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Abstract

This ongoing Ph.D. thesis presents original research that revolves around the characterization and preser-
vation of quantum resources in composite quantum systems. In Part I, the investigation centers on the
concept of indistinguishability among identical particles – a crucial inherent resource for quantum infor-
mation processing. In Part II, the thesis delves into the dynamic control of indistinguishable particles,
with a specific focus on photons, as they propagate through various quantum photonic setups, which
serve as potential photonic-based quantum information processors for advancing quantum technologies.

Part I focuses on the exploration of the indistinguishability of identical particles as a valuable quan-
tum resource for information processing. It introduces a generalized entanglement measure applicable
to arbitrary states of two identical qubits, highlighting the capability of quantum indistinguishability to
generate noise-free entanglement. Additionally, it proposes a theoretical and experimental framework
for remote entangling gates, enabling teleportation with fidelities that surpass classical thresholds by ma-
nipulating spatial indistinguishability. Furthermore, it investigates the resilience of entanglement in the
presence of spatial indistinguishability during open system dynamics, showcasing its robustness against
different environmental noise sources. The thesis also presents an entanglement distillation method that
leverages spatial overlap, establishing conditions for maximum entanglement distillation and examining
the impact of noise parameters and local temperatures.

Part II focuses on the photonic-based quantum model for quantum transport phenomena and quantum
information tasks. The thesis introduces a probing protocol to detect disorder in quantum walks, offering
valuable insights into anomalous transport phenomena and Anderson localization. Furthermore, it ex-
plores the role of controlled disorder in enhancing quantum correlations between indistinguishable pho-
tons, demonstrating the potential for improved quantum correlations between selected network modes
through the careful adjustment of suitable disorder configurations. Lastly, the thesis presents a scalable
quantum walk processor with temporal photonic lattices. This processor operates on a fiber-loop system
and enables the generation and processing of high-dimensional time-bin entanglement. This novel ap-
proach establishes a proof-of-principle for preparing and harnessing entangled states in high-dimensional
systems by controlling high-dimensional bi-photon quantum interference.
The contributions made in this thesis significantly advance the field of quantum information processing.
They enhance our understanding of the importance of indistinguishability in various quantum phenomena
and provide practical frameworks for utilizing indistinguishability as a valuable resource. These findings
provide fundamental insights for quantum information processing and open up promising avenues for
future research within the development of quantum technologies.
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Résumé

Cette thèse de doctorat en cours présente des recherches originales qui tournent autour de la caractérisa-
tion et de la préservation des ressources quantiques dans les systèmes quantiques composites. Dans
la Partie I, l’enquête se concentre sur le concept d’indiscernabilité entre particules identiques - une
ressource inhérente cruciale pour le traitement de l’information quantique. Dans la Partie II, la thèse
explore le contrôle dynamique des particules indiscernables, en mettant l’accent spécifique sur les pho-
tons, alors qu’ils se propagent à travers diverses configurations quantiques de photonique, lesquelles
servent de potentiels processeurs quantiques basés sur le photon pour faire progresser les technologies
quantiques.

La première partie met l’accent sur l’exploration de l’indiscernabilité des particules identiques en
tant que ressource quantique précieuse pour le traitement de l’information. Elle introduit une mesure
généralisée de l’entrelacement applicable à des états arbitraires de deux qubits identiques, mettant en
évidence la capacité de l’indiscernabilité quantique à générer un entrelacement sans bruit. De plus, elle
propose un cadre théorique et expérimental pour les portes d’entrelacement à distance, permettant la télé-
portation avec une fidélité dépassant le seuil classique en manipulant l’indiscernabilité spatiale. En outre,
elle étudie la résilience de l’entrelacement en présence d’indiscernabilité spatiale pendant la dynamique
des systèmes ouverts, démontrant sa robustesse face à différentes sources de bruit environnemental. La
thèse présente également une méthode de distillation de l’entrelacement qui exploite le chevauchement
spatial, établissant des conditions pour une distillation d’entrelacement maximale et examinant l’impact
des paramètres de bruit et des températures locales.

La deuxième partie se concentre sur le modèle quantique basé sur la photonique pour les phénomènes
de transport quantique et les tâches d’information quantique. Le mémoire présente un protocole d’investigation
pour détecter le désordre dans les marches quantiques, offrant de précieuses perspectives sur les phénomènes
de transport anormaux et la localisation d’Anderson. De plus, elle explore le rôle du désordre contrôlé
dans l’amélioration des corrélations quantiques, démontrant le potentiel d’amélioration des corrélations
quantiques entre des modes de réseau sélectionnés grâce au réglage minutieux de configurations de
désordre appropriées. Enfin, la thèse présente un processeur de marches quantiques évolutif avec des
réseaux photoniques temporels. Ce processeur fonctionne sur un système de boucle de fibre et permet la
génération, la manipulation et le test d’entrelacements à plusieurs dimensions de boîtes de temps. Cette
approche novatrice établit une preuve de principe pour la préparation et l’utilisation d’états intriqués dans
des systèmes à haute dimension en contrôlant l’interférence quantique à deux photons à haute dimension.

Les contributions apportées par cette thèse font progresser considérablement le domaine du traite-
ment de l’information quantique. Elles améliorent notre compréhension de l’importance de l’indiscernabilité
dans divers phénomènes quantiques et fournissent des cadres pratiques pour utiliser l’indiscernabilité en
tant que ressource précieuse. Ces découvertes offrent des perspectives fondamentales pour le traitement
de l’information quantique et ouvrent des voies prometteuses pour la recherche future dans le développe-
ment des technologies quantiques.
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Synopsis

Cette thèse de doctorat présente des résultats de recherche originales qui tournent autour de la caractéri-
sation et de la préservation des ressources quantiques dans les systèmes quantiques composites. Dans
la Partie I, la recherche se concentre sur le concept d’indiscernabilité entre particules identiques - une
ressource inhérente cruciale pour le traitement de l’information quantique. Dans la Partie II, la thèse
explore le contrôle dynamique des particules indiscernables, en mettant l’accent spécifique sur les pho-
tons, alors qu’ils se propagent à travers divers systèmes, qui servent de potentiels processeurs quantiques
basés sur les photons pour réaliser des technologies quantiques avancées.

Partie I : Indiscernabilité des particules identiques en tant que ressource
quantique pour le traitement de l’information

Dans la première partie de ma thèse de doctorat, j’étudie l’indiscernabilité des particules identiques en
tant que véritable ressource quantique pour le traitement de l’information quantique. Elle est constituée
de chapitres basés sur des articles précédemment publiés dans des revues scientifiques réputées. Avant
de présenter les résultats, j’introduis brièvement le sujet en abordant les questions suivantes :

1. Quel est le concept physique derrière l’identité et la non-individualité des entités quantiques ?

2. Les états de deux particules identiques sous la forme |ϕ1⟩ ⊗ |ϕ2⟩ ± |ϕ2⟩ ⊗ |ϕ1⟩ présentent-ils un
véritable entrelacement, comme leur forme le suggère ? Établir un concept d’entrelacement à la
fois physiquement significatif et pratiquement applicable est d’une importance capitale.

3. Quels sont les cadres sous-jacents pour quantifier et caractériser l’entrelacement entre particules
identiques ?

4. L’indiscernabilité des particules identiques peut-elle servir de ressource non classique pour ef-
fectuer des tâches de traitement de l’information quantique ?

Ces questions constituent la base d’une exploration approfondie et d’une meilleure compréhension
des systèmes constitués de particules identiques (par exemple, qubits, atomes à deux niveaux, photons,
électrons, quasi-particules), qui sont les éléments constitutifs fondamentaux (particules) des réseaux
quantiques. Cette tâche revêt une importance particulière dans les architectures intégrées avec des
opérations quantiques intrinsèquement significatives. Des progrès encourageants ont été réalisés dans
ce domaine sur différentes plateformes quantiques, notamment les atomes ultrafroids, l’optique quan-
tique et les champs quantiques. Pour commencer, examinons les concepts fondamentaux d’identité et
d’indiscernabilité.

Identité vs indiscernabilité

Dans notre vie quotidienne, nous rencontrons de nombreux objets que nous percevons comme des in-
dividus distincts, chacun possédant des propriétés uniques qui les distinguent. Selon le réductionnisme
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leibnizien, ce sont ces propriétés spécifiques qui rendent les objets matériels véritablement individu-
els, représentant essentiellement une collection ou un "ensemble" de propriétés. Même des objets qui
semblent remarquablement similaires, comme des jumeaux identiques, ont des différences subtiles dans
leurs propriétés qui nous permettent de les différencier. La mécanique classique renforce cette idée, en
indiquant que les particules se repoussent les unes les autres lorsqu’elles se rapprochent, les empêchant
d’occuper la même position spatiale. En conséquence, les particules classiques sont toujours discernables
en fonction de leurs positions spatiales distinctes, garantissant leur individualité.

Cependant, la perspective classique est remise en question en ce qui concerne la mécanique quan-
tique. Dans le domaine quantique, les particules élémentaires comme les électrons présentent une pro-
priété appelée l’indiscernabilité. Ces particules possèdent des propriétés intrinsèques identiques, telles
que la masse au repos, la charge et le spin, quelle que soit leur position dans l’univers. Par conséquent,
chaque électron partage la même masse, la même charge et d’autres caractéristiques intrinsèques que
n’importe quel autre électron. Cette indiscernabilité des particules quantiques contredit la compréhen-
sion traditionnelle de l’individualité et exige un cadre conceptuel différent pour comprendre leur com-
portement.

En plus des propriétés intrinsèques, la mécanique quantique introduit des propriétés dépendant de
l’état pour décrire les systèmes quantiques élémentaires. Cela signifie que les particules peuvent être dif-
férenciées en utilisant des mesures dépendantes de leurs états. Par exemple, un polariseur peut distinguer
entre des photons polarisés verticalement et horizontalement. Cette approche alternative pour distinguer
des objets identiques ouvre une perspective de théorie des champs, représentant les particules comme
des champs dichotomiques "Oui/Non". Dans ce cadre, l’amplitude du champ se voit attribuer une valeur
de "Oui" si la particule est présente à un endroit particulier et "Non" si elle ne l’est pas. En conclusion,
les particules classiques sont discernables en raison de leurs ensembles uniques de propriétés, tandis que
les particules quantiques remettent en question cette notion en exhibant une indiscernabilité basée sur
leurs propriétés intrinsèques identiques. L’incorporation de propriétés dépendant de l’état en mécanique
quantique permet de différencier entre des particules identiques grâce à des mesures spécifiques. Ce
changement de perspective éclaire la disparité entre les statistiques classiques et quantiques et soulève
des questions intrigantes sur l’individualité dans les systèmes quantiques.

