressure required to induce slip. Figure 12 is an example of a tornado
plot, focusing on the fracture that has the highest slip tendency. For this specific case, the
fracture is particularly sensitive to variations in the Shmin gradient, as indicated by the error
bar associated with Shmin in Figure 9. It is important to note that the sensitivity analysis
may vary for each fracture, depending on its unique strike and dip angle.
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5. Discussion

The EGS is an emerging technology that could revolutionize energy supply in remote
northern communities located on Canadian Shield rocks. However, the EGS is still a
challenging technology with many development issues that need to be addressed. Pollack
et al. [74] compiled challenges experienced in world-wide EGS projects and found that:

• 6 sites ceased operations temporarily or shut down due to seismicity or seismicity concerns;
• 24 EGS projects were delayed or terminated due to drilling and plant operation issues,

such as holes and cracks in wellbore casing, stuck drill strings, and well collapses;
• 18 sites faced challenges in reservoir creation and circulation, such as insufficient

connectivity between the injection and production wells or water loss.

Despite all these potential roadblocks, Pollack et al. [74] also found that 29 sites
had successful stimulation experiences, and these sites are active and improving today’s
knowledge about EGS technology.

The main objective of this technology is to develop a low-impedance hydraulic con-
nection between injector and producer wells that will allow reasonable flow rates, minimal
thermal drawdown, minimal water losses, and induced seismicity at levels imperceptible
to the population. For these reasons, it is important to forecast how fractures will behave
during hydraulic stimulation treatments. This is tightly linked to the natural fracture
network properties at the target site, the in situ stress field and the friction properties of
the fractures.

Slip tendency analysis is a simple yet effective tool to answer questions that arise at
early stages of geothermal exploration:

1. What is the probability of shear slip of pre-existing fractures at the current state
of stress?

2. Which orientations of fractures are most likely to be activated?
3. What in situ fluid pressure is required to overcome the shear stress and activate

pre-existing fractures?

Considering the results of our analysis, field fracture observations, and empirical
stress regime estimates, none of the fractures at the target site are near a critical state of
stress, meaning a very low (<1%) probability of slippage under the current state of stress.
Nevertheless, if pore pressures change (i.e., hydraulic stimulation treatments or higher
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circulation pressures), the fracture sets making a 30◦ angle with the orientation of the
maximum horizontal stress (i.e., WNW-ESE and N-S) may be reactivated at an injection
pressure (∆P) of about 12.5 MPa km−1. A ∆P of about 17.5 MPa km−1 may be necessary
to reactivate the fracture sets parallel to the maximum horizontal stress (i.e., NE-SW) and
the E-W fracture set. The least optimally oriented set is the NW-SE fracture set, which is
oriented parallel to the minimum horizontal stress (depicted in blue in Figure 10). Again, it
is important to emphasize that these estimates are empirical, and several factors influence
how fractures behave during hydraulic stimulation. A more robust analysis including field
experiments would be necessary to validate our estimates.

This observation is somewhat in line with what was found with the first hydraulic
stimulation experiments at the Carnmenellis Granite, Cornwall, UK [25]. In this EGS site,
micro-seismicity patterns indicated anisotropic fracture-controlled flow closely related to
the orientation of the maximum horizontal stress [25]. It was deduced that, due to the
impact of the anisotropic stress field on fracture apertures, the preferential flow paths were
fractures favorably oriented to the maximum horizontal stress. These tend to be activated
in shear or in transtension. At Kuujjuaq, our study site, a detailed structural analysis
would be the next logical step to verify if a relationship between the fracture aperture and
orientation exists.

Additionally, it is important to emphasize that the injection pressure values to activate
the fractures are only valid if the most likely scenario in terms of stress prevails in the study
area. In instances where the differential stresses are smaller or larger than the average
value, the required activation injection pressure is different.

In a high differential stress scenario (σ1 − σ3 = 29 MPa km−1), the optimally oriented
fracture is near their critical stress state, and an injection pressure of ∆P ~ 2 MPa km−1

would likely lead to slip, and induced seismicity would be far more likely. However, in a
low differential stress scenario (σ1 − σ3 = 9 MPa km−1), this fracture would be activated at
injection pressures of ∆P ~ 24 MPa km−1 (Figure 11).

The influence of differential stress on hydraulic stimulation effectiveness has been
highlighted by Xie et al. [22] who compiled data from seven EGS sites and noticed that
where the differential stresses were large, less additional fluid pressure (∆P) was required
to activate shear slip of natural fractures. Their observations showed that the Hijiori EGS
project (Japan) is the least stressed and has the smallest differential stress. For this reason, it
required the most effort to trigger shear slip compared to, for instance, Rosemanowes (UK),
Soultz (France), and Basel (Switzerland) EGS projects. In other words, when the differential
stress is small, more fluid pressure is needed to move the Mohr stress circle to meet the slip
yield envelope.

It is also important to mention the role played by the intermediate principal stress.
The activation of pre-existing fracture planes is dependent on not only the change in the
maximum differential stress, but also the value of the intermediate stress. For example, if
the intermediate stress was equal to the minimum stress instead of equal to the maximum
stress in the worst-case stress scenario, then the required injection pressure to reactivate
the fractures would be less than 24 MPa km−1. Similarly, if the intermediate stress was
larger than assumed in the best-case stress scenario, then the fractures would not be at a
critical state of stress and an injection pressure of about 11 MPa km−1 would be necessary
to reactivate them.

