
1.  Introduction
The distribution of drinking water is an indispensable service provided by municipalities and water utilities. 
Given the rapid population growth and consequent increasing pressure on water resources, it is fundamental for 
cities to optimize the use of existing water supplies. Optimization of water use includes, among other aspects, 
minimizing water loss due to leaks and bursts in the system. Pipe breaks are a recurrent issue in aging water 
distribution systems (WDSs) and common causes of this problem are pipe deterioration (i.e., corrosion), weather 
(e.g., extreme cold, drought events), suboptimal installation practices, excessive pressure and/or excessive pres-
sure fluctuation (Rezaei et al., 2015). Yet, despite continuing efforts to cope with this problem, unacceptable 
amounts of water continue to be lost across WDS worldwide. It has been estimated that more than 32 billion cubic 
meters/year of treated water are lost in water distribution networks across the world due to leaks and burst in pipes 
(Kingdon et al., 2006). More alarmingly, this situation is not getting any better. For instance, according to a recent 
report, the overall failure rate of pipes across the United States and Canada have increased by 27% from 2012 to 
2018 (Folkman, 2018). These failures can cause many problems such as lower level of pressure heads offered 
to customers, floods, water contamination (Sadiq et al., 2006), service interruption to the end user (Yamijala 
et al., 2009) as well as revenue loss for water utilities. Hence, rapid burst detection is necessary for water utilities 
to intervene early and minimize these various impacts.

Over the past two decades, many methods have been developed to decrease the time between a burst and its 
detection (Li et al., 2015). Hardware-based methods use highly specialized equipment such as leak noise loggers, 
gas injection, and ground penetrating radar (Nakhkash & Mahmood-Zadeh, 2004) are currently the most accurate 
in detecting and locating leaks and bursts (Puust et al., 2010). However, such methods are generally expensive, 
labor-intensive and/or require interrupting the pipeline operation during usage (Romano et al., 2014). Recent 
development in hydraulic sensor technology and on-line data acquisition systems (SCADA; Supervisory Control 
and Data Acquisition) have fostered the emergence of various types of software-based methods relying on 
hydraulic modeling, statistical analysis, and artificial intelligence (e.g., Mounce et al., 2010; Romano et al., 2014; 
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Wang et al., 2020; Ye & Fenner, 2011) such as artificial neural networks (ANNs, Mounce et al., 2002), deep 
learning (Wang et  al.,  2020; Zhou et  al.,  2019) and support vector machines (Mounce et  al.,  2011), among 
others. Software-based detection methods can be classified as transient-state and non-transient methods (Wan 
et al., 2022). The main idea behind both these methods is that bursts and leaks will leave “signatures” in hydrau-
lic variables measurements (e.g., flow, pressure). In the case of transient-state methods, breaks are detected 
by analyzing the transient signal due to sudden changes in pressure inside pipes where a break occurs (e.g., 
Navarro-Díaz et al., 2022). Non-transient methods are based on algorithms that are trained to detect deviations 
from the usual patterns of hydraulic variables measurements during a burst event (Bakker et al., 2014; Y. Wu 
& Liu,  2017; Ye & Fenner,  2011). This can be done either by comparing the hydraulic measurements (e.g., 
flow, pressure) to values predicted by hydraulic simulation models (hydraulic model-based methods; see e.g., 
Ma et al., 2022) or by applying data mining algorithms or statistical analysis to the acquired data to distinguish 
abnormal values from the usual patterns that may be caused by events such as breaks (data-drive methods). As 
an alternative, Geelen et al.  (2019) suggested analyzing sudden changes in pressure measurements instead of 
deviations from the usual pattern. Recent reviews on software-based methods for water pipe break detection are 
provided by Hu et al. (2021) and Wan et al. (2022).

In days without any special events or issues (e.g., pipe burst, fire hydrant use), hydraulic data follows a specific 
periodicity (daily, weekly, Figure 1) driven by consuming patterns of end users (Y. Wu & Liu, 2017). A typi-
cal daily pattern is characterized by a flow peak during mornings and minimum flow at night (see Figure 1d). 
However, water distribution networks do not operate under ideal conditions all the time. Hydraulic monitoring 
may produce missing or false data due to problems with sensors or issues with the communication between 
sensors and data loggers (Quevedo et al., 2010; Y. Wu & Liu, 2017). Moreover, water demand varies due to 
many different factors (e.g., weather, occurrence of festivals, big consumers, maintenance work, and seasons), 
meaning that the time series of flow is non-stationary (Y. Wu & Liu, 2017). Hydraulic monitoring and outlier 
detection should thus be conducted with methods that do not assume stationarity such as gradient boosted trees, 
random forests, and ANN, among others (Wan et al., 2022). Jian et al.  (2022) suggested the use of convolu-
tional neural networks to build pattern recognition and use it to flag leaks and bursts. While successful, these 
approaches require a large amount of data, may be computationally intensive and/or have poor scalability. In the 
present study, it is proposed the use of Bayesian dynamic linear models (DLMs), which can also accommodate 
non-stationarity and has a very efficient (and fast) inference procedure when approximated with the principle of 
discount factors (see further below). Moreover, the DLM goes beyond a simple time series model that use only 
historical water flow as the only input and can explore the complex effects of various external factors that affect 
water flow in a water distribution network. This approach has been used in engineering, epidemiology, econom-
ics, to mention a few examples. Examples for applications of DLM are diverse: modeling electric load curves 
(Migon & Alves, 2013), hydrological forecasting (Ciupak et al., 2015; Ravines et al., 2008) and forecasting of 
epidemiologic time series for public health surveillance (Nobre et al., 2001). See Schmidt and Lopes (2019) for 
a recent review.

To be able to distinguish an abnormal event (e.g., burst) from a usual water flow pattern, algorithms generally 
rely on error thresholds. The value of these thresholds should not be static as water flow intensity vary over time 
(daily, weekly, yearly; Figure 1). The size and composition of district meter areas (DMA) also affects water flow. 
For instance, the presence of a large industrial consumer may have considerable influence in water flow patterns. 
Thus, a threshold used for outlier detection in one DMA may not be appropriate for a different DMA. Ye and 
Fenner  (2014) proposed a Kalman filter algorithm with a method to generate thresholds based on mean and 
standard deviation of historical residuals that would thus be adaptable to different WDSs. However, the Kalman 
filter proposed by Ye and Fenner (2014) only assumes a time varying level. The problem with this approach is 
that there might be structures left in the residual (e.g., cycles, association with regressors) that are not related to 
bursts. In contrast, the Bayesian DLM not only can include time-varying level, slope, and seasonality but also 
external factors such as temperature and dummy variables associated with the days of the week and holidays. 
Given that the coefficients associated with these variables change smoothly with time, nonlinear relationships are 
easily accommodated. Moreover, it analyzes observations in real time, updating the posterior distribution of the 
parameters as new observations are available. This allows the model to adapt over time to changes in the WDS 
that may affect the flow time series. Finally, outlier detection in water flow time series is proposed by continu-
ously evaluating the model predictive performance using a monitoring approach. Model monitoring within the 
DLM framework has been applied extensively in the field of structural health monitoring and examples can be 
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found for gas turbines (Lipowsky et al., 2010), bridges (Liu & Fan, 2020), and even wheels in high-speed trains 
(Wang, Ni, & Wang, 2020). However, to the best of our knowledge, there are no studies evaluating its potential to 
monitor water distribution networks in the context of pipe burst detection.

The objective of this study is to propose and assess the performance of a Bayesian DLM coupled with a model 
monitoring approach for burst detection. The proposed model is fitted to a real flow data set from two DMAs 
from Halifax, Canada. The novelty of the proposed approach relies, first, in the application of a Bayesian DLM 
combined with the use of the principle of discount factors (Migon & Alves, 2013) to estimate the system variance. 
The latter speeds up the model inference compared to stochastic simulations that are commonly applied for this 
task. Second, the monitoring tool using the Bayes factor is applied to detect pipe bursts. Finally, we demonstrate 
how the interpretation of the model coefficients can be used by practitioners to gain valuable insights into the 
modeled system. In Section 2.1, the data sets used in the study are presented along with the description of data 
cleaning and transformation procedures. Section 2.2 describes the Bayesian univariate DLM, with a detailed 

Figure 1.  Temporal structure of the flow time-series. (a) Six-month flow time series (01 January to 30 June 2015); (b) 
1-month flow time series (April 2015); (c) 1-week flow time series (8–14 April 2015), (d) 24 hr flow time series (8 April 
2015). The red dashed quadrant represents the progressive zooming of the time series from panels (a–d).
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description of the filtering and forecasting equations. In Section 2.3, an outlier detection method is proposed to 
detect pipe breaks in water flow time series. Section 3 describes the results obtained when the model is fitted 
to the flow data sets and discusses the performance and applicability of the proposed methodology, while the 
conclusions of this study are presented in Section 4.