Non-individualité quantique

J’aimerais commencer par un modèle simplifié impliquant deux particules indiscernables réparties sur
deux côtés d’une boîte ou dans deux états généraux, comme illustré dans la Figure 1.1. La tâche de
l’observateur est de compter les particules dans chaque région, ce qui donne trois cas possibles : avoir
les deux particules du même côté (cas Fig.1.1(b) et Fig.1.1(c)), ou une particule de chaque côté (cas
Fig.1.1(a)). Selon la physique classique, le cas Fig.1.1(a) a un poids deux fois supérieur aux autres cas,
car il existe deux façons d’obtenir cet agencement en permutant les particules. Par exemple, en supposant
des probabilités égales pour les quatre combinaisons, la probabilité de trouver une particule de chaque
côté est de 1/2, suivant les statistiques bien connues de Maxwell-Boltzmann.

En revanche, la mécanique statistique quantique introduit deux formes courantes : les statistiques de
Bose-Einstein et les statistiques de Fermi-Dirac. Les statistiques de Bose-Einstein considèrent les trois
agencements possibles : les deux particules du même côté (cas Fig.1.1(b) et Fig.1.1(c)), et une particule
de chaque côté (cas Fig.1.1(a)). En supposant des probabilités égales pour les trois cas, chacun a une
probabilité de 1/3. Les statistiques de Fermi-Dirac, quant à elles, prennent en compte le résultat observ-
able consistant à trouver les deux particules de chaque côté, entraînant une dégénérescence d’échange et
des états antisymétriques.

Pour comprendre l’origine des états symétriques et antisymétriques, l’auteur introduit une représen-
tation formelle utilisant des états élémentaires pour chaque particule. Par exemple, une particule dans
l’état mono-particule α, associé aux valeurs propres d’un groupe d’observables qui commutent, est éti-
quetée comme "1", tandis qu’une autre particule dans l’état β est étiquetée comme "2". Cependant, en
raison de l’incertitude de l’identité des particules, le système ne peut pas être décrit de manière unique
comme |Ψ⟩ = |α⟩1⊗|β⟩2 ou |Ψ⟩ = |α⟩2⊗|β⟩1, mais plutôt comme une combinaison linéaire des deux,
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|Ψ⟩ = a |α⟩1 ⊗ |β⟩2 + b |α⟩2 ⊗ |β⟩1, où l’état est normalisé, c’est-à-dire que |a|2 + |b|2 = 1. Cette
dégénérescence d’échange, résultat des statistiques quantiques, découle de quantités qui ne peuvent pas
être physiquement observées, rendant différentes possibilités mathématiques également valides.

Pour résoudre ce problème, le postulat de symétrisation est introduit. Les particules ayant un état
symétrique sont appelées bosons, tandis que celles ayant un état antisymétrique sont des fermions. Pour
l’exemple précédent des deux particules, l’état |Ψ⟩ est représenté de manière unique comme 1√

2

(
|α⟩1 ⊗

|β⟩2 + |α⟩2 ⊗ |β⟩1
)

pour les bosons et 1√
2
(|α⟩1 ⊗ |β⟩2 − |α⟩2 ⊗ |β⟩1) pour les fermions. Le postulat

de symétrisation garantit que les particules dans le même état physique présentent des propriétés de
symétrie différentes dans leurs descriptions mathématiques, entraînant un comportement distinct sous
les permutations de particules pour les bosons et les fermions. Les états bosoniques restent inchangés
tandis que les états fermioniques changent de signe avec un changement de phase de π. De plus, le
principe d’exclusion de Pauli, conséquence du postulat de symétrisation, interdit à deux fermions ou
plus d’occuper simultanément le même état quantique.

Cette classification des bosons et des fermions a des implications profondes dans divers domaines
de la physique. Cependant, elle soulève également la question intrigante de savoir si l’entrelacement
observé dans la description mathématique des particules identiques, selon le postulat de symétrisation,
est physiquement observable. Pour explorer cela davantage, l’auteur prévoit de donner un aperçu des
mesures d’entrelacement pour les particules identiques dans les sections suivantes.

Entrelacement des particules identiques

Cette section explore les complexités de la caractérisation de l’entrelacement entre particules identiques
en utilisant des étiquettes fictives. Ces défis découlent de la (anti)symétrisation des états et de l’étiquetage
des particules, ce qui entraîne des difficultés sur le plan méthodologique et pratique. De plus, les méth-
odes et critères conventionnels utilisés pour étudier l’entrelacement entre particules non identiques ne
s’appliquent pas directement aux particules identiques [1]. La section commencera par un aperçu de la
description standard de l’entrelacement, qui utilise des étiquettes fictives pour quantifier et caractériser
les états intriqués.

Approche de première quantification (approche standard)

Cette partie se penche sur les complexités de la caractérisation de l’entrelacement entre particules iden-
tiques en utilisant des étiquettes fictives. Considérez un système noté comme S, composé de deux partic-
ules non identiques étiquetées comme 1 et 2, décrites par un état pur |Ψ⟩ dans les deux espaces de Hilbert
monoparticules H1 et H2, qui ensemble forment l’espace de Hilbert du système à deux particules, HS .
Dans le cas où |Ψ⟩ = |ϕ⟩1⊗|χ⟩2, l’état est séparable, reflétant la structure de produit tensoriel de l’espace
de Hilbert total, et les états intriqués ne sont pas présents dans la structure du produit tensoriel.

Le degré d’entrelacement est généralement mesuré à l’aide de la décomposition de Schmidt, où l’état
est exprimé comme |Ψ⟩ =

∑r
i=1

√
λi |ϕi⟩1 ⊗ |χi⟩2, avec λi comme coefficient de Schmidt et |ϕi⟩1 et

|χi⟩2 comme vecteurs de base dans H1 et H2, respectivement. L’entropie de von Neumann est une
mesure couramment utilisée pour quantifier l’entrelacement entre deux particules.

Cependant, pour les particules indiscernables, étiquetées comme ±, l’état à deux particules est

représenté par |Ψ⟩± =
1√
2
(|ϕ⟩1 ⊗ |χ⟩2 ± |ϕ⟩2 ⊗ |χ⟩1) pour les bosons (+) et les fermions (−). En

raison de la présence d’étiquettes et du postulat de symétrisation, les particules identiques sont toujours
intriquées, même si elles sont éloignées et préparées indépendamment. L’entropie de von Neumann,
lorsqu’on trace une des particules, reflète un entrelacement non physique résultant des étiquettes fictives
utilisées pour décrire l’état.

De plus, dans certains scénarios tels que les systèmes de points quantiques, des particules identiques
peuvent occuper le même emplacement, rendant leur statistique cruciale pour déterminer la dynamique
et les corrélations. Dans de telles situations, distinguer l’entrelacement physique réel des corrélations
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formelles dues aux étiquettes fictives devient une tâche difficile. Cette section met en évidence les com-
plexités de la quantification de l’entrelacement impliquant des particules identiques et la nécessité de
prendre en compte leur indiscernabilité et leurs statistiques dans des contextes spécifiques.

Approche "sans étiquette" pour les particules identiques

L’approche "sans étiquette" pour les particules identiques propose une méthode alternative pour détecter
et quantifier l’entrelacement, en abordant les défis auxquels fait face l’approche de première quantifica-
tion [2, 3]. Dans cette approche, deux particules identiques dans des régions spatiales séparées, désignées
par L et R, sont considérées. Les états de ces particules sont représentés par |ϕ⟩ et |χ⟩, respectivement.
Importamment, les mesures de particules individuelles à l’aide de dispositifs localisés dans les régions
L et R n’affectent pas les prédictions physiques, rendant l’effet de symétrisation non pertinent dans ce
contexte [4, 5, 6, 7]. Par conséquent, la matrice de densité d’une particule est calculée sans appliquer de
symétrisation, et l’état initial est représenté comme un état factorisé |Ψ⟩ = |ϕ⟩L ⊗ |χ⟩R, applicable à la
fois aux bosons et aux fermions.

Dans l’approche "sans étiquette", un état d’une particule est défini à l’aide d’un ensemble complet
d’observables commutantes, représentées comme une liste d’états de particules individuelles : |ϕ1⟩ et
|ϕ2⟩. La représentation de l’état ne peut pas être exprimée comme un produit tensoriel d’états de vecteurs
de particules individuelles. Donc, il est entièrement caractérisé en listant les états comme |ϕ1, ϕ2⟩ /

√
N ,

avec N comme facteur de normalisation.
Les opérateurs d’une particule, notés A(1), dans l’approche "sans étiquette" agissent sur un état

à deux particules une à la fois, entraînant une combinaison linéaire d’états à deux particules, comme
défini par la définition standard [6]. L’action d’un opérateur d’une particule est exprimée comme A(1) =∑

i,j aij |ψi⟩ ⟨ψj | en utilisant un produit intérieur symétrique entre des espaces d’états de dimensions dif-
férentes. Le produit intérieur prend en compte l’effet d’indiscernabilité; c.-à-d. l’endroit où l’amplitude
de la probabilité de trouver une particule dans l’état ϕ′1 (ϕ′2) provient de la possibilité d’avoir une particule
dans l’un ou l’autre état ϕ1 ou ϕ2.

L’approche "sans étiquette" permet la quantification de l’entrelacement entre deux particules iden-
tiques en utilisant l’entropie de von Neumann de la matrice de densité réduite d’une particule obtenue à
partir d’une trace partielle localisée. Le degré d’entrelacement est donné par la formule de l’entropie de
von Neumann (1.2). Par exemple, dans un scénario de deux particules identiques dans des régions spa-
tiales différentes, la trace partielle sur une région donne un état séparable. En revanche, lorsque les deux
particules sont amenées au même endroit, la trace partielle donne un état de particule unique différent,
qui peut également être considéré comme séparable.

En résumé, l’approche "sans étiquette" fournit un cadre pour étudier l’entrelacement dans des sys-
tèmes de particules identiques, en évitant l’utilisation d’étiquettes non observables. Elle permet l’analyse
de l’entrelacement en utilisant des concepts usuels de la théorie de l’entrelacement pour les particules
discernables, tels que l’entropie de von Neumann par le biais de la trace partielle. La quantification
de l’entrelacement dans cette approche est basée sur des mesures locales et s’avère être dépendante du
contexte. Cette approche offre des aperçus précieux sur le comportement des particules identiques et
leurs propriétés d’entrelacement, qui sont importantes pour diverses applications dans le traitement de
l’information quantique et les technologies quantiques.