The influence of external factors, such as an injection of cold water into a warm
medium, can also alter the state of stress, increasing the deviatoric stress. If this increases
the shear stress along favorably oriented discontinuities while reducing the normal stress,
the fractures move toward a more critical condition. This study only takes into account
pressure changes, but further research can be undertaken to consider temperature changes
as well.

Another aspect worth discussing is the lithological heterogeneity. The study area is
composed mainly by paragneiss rocks. However, diorite, gabbro, tonalite, and granites
can be found interlayering the paragneiss. Some rock types may exhibit higher or lower



Geosciences 2023, 13, 340 17 of 21

slip activation potential, and this could cause a heterogeneity in the system that would
change the analysis undertaken. To avoid adding more uncertainty sources to the analysis,
we considered the system to be homogeneous in terms of lithology. However, further
research is needed and should be undertaken to deepen the simple analysis carried out in
this work. Additionally, anisotropy was also not considered, but it could be included in a
more complex model.

The behavior of the Lac Pingiajjulik fault (see Figure 3 for location) during hydraulic
stimulation is another question that deserves further investigation. This corresponds to a
large-scale shear zone, and one of two scenarios can happen when it is stimulated: either
it acts as a preferential flow pathway, or it acts as a barrier to flow circulation. In either
case, the EGS must be properly designed to meet the goal of high flow rates, minimal
thermal drawdown, minimal water losses, and induced seismicity at levels imperceptible
to the population.

Hydraulic shearing experiments were conducted at the Grimsel Test Site in Switzerland
under the framework of the In-situ Stimulation and Circulation experiment [15,16]. The
rock volume tested is intercepted by two sets of shear zones of ductile (S1.0–S1.3) and
brittle-ductile (S3.1–S3.2) origin [75]. The first set of shear zones (S1.0 to S1.3) includes three
ductile shear zones, which show strong foliation and mylonitization. The second set (S3.1
and S3.2) includes two shear zones that bind a densely fractured zone in between.

The hydraulic stimulation experiments reveal that fractures associated with one out
of two shear zone types were hydraulically reactivated [76]. The authors also noted that
the two shear zone types not only differ in terms of tectonic genesis and architecture, but
transmissivity change, jacking pressure, and seismic activity were also different for the two
shear zone types. These observations led them to suggest that shear zone architectures
govern the seismo-hydromechanical response. Based on the in situ experiments, Krietsch
et al. [76] observed that elevated fracture fluid pressures associated with the stimulations
propagated mostly along the stimulated shear zones, and that flow is channelized within
the shear zones. Furthermore, Villiger et al. [77] observed three seismic clusters associated
with the stimulation of fractures in the damage zone of the shear zone.

The hydraulic stimulation experiments carried out at the Grimsel Test Site highlight
the need to properly characterize the tectonic genesis and architecture of the shear zone
crossing Kuujjuaq. Further structural analysis of the area is the next logical step to gain
insights into its behavior.

It is also worth discussing how useful hydraulic experiments could be to decrease
the uncertainty found in this research work. Hydraulic stimulation experiments and
microseismic monitoring are nowadays relatively feasible and could provide important
insights into the reservoir development. However, carrying out these field experiments is
quite challenging in northern and remote environments where there is no road linking the
southern and northern areas and the equipment needs to be shipped by plain or boat. A
first-order assessment in this situation is necessary to trigger interest for further investments
in geothermal research.

6. Conclusions

Crystalline rocks can host important geothermal resources, but the permeability of
these reservoirs is usually too low for the system to be commercially viable. The EGS is an
emerging technology that can help increase the productivity of reservoirs by enhancing
hydraulic connections within the fracture network. However, the EGS is still a challenging
technology: issues associated with reservoir development and circulation and induced
seismicity are the main roadblocks to the successful deployment of this technology.

Therefore, understanding how the fracture network will behave when hydraulically
stimulated is a key step toward the development of the EGS. The objective of this work was
to estimate the slip activation potential of existing fractures in subsurface crystalline base-
ment rocks from outcrop analogues in the Kuujjuaq area and empirical stress predictions.
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With this work, we addressed questions that arise at early stages of geothermal
exploration, namely “What is the probability of shear slip of the pre-existing fractures at the
current state of stress?”, “Which orientations of fractures are most likely to be activated?”,
and “What in situ fluid pressure is required to overcome the shear stress and activate
pre-existing fractures?”.

Our analysis using a probabilistic slip tendency approach suggests that, at the current
state of stress, the probability of the pre-existing fractures slipping is very low (<1%). The
analysis also suggests that the optimally oriented fracture sets that can be activated at
lower injection pressures are WNW-ESE and N-S. An injection pressure of 12.5 MPa km−1

could be necessary to activate shear slip; however, this is only valid considering the
most likely stress scenario. If the differential stress is larger or smaller than the average
scenario, then larger or smaller injection pressures are required to reactivate the optimally
oriented fractures.

The next logical and needed steps should include more accurate stress measurements
than the empirical stress estimates used in this work and a comprehensive structural char-
acterization of the joints, faults, and shear zones in the study area. Hydraulic stimulation
experiments would also be needed to not only gain insights into the reservoir and its
behavior when pressurized, but also to properly design the EGS to meet the targets of high
flow rates, minimal thermal drawdown, minimal water losses, and induced seismicity at
levels imperceptible to the population.
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