2.  Methods
2.1.  Data

2.1.1.  Data Set

We used water flow data sets from Halifax Water (the water utility from the city of Halifax, Canada) for two of 
their DMA (Figure 2). The first DMA is composed mostly of single residential units, and includes a university, 
two hospitals, a busy commercial district and a small number of high-rise residential buildings. It has 25 km of 
water mains, 1,900 service connections and an average pressure of 50 psi (∼344.7 kPa). The DMA has three 
feeding points, all monitored by flow meters, and no outlets (see Figure 2a). The second DMA (Figure 2b) is 
a predominantly residential zone, with a few commercial areas (one large mall, a couple of smaller commer-
cial complexes) and a small number of multi-residential and office buildings. It is also larger than the first 
one, composed of 59 km of water mains and 3,800 service connections with an average pressure of 66.7 psi 
(∼459.9 kPa). In addition to the two feeding points, this DMA has two outlets, all monitored by flow meters. The 
two data sets contain the flow measurements (m³/h) at 30 min intervals between 1 January 2015 and 31 December 
2016 for all flowmeters. They also contain water pressure (psi) measured at similar frequency and date range from 
a single pressure sensor that is paired with one of the flow meters.

Summary statistics for the flow and pressure meters are presented in Table 1. Temperature data was gathered 
from Halifax Stanfield INT'L A meteorological station, which was obtained from Environment Canada's website 
(https://climat.meteo.gc.ca/index_e.html). This data is composed of hourly temperature measurements (in 
Celsius) that were restrained to the same date range as the hydraulic data. Hourly temperatures ranged from 
−21.7°C during the coldest day in winter up to +30.0°C during the warmest day in summer, with a mean value 
of 6.95°C for the entire time series. Halifax Water also provided a historical break data set, containing the dates 
for breaks that occurred in the water distribution network of the studied DMA (black solid circles in Figure 2). A 
total of 8 and 28 breaks occurred during the studied period in DMAs 1 and 2, respectively, and these were used 
to evaluate the performance of the monitoring tool developed within the DLM framework..

Figure 2.  The pipeline network (gray lines), the layout of flow meters (represented by location markers) and the pipe burst location (black solid circles) for the 
two DMAs. (a) DMA 1: The summary statistics of inlet flow meters 1, 2, and 3 (green, yellow, and violet, respectively) are detailed in Table 1. The pressure meter 
is installed at the same location of inlet flow meter 2 (yellow location marker). (b) DMA 2: The summary statistics of inlet flow meters 4 and 5 (orange and red, 
respectively), and outlet flow meters 1 and 2 (blue and light green, respectively) are detailed in Table 1. The pressure meter for this district meter area (DMA) is 
installed at the same location of inlet flow meter 5 (red location marker).
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2.1.2.  Data Cleaning and Wrangling

Some sensors presented a few missing or false data due to operation problems in the communication system 
between the data logger and the sensors. Flow (or pressure) sensor readings with repeated values on three or 
more consecutive measurements were considered to be false data (see Table 1). While there is a chance that the 
variable measured presents the same value over three time steps, it is extremely unlikely given the precision of the 
readings, and thus those values were treated as missing values in the model. The total amount of false and miss-
ing data per sensor ranged from 0.07% up to 5.51% of the total number of measurements (Table 1). To decrease 
the complexity of the model, the 30 min data from pressure and flow were grouped into hours by computing the 
average of two consecutive observations in each hour. If one of the two values in 1 hr was missing, then the other 
was taken to represent the measurement at that hour. Then, the time series of total flow was created by adding up 
the values from the inlet flow meters and subtracting the values from the outlet flow meters (in case of DMA 2) at 
each time step. However, in any time step where one flow meter had a missing value, the total flow for that time 
step was considered as missing, regardless of whether the values of other flow meters were validated. Here, total 
flow represents the total water demand from the DMA.

The final flow time series contained 17,544 hourly measurements, in which 902 (5.14%) and 175 (1%) were 
considered as missing following the above-mentioned criteria in DMAs 1 and 2, respectively. Accounting for 
missing values within a Bayesian framework is straightforward: the model parameters are not updated when 
encountering them in the time series (West & Harrison, 1997). More details on how the DLM deals with missing 
data is presented in Section 2.2.2. Finally, after cleaning, flow values were log-transformed to have an approxi-
mate normal distribution. The model forecast was transformed back to the original scale for better interpretability.

Note that the pressure time series also presented some missing values (Table 1). To deal with missing values in 
water pressure, a DLM similar to the one described for the flow time-series was used to estimate these missing 
records. All components from the original DLM were used (i.e., trend, dummy variables, temperature, and the 
auto-regressive component). Note that flow was not included as a predictor to avoid circularity. All missing or 
false observations in the original pressure time series were substituted with the estimated values from this model. 
More details are presented in the “Results and Discussion” section.

2.1.3.  Synthetic Bursts

Given that the historical break data set contains only the dates of the pipe bursts, the detection time could not be 
evaluated. To overcome this issue, 16 scenarios were created wherein synthetic outliers were added to the initial 
flow time series of 30 dates selected at random, excluding dates with real bursts or with missing flow values from 
the selection. Each scenario represented a combination of four different starting timestamps where the outliers 
would be added and three types of bursts size. The starting timestamps were 2:00 a.m., 8:00 a.m., 2:00 p.m., and 
8:00 p.m., which aimed at capturing the peaks and troughs in water demand (Wang et al., 2020). Pipe bursts of 
different sizes were created by adding outliers that were equivalent to 8%, 10%, 12%, or 15% of the average flow 

Table 1 
Summary Statistics of the Raw Data From Flow and Pressure Sensors

DMA Sensor Max Min Median Mean SD Missing Repeated (false) False + missing

1 Inlet Flow meter 1 (m 3/h) 1,004.22 4.70 203.62 204.37 50.4 11 707 2.04%

1 Inlet Flow meter 2 (m 3/h) 299.83 12.54 52.92 53.47 13.7 10 1,925 5.51%

1 Inlet Flow meter 3 (m 3/h) 381.46 5.56 77.64 78.44 17.9 10 1,079 3.10%

1 Inlet Pressure meter 1 (psi) 63.35 22.06 50.97 50.93 2.04 10 485 1.41%

2 Inlet Flow meter 4 (m 3/h) 545.5 0.031 114.12 111.23 53.3 6 21 0.07%

2 Inlet Flow meter 5 (m 3/h) 317.60 0.0033 97.23 88.30 31.2 5 21 0.07%

2 Outlet Flow meter 1 (m 3/h) 183.72 0.041 0.94 3.80 8.9 7 0 0.02%

2 Outlet Flow meter 2 (m 3/h) 250.01 0.0051 47.01 40.32 20.9 25 360 1.10%

2 Inlet Pressure meter 2 (psi) 82.2 0.1 70.21 69.27 2.6 5 21 0.07%

Note. The total number of measurements (N) per meter is 35,088. Max, maximum value; Min, minimum value, SD, standard deviation; Missing, number of missing 
values; Repeated, number of repeated values in sequence (considered as false). False + Missing, percentage of unrecorded or false data from each sensor.
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of the selected date to the actual flow of these timestamps. Finally, for each synthetic burst, 10 outliers (repre-
senting 10 hr in the flow data set used in this study) were added, starting at the above-mentioned timestamps (for 
example, from 2:00 a.m. to 11:00 a.m., from 8:00 a.m. to 5:00 p.m. and so on.