Approche de la quantification du champ (deuxième quantification)

Les critères de séparabilité et d’entrelacement dans les systèmes quantiques dépendent du choix des
observables qui commutes et qui ne sont pas des concepts absolus [8, 9, 10]. L’approche de la quantifica-
tion du champ en mécanique statistique quantique offre un cadre cohérent pour analyser la séparabilité et
l’entrelacement dans les systèmes quantiques [11]. Cette approche introduit des opérateurs de création et
d’annihilation qui agissent sur les états vectoriels de particules individuelles, représentant les modes dans
un espace de Hilbert pour une seule particule, noté H. Dans le cadre de la quantification du champ, un
état est considéré comme séparable par rapport à un ensemble donné de modes orthogonaux s’il peut être
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exprimé comme un produit de polynômes en opérateurs de création correspondant à ces modes [10]. Les
états qui ne peuvent pas être exprimés sous cette forme sont considérés comme entrelacés. Le concept de
séparabilité et d’entrelacement pour les particules identiques dépend du contexte, en fonction du choix
des observables. Par exemple, des états qui sont entrelacés par rapport à un ensemble d’observables
peuvent être séparables en considérant un autre ensemble d’observables [7, 12, 13]. L’approche de la
quantification du champ permet l’analyse de l’entrelacement dans des systèmes à plusieurs corps com-
posés de bosons et de fermions [8]. Une opération linéaire qui transfère des particules entre les modes
montre que la structure d’entrelacement peut changer sous de telles transformations [2]. L’entrelacement
de particules identiques peut être transféré à un état entrelacé de modes indépendants, montrant que le
critère de séparabilité n’est pas une propriété absolue [14]. Dans le contexte des particules identiques,
l’entrelacement induit par la mesure joue un rôle important [6, 13]. Des mesures ambiguës, où l’appareil
ne peut pas déterminer quelle particule correspond au résultat détecté par chaque détecteur, peuvent con-
duire à la génération intrinsèque d’entrelacement induit par la mesure de manière probabiliste, même
dans des cas où l’entrelacement initial était absent [6, 13]. En conclusion, l’approche de la quantifica-
tion du champ offre un cadre complet pour comprendre la nature contextuelle de la séparabilité et de
l’entrelacement dans les systèmes quantiques. Les particules identiques présentent des comportements
uniques, et leurs propriétés d’entrelacement dépendent du choix des observables et des procédures de
mesure. Cela a des implications pour diverses applications dans le traitement de l’information quan-
tique et les technologies quantiques, où l’entrelacement joue un rôle crucial dans l’obtention d’avantages
quantiques. Comprendre la dépendance du contexte de l’entrelacement dans les systèmes de particules
identiques est essentiel pour la caractérisation et l’utilisation appropriées des corrélations quantiques
dans des applications pratiques.

Traitement de l’information quantique avec des particules identiques

Cette section aborde les implications de l’indiscernabilité des particules identiques dans le traitement de
l’information quantique. Le principal défi est que les particules identiques ne sont pas facilement adress-
ables individuellement, ce qui limite leur utilisation dans les tâches d’information quantique. L’approche
courante consiste à utiliser la deuxième quantification dans le cadre des opérations locales et de la com-
munication classique (OLCC), où les modes orthogonaux sont manipulés et adressés individuellement,
car ils peuvent toujours être distingués dans des configurations expérimentales.

Cependant, lorsque les particules identiques se chevauchent spatialement, les opérations locales sur
des modes spécifiques deviennent inaccessibles. Pour résoudre ce problème, le cadre des opérations
localisées spatialement et de la communication classique (sOLCC) a été introduit. Ce cadre, basé sur
une approche sans étiquette basée sur les particules, permet d’adresser et de manipuler des particules
identiques se chevauchant spatialement. Cette section procurera, avant de se plonger dans le rôle de
l’indiscernabilité dans le traitement de l’information quantique, un bref rappel du cadre sOLCC[15, 16].

Opérations localisées spatialement et communication classique (sOLCC)

Dans le cadre du sOLCC (opérations localisées spatialement et communication classique) est introduit
pour deux particules identiques préparées indépendamment dans un état conjoint |Ψ⟩ = |ψ ↑, ψ′ ↓⟩ avec
des fonctions d’onde spatiales ψ et ψ′ représentant les degrés de liberté externes et les états de pseu-
dospin ↑ et ↓ représentant les états internes. En effectuant des mesures locales sur les états de pseudospin
d’une seule particule dans des régions spatiales localisées séparées désignées par L et R, l’entrelacement
dans le système peut être accédé. L’opérateur de mesure du sOLCC projette l’état sur les états de base et
produit un état biparticulaire non normalisé. La probabilité de succès de sOLCC dépend de la probabil-
ité de trouver les particules dans chaque région. L’entrelacement opérationnel est quantifié en utilisant
l’entropie de von Neumann. Lorsque les particules sont séparées spatialement dans deux régions, l’état
est séparable et a un entrelacement nul. Cependant, s’il y a une probabilité non nulle de chevauche-
ment spatial entre les particules, l’état devient entrelacé. Pour un chevauchement spatial complet, où les
deux particules sont également réparties dans les deux régions, l’état devient entrelacé de manière max-

XI



imale. Le cadre théorique du sOLCC est étendu à des scénarios avec de multiples particules identiques
réparties entre de multiples régions, permettant d’étudier l’entrelacement dans des systèmes de particules
indiscernables. La mesure de l’entrelacement est également étendue pour englober n’importe quel état
mixte arbitraire de deux particules identiques se chevauchant spatialement, offrant un cadre complet pour
quantifier et caractériser l’entrelacement dans de tels systèmes. Le cadre du sOLCC, basé sur l’approche
sans étiquette et sur les opérations localisées spatialement et la communication classique, permet de ma-
nipuler et d’exploiter directement les états de ressource associés aux particules identiques. Cela a des
implications significatives pour le traitement de l’information quantique, car l’indiscernabilité des par-
ticules identiques peut être utilisée efficacement comme une ressource quantique précieuse. Le cadre
permet diverses applications et avantages dans les tâches de traitement de l’information quantique. Les
sections suivantes donneront un aperçu de certaines de ces applications et des avantages de l’utilisation
de particules indiscernables pour le traitement de l’information quantique [16, 17].

Interférence quantique à deux particules et statistiques des particules

L’indiscernabilité des particules identiques a historiquement conduit à des conséquences significatives,
en particulier dans le contexte de l’interférence quantique à deux photons. Les chercheurs ont généré
des superpositions de l’origine d’une paire de photons, créant des phénomènes d’interférence. His-
toriquement, l’action d’un diviseur de faisceau a été formulée en utilisant la deuxième quantification,
où les opérateurs de création de photons â† et b̂† représentent les deux ports d’entrée du diviseur de
faisceau, et ĉ† et d̂† représentent les deux ports de sortie. Pour les photons, le diviseur de faisceau in-
duit une interférence à deux photons, connue sous le nom d’effet Hong, Ou et Mandel (HOM), qui se
traduit par un "creux" caractéristique dans la détection en coïncidence à la sortie. Lorsque les photons
se chevauchent spatialement au niveau du diviseur de faisceau, ils deviennent indiscernables, conduisant
à une interférence. Dans l’effet HOM, la détection simultanée aux deux ports de sortie se comporte
comme l’état singulet pour deux photons polarisés de manière orthogonale. La contrepartie fermionique,
impliquant des fermions qui obéissent au principe d’exclusion de Pauli, présente un anti-regroupement ,
et l’information concernant l’origine des fermions reste insaisissable.

La formalisme de l’action du diviseur de faisceau peut être traduit dans l’approche sans étiquette, où
les particules ne dépendent pas des étiquettes, et la forme élémentaire de l’état à deux particules est prise
en compte. Pour les bosons dans le cas 50:50, l’effet de regroupement est retrouvé, similaire à l’effet
HOM, tandis que pour les fermions, le seul état accessible est |L σ,R σ⟩, l’effet d’anti-regroupement.

L’interférence à deux particules a été observée non seulement avec des particules élémentaires telles
que des électrons et des atomes, mais également avec des systèmes quantiques plus massifs et complexes,
tels que les plasmons. Ce phénomène se produit à différentes échelles et complexités, en faisant un aspect
fondamental de la physique quantique avec de larges applications dans le traitement de l’information
quantique et les technologies quantiques

Génération d’entrelacement

Dans la manipulation d’états quantiques, un émetteur fiable capable de produire des particules élémen-
taires identiques est essentiel. L’optique quantique utilise la conversion descendante paramétrique spon-
tanée (SPDC), un processus non linéaire qui génère des paires de photons (passif et signal) avec une
polarisation orthogonale, résultant en des états d’entrelacement de polarisation véritable [18, 19]. De
telles sources sont largement utilisées pour créer des états d’entrelacement photoniques complexes, y
compris la création de systèmes d’entrelacement de 12 photons [20]. Après la génération des partic-
ules, des opérations locales telles que des diviseurs de faisceau et des polariseurs sont utilisées pour
l’ingénierie d’états quantiques et les tâches de traitement de l’information quantique telles que la télé-
portation quantique et le transfert d’information quantique entre une source et un destinataire en utilisant
des états d’entrelacement [15, 21, 22]. Cependant, le chevauchement spatial dans une région spécifique
n’est pas nécessaire pour l’ingénierie d’états quantiques, car l’entrelacement des particules indiscern-
ables est directement déterminé par leur chevauchement spatial [16]. Une proposition expérimentale
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importante a réalisé la première porte d’entrelacement à distance exploitant des particules indiscernables
[23]. D’autres travaux ont également mis en œuvre des portes d’entrelacement basées sur sOLCC en
utilisant le chevauchement spatial entre des particules identiques, démontrant sa valeur dans l’ingénierie
d’états quantiques [24, 25].

Téléportation quantique et entrelacement swapping

Une façon de tester l’entrelacement consiste à démontrer que l’état de sortie peut accomplir des tâches
d’information quantique qui sont classiquement impossibles. La téléportation quantique en est un ex-
emple typique, où l’entrelacement sous forme d’un état de Bell est utilisé pour transmettre un état
quantique arbitraire entre deux observateurs distants, Alice et Bob. Cette technique permet le transfert
d’information quantique d’une source à une destination en utilisant des états d’entrelacement et joue un
rôle crucial dans le réseau quantique [15]. L’entrelacement swapping est une autre application importante
dans la communication quantique, permettant l’entrelacement de deux particules qui ne partagent pas un
passé commun. Récemment, un protocole d’entrelacement basé sur l’indiscernabilité a été mis en œuvre
expérimentalement en utilisant l’indiscernabilité spatiale contrôlée de quatre photons indépendants ré-
partis parmi trois nœuds d’un réseau, démontrant des perspectives prometteuses pour une communication
quantique réalisable dans des réseaux quantiques photoniques à plusieurs nœuds [26]. L’indiscernabilité
inhérente des particules identiques offre une ressource précieuse pour diverses tâches de communication
quantique [27, 15].

Métrologie quantique avec des particules indiscernables

L’effet Hong-Ou-Mandel (HOM) démontre que, en raison de la nature indiscernable et bosonique de
deux photons, ils peuvent être entièrement dans l’un ou l’autre de deux modes (A ou B) sans que leur
identité soit connue. Cette observation est étendue à N photons dans le mode A, donnant lieu à l’état
N00N, qui est défini comme |ψN00N ⟩ = 1√

2
(|N, 0⟩+ |0, N⟩). Les états N00N permettent une résolution

spatiale et de phase améliorée, atteignant la limite de Heisenberg pour la sensibilité de phase avec un
facteur d’échelle de 1/N . Des schémas expérimentaux de générations des états N00N avec un grand
nombre de photons ont été proposés et démontrés. Le comportement collectif de N particules identiques
interagissant avec un déphaseur donne lieu à un déphasage proportionnel à N, contrairement aux états
cohérents classiques. Le caractère adressable est cruciale pour les opérations quantiques, mais pour les
particules identiques, sOLCC peut être utilisé pour surmonter les limitations et réaliser des opérations
telles que la porte CNOT. Le chevauchement spatial des fonctions d’onde est la raison de la cohérence, et
dans la métrologie quantique, la cohérence quantique activée par l’indiscernabilité est considérée comme
une ressource précieuse pour les tâches de discrimination de phase, surpassant les approches de particules
discernables [28, 29, 30, 31].

Protection, récupération et distillation de l’entrelacement assistées par l’indiscernabilité

Dans les sections précédentes, j’ai donné un bref aperçu de la façon dont le chevauchement spatial ou
l’indiscernabilité permet la cohérence quantique. En outre, dans une étude précédente [32] a démontré
expérimentalement que le maintien du chevauchement spatial et de l’indiscernabilité entre deux photons
permet de préserver la cohérence quantique. Dans ce mécanisme, deux particules indiscernables et sans
interaction se propagent ensemble à travers des réseaux quantiques affectés par un bruit non dissipatif,
conduisant à un état stable où la cohérence, qui tient compte de l’indiscernabilité des particules, persiste
indéfiniment.

Dans le cadre de ma thèse de doctorat, j’ai démontré l’utilisation de l’indiscernabilité des particules
identiques pour préserver l’entrelacement à différentes étapes. Dans ce qui suit, je résume brièvement
les résultats de quatre articles, comme discuté dans quatre chapitres.
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Préparation robuste de l’entrelacement contre le bruit en contrôlant l’indiscernabilité
spatiale

Dans le Chapitre II de ma thèse de doctorat, nous étudions et caractérisons le rôle de l’indiscernabilité
dans le maintien de l’entrelacement quantique malgré le bruit environnemental. Notre étude se concentre
sur l’utilisation des ressources quantiques, en particulier l’entrelacement, en mécanique quantique et en
traitement de l’information quantique. L’entrelacement joue un rôle crucial dans diverses applications
quantiques telles que la métrologie quantique, la distribution de clés quantiques, la téléportation et la
détection quantique. Cependant, l’entrelacement est sensible au bruit environnemental, ce qui entraîne
l’incohérence et la perte de ses propriétés quantiques. Préserver l’entrelacement en présence de bruit est
un objectif principal pour la technologie quantique améliorée.

Notre étude utilise des sous-systèmes quantiques identiques, tels que les qubits, comme blocs de
construction pour les réseaux quantiques à plusieurs corps. Nous explorons l’indiscernabilité des par-
ticules et ses implications dans les systèmes quantiques composites. Plus spécifiquement, nous étu-
dions le contrôle continu des configurations spatiales des fonctions d’onde des particules individuelles et
l’influence la préparation des états entrelacés en présence de bruit. Nous introduisons le concept de degré
d’indiscernabilité comme une mesure entropique de l’information, donnée par l’équation (2.10), qui peut
être ajustée en modulant les fonctions d’onde spatiales. En utilisant le cadre expérimentalement réalis-
able des opérations spatialement localisées et de la communication classique (sLOCC), nous définissons
l’entrelacement de formation pour un état arbitraire de deux qubits indiscernables (bosons ou fermions),
donné par l’équation (4.13). Ce quantificateur nous permet d’évaluer l’entrelacement dans différentes
configurations de chevauchement spatial. Nos résultats montrent que l’indiscernabilité spatiale peut être
adaptée pour protéger la génération d’entrelacement contre le bruit, le rendant ainsi plus résistant dans
les applications quantiques pratiques.

Le graphique dans la figure 2.2 démontre que la préparation de l’entrelacement, modélisée par l’état
de Werner, peut être efficacement protégée contre le bruit pour un chevauchement spatial non nul entre
les deux particules. Une information cruciale dans ce scénario est le degré minimum de ILR qui garantit
un entrelacement non local dans L et R, en violant une inégalité de Bell CHSH [33], indépendamment
de la probabilité de bruit p. Dans l’ensemble, notre étude met en lumière les caractéristiques fondamen-
tales des systèmes quantiques composites et contribue à l’avancement des technologies améliorées par la
quantique.

Entrelacement quantique expérimental et téléportation en ajustant l’indiscernabilité spa-
tiale à distance de photons indépendants

Dans le Chapitre III de ma thèse de doctorat, nous explorons les caractéristiques fondamentales des con-
stituants quantiques et leur rôle dans le contrôle des systèmes quantiques composites, qui sont essentiels
pour avancer dans notre compréhension du monde naturel et développer des technologies améliorées par
la quantique. Les réseaux quantiques à plusieurs corps sont souvent constitués de blocs de construction
identiques, tels que les qubits, les photons, les atomes ou les électrons. L’indiscernabilité de ces sous-
systèmes identiques émerge comme une caractéristique quantique fondamentale qui peut influencer les
tâches de traitement de l’information quantique. Pour les systèmes à plusieurs corps avec des qubits non
identiques, ces tâches sont réalisées par des opérations locales et une communication classique (LOCC),
où l’adressage individuel des qubits est possible. Cependant, pour les qubits identiques, l’adressage
individuel n’est pas toujours réalisable en raison du manque de discernabilité des particules.

Dans cette étude, nous proposons une proposition théorique pour mettre en œuvre expérimentalement
une porte d’interaction à distance. Il a été démontré dans Ref. [16] que la superposition spatiale de deux
particules identiques, même celles qui ne partagent aucun historique, peut générer un entrelacement.
Nous mettons en œuvre un cadre opérationnel basé sur les opérations spatialement localisées et la com-
munication classique (sLOCC), qui repose sur le concept de localité spatiale des mesures plutôt que de la
localité des particules. En utilisant cette configuration illustrée dans la figure 3.5, nous contrôlons la dis-
tribution des paquets d’ondes de deux photons identiques indépendants et initialement non corrélés vers
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des régions opérationnelles séparées, ce qui nous permet d’ajuster en continu le degré d’indiscernabilité
spatiale à distance. Nous quantifions cette indiscernabilité à l’aide d’une mesure entropique et informa-
tionnelle appropriée [17].

En effectuant des mesures localisées de photons uniques, nous démontrons que les deux photons
initialement non corrélés deviennent entrelacés, et la quantité d’entrelacement est directement liée au
degré d’indiscernabilité spatiale, comme le montre le graphique dans la figure 3.3. Cet entrelacement non
local viole l’inégalité de Bell, comme illustré dans la figure 3.3 et permet la téléportation conditionnelle
de l’état d’un photon supplémentaire avec des fidélités supérieures aux seuils classiques [17]. Cette
preuve expérimentale met en évidence l’importance de l’indiscernabilité spatiale en tant que ressource
directe pour les protocoles quantiques et souligne son impact potentiel dans le traitement de l’information
quantique.

Dynamique des particules indiscernables spatialement et protections de l’entrelacement
quantique

Dans le Chapitre IV de ma thèse de doctorat, nous abordons le défi de traiter les particules identiques
dans les réseaux quantiques et la difficulté de caractériser leurs corrélations quantiques. Les particules
identiques, étant de la même espèce et ayant les mêmes propriétés intrinsèques, posent des défis uniques
en mécanique quantique. Contrairement, les particules non identiques, ou discernables, peuvent être
adressées individuellement et leur traitement dynamique est bien compris. Cependant, en ce qui concerne
les particules indiscernables, le manque de discernabilité complique la compréhension de leur évolution
dynamique de l’état du système.

Grâce au cadre sLOCC dans l’approche sans étiquette, il a été démontré que l’indiscernabilité spatiale
est quantifiable par une mesure d’entropie informationnelle [17], qui est directement liée à la quantité
d’entrelacement généré [23]. Une question ouverte reste de savoir comment les particules indiscernables,
dans des conditions générales de chevauchement spatial, interagissent avec des environnements locaux
et, par conséquent, comment leur état de système évolue dynamiquement. L’approche sans étiquette plus
le cadre sLOCC semblent être des outils idéaux pour combler cette lacune dans le contexte des systèmes
quantiques ouverts.

Nous étudions l’interaction des particules indiscernables avec des environnements locaux, ce qui en-
traîne une décohérence et la perte de ressources quantiques telles que la cohérence et l’entrelacement.
Nous constatons que l’indiscernabilité spatiale peut jouer un rôle crucial dans la protection de
l’entrelacement quantique contre le bruit préjudiciable dans des environnements non markoviens. En
étudiant la dynamique de l’entrelacement de deux qubits identiques, nous montrons que l’indiscernabilité
spatiale préserve l’entrelacement contre le bruit environnemental. Elle est ensuite appliquée pour
étudier la dynamique de deux qubits identiques sous des bruits markoviens paradigmatiques, tels que
l’amortissement de phase, la désexcitation et l’amortissement d’amplitude. Dans les figures 4.2, 4.3
et 4.4, nous montrons que l’indiscernabilité spatiale des qubits identiques est une propriété inhérente
contrôlable du système qui protège l’entrelacement quantique exploitable contre le bruit préjudiciable.
La combinaison de l’approche sans étiquette et du cadre sLOCC offre un ensemble d’outils puissants
pour étudier les particules identiques dans les systèmes quantiques ouverts, ouvrant la voie à de futures
avancées dans les technologies améliorées par la quantique et le traitement de l’information quantique.