2.2.  Bayesian DLM

One can think of a DLM as a linear regression model where the regression coefficients are allowed to vary 
smoothly over time. These models can capture time series features such as trend, seasonality, and regression asso-
ciations (Petris et al., 2009). DLMs are a specific case of a broad class of models called state-space models (Petris 
et  al.,  2009) wherein an observable/measurable phenomenon (yt) at a given time t depends on an underlying 
unobserved (latent) state (θt) of a particular system. The DLM allows the modeler to update their beliefs about the 
current value of this unobserved state each time a new observation is made using an associated algorithm named 
the Kalman filter. In the present study, separate daily DLMs were built for each hour (h) of the day (t), resulting 
in a total of 24 univariate dynamic models. Each hour of the day shows a particular flow pattern and this approach 
allows to capture this temporal structure, in addition to be much faster to fit than multivariate models (Migon 
& Alves, 2013). Although other authors have modeled flow at higher resolutions (e.g., 15 min intervals; Ye & 
Fenner, 2011), the historical break data set used in this study only provided information on a day of the break, 
hence dividing the time series into finer resolution series would not make a difference for performance analysis. 
The univariate DLM is composed of two main equations: the observation equation (Equation 1), which decom-
poses the observed time series as the sum of some specific components and a white noise random variable, and 
the system equation (Equation 2), which describes how the components of the system evolve smoothly over time. 
More specifically, let yt,h be the flow time series observed at hour h of day t, then the DLM is defined as follows:

𝑦𝑦𝑡𝑡𝑡𝑡 = 𝐹𝐹𝑇𝑇
𝑡𝑡𝑡𝑡
𝜃𝜃𝑡𝑡𝑡𝑡 + 𝑣𝑣𝑡𝑡𝑡𝑡, 𝑣𝑣𝑡𝑡𝑡𝑡 ∼ 𝑁𝑁

[

0, 𝑉𝑉𝑡𝑡𝑡𝑡

]

� (1)

𝜃𝜃𝑡𝑡𝑡𝑡 = 𝐺𝐺𝐺𝐺𝑡𝑡−1,ℎ + 𝜔𝜔𝑡𝑡𝑡𝑡, 𝜔𝜔𝑡𝑡𝑡𝑡 ∼ 𝑁𝑁
[

0,𝑊𝑊𝑡𝑡𝑡𝑡

]

� (2)

where θt,h is a p-dimensional unknown state parameter vector at hour h and day t. In other words, the vector θt,h 
contains the p coefficients of the different DLM components (e.g., level, slope, predictors, dummies, and auto 
regressive component, see Section 2.2.1). Ft,h is a p-dimensional column-vector that contains known structures 
(e.g., level, slope, seasonality, predictors) for day t and hour h, and G is a p x p matrix of known quantities describ-
ing the state evolution (in this study it is constant over time, although it can accommodate changes over time). 
Finally, vt,h is a Gaussian random variable, representing measurement error, with mean 0 and variance Vt,h; and 
wt,h, on the other hand, is p-dimensional random vector, which captures the errors of the evolution equation of the 
parameters, it follows a zero mean, multivariate normal distribution with covariance matrix Wt,h. The errors vt,h 
and wt,h are mutually independent as well as independent across time. To simplify the notation, from now on the 
index h is dropped and t is used to refer to time.

2.2.1.  Model Components

The DLM decomposes an observation at a given time step t as a combination of elementary components, each 
describing different features of the time series, such as trend, seasonality, and association with predictors.

Trends in DLM are commonly represented by second order polynomials (Pole et al., 1994), which describe either 
growth or decline in the system level. The state vector representing this component 𝐴𝐴 𝐴𝐴1𝑡𝑡 = (𝜇𝜇1,𝑡𝑡, 𝜇𝜇2,𝑡𝑡)

𝑇𝑇  comprises 
two components: the level and the slope. The DLM trend is represented as follows:

�1� = (1, 0)� and�1 =
⎛

⎜

⎜

⎝

1 1

0 1

⎞

⎟

⎟

⎠

�

The state vector from the second component 𝐴𝐴 𝐴𝐴2𝑡𝑡 = (𝛽𝛽1,𝑡𝑡, 𝛽𝛽2,𝑡𝑡, 𝛽𝛽3,𝑡𝑡)
𝑇𝑇  includes three predictors, one representing the 

auto-regressive order 1 (yt-1) coefficient (β1t), and the two others representing the coefficients (β2t) and (β3t), for 
pressure (Presst) and temperature (Tempt), respectively. This block is defined as follows:

𝐹𝐹2𝑡𝑡 = (𝑦𝑦𝑡𝑡−1,Press𝑡𝑡,Temp𝑡𝑡)
𝑇𝑇
and𝐺𝐺2 = 𝐼𝐼3�

where I3 denotes the 3-dimensional identity matrix.
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Water demand varies between weekdays and weekends/holidays (see Figure 1) and dummy variables were included 
to consider this variation. The third component describes the effect of these two dummy variables d1,t and d2,t, where 
weekends are represented by (d1t = 0, d2t = 1) and workdays by (d1t = 1, d2t = 0), with the exception of Monday which 
was defined as the baseline for the dummies (d1t = 0, d2t = 0). Christmas, Thanksgiving, and other holidays during 
2015 and 2016 were considered as weekends (d1t = 0, d2t = 1) in the dummy variables. The state vector for the third 
component 𝐴𝐴 𝐴𝐴3𝑡𝑡 = (𝛾𝛾1,𝑡𝑡, 𝛾𝛾2,𝑡𝑡)

𝑇𝑇 contains the coefficients for these dummy variables. This block is defined as follows:

𝐹𝐹3𝑡𝑡 = (𝑑𝑑1𝑡𝑡, 𝑑𝑑2𝑡𝑡)
𝑇𝑇
and𝐺𝐺3 = 𝐼𝐼2�

where I2 is the 2-dimensional identity matrix. Finally, these three components are then combined using the super-
position principle (West & Harrison, 1997) into the final design and evolution matrices:

� = (��
1�, �

�
2� , �

�
3� )

� and G =

⎡

⎢

⎢

⎢

⎢

⎣

�1 0 0

0 �2 0

0 0 �3

⎤

⎥

⎥

⎥

⎥

⎦

�

2.2.2.  Bayesian Forecasting

Bayesian inference is recursive by nature where model parameters are updated as new observations are added, 
making it a natural fit for time series analysis (Petris et al., 2009). Bayesian forecasting in DLMs is controlled by 
a series of equations that are commonly known as the Kalman filter algorithm, which are described below. They 
present univariate models for each hour of the day, but h is omitted for clearer readability. The model is built 
under the assumption of an unknown constant variance, such that Vt = V for all time steps t and that the covari-
ance structure of the evolution equation is known through the use of discount factors. A diagram of the model is 
presented in Figure 3.

1.	 �Model initialization
�The joint prior distribution for the initial state parameter vector θ0 and the observational variance V is a normal 
inverse-gamma (N - IG) distribution, that is,

𝜃𝜃0, 𝑉𝑉 ∼ 𝑁𝑁 − 𝐼𝐼𝐼𝐼

(

𝑚𝑚0, 𝐶𝐶0,
𝑛𝑛0

2
,
𝑛𝑛0𝑆𝑆0

2

)

�

Figure 3.  Flowchart for the dynamic linear model initialization and updating.
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�where n0 > 0 is the prior degrees of freedom and S0 is a prior point estimate of the observational variance V, 
m0 (p x 1) and C0 (p x p) are the prior mean and variance (C0 = 10 2IP) of the state parameter θ0, conditional 
on the observational variance V; Ip denotes a p-dimensional identity matrix; p = 7 being the total number of 
parameters specified for water flow modeling in this study (see model specification in Section 2.2.1). The 
prior mean vector was set to m0 = (ŷh, 0, 0, 0, 0, 0, 0), where the level component was set to the average flow 
value (ŷh) for hour h (to simply locate the model at the correct scale of the observations) while the remaining 
components were initiated at 0. The prior variance 𝐴𝐴 𝐴𝐴0 is a diagonal p-dimensional matrix with elements equal 
to 100, which reflect great uncertainty about this prior distribution. In other words, we let the information 
from the data drive the inference procedure.
�The equations that follow describe the evolution distributions. Let Dt = {Yt, Dt-1} where Dt denotes the set of 
information available at time t.