Distillations de l’entrelacement assistées par l’indiscernabilité de deux qubits

Dans le Chapitre IV, nous nous concentrons sur la compréhension du rôle de l’indiscernabilité dans les
systèmes composés d’entités quantiques identiques. Le chevauchement spatial de ces particules conduit
au phénomène d’indiscernabilité, qui affecte profondément la formation des états quantiques composites
[1, 13, 2]. Au-delà de son importance fondamentale, le chevauchement spatial permet de générer un
entrelacement contrôlable et joue un rôle essentiel dans les tâches d’information quantique telles que
la téléportation, l’estimation quantique et la distribution de l’entrelacement dans les réseaux quantiques
[34, 16, 23, 24, 25, 35]. L’indiscernabilité des bosons a également été démontrée pour améliorer la
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conversion d’information et de travail [36, 37, 38], conduisant à une efficacité à puissance maximale
supérieure à la limite classique de Curzon-Ahlborn [39].

Cependant, l’entrelacement et la cohérence quantique, qui sont des ressources essentielles pour les
technologies améliorées par la quantique, sont sensibles au bruit et aux interactions environnementales,
ce qui entraîne l’incohérence et une dégradation [40, 41]. La préservation des ressources quantiques en
présence de bruit devient un défi critique pour l’information et le calcul quantiques. Diverses méthodes
de protection ont été proposées, notamment la préservation à l’aide de protocoles de distillation, qui
convertissent des états mixtes en états entrelacés en utilisant des opérations locales et une communication
classique (LOCC) [42, 43].

Dans ce contexte, nous introduisons une procédure de distillation probabiliste de l’entrelacement
basée sur le chevauchement spatial entre particules identiques dans le cadre sLOCC. Nous établissons
les conditions pour un taux de succès non nul de distillation d’entrelacement parfait. De plus, nous
optimisons la probabilité de succès au détriment d’un degré d’entrelacement inférieur. Notre protocole
repose uniquement sur les propriétés inhérentes des particules identiques, ce qui le rend particulièrement
adapté aux scénarios de communication quantique, où il permet de convertir des états bruités apparem-
ment inutiles en états opérationnels pour le transfert d’information. Pour démontrer l’applicabilité de
notre procédure, nous examinons les exigences de distillation d’entrelacement à partir d’états thermiques
dans la figure 5.2 et d’états de Werner dans la figure 5.5. En exploitant le chevauchement spatial et les
opérations sLOCC, notre approche offre un moyen pratique et efficace de distiller l’entrelacement à partir
d’états bruités, renforçant ainsi le potentiel de communication quantique et de traitement de l’information
quantique.

Partie II : Traitement de l’information quantique basé sur des marches
quantiques photoniques

Dans la partie II de ma thèse de doctorat, j’explore l’application des marches quantiques dans le traite-
ment de l’information quantique. Cette partie comprend des chapitres basés sur des articles précédem-
ment publiés dans des revues scientifiques réputées. Avant de plonger dans les résultats, je fournis une
brève introduction au contexte.

Le concept de marches aléatoires quantiques sert de contrepartie quantique aux marches aléatoires
classiques et a été initialement introduit par Aharonov et al. en 1993 [44]. Les marches quantiques
modélisent l’évolution cohérente de particules quantiques, et leur caractéristique la plus remarquable
est la capacité du marcheur à exister dans des états de superposition pendant la propagation. Cette
propriété entraîne l’émergence d’effets d’interférence, qui différencient considérablement les marches
quantiques de leurs contreparties classiques. Les marches quantiques ont démontré une accélération
computationnelle dans divers algorithmes, tels que la recherche spatiale [45]. Au cours de la dernière
décennie, elles sont devenues un modèle computationnel universel et ont été utilisées dans la conception
d’ordinateurs quantiques [46, 47].

Rôle du désordre dans les marches quantiques en temps discret en tant que dispositif de mesure Le dé-
sordre dans les marches quantiques en temps discret se réfère à l’introduction de hasard ou d’irrégularité
dans l’évolution du marcheur. Dans une marche quantique standard, l’évolution est déterminée par un
ensemble fixe d’opérateurs unitaires, à savoir l’opérateur de pièce et l’opérateur de décalage. Pour une
marche quantique ordonnée, nous disons que le comportement de diffusion est balistique, car la mesure
de la variance de la position est proportionnelle à un nombre quadratique d’étapes σ2(X̂) ∝ t2 par rap-
port au cas classique, qui est linéaire. Cela signifie que le marcheur quantique se propage de manière
quadratique plus rapidement dans l’espace des positions. Cependant, lorsque le désordre est introduit,
ces règles montrent des variations. Le rôle du désordre dans les marches quantiques en temps discret
peut avoir plusieurs effets sur le comportement du système. Par exemple, le désordre peut conduire à
un phénomène appelé la localisation d’Anderson [48], où le marcheur devient localisé ou confiné dans
une région particulière du réseau. Cela contraste avec le comportement de diffusion observé dans une
marche quantique ordonnée. Cet effet s’applique aux marches quantiques et a été étudié en utilisant des
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plates-formes physiques de marche quantique telles que l’optique photonique [49, 50, 51, 52]. De plus,
on peut simuler l’incohérence en utilisant le désordre aléatoire, qui est un phénomène physique qui appa-
raît généralement de l’interaction entre les systèmes quantiques et leur environnement. Le désordre peut
également conduire à différents schémas de propagation, tels que la super-diffusion (la propagation du
marcheur est plus rapide que celle observée dans les marches aléatoires classiques), le modèle classique,
et la sous-diffusion (la propagation du marcheur est plus lente que celle observée dans les marches aléa-
toires classiques). Cela se produit lorsque les fluctuations aléatoires introduites par le désordre affectent
l’exploration du réseau par le marcheur. De plus, les désordres dans les marches quantiques peuvent
interagir avec la topologie sous-jacente du réseau. Selon le type spécifique de désordre et la structure du
réseau, l’interaction entre le désordre et la topologie peut donner lieu à des phénomènes intéressants, tels
que les isolants d’Anderson topologiques ou l’apparition d’états de bord localisés [53, 54].

En outre, le désordre peut entraîner la génération d’entrelacement entre les états de la pièce et de
la position du marcheur, ainsi que des corrélations entre différentes parties du système [55]. Comme
discuté dans le chapitre VIII, nous démontrons l’optimisation du contrôle du désordre pour améliorer la
corrélation quantique entre deux photons indiscernables dans des modes distincts d’un réseau de marches
quantiques [56].

Marches quantiques en temps discret en tant que dispositif de mesure

En plus de leur rôle dans les algorithmes et les simulations quantiques, les marches quantiques en temps
discret peuvent également être considérées comme des dispositifs de mesure généralisés [57]. En mé-
canique quantique, une mesure consiste généralement à obtenir des informations sur un système quan-
tique en le projetant sur un état avec une base précise. De même, dans une marche quantique en temps
discret, la position du marcheur peut être interprétée comme un résultat de mesure. Dans le chapitre X
de ma thèse, nous démontrons comment le modèle de marche quantique en temps discret peut être utilisé
de manière efficace pour effectuer une interférence quantique biphoton à haute dimension et extraire la
visibilité dans un système de boucle de fibres couplées.

Réalisation physique de la marche quantique en temps discret

De nombreuses propositions et réalisations expérimentales ont été faites pour réaliser physiquement
différents types de marches quantiques en utilisant différentes techniques optiques et à semi-conducteurs.
L’implémentation de la marche quantique en temps discret se distingue par la manière dont elle code la
pièce et la position des marcheurs quantiques. Différentes plates-formes physiques ont été explorées,
notamment les systèmes de pièges à ions [58], les systèmes de cavités en électrodynamique quantique
[59], les qubits supraconducteurs [60] et les atomes ultra-froids [61, 62]. De plus, les marches quantiques
peuvent également être mises en œuvre en utilisant des photons uniques et des éléments optiques linéaires
[63, 64]. De manière surprenante, il a été découvert que la nature quantique de la lumière n’est pas
essentielle pour le développement des marches quantiques. L’optique classique peut simuler les marches
quantiques en utilisant une analogie interférométrique [65]. Dans l’approche classique dans les systèmes
optiques, les chemins optiques sont couramment utilisés pour coder la position tandis que la polarisation
est utilisée pour coder l’état de la pièce , "quantum walker’s coin state", du marcheur quantique [63, 64].
Cette approche implique l’utilisation d’un maillage optique constitué d’éléments optiques spatialement
séparés, de déphaseurs, de diviseurs de faisceau et d’autres composants pour construire un processeur
quantique [66, 67, 67, 68]. De plus, le moment angulaire orbital (OAM) peut servir d’attribut de position
et fonctionner comme une dimension synthétique pour simuler le modèle [69, 70]. Une autre approche
consiste à utiliser une configuration en boucle de fibre optique qui imite le comportement d’un réseau
photonique synthétique pour simuler la marche quantique de temps discret [71, 72]. Dans le cadre de
ma recherche de doctorat, je résume brièvement les résultats de trois articles, comme discuté dans trois
chapitres.
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Lecture de la propagation de l’information quantique en utilisant des marches quantiques
désordonnées

Dans le Chapitre VII, nous présentons un protocole de sonde quantique utilisant des marches quan-
tiques pour étudier le modèle de propagation de l’information quantique. Nous utilisons « l’Information
Quantique de Fisher » comme mesure pour quantifier les informations extraites sur un paramètre inconnu
encodé dans l’évolution des marches quantiques. Bien que l’approche soit universelle, nous nous con-
centrons sur le désordre statique et dynamique cohérent pour étudier le transport anormal et classique,
ainsi que la localisation d’Anderson.

Dans la Fig. 7.3, nous montrons comment nous pouvons détecter la transition quantique-classique en
utilisant « l’Information Quantique de Fisher » lorsque le désordre dynamique est appliqué. De même,
nous illustrons comment le modèle de propagation ralentit jusqu’à la sous-diffusion dans la Fig. 7.3,
conduisant éventuellement à la localisation d’Anderson dans la Fig. 7.4. Pour enrichir la physique du
phénomène, nous considérons deux marcheurs quantiques d’entrée, soit discernables, soit indiscernables.
En général, l’état de deux particules indiscernables présente une valeur plus élevée que « l’Information
Quantique de Fisher » l’état discernable. Cette propriété s’explique par le fait que l’indiscernabilité des
particules est une ressource enrichissante pour la distribution de l’information quantique dans un système
composite de particules identiques [16, 17, 23].

Fait intéressant, nous remarquons également que les deux états d’entrée suivent le même modèle de
propagation. Nous proposons une stratégie expérimentale réalisable pour mettre en œuvre, en principe,
le protocole de sonde quantique basé sur « l’Information Quantique de Fisher » en utilisant une con-
figuration interférométrique similaire à celle de Mach-Zehnder. Nos résultats montrent qu’une marche
quantique peut servir de dispositif de lecture d’informations sur les défauts et les perturbations se pro-
duisant dans des réseaux complexes, à la fois classiques et quantiques.

Amélioration des corrélations bosoniques non classiques dans un réseau de marches quan-
tiques grâce au contrôle expérimental du désordre

Dans le Chapitre VIII, nous étudions théoriquement et expérimentalement le rôle du désordre et des in-
homogénéités dans les réseaux quantiques. Il est important de comprendre comment les caractéristiques
quantiques basées sur l’indiscernabilité se comportent dans un cadre dynamique. Pour de nombreux sys-
tèmes, le désordre joue un rôle néfaste, car il entraîne une incohérence du système [73]. Cependant, pour
certains systèmes, le désordre peut améliorer les propriétés physiques telles que le transport cohérent
[74], l’accélération des algorithmes quantiques [75], et les corrélations quantiques [76, 77, 78, 55]. Ces
effets apparaissent généralement en raison de l’interaction avec un environnement externe, bien que ne
présentant pas toujours un mécanisme de rétroaction [79, 80].

Contrairement aux études précédentes [55], les stratégies pour enrichir les corrélations à deux partic-
ules dans des modes séparés d’un réseau de marches quantiques grâce au contrôle du désordre restent à
être trouvé. Ici, nous comblons cette lacune en injectant deux photons indiscernables (biphoton) dans une
marche quantique discrète unidimensionnelle inhomogène et en ajustant expérimentalement des configu-
rations de désordre spécifiques tout en maintenant le système isolé. Comme observé expérimentalement
dans la Fig. 8.7, il est possible d’ajuster l’amélioration à deux modes et totale de la non-classique en posi-
tion et en intensité. Cela correspond à un réseau adaptatif où l’évaluation des paramètres détermine la fo-
calisation des ressources non classiques dans des modes sélectionnés. Ces résultats permettent d’enrichir
la corrélation quantique grâce au contrôle de l’évolution unitaire (ingénierie d’Hamiltonien efficace) du
biphoton. De plus, nous montrons numériquement dans la Fig. 8.4 que la moyenne sur des configura-
tions de désordre aléatoires conduit à une diminution des corrélations quantiques initiales du biphoton.
Nos résultats prouvent de manière incontestable que la présence de désordre favorise l’amélioration dy-
namique des corrélations quantiques du biphoton de manière contrôlable, ouvrant la voie à son utilisation
potentielle dans des scénarios d’information quantique.
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Génération et vérification d’états intriqués de grande dimension via des réseaux pho-
toniques temporels

Dans le Chapitre X, nous présentons un processeur de marche quantique potentiellement évolutif en
exploitant des réseaux photoniques temporels basés sur un système de boucles de fibres couplées. Nous
utilisons un tel système pour démontrer des opérations critiques, telles que la génération de paires de
photons intriqués à deux et quatre niveaux discrets dans le temps, la manipulation d’états quantiques et
la vérification de l’intrication. Les modes discrets dans le temps (également appelés intervalles de temps)
ont montré de nombreux avantages parmi les degrés de liberté des photons, notamment la résistance au
bruit et la facilité de manipulation avec des composants standard compatibles avec les télécommunica-
tions [81, 82, 83, 84]. À cet égard, les réseaux photoniques temporels (RPT), dans lesquels les intervalles
de temps sont réalisés via des retards temporels entre les impulsions optiques, offrent des plates-formes
idéales pour créer des dimensions synthétiques évolutives. Les RPT peuvent être facilement mis en
œuvre à l’aide de technologies de fibres accessibles et offrent d’excellents bancs d’essai pour simuler
des effets intrigants tels que la symétrie temps-parité [85, 86], la superfluidité de la lumière [87], et les
questions topologiques [88]. Cependant, malgré les multiples propositions d’utiliser les RPT pour le
traitement quantique [89, 90, 91, 92], les mises en œuvre expérimentales sont freinées par l’inefficacité
des dispositifs actuels, tels que la faible tolérance aux erreurs et les inefficacités des portes.

Nous présentons une nouvelle approche pour l’utilisation de RPT pour le traitement pratique et évo-
lutif de l’information quantique sur des états de photons intriqués dans le temps discrets. Nous réalisons
expérimentalement le réseau photonique temporel sur un système de boucles couplées entièrement in-
tégré dans la fibre et l’utilisons pour la préparation, la manipulation et la vérification de l’état biphoton
basé sur la marche quantique en temps discret [44, 92]. La polyvalence de notre réalisation nous per-
met de contrôler la marche d’un état biphoton de sorte qu’elle résulte en une mesure d’interférence
quantique sans post-sélection pour deux niveaux. Cela permet également l’optimisation de l’évolution
de la marche quantique pour une plus grande efficacité de détection et un plus grand nombre de coïn-
cidences potentiellement pour n’importe quel nombre de niveaux. De plus, notre stratégie de mesure
peut être théoriquement généralisée pour effectuer une interférence quantique pour des niveaux d’ordre
d. Ainsi, la route proposée peut inspirer de nouvelles conceptions pour l’ingénierie de RPT capables
de générer et de traiter des modes intriqués supérieurs à quatre et d’effectuer l’interférence quantique
biphoton avec des efficacités maximales. Les marches quantiques contrôlées le long des RPT offrent
une route rentable et pratique vers des opérations d’état complexes avec des instabilités considérable-
ment réduites et des limitations de performance des nombreux éléments optiques requis pour effectuer
des opérations comparables dans des dispositifs photoniques basés sur les modes de trajet et le MAO
[66, 68, 93, 57]. Nous avons montré qu’une boucle de fibre dynamiquement couplée peut remplacer
une cascade d’interféromètres optiques de Mach-Zehnder non équilibrés sans aucun réglage fin des re-
tards successifs. De plus, notre mise en œuvre entièrement intégrée dans la fibre est compatible avec les
infrastructures de télécommunications, étant ainsi rentable et applicable en pratique.

Remarques conclusives

En résumé, cette thèse est divisée en deux parties principales, chacune englobant des domaines distincts
de recherche. Dans la première partie, quatre chapitres ont exploré différents aspects du traitement de
l’information quantique en utilisant l’indistinguabilité de particules identiques. Le Chapitre II a intro-
duit une nouvelle mesure d’entrelacement pour deux qubits identiques, mettant en évidence la protection
de l’entrelacement non local contre le bruit de préparation grâce à l’indistinguabilité spatiale. Dans le
Chapitre III, j’ai discuté d’une structure expérimentale pour des portes de création d’entrelacement
à distance et réalisé la téléportation quantique avec des fidélités dépassant les seuils classiques. Le
Chapitre IV a étudié la préservation de l’entrelacement pendant les dynamiques de système ouvert
sous l’indistinguabilité spatiale. Dans le Chapitre V, une méthode de distillation de l’entrelacement
a été présentée, maximisant l’entrelacement à partir d’états mixtes par chevauchement spatial et ex-
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aminant l’influence des paramètres de bruit et des températures. Ces chapitres ont contribué à notre
compréhension du traitement de l’information quantique en utilisant l’indistinguabilité, offrant des per-
spectives précieuses pour des applications pratiques. Ces dernières années, l’intérêt de la recherche
pour le concept de superposition spatiale de particules identiques dans différentes régions a augmenté
pour exploiter l’effet de l’indistinguabilité dans le traitement de l’information quantique. Des études
antérieures ont démontré que l’indistinguabilité peut être utilisée pour effectuer diverses tâches de traite-
ment de l’information quantique telles que la téléportation [16, 23], l’estimation quantique [94, 31], et la
distribution d’entrelacement entre les nœuds d’un réseau quantique [28, 26].

De nombreuses conceptions théoriques et expérimentales ont été proposées pour exploiter
l’indistinguabilité pour générer de l’entrelacement. Ces conceptions vont de l’extension de la généra-
tion de ressources bipartites de plusieurs particules [25, 95], à l’utilisation d’approches basées sur
la théorie des graphes pour générer des états multipartites complexes à l’aide de réseaux quantiques
linéaires [96]. En nous appuyant sur ces études, nous avons développé un schéma général et contrôlable
pour générer une classe complète d’états intriqués multipartites, notamment les états W, Dicke, GHZ
et de regroupement (ce travail est en cours de préparation pour soumission prochaine). Notre schéma
repose sur des opérations spatialement localisées et une communication classique. De plus, la con-
currence d’entrelacement basée sur sLOCC, comme introduite dans la référence [17], a permis aux
chercheurs d’étudier la monogamie d’entrelacement [97], d’étudier l’entrelacement dans les systèmes
anioniques [98, 99], et bien plus encore. De plus, nous avons proposé un protocole de récupération
de l’entrelacement dû à l’effet d’indistinguabilité [100, 101]. Des développements récents ont égale-
ment motivé l’ingénierie robuste d’états intriqués de manière maximale [35, 102]. Cependant, la véri-
fication expérimentale de la préservation de l’entrelacement reste un domaine prospectif majeur pour
nos schémas proposés. Dans le domaine de la thermodynamique quantique, il a été démontré que
l’indistinguabilité peut jouer un rôle en tant que carburant dans les moteurs quantiques pour améliorer la
conversion d’information en travail [36, 37, 38] ce qui conduit à une efficacité plus élevée à puissance
maximale dépassant la limite classique de Curzon-Ahlborn [39]. Dans un travail en préparation, nous
proposons une machine de refroidissement quantique cyclique basée sur l’indistinguabilité qui peut re-
froidir les particules du système à une très basse température. Néanmoins, l’indistinguabilité spatiale ou
le chevauchement spatial, comme discuté dans le Chapitre VI, est prévu d’être observé. Nous pouvons
évaluer l’indistinguabilité spatiale en mesurant la probabilité de trouver des particules dans chaque ré-
gion. Par exemple, si la probabilité de trouver une particule dans chaque région est égale à un, alors les
deux particules sont spatialement distinguables. Quantifier une telle mesure est une perspective immédi-
ate.