2.	 �Posterior distribution at time t − 1
�Assume that the posterior distribution of the current state parameters and observational variance at time step 
t − 1 is:

𝜃𝜃𝑡𝑡−1|𝐷𝐷𝑡𝑡−1 ∼ 𝑇𝑇𝑛𝑛𝑡𝑡−1 (𝑚𝑚𝑡𝑡−1, 𝐶𝐶𝑡𝑡−1)�

𝑉𝑉 |𝐷𝐷𝑡𝑡−1 ∼ 𝐼𝐼𝐼𝐼

(

𝑛𝑛𝑡𝑡−1

2
,
𝑛𝑛𝑡𝑡−1𝑆𝑆𝑡𝑡−1

2

)

�

�where, mt−1 and Ct−1 are the posterior location and scale of the state parameter vector (θt-1) at time t − 1. From 
the system equation, it follows that the prior distribution of the state parameter vector for the next time step t 
follows a multivariate Student-t distribution, that is,

𝜃𝜃𝑡𝑡−1|𝐷𝐷𝑡𝑡−1 ∼ 𝑇𝑇𝑛𝑛𝑡𝑡−1 (𝑎𝑎𝑡𝑡, 𝑅𝑅𝑡𝑡),�

�where,

𝑎𝑎𝑡𝑡 = 𝐺𝐺𝐺𝐺𝑡𝑡−1 and𝑅𝑅𝑡𝑡 = 𝐺𝐺𝐺𝐺𝑡𝑡−1𝐺𝐺
𝑇𝑇
+𝑊𝑊𝑡𝑡�

�and 𝐴𝐴 𝐴𝐴𝑡𝑡 is the variance in the evolution error of the system equation and for these equations it is assumed as 
known. In this study system, 𝐴𝐴 𝐴𝐴𝑡𝑡 is unknown, thus the principle of discount factors was used to estimate the 
system variance (see below).

3.	 �One-step-ahead forecast
�The one-step ahead distribution for water flow at time t follow a Student-t distribution, that is,

𝑦𝑦𝑡𝑡|𝐷𝐷𝑡𝑡−1 ∼ 𝑇𝑇𝑛𝑛𝑡𝑡−1 (𝑓𝑓𝑡𝑡, 𝑄𝑄𝑡𝑡)�

�which is obtained through Bayes' theorem by combining the prior information at time t with the observation 
equation, and location ft and scale Qt are calculated as follows:

𝑓𝑓𝑡𝑡 = 𝐹𝐹𝑇𝑇
𝑡𝑡 𝑎𝑎𝑡𝑡�

𝑄𝑄𝑡𝑡 = 𝐹𝐹𝑇𝑇
𝑡𝑡 𝑅𝑅𝑡𝑡𝐹𝐹𝑡𝑡 + 𝑆𝑆𝑡𝑡−1�

�where Ft is the vector in the observation equation at time t and St-1 is the point estimate of the observational 
variance from the previous time step t − 1.

4.	 �Update
�Once a new observation arrives, the posterior distribution of the state vector and the observational variance 

V is obtained via the Bayes theorem, and it is given by 𝐴𝐴 𝐴𝐴𝑡𝑡|𝐷𝐷𝑡𝑡 ∼ 𝑇𝑇𝑛𝑛𝑡𝑡 (𝑚𝑚𝑡𝑡, 𝐶𝐶𝑡𝑡) and 𝐴𝐴 𝐴𝐴 |𝐷𝐷𝑡𝑡 ∼ 𝐼𝐼𝐼𝐼

(

𝑛𝑛𝑡𝑡

2
,
𝑛𝑛𝑡𝑡𝑆𝑆𝑡𝑡

2

)

, where

𝑚𝑚𝑡𝑡 = 𝑎𝑎𝑡𝑡 + 𝐴𝐴𝑡𝑡𝑒𝑒𝑡𝑡�

𝐶𝐶𝑡𝑡 =
𝑆𝑆𝑡𝑡

𝑆𝑆𝑡𝑡−1

(

𝑅𝑅𝑡𝑡 − 𝐴𝐴𝑡𝑡𝑄𝑄𝑡𝑡𝐴𝐴
𝑇𝑇
𝑡𝑡

)

�

𝐴𝐴𝑡𝑡 =
𝑅𝑅𝑡𝑡𝐹𝐹𝑡𝑡

𝑄𝑄𝑡𝑡
�
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𝑛𝑛𝑡𝑡 = 𝑛𝑛𝑡𝑡−1 + 1�

𝑒𝑒𝑡𝑡 = 𝑌𝑌𝑡𝑡 − 𝑓𝑓𝑡𝑡�

𝑆𝑆𝑡𝑡 = 𝑆𝑆𝑡𝑡−1 +

(

𝑆𝑆𝑡𝑡−1

𝑛𝑛𝑡𝑡

)(

𝑒𝑒2
𝑡𝑡

𝑄𝑄𝑡𝑡

− 1

)

,�

�where mt is the posterior location of the state vector at time t, which is obtained by correcting the prior 
location (at) with a term proportional to et, the one-step forward forecast error (i.e., the difference between 
observed and predicted value), scaled by the adaptive vector At, which is a parameter that tunes the forecast 
error by the relative variances of the prior and likelihood (Rt/Qt), and the regressor matrix (Ft) (West & 
Harrison, 1997).

The inferential procedure continues recursively as observations keep arriving. As mentioned earlier, the equations 
above are valid only if Wt is known. This is rarely the case in practice. One way to estimate the system variance 
Wt is through stochastic simulations, for example, Markov chain Monte Carlo (MCMC) methods, which are 
computationally demanding. To avoid this issue, the system variance was approximated with the principle of 
discount factors (Migon & Alves, 2013). This approach greatly increases the speed of the inference procedure, 
which is a necessary condition for on-line monitoring algorithms such as in the case of water network monitoring. 
The variance in the system equation represents the uncertainty in the process over time. In other words, a loss 
of information across time steps. The discount factor, 0 < δ ≤ 1, represents, in a subjective way, the percentage 
of information that is retained from time t − 1 to time t. For instance, if δ is set to 0.95, it means that 95% of the 
information is retained from one time step to the next. In practice, high discount factors give more weight to the 
model priors whereas lower values will give more weight to the new observation (i.e., the likelihood function) 
when updating model parameters (West & Harrison, 1997). Specifically, under the discount factor approach, Wt 
is calculated as follows:

𝑊𝑊𝑡𝑡 =

(

1

𝛿𝛿
− 1

)

𝐶𝐶𝑡𝑡−1with 𝑅𝑅𝑡𝑡 =

(

𝐺𝐺𝑡𝑡𝐶𝐶𝑡𝑡−1𝐺𝐺
𝑇𝑇
𝑡𝑡

)

𝛿𝛿
�

While the choice of δ is subjective, it is typically set between 0.90 and 0.99 (West & Harrison,  1997). The 
discount factor value was chosen after fitting the model using 20 different values between 0.90 and 0.995 with 
increments of 0.005. For each discount factor value, 24 separate daily models for each hour were fitted. Then, the 
one-step-ahead predictions from these 24 separate models were collapsed and the model root-mean-square error 
(RMSE) was computed for the dates between 01 March 2015 and 31 December 2016 as follows:

RMSE =

√

∑𝑇𝑇

𝑡𝑡=1

∑𝑚𝑚

ℎ=1

(𝑦𝑦ℎ,𝑡𝑡 − 𝑓𝑓ℎ,𝑡𝑡)
2

𝑇𝑇𝑇𝑇
�

where 𝐴𝐴 𝐴𝐴ℎ,𝑡𝑡 and 𝐴𝐴 𝐴𝐴ℎ,𝑡𝑡 are the observed and predicted flow at hour h and day t, respectively while m is the total number 
of hours (m = 24) and T the total number of days. The DLM with the discount factor (δ) that presented the lowest 
RMSE value (see Table S1 in Supporting Information S2) was selected to apply the model monitoring tool for 
break detection.

2.2.3.  Estimating Missing Values

Flow readings that are unrecorded due to communication issues between sensors and data loggers (i.e., missing 
values) are naturally accounted for by the Bayesian framework: no new information leads to no updating of the 
model parameters (West & Harrison, 1997). In other words, the information set at time t is simply 𝐴𝐴 𝐴𝐴𝑡𝑡 = 𝐷𝐷𝑡𝑡−1 , 
the posterior distribution of the state parameters is equal to their priors, that is, mt = at, Ct = Rt with the estimate 
of the  observational variance 𝐴𝐴 𝐴𝐴𝑡𝑡 = 𝑆𝑆𝑡𝑡−1 and degree of freedom 𝐴𝐴 𝐴𝐴𝑡𝑡 = 𝑛𝑛𝑡𝑡−1 also remaining unchanged. To verify the 
accuracy of the estimation of missing values, as well as how long the DLM could go on without any new observa-
tions, an experiment was conducted using the time series from DMA1. An iterative process was developed where, 
at each iteration, 24 hr of observed flow values were removed from the time series (i.e., considered as missing) 
and the DLM was then used to fit the entire time series and estimate the missing values. This process was repeated 
60 times, resulting in a time range of missing values ranging from 1 to 60 days and, at each iteration, the RMSE 
was calculated for the predictions of these missing values.
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2.2.4.  Extraction of Coefficients of Model Predictors

The coefficients and the 95% posterior credible intervals for the main predictors included in the model (level, 
slope, pressure, temperature, auto regressive order 1, weekend dummies) can be easily obtained from the poste-
rior location (mt) vector and scale (Ct) matrix. Given that the model is dynamic, predictors may have a statistically 
significant effect during a period and then be not significant subsequently. Here, a predictor will be significant at 
a given time when the 95% posterior credible intervals do not overlap with the 0 value. This property allows the 
modeler to obtain insights into what is driving the time series over time.

2.3.  Model Monitoring for Pipe Burst Detection

A model monitoring technique was applied to determine when deterioration occurred in the predictive perfor-
mance of the DLM (Lipowsky et  al.,  2010; Wang, Ni, & Wang,  2020). The general idea is to compare the 
main model, labeled as M0, with an alternative model M1, that has a change in one parameter of interest. One 
common  method to perform this comparison in Bayesian inference, and DLMs in particular, is the computa-
tion of the Bayes factor (West & Harrison, 1997). When a pipe break occurs in a DMA, it affects the hydraulic 
variables such as water flow, which tends to increase given that the water is lost to the ground while the water 
consumption of the DMA remains unchanged (Y. Wu & Liu, 2017). Hence, we built an alternative model, M1, 
by shifting the level of the model M0 by + h (i.e., simulating a system where a larger flow is expected, as its 
the case in pipe burst events). At every time step, the Bayesian DLM estimates a probability density function 
(PDF) for the next measurement of M0 and one for M1. The Bayes factor Ht is the ratio between the PDF from M0 

𝐴𝐴 (𝑝𝑝0(𝑦𝑦𝑡𝑡|𝐷𝐷𝑡𝑡−1,𝑀𝑀0)) and M1 𝐴𝐴 (𝑝𝑝1(𝑦𝑦𝑡𝑡|𝐷𝐷𝑡𝑡−1,𝑀𝑀1)) , that is

𝐻𝐻𝑡𝑡 =
𝑝𝑝0(𝑦𝑦𝑡𝑡|𝐷𝐷𝑡𝑡−1,𝑀𝑀0)

𝑝𝑝1(𝑦𝑦𝑡𝑡|𝐷𝐷𝑡𝑡−1,𝑀𝑀1)
�

The monitoring process assesses the consistency of the observed values Yt through standardized one-step ahead 
forecast errors 𝐴𝐴 𝐴𝐴𝑡𝑡 =

𝑌𝑌𝑡𝑡−𝑓𝑓𝑡𝑡
√

𝑄𝑄𝑡𝑡

 . While the predictive distribution in DLMs with unknown observational variances 
follows a Student-t distribution, we can approximate it by a Gaussian distribution given our large sample size. In 
the case of a Gaussian model, the predictive density for the main model M0 is:

𝑝𝑝0(𝑒𝑒𝑡𝑡|𝐷𝐷𝑡𝑡−1) = (2𝜋𝜋)
−1∕2

exp
{

−0.5(𝑒𝑒𝑡𝑡)
2
}

,�

and for the alternative model with a level change where et has a non-zero mean + h is:

𝑝𝑝1(𝑒𝑒𝑡𝑡|𝐷𝐷𝑡𝑡−1) = (2𝜋𝜋)
−1∕2

exp
{

−0.5(𝑒𝑒𝑡𝑡 − ℎ)
2
}

�

Hence, for any fixed shift h, the Bayes' factor at time t can be calculated as follows:

𝐻𝐻𝑡𝑡 =
𝑝𝑝0(𝑦𝑦𝑡𝑡|𝐷𝐷𝑡𝑡−1,𝑀𝑀0)

𝑝𝑝1(𝑦𝑦𝑡𝑡|𝐷𝐷𝑡𝑡−1,𝑀𝑀1)
= exp

{

0.5
(

ℎ2
− 2ℎ𝑒𝑒𝑡𝑡

)}

.�

Assume that the goal is to investigate the performance of the model predicting k steps-ahead, for k = {2, 3, …, t}, 
then the evidence against the model M0 is accumulated multiplicatively as data is processed, that is,

𝐻𝐻𝑡𝑡(𝑘𝑘) = 𝐻𝐻𝑡𝑡𝐻𝐻𝑡𝑡−1(𝑘𝑘 − 1)�

or additively on the log scale

log[𝐻𝐻𝑡𝑡(𝑘𝑘)] = log(𝐻𝐻𝑡𝑡) + log[𝐻𝐻𝑡𝑡−1(𝑘𝑘 − 1)]�

Following Jeffreys  (1961), and as described in West and Harrison  (1997), a log Bayes' factor of 1 indicates 
evidence in favor of M0 while −1 suggests M1 is favored. A log Bayes' factor of 2 or more suggests strong evidence 
for the main model M0, while a value of −2 or less indicates high probability that the observation was derived 
from M1. Finally, a value of 0 indicates no evidence favoring either model. The threshold value for outlier detec-
tion was set to log(Hmin) = −2. The shift value h was set to 3, which combined with log(Hmin) of −2 will lead to 
indifference between models M0 and M1 when et = 1.5 (roughly the upper 90% point of the forecast distribution) 
and it indicates strong evidence against M0 when values of forecast errors (et) are as high as 2.5 (roughly the upper 
99% point of the forecast distribution).
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2.3.1.  Monitoring Performance

While the modeling of the flow time series was performed on an hourly basis, the historical break data set from 
the Peninsula Intermediate South DMA contained information only on the day the break was detected by the 
water utility. Hence, the model performance on break detection was conducted on a daily temporal scale. Note 
that the proposed model would be capable of detecting break in a much shorter time if applied on a higher reso-
lution flow data (e.g., 1, 5 min) and if the historical break database contained the time of the break. In summary, 
the algorithm triggers an alert whenever the log-Bayes’ factor is lower than log(Hmin). The model assumes that 
a break is detected if the algorithm triggers the alarm during the 24 hr period of the day the break was reported 
in the historical data set. We also considered a true positive if the alarms are triggered during the 72 hr previous 
to this day as breaks sometimes take hours or even days to be detected whereas flow outliers could be flagged 
earlier by the DLM. A pipe break is assumed to be undetected if no alarm was triggered during this (72 hr + 24 
hr = 96 hr) period. The number of days in which alerts were triggered by the algorithm was then compiled and its 
performance was assessed using the true positive rate (TPR) and false positive rate (FPR):

TPR =
TP

TP + FN
× 100%�

FPR =
FP

FP + TN
× 100%�

where TP = true positive, which is the number of pipe bursts that were correctly detected, FN = false negative, which 
refers to the number of bursts that remained undetected, FP = false positive, which is the number of days  where no 
bursts occurred, but a false alarm was triggered, and TN = true negative, being the number of days without bursts 
and no false alarm was triggered. These metrics can be represented by a confusion matrix. The goal in any modeling 
approach is to maximize the values in the diagonal (TP, TN) and minimize the values in the off diagonal (FP, FN) of 
the confusion matrix. While detecting breaks is the primary goal of any monitoring algorithm in a water distribution 
network, it is also of interest to minimize the number of false alarms it may trigger. Hence, the monitoring tool was 
also conducted with other threshold values, in particular, log(Hmin) = −1.5, −2.5, or −3 to determine the value that 
had the best trade-off between the number of breaks detected and the number of false alarms triggered.