Dans la partie II de ma thèse, trois articles de recherche ont été présentés, correspondant chacun à
un chapitre séparé et publié ou soumis dans des revues à comité de lecture. Le Chapitre VII introduit
un protocole de sonde basé sur les marches quantiques discrètes, permettant la détection des désor-
dres cohérents statiques et dynamiques, ainsi que l’étude des phénomènes de transport et de localisation
d’Anderson. Ce protocole offre une stratégie expérimentale réalisable pour la sonde quantique en util-
isant l’information quantique de Fisher. Le Chapitre VIII explore le rôle du désordre contrôlé dans
l’amélioration de la corrélation quantique entre deux photons identiques. Les résultats indiquent que
des configurations de désordre soigneusement imposées peuvent améliorer les corrélations quantiques,
dépassant celles observées dans les marches quantiques ordonnées. Enfin, le Chapitre IX présente un
processeur de marches quantiques discrètes évolutif utilisant des réseaux photoniques temporels. Ce
processeur permet de générer, de manipuler et de tester l’entrelacement de modes de temps de haute
dimension. La démonstration expérimentale met en évidence le contrôle de l’interférence quantique
biphoton de haute dimension et met en évidence le potentiel des réseaux photoniques temporels en tant
que circuits photoniques quantiques reconfigurables. En perspective, nos recherches ouvrent plusieurs
voies d’exploration. Premièrement, il est possible d’étudier différents types de désordres, y compris
les désordres spatiotemporellement corrélés, pour mieux comprendre leurs effets sur les systèmes quan-
tiques. En outre, l’étude du rôle du désordre dans les marches quantiques avec des fermions pourrait
fournir des perspectives précieuses. De plus, il reste à voir si le désordre peut améliorer les corréla-
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tions quantiques entre plus de deux particules, ce qui pourrait avoir des implications importantes dans
les théories des ressources quantiques. Une autre perspective passionnante est la possibilité de con-
cevoir des réseaux photoniques synthétiques capables de générer et de traiter des modes intriqués avec
des dimensions supérieures à quatre. Cela permettrait de manipuler efficacement l’interférence quan-
tique biphoton et conduirait à des avancées en tomographie quantique, en discrimination de phase et
en détection. Globalement, nos recherches ouvrent la voie à la mise au point de concept et de proto-
coles innovants dans le domaine du traitement de l’information quantique. En conclusion, cette thèse
met en évidence l’importance de l’indistinguabilité en tant que ressource précieuse pour les tâches de
traitement de l’information quantique. Elle met également en évidence les perspectives prometteuses
pour de nouvelles avancées dans ce domaine. De plus, la thèse démontre la polyvalence du modèle de
marche quantique et son applicabilité dans les plates-formes optiques quantiques avec différents degrés
de liberté. Tout au long de la thèse, nous avons approfondi et analysé divers sujets d’intérêt pour la
communauté scientifique travaillant dans les sciences et technologies quantiques. L’impact substantiel
de notre travail peut être observé à travers les publications référencées dans ce texte. Cependant, la
véritable valeur de cette thèse réside non seulement dans les connaissances acquises en explorant divers
sujets liés à l’information quantique, mais aussi dans l’expérience pratique acquise en travaillant avec
différents cadres théoriques et en collaborant avec de nombreux chercheurs différents.
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General introductory remarks

This ongoing doctoral dissertation introduces novel research that focuses on the characterization and
preservation of quantum resources in composite quantum systems. Part I of the study primarily explores
the concept of indistinguishability among identical particles, which is a pivotal resource for quantum
information processing. Moving to Part II, the thesis delves deeply into the controllable dynamics of
indistinguishable particles, specifically emphasizing photons, as they propagate through diverse quantum
photonic configurations. These setups have the potential to serve as promising photonic-based processors
for advancing quantum technologies. The driving force behind the investigation stems from the fact
that identical particles, such as photons and electrons, serve as the foundational building blocks of our
quantum-enhanced technologies. Therefore, it is crucial to establish a robust operational framework for
handling these particles, especially when they spatially overlap, resulting in their indistinguishability and
individual unaddressability. This becomes even more vital when the aim is to dynamically control the
evolution of these identical quantum entities, as observed in the propagation of a few identical photons in
quantum optics platforms. These composite systems have the potential to offer non-classical advantages,
which can be harnessed for a multitude of quantum information tasks, surpassing classical alternatives.

As I delve into further detail in the introductory remarks, it is important to note that the terms "iden-
tical particles" and "indistinguishable particles" are often used interchangeably in much of the literature.
However, "identical particles" specifically refer to elementary quantum particles that typically share the
same intrinsic properties, such as mass and spin. On the other hand, "indistinguishable" arises from the
type of measurement that an observable may choose to take. For instance, when two photons are in the
same optical path with different polarizations, they are indistinguishable to an observer measuring their
locations, but distinguishable when their polarizations can be measured.

Nevertheless, when these identical entities become indistinguishable, they exhibit collective behav-
iors that differ from those of classical particles. Indistinguishability, being a genuinely quantum property,
gives rise to two fundamental traits inherent in these building blocks of the Universe: the symmetrization
postulate and the spin-statistics theorem [6, 103]. The symmetrization postulate asserts that when the
state of any two particles is exchanged, the global state or wavefunction of a system of identical particles
can exhibit either symmetry, remaining unchanged, or antisymmetry, leading to a change in sign. This
leads to classifying identical particles into two types based on this collective behavior: bosons, which
adhere to Bose-Einstein statistics and can occupy the same single-particle state, and fermions, which fol-
low Fermi-Dirac statistics and are prohibited from occupying identical quantum states due to the Pauli
exclusion principle. The exchange symmetry associated with the symmetrization postulate governs how
identical particles combine to form complex structures of light and matter in nature. In fact, this phe-
nomenon is the reason behind electron orbital occupation and photon bunching. For instance, particle
statistics, whether bosonic, fermionic, or even anyonic, fundamentally influence the dynamics of two
identical entities as they navigate various networks, ultimately resulting in different probability distribu-
tions at the output. In fact, when multiple identical particles co-propagate in the same medium, quantum
correlations present in the initial state, or induced by the quantum statistics of the involved particles,
influence the overall wavefunction evolution.

Apart from these foundational aspects, systems consisting of indistinguishable particles also carry

1



significant technological implications. Indeed, indistinguishable particles serve as the essential con-
stituents of complex quantum networks designed for tasks related to quantum information and compu-
tation. As I elaborate further in the introductory remarks, the true physical essence of entanglement
among identical particles has been a topic of discussion, mainly due to the conventional portrayal of
(anti)symmetric states of the entire system through non-observable labels assigned to the particles. In
the words of Asher Peres [1], "Two particles of the same kind are always entangled, even if they are
independently prepared far apart in different laboratories..." It’s important to reassure ourselves that this
entanglement is not a cause for concern.

Among several frameworks, the concept of spatially local operation and classical communication
(sLOCC) [16] within the no-labeling formalism [2, 3] has been introduced to quantify and harness the
entanglement of spatially identical particles. During my Ph.D., I extend the previous approach [16] to
encompass arbitrary mixed states by introducing a novel entanglement measure for two identical qubits
[17] (see Chapter II). Bringing two independent identical photons together and rendering them spatially
indistinguishable enables entangling gates [16] that have been experimentally realized through various
setups [23, 24] (see Chapter III). This concept is generalized to multi-partite entangled state generation
schemes, where indistinguishability serves as a direct resource [25, 95]. Furthermore, indistinguishabil-
ity is an exploitable resource in quantum information processing, such as quantum [16, 23], quantum
estimation [94, 31], and entanglement distribution of identical particles between nodes of a quantum
network [28, 26].

Realistic quantum systems are inevitably influenced by their surrounding environment, much like the
propagation of photons in media with random disorder. This is why crucial quantum resources, such as
coherence and entanglement, tend to degrade within the system. Even a minor perturbation can lead the
entire system towards the phenomenon of decoherence [40]. The challenge of preserving these quantum
resources is a significant one in the field of quantum information and computation. To address this
challenge, various protection schemes have been devised, including error correction, utilizing structured
environments [104, 105, 106], decoherence-free subspaces [107, 108], dynamical decoupling and control
techniques [109, 110, 111],

quantum error corrections [112, 113, 114] and topological properties [115, 116], and others. Through-
out my Ph.D., as presented in chapters II, IV, and V, I demonstrate that maintaining the indistinguisha-
bility of two identical particles can uphold the quantum correlation between them [17, 117, 118]. These
findings contribute to our comprehension of how indistinguishability provides valuable protection mech-
anisms for entanglement among identical particles, with the potential for practical applications.

In the subsequent phase of my Ph.D., I venture into an exploration of how identical particles prop-
agate through disordered networks and the role that indistinguishability plays in this context. Quan-
tum walks [44], which extend the classical notion of random walks, were selected as the framework to
model the propagation of one and two identical particles in optical networks with and without disorders.
Quantum walks, characterized by their interference and superposition properties leading to nonclassical
dynamic evolution, serve as a valuable model to describe transport phenomena across various networks.
They also serve as a valuable computational model for quantum information computation. Furthermore,
a quantum walk involving two or more indistinguishable particles can yield additional computational
power, scaling exponentially with the resources used [119] (see chapter VI for more details on quantum
walk).

To explore the effects of disorder on the evolution of identical particles, I first delve deeply into
the quantum walk model in which disorder results in different propagation behaviors, namely normal,
anomalous, and Anderson localization. Consequently, in chapter VII, I propose interferometric detection
schemes based on the quantum Fisher information figure of merit to observe these distinct propagation
behaviors in various randomized networks involving one or a few identical particles [120]. Subsequently,
in chapter VIII, I conduct analyses to explore what happens when indistinguishable photons propagate
in ordered networks. This investigation revealed that the non-classical correlation resulting from indis-
tinguishability tends to fade away after a few steps. To address this, I introduced a controllable walk
designed to maintain the indistinguishability and non-classical correlation between the two photons [56].
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This evidence empirically underscores that the controllable propagation of indistinguishable photons de-
pends significantly on maintaining correlations within the quantum network. Lastly, in chapter chapter
IX, I introduce a dynamically controllable quantum system capable of measuring biphoton quantum in-
terference across various dimensions. This dynamic reconfigurability, facilitated by a coupled fiber-loop
system circuitry, is crucial in controlling the walk and realizing its full operational potential. The out-
comes of this research offer practical approaches to harnessing synthetic dimensions for the efficient
execution of quantum algorithms, including tasks such as quantum phase estimation or boson sampling.
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Part I

Indistinguishability of identical particles
as genuine quantum resource for quantum

information processing
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Chapter 1
Introductory remarks I

In Part I of my PhD thesis, I investigate the indistinguishability of identical particles as a genuine quan-
tum resource for quantum information processing. It consists of chapters based on previously published
papers in reputable scientific journals. Before presenting the results, I briefly introduce the topic by
addressing the following questions:

1. What is the physical concept behind identity and non-individuality of quantum entities?

2. Do states of two identical particles in the form |ϕ1⟩ ⊗ |ϕ2⟩ ± |ϕ2⟩ ⊗ |ϕ1⟩ exhibit true entangle-
ment, as their form would suggest? Establishing a concept of entanglement that is both physically
meaningful and practically applicable is of utmost importance.

3. What are the underlying frameworks for quantifying and characterizing entanglement between
identical particles?

4. Can the indistinguishability of identical particles serve as a non-classical resource for performing
quantum information processing tasks?

These questions form the basis for further exploration and understanding of systems made of iden-
tical particles (e.g., qubits, two-level atoms, photons, electrons, quasiparticles), which constitute the
elementary building blocks (particles) of quantum networks. This task becomes particularly significant
in integrated architectures with inherently significant quantum operations. Encouraging progress has
been made in this area across various quantum platforms, including ultracold atoms, quantum optics,
and quantum fields. As a starting point, let us begin with the fundamental concepts of identity and
indistinguishability.