To complement this analysis, the detection time for the 16 synthetic scenarios of outliers described in Section 2.1.3 
was also analyzed. The detection time was calculated as the number of time steps between the start of burst (i.e., 
first outlier) and the first outlier flagged by the monitoring tool (see Section 2.3) averaged over all synthetic bursts 
that were detected.

The DLM was coded using R Statistical software v.4.1 (R Core Team, 2021) and a script to run the model along 
with the data is available (see Henriques-Silva et al., 2022).

3.  Results and Discussion
Before fitting the DLM to the flow time series, a similar model was built to estimate missing values in the pres-
sure data. In this case, the model components were trend, slope, an auto-regressive order 1 (Presst-1), tempera-
ture, and dummies for weekend days. The false or missing pressure values (DMA 1: 495, DMA 2: 26, Table 1) 
were replaced by the estimated values from this DLM, and the model fitted to the flow time series assumed 
that all pressure measurements were observed. After obtaining the one-step ahead forecast for the 24 individual 
hourly DLMs, they were combined to produce the flow forecast. The flow DLMs with the lowest RMSE were 
the ones with a discount factor δ = 0.95 (RMSE = 0.066; Table S2 in Supporting Information S2) and δ = 0.98 
(RMSE = 0.1254; Table S2 in Supporting Information S2) for DMAs 1 and 2, respectively, and were kept for 
break detection. The model properties discussed below are illustrated using the results obtained from the DMA 1.

The results for a 1-week period (08 April 2015 to 14 April 2015) are presented in Figure 4a, with the depiction 
of the observed flow (white circles), one-step ahead forecast (red line), and 95% credible intervals (blue shaded 
area).

3.1.  Estimation of Missing Values

The DLM did a good job capturing the structure of the flow time series. Even during periods with missing 
observation, the temporal structure was maintained (Figure 4b). For instance, the longest sequences of missing 
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values occurred in August 2015, where 68 hr passed without valid flow observations. Yet the DLM was able to 
maintain reasonable predictions (dashed line; Figure 4b). The experiment conducted on accuracy and time-range 
of the DLM prediction on missing values showed that predictions became less reliable with longer sequences 

of unrecorded flow measurements (Figure 5). After 30 days of missing flow 
values (Figure S3 in Supporting Information  S1), the predictions of the 
model became less reliable and the uncertainty increased, as can be noted in 
the wider credible intervals of the flow predictions between 45 and 60 days 
of missing values (Figure S3b in Supporting Information S1). Nevertheless, 
the model predictions were shown to be reasonable for a time-range of at least 
15 days (Figure S2a in Supporting Information S1). More specifically, the 
RMSE varied between 16.1 and 22.9 m 3/hr, representing only between 4.9% 
and 6.5% of the average observed flow of 1–15 days, respectively. This prop-
erty is desirable given the frequent operational problems in hydraulic sensors 
and data loggers (Quevedo et  al.,  2010). After the problem is resolved, 
because of the recursive nature of the fitting procedure, the model updates 
its parameters as new observations arrive and provides forecasts for the water 
flow, without having to learn all over again from the data.

3.2.  Effects of Predictors on Estimation of Flow Time Series

The coefficient (red solid line) and 95% credible intervals (green shaded 
area) for the second weekend dummy variable (γ2t) covering the period of 01 
March 2015–31 December 2016 are shown in Figure 6.

To ease the visualization, only the DLMs from two specific hours are 
depicted: in the top panel (Figure 6a) the coefficient of the dummy variable 

Figure 5.  Root-mean squared error (RMSE) calculated at each iteration of the 
missing value experiment (described in Section 2.2.3), from 1 to 60 days of 
missing data.

Figure 4.  Illustration of one-step ahead forecast of water flow for a period with all flow observations recorded (a) and an 
example for a period with missing data (b). White circles are the observed hourly flow measurements, the red solid line is the 
model estimate and the blue shaded area is the limits of the 95% posterior credible intervals.
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for the DLM at 3:00 a.m. and in the bottom panel the coefficient for the DLM 
at 3:00 p.m. (Figure  6b). Clearly, the coefficient for the 3:00 a.m. model 
rovers around zero for the entire period (Figure 6a), and the 0 value (black 
dashed line) is always within the posterior credible intervals. This means 
that there is no association between this variable and the water flow at 3:00 
a.m. In contrast, the coefficient for this weekend dummy for the 3:00 p.m. 
model does not include zero most of the time from July 2015 until the end 
of the time series (Figure 6b). This is evidenced by the 0 dashed line being 
outside the 95% posterior credible intervals for most of this period. Note that 
the coefficient is negative, meaning that during the weekend the predicted 
water flow decreases (Figure 6b) by around 0.16 units in the log-scale when 
all the other variables are kept fixed. This is explained by the lower water 
consumption during weekends compared to workdays, which can be seen in 
other figures (for instance 11 and 12 April in Figure 1c or Figure 4a). Another 
example is displayed in Figure  7 where the posterior mean coefficient of 
temperature was overlayed with actual hourly temperatures for the DLM at 
4:00 p.m. It can be observed that there are 2  days (17 June and 13 July) 
when the air temperature is much higher than the previous day (highlighted 
by the dashed rectangles; Figure 6). During these days (and the following) 
the temperature posterior mean coefficient becomes significant in the model, 
as the 95% credible intervals do not overlap zero. Water demand tends to 
increase during hot summer days and consequently, water flow in the system 
increases. Hence the positive effect of the temperature coefficient in the 
DLM. By taking into account the seasonal effects of temperature in the DLM, 
the monitoring tool is not affected by it and, in this case, avoids triggering 
false alarms from the increased water flow in the system.

These examples illustrate an advantage of DLMs, in which coefficients of 
the model are more easily interpretable compared to complex “black box” 
algorithms such as neural networks. This feature allows engineers from 
water utilities to better understand the behavior of the model when forecast-
ing water flow in municipalities; and to naturally include known structures 
that are related with the flow in the observation equation. To visualize the 

Figure 6.  Posterior mean (red solid line) value and 95% posterior credible 
intervals (green shaded area) for the weekend dummy coefficient (γ2t) from 
Mars 2015 to December 2016 for the DLMs at 3:00 a.m. (a) and 3:00 p.m. (b).

Figure 7.  Posterior mean value (red line) and 95% posterior credible intervals (green shaded area) for the temperature 
coefficient (β3t) from 1st June to 15 August 2016 for the DLMs at 4:00 p.m. (a). The black line represents the air temperature 
at 4:00 p.m. during this period. The dashed rectangles highlight a large increase in air temperature between 2 days.
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coefficients for all model components for the DLM, the reader is referred to 
Figure S1 in Supporting Information S1. For illustrative purposes, instead 
of 3:00 a.m./p.m. from the example above, a different hour (8:00 a.m.) was 
chosen. The same negative coefficient for the weekend dummy (Figure S1f in 
Supporting Information S1) can be seen while the workday dummy is mostly 
not significant for the entire time series (zero is inside the 95% posterior 
credible intervals; Figure S1e in Supporting Information S1). Other model 
components that show a significant effect are pressure, during some periods 
(Figure S1d in Supporting Information S1), and the model level for the entire 
time series (Figure S1a in Supporting Information S1).

3.3.  Monitoring Tool and Pipe Burst Detection

The results from the model monitoring tool are presented using the threshold 
for the log Bayes-factor as log(Hmin) = −2. For DMA 1 (DMA 2), from the 

8 (28) historical breaks recorded during the period from March 2015 to December 2016, the model was able to 
detect 6 (20) (Table 2), having a 75% (71.4%) TPR (Table 3). Out of the 664 (583) days without breaks, the model 
triggered 44 (73) times (Table 2), resulting in an FPR of ∼6.8% (12.5%) (Table 3).

The model monitoring tool did not perform as well on the second, larger, DMA, especially regarding false alarms. 
Having both inlets and outlets means that the water flow in the pipe network may be influenced by events happen-
ing in areas both upstream and downstream of the focal DMA. Hence, outliers that are not related to pipe bursts 
are more frequent. While some frameworks of outlier classification have been proposed in other methods (Y. 
Wu et al., 2016; Z. Y. Wu & He, 2021), to the best of our knowledge, there are no such frameworks in DLMs. 
Nevertheless, in a real-life situation water utility engineers may be aware of events happening in other connected 
regions to be able to discard false alarms triggered in the focal DMA. This external information can be easily 
accommodated in the approach proposed here.

In Figure 8, an example of each case from the confusion matrix (see Section 2.2.4) is presented for DMA 1, except 
for the true negative case. In the top panels, the results from the one-step ahead forecast are presented (Figures 8a, 
8c, and 8e) while the bottom panel shows the monitoring tool using Bayes' factor (Figures 8b, 8d, and 8f). For 
instance, Figure 8a (true positive) shows the flow measurements, the one step-ahead forecast and the 95% poste-
rior credible intervals from 10 to 23 September 2016. The shaded area on the 16 September indicates the day 
of the pipe burst. At 5:00 a.m., there is an outlier represented by an unusual flow peak in the time series that is 
flagged by the monitoring tool (Figure 8b) when the log(Ht) metric falls well below the −2 threshold (horizontal 
red dashed line). An example of an undetected pipe break is illustrated in Figure 8c. The break was reported on 
26 January 2016 and is highlighted with the shaded area in the top panel. In this case, the Bayes factor metric did 
not drop below the threshold (Figure 8d). It is possible that this event was a small burst, which induced an increase 
in flow that may be too small relative to the total flow of the DMA and hence not distinguishable from natural 

random flow patterns. A similar display was created for DMA 2 (Figure 9): 
In May 2016, a break was reported on the 6th in the historical break data 
set. However, anormal flow values started on the evening of 4 May 2016 
and especially on the night of 5 May 2016, where the minimum night flow 
was way above flow values from the previous nights (Figure 9a). The alarm 
triggered for all flow measurements during 5 May (Figure 9b) and in a few 
instances during 6 May, suggesting that it was a large break. In panels c and d 
of Figure 9, a pipe break that occurred on the 20 April 2015 was not detected 
by the model. While the morning flow values on the two previous days were 
higher than normal (Figure 9d), they were not large enough to be above the 
upper confidence interval, hence no alarm was triggered.

The DLM break monitoring tool also triggered some false positives (i.e., 
alarm triggered but without any break; Tables  2 and  3). For instance, 
Figure 8e depicts one of these situations where there were a few spikes in 
water flow at night on 14 October while no break was recorded that day 
in DMA 1. The monitoring tool detected them when log(Ht) crossed the 

Table 2 
Confusion Matrix With Results Obtained From Dynamic Linear Model With 
the Threshold log(Hmin) Set to −2

Days with breaks Days with no breaks

DMA 1

  Alarm triggered 6 44

  Alarm not triggered 2 596

DMA 2

  Alarm triggered 20 73

  Alarm not triggered 8 510

Note. For rates in percentages, see Table 3.

Table 3 
Sensitivity Analysis With Different Threshold Values for the Log-Bayes 
Factor (log(Hmin))

DMA log(Hmin) TPR FPR

1 −1.5 75% 8.9%

1 −2.0 75% 6.88%

1 −2.5 75% 5.15%

1 −3.0 62.5% 3.9%

2 −1.5 78.6% 23.32%

2 −2.0 71.4% 12.52%

2 −2.5 53.57% 10.97%

2 −3.0 46.43% 9.1%

Note. TPR, true positive rate; FPR, false positive rate.
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Figure 8.  Examples of true positive (a, b), false negative (c, d) and false positive (e, f) in DMA 1. The top panels depict the one-step ahead forecast of water flow. 
White circles are the observed hourly flow measurements, the red solid line is the model estimate and the blue shade around the line is the 95% posterior credible 
intervals. The gray shaded area represents the day in which a pipe burst occurred. The bottom panels show the computation of the log-Bayes factor at each time 
step. The threshold log(Hmin) is represented by the horizontal red dashed line. Note that the x-axis labels from the top panels were removed for better readability but they 
are the same than the bottom ones.

Figure 9.  Examples of true positive (a, b), false negative (c, d), and false positive (e, f) in DMA 2. The top panels depict the one-step ahead forecast of water flow. 
White circles are the observed hourly flow measurements, the red solid line is the model estimate and the blue shade around the line is the 95% posterior credible 
intervals. The gray shaded area represents the day in which a pipe burst occurred. The bottom panels show the computation of the log-Bayes factor at each time 
step. The threshold log(Hmin) is represented by the horizontal red dashed line. Note that the x-axis labels from the top panels were removed for better readability but they 
are the same than the bottom ones.
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threshold (red dashed line; Figure 8f), and while these spikes were not related 
to a pipe burst, another event might have occurred that made the DMA water 
flow at night jump to as much as 500 m 3/hr. A similar situation occurred on 
26 August 2016 in DMA2 (Figure 9e) where log(Ht) values remained most 
of the day below the threshold (Figure 9f). It is important to highlight that 
such deviations might still be of interest to the engineers from the water 
utility. False positives can occur due to illegal connections, unexpected water 
usages, large events occurring in the city, pipe flushing or sensor failures 
(Romano et al., 2014). DLMs allow for model intervention to incorporate 
change-point information if particular events that will affect the system 
are known in advance (West & Harrison,  1997). Model intervention may 
take form in increasing the variance of model parameters, which reflects 
the increasing uncertainty about the future, or by decreasing the discount 
factor (δ) to better accommodate new observations following these potential 
changes (West & Harrison, 1997). Others have proposed dummy variables 
indicating change-point events (Jiang et al., 2007) such as, for instance, clos-
ing a valve in the water distribution network (Jung & Lansey, 2015). While 
beyond the scope of this study, these approaches could be utilized by water 
utilities to inform the model about, for instance, pipe flushing events.

Changing the threshold values for the Bayes factor mainly affected the FPR, 
going from around 8.9% when log(Hmin) was set to −1.5 down to 3.9% when 
it was set to −3 (Table  3) in DMA 1. Break detection was not affected by 
the threshold in DMA 1, where only using the most conservative value of 
log(Hmin)  =  −3 an additional pipe break became undetected (Table 3). The 
best trade-off between break detection and the minimization of false positives 
was with log(Hmin) = −2.5, where break detection remained similar to larger 
threshold values (−1.5 and −2) but with a lower FPR (5.15%; Table 3). Chang-
ing the threshold values for the DLM in the second DMA had more impact. 
The FPR halved between log(Hmin) = −1.5 and −2 (from 23% to 12%) and then 
decreased to around 9% for the most conservative threshold (log(Hmin) = −3). 
Likewise, the detection rate went from 78% on the threshold log(Hmin) = −1.5 
to about 46% using the more conservative threshold (log(Hmin) = −3; Table 3). 
In this case, the best trade-off between break detection and the minimization 

of false positives was when log(Hmin) = −2, where break detection remained high (71%) and the FPR was halved 
compared to log(Hmin) = −1.5. Changing the threshold to −2.5 would greatly reduce detection rate to 53% while not 
significantly changing the FPR (10% instead of 12%; Table 3).

The optimal threshold value will depend on both the problem at hand and the data available. If it is important to 
keep the FPR to a minimum, a more conservative threshold (i.e., smaller log(Hmin)) is recommended. Conversely, 
if maximizing TPR is primordial, then a larger log(Hmin) can be used. The choice is up to the decision maker 
using the model and the DLM is fast enough to run (see Conclusion) for a comprehensive sensitivity analysis of 
model parameters to be estimated in order to select the optimal parameter values to tackle the problem at hand.

3.4.  Detection Time

The synthetic burst experiment evidenced that the DLM showed a reasonable detection time in most of the 
scenarios that were tested (Table 4). For this experiment, a threshold log(Hmin) = −2 was used. The lowest aver-
age detection time measured was only 1.57 hr for a large burst starting at 2:00 a.m. (scenario 4) up to 6.55 hr, on 
average, for the scenario 13 (small burst starting at 8:00 p.m.; Table 4). As expected, the fastest detection time 
was measured for bursts starting at 02:00 a.m. when water demand is at its lowest (Table 4). Likewise, the larger 
the burst was, the fastest it was detected as shown by shorter detection times for burst sizes of 15% compared to 
ones at 8%. The FPR for these scenarios was around 5.9% (Table 4). We also tested the same scenarios but using a 
lower-level shift (h = 2), meaning that the monitoring tool would be more sensitive to smaller deviations between 
observed and expected flow values (Table S2 in Supporting Information S2). The number of detected breaks 

Table 4 
Results for the Synthetic Burst Experiment Using a Level Shift Value (h) 
Equal to 3 (See Section 2.3 in the Methods for More Details)

Scenario
Starting 

timestamp
Burst 
size

Detection 
time

Detected 
bursts FPR

1 2:00 a.m. 8% 3.36 14/30 5.97%

2 2:00 a.m. 10% 2.85 20/30 5.96%

3 2:00 a.m. 12% 2 23/30 5.95%

4 2:00 a.m. 15% 1.57 23/30 5.95%

5 8:00 a.m. 8% 5.5 6/30 5.95%

6 8:00 a.m. 10% 5.78 9/30 5.95%

7 8:00 a.m. 12% 4.8 11/30 5.95%

8 8:00 a.m. 15% 3.29 17/30 5.95%

9 2:00 p.m. 8% 4.2 5/30 5.97%

10 2:00 p.m. 10% 4.44 9/30 5.97%

11 2:00 p.m. 12% 5.21 14/30 5.97%

12 2:00 p.m. 15% 3.25 20/30 5.97%

13 8:00 p.m. 8% 6.55 11/30 6.01%

14 8:00 p.m. 10% 6.14 14/30 6.01%

15 8:00 p.m. 12% 4.61 23/30 6.03%

16 8:00 p.m. 15% 3.56 27/30 6.06%

Note. Each row represents a different scenario. Starting timestamp represents 
the timestamp when each burst started; burst size is measured as a percentage 
of the average daily flow from the day the burst occurred; detection time 
is measured as the number of time steps between the start of the burst and 
when the first outlier was flagged by the monitoring tool averaged over all 
detected pipe bursts; detected bursts is the number of synthetic bursts that 
were detected from the 30 that were simulated. The FPR is the false positive 
rate.

 19447973, 2023, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021W

R
031745 by Institut N

ational D
e L

a R
echerche, W

iley O
nline L

ibrary on [27/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

HENRIQUES-SILVA ET AL.

10.1029/2021WR031745

17 of 19

and the average detection time was improved for all tested scenarios compared to the ones presented in Table 4. 
More specifically, lowering the mean level for alternative model (M1), the monitoring tool was able to detect 30% 
more small breaks (breaks simulated by increasing the average daily inflow by 8% or 10%), while the detection 
time improved only marginally (2% lower detection time). For larger breaks, that is, simulated by increasing the 
average daily inflow by 12% or 15%, the detection time decreased by 7% and 9% respectively, and the number 
of detected breaks increased by 10% and 17%, respectively. This came at a cost of a higher FPR, although by not 
much (FPR ∼ 5.9% with h = 3 and FPR ∼ 7.35% with h = 2 for all scenarios; Table 4, Table S2 in Supporting 
Information S2). Similar to the threshold for the Bayes factor, the value of the level shift (h) can be chosen by 
decision makes to meet their needs while having in mind that there is a trade-off between the ability of the model 
to detect more breaks and the amount of the false positives it will generate.

Note that the detection time is measured in hours because the DLM was fitted with hourly data. Hence, in our 
case, the detection time can never be lower than 1 hr as this is the minimum time unit. However, detection time 
is measured as the number of time steps it takes for the alarm to be triggered after the break occurred, time step 
being the frequency on which observations are measured. If the flow data is at 5 or 15 min frequency, the thresh-
old of the monitoring tool will be tested every 5 or 15 min, respectively. Likewise, if the flow data is one an hourly 
scale, such as in our simulation, the threshold will be tested every hour. Hence, if the present model was applied 
to a time series at finer resolutions (e.g., 5, 15 min), the detection time could probably be much faster if outliers 
were to be flagged within periods shorter than 1 hour, being on par with the detection time of state-of-the art deep 
learning algorithms (e.g., Wang et al., 2020). Such endeavor is outside of the scope of this study as a new DLM 
structure would be required to model a different temporal scale, with other seasonal/cyclical factors, finer-scale 
resolution for external predictors and so on. Future studies could conduct a more thorough analysis to evaluate the 
detection time of DLMs under different temporal scales of water flow in order to validate this premise.

3.5.  Limitations

One of the challenges in DLM's is the estimation of the covariance matrix of the evolution equation W. In this 
study, discount factors were used to avoid its direct estimation. As results can be sensitive to the choice of the 
discount factors, a sensitivity analysis was proposed to choose the most appropriate value (Table S1 in Supporting 
Information S2). Given that the algorithm runs fast, the sensitivity analysis should not be a major issue. One way 
to improve this is to make the covariance matrix W unknown and use MCMC methods to obtain samples from 
the resultant posterior distribution. Given that MCMC is computationally intensive, the use of Forward filtering 
Backward Sampling algorithm is recommended when sampling from the posterior full conditional of the state 
vector. See for example, Schmidt and Lopes (2019) for a review of the algorithm.

Another limitation of the proposed algorithm is that it cannot pinpoint the exact location of a pipe burst in the 
DMA. Identifying which flowmeter in the water distribution network is recording the most flow outliers can help 
reduce the search area. Using the time series from multiple flow meters spatially spread across the DMA could be 
used to develop more complex spatio-temporal Bayesian models that could be used to not only detect the presence 
of bursts but also their potential location.

Finally, the methodology presented here is based on the decomposition of the time-series into separate 24 DLMs, 
one for each hour of the day. To apply the same methodology to finer resolution data means increasing the number 
of DLMs to be fitted (e.g., 48 DLMs for 30 min intervals, 96 DLMs for 15 min intervals and so on). While this 
may improve the detection time of pipe burst, it will inevitably increase the computation time to run the model 
(see Conclusion). Hence, the end-user needs to have this trade-off in mind and select the minimum necessary 
timescale for the data to properly tackle the problem at hand. Another issue is that the modeler will need to meas-
ure the necessary covariates at the same finer timescales, which sometimes is not practical.

4.  Conclusion
The implementation of SCADA systems in water distribution network worldwide have bolstered the development 
of monitoring algorithms to use real-time flow and/or pressure data in order to detect pipe bursts as quickly as 
possible (Romano et al., 2014; Ye & Fenner, 2011; Zhou et al., 2019) for early intervention. A novel methodol-
ogy for burst detection using Bayesian forecasting and DLM integrated with a model monitoring tool has been 
developed in this study. The model is extremely fast and took only 1.8 s on an ASUS VivoBook laptop (Intel Core 
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i5-8250U CPU, 8Mb RAM) to run on the almost 2 yr of hourly flow time-series (i.e., 17,400 observations). This 
makes it a viable option for real-time water distribution network monitoring. The DLM enables the modeling 
of a time-dependent variable by incorporating different components such as trends, seasonality, and regression 
effects. The present study has demonstrated that DLMs can capture well the structure of flow time series in water 
distribution networks. Indeed, water flow is correlated with water consumption in municipalities, which is known 
to be influenced by many factors (e.g., temperature, precipitation, large events) and present periodicity such as 
daily, weekly, and yearly seasonality. Different municipalities and/or DMAs may have idiosyncrasies that affect 
the flow time series. Hence, it is suggested a careful analysis of the flow time series together with inputs and 
feedbacks from water engineers responsible for the water distribution network to implement the proposed model 
to a given DMA. Nevertheless, the model is very flexible and able to accommodate these different features. 
Modelers can easily add new regressors if required and use model intervention techniques (see Discussion section 
for some suggested techniques) to account for punctual events. Further, the monitoring tool is flexible, allowing 
for end-users to decide the best threshold to minimize the number of false alarms and maximize the number of 
detected breaks. Moreover, DLMs do not break down when flow measurements are unrecorded (i.e., missing), 
and allow for model intervention in cases of known events that may change system behavior, two properties that 
are essential when dealing with a water distribution network operation.

Data Availability Statement
The data set along with an R script to run the model used in this study is available at https://data.4tu.nl/arti-
cles/dataset/Data_underlying_the_research_on_On-line_warning_system_for_pipe_burst_using_Bayesian_
dynamic_linear_models/17169383 for download (Henriques-Silva et al., 2022).
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