1.1 Identity vs indistinguishability

In our daily lives, we come across numerous objects that we perceive as individuals. The notion of in-
dividuality arises from the fact that each object possesses unique properties that allow an observer to set
them apart. According to Leibnizian reductionism [121], precisely these distinct properties render ma-
terial objects individual. In other words, an object can be understood as nothing more than a collection
or "bundle" of properties. Even objects that appear remarkably similar, such as identical twins, possess
slight differences in their properties that allow us to distinguish between them. For instance, classical
mechanics imply that repulsive forces between particles become stronger as the particles get close, pre-
venting the particles from occupying the exact spatial location. Consequently, any two particles can be
distinguished by their distinct spatial locations. This implies that no two objects can possess precisely
the same set of properties, ensuring their true individuality. This is why classical particles are considered
distinguishable, as distinct bundles can describe their properties.
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(a) (b) (c)

Figure 1.1: Schematic illustration depicting two identical particles within a box, where an observer may
attempt to locate them on both sides.

However, this classical approach has faced criticism based on the principles of quantum mechanics
[121]. Quantum mechanics has demonstrated that elementary quantum particles, such as electrons, can
exhibit a property known as indistinguishability. Consequently, these particles possess identical intrinsic
properties, including rest mass, charge, and spin. In fact, regardless of their spatial locations within the
universe, every electron will consistently exhibit the same mass, charge, and other intrinsic characteris-
tics as any other electron. Hence, two electrons can possess an exact identical set of property bundles,
distinct from classical particles that are always distinguishable. The indistinguishability of quantum par-
ticles challenges the conventional understanding of individuality and necessitates a different conceptual
framework to comprehend their behavior.

In addition to state-independent or intrinsic properties, quantum mechanics incorporates state-dependent
properties to describe elementary quantum systems [122]. Consequently, it becomes possible to differ-
entiate between particles by employing a set of measurements that rely on state-dependent properties.
For instance, a polarizer can discern vertically polarized photons from horizontally polarized ones. As a
result, an alternative approach to distinguishing identical objects is to adopt a field-theoretic perspective
in which particles are represented as dichotomic "Yes/No" fields. In this framework, the field amplitude
is assigned a value of "Yes" at a particular location if the particle is present and "No" if it is not [123].

In conclusion, while identity mainly refers to the intrinsic properties of identical things, indistin-
guishability is a consequence of measurement outcomes. Objects can still be distinguished and regarded
as identical if they share common state-independent properties. On the other hand, if the particles are
taken to possess both their intrinsic and state-dependent properties in common, they cannot be distin-
guished from one another. The fact that identical particles cannot be distinguished has a necessary
consequence. It allows us to view collections of classical and quantum particles, providing a different
perspective on how they behave. This immediately raises the difference between classical and differ-
ent quantum statistics. This argument is not solely related to the lack of individuality of the particles
but rather in terms of which states are accessible to them [122]. With this, I will begin the following
discussion on the state of quantum non-individuality.

1.2 Quantum non-individuality

I would like to begin the discussion in this section with a toy model. Let us consider the distribution of
two indistinguishable particles across two sides of a box or two general states, as illustrated in Fig. 1.1.
An observer attempts to count the particles in both regions, which could result in two particles on each
side of the box or one particle on the left and one on the right.

According to classical physics, case Fig. 1.1 (a) has twice the weight of case Fig. 1.1 (b) or case
Fig. 1.1 (c). This is because there are two ways to achieve case (a) by permuting the particles. For
instance, if we assume that the four combinations are equally probable, the probability of finding one
particle on each side is 1/2. This example demonstrates the well-known Maxwell-Boltzmann statistics.

In quantum statistical mechanics, there are two common forms. The first form has three possible
arrangements in the given situation: finding both particles on the same side of the box (cases Fig. 1.1 (b)
and Fig. 1.1 (c)), and finding one particle on each side of the box (case Fig. 1.1 (a)), which corresponds
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to Bose-Einstein statistics. Again, assuming equal probabilities for all three cases, each case has a prob-
ability of 1/3, known as Bose-Einstein statistics. However, fermions obey Fermi-Dirac statistics, which
underpins the Pauli Exclusion Principle, resulting in the observable outcome of finding both particles on
each side of the box. It is important to note that rearranging particles through permutation in quantum
statistics is not considered as creating a new arrangement, despite the differences between the two types
of quantum statistics. This result lies at the very heart of quantum physics, known as the indistinguisha-
bility postulate: If a particle permutation is applied to any state function for an assembly of particles,
then there is no way to distinguish the resulting permuted state function from the original unpermuted
one through any observation at any time. In this sense, Bose-Einstein statistics correspond to a symmetric
state function for the assembly of particles, while Fermi-Dirac statistics correspond to an anti-symmetric
state function.

To understand the emergence of symmetric and anti-symmetric states, I will assign elementary states
to each particle in a formal manner. Let us assume there is a particle in the {α} single-particle state,
where {α} is associated with the eigenvalues of a group of commuting observables. Similarly, another
particle is in the {β} state. I will label one of the particles as "1" and the other as "2." However, due
to uncertainty about the identity of the particles, we cannot determine whether our system is in the state
|Ψ⟩ = |{α}⟩1 ⊗ |{β}⟩2 or |Ψ⟩ = |{α}⟩2 ⊗ |{β}⟩1, or even a linear combination of the two, given as
|Ψ⟩ = a |{α}⟩1 ⊗ |{β}⟩2 + b |{α}⟩2 ⊗ |{β}⟩1, where the state is normalized as |a|2 + |b|2 = 1. This is
known as exchange degeneracy [6].

Even though the particles exist in the same physical state, they have different mathematical descrip-
tions due to the inclusion of labels 1 and 2. These labels are known as quantum numbers and make
the particles non-identical, even though they are fictitious and impossible to observe. Essentially, no
measurement performed on each particle can provide complete knowledge of the exact form of the state
|Ψ⟩. This is because different mathematical possibilities arise from quantities that cannot be physically
observed.

One way to address this issue is by considering exchange degeneracy or the symmetrization postulate
[6]. According to this postulate, particles characterized by a symmetric state are referred to as bosons,
while those described by an anti-symmetric state are known as fermions. In the previously considered

two-particle example, the state |Ψ⟩ is uniquely represented by setting a = b =
1√
2

for bosons and

a = −b = 1√
2

for fermions. Therefore, the symmetric and anti-symmetric states are written as follows:

|Ψsym⟩ =
1√
2
(|{α}⟩1 ⊗ |{β}⟩2 + |{α}⟩2 ⊗ |{β}⟩1) ,

|Ψasym⟩ =
1√
2
(|{α}⟩1 ⊗ |{β}⟩2 − |{α}⟩2 ⊗ |{β}⟩1) .

(1.1)

The symmetrization postulate ensures that particles in the same physical state exhibit different sym-
metry properties in their mathematical descriptions, leading to distinct behavior under particle permuta-
tions for bosons and fermions. Bosonic states remain unchanged when particles are exchanged, while
fermionic states switch signs with a π phase change. Also, Pauli’s exclusion principle, a direct conse-
quence of the symmetrization postulate, prohibits two or more fermions from simultaneously occupying
the same quantum state. This classification has profound implications in quantum field theory, condensed
matter physics, and particle physics. However, the mathematical description represented by Eq. 1.1,
which embodies the symmetrization postulate, suggests that two identical particles, whether fermions or
bosons are always entangled [1]. This raises the question of whether this entanglement is physically ob-
servable or simply a consequence of the mathematical descriptions of the symmetrization postulate. To
address this question, I will provide a brief overview of the entanglement measures for identical particles
in the following sections.
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1.3 Entanglement of identical particles

This section explores the challenges of characterizing entanglement between identical particles using
mocking labels. These challenges are rooted in the need for (anti)symmetrization of states and label-
ing of particles, which create difficulties in both methodology and practicality. Additionally, traditional
methods and criteria for studying entanglement between non-identical particles are not directly applica-
ble to identical particles [1]. Firstly, I will briefly review the standard description of entanglement that
uses mocking labels to quantify and characterize labels.

1.3.1 First quantization approach (standard approach)

Consider a system denoted as S, consisting of two non-identical particles labeled as 1 and 2. Suppose
that the entire system is described by a pure state, denoted as |Ψ⟩, which lives in the two single-particle
Hilbert spaces, H1 and H2, that together make up the Hilbert space of the two-particle system, denoted
as HS . In the case where the state |Ψ⟩ = |ϕ⟩1 ⊗ |χ⟩2, where |ϕ⟩1 ∈ H1 and |χ⟩2 ∈ H2, is separable, it
reflects the tensor product structure of the total Hilbert space. In other words, the state can be expressed
as a product of the individual states associated with each particle. However, such a particular case is itself
a subset of the total set, implying that we cannot find entangled states in the tensor product structure.

The degree of entanglement is commonly measured using the Schmidt decomposition of the state
[15]. We define the bipartite state as |Ψ⟩ =

∑r
i=1

√
λi |ϕi⟩1 ⊗ |χi⟩2, based on two basis vectors |ϕi⟩1

and |χi⟩2 in the orthonormal single-particle Hilbert spaces H1 and H2, where λi are non-negative real
numbers known as Schmidt coefficients that satisfy

∑
i λi = 1. These basis vectors are the eigenstates

of the single-particle reduced density matrices ρ̂1 = Tr2[|Ψ⟩ ⟨Ψ|] and ρ̂2 = Tr1[|Ψ⟩ ⟨Ψ|], obtained by
tracing out the degrees of freedom of the other particle. Then, the von Neumann entropy is a commonly
used measure for quantifying entanglement between two particles, given by

S(ρ̂1) = S(ρ̂2) = −
∑
i

λilog2λi. (1.2)

Here, This measure reflects our lack of knowledge about the states of the individual subsystems. A pure
state of a bipartite system is separable if and only if its Schmidt coefficient is equal to 1.

On the contrary, let us examine the scenario where the two particles are indistinguishable, and assume
that one occupies the single-particle state |ϕ⟩ and the other occupies the state |χ⟩. For non-identical
particles, the labels 1 and 2 are physical properties that differentiate them, but for identical particles, they
are not physically observable. In the case of indistinguishable particles, the two-particle state |Ψ⟩ in the
first quantization approach is given by

|Ψ⟩± =
1√
2
(|ϕ⟩1 ⊗ |χ⟩2 ± |ϕ⟩2 ⊗ |χ⟩1), (1.3)

where + is for bosons and − is for fermions. Due to the presence of labels 1 and 2 and the symmetrization
postulate, two identical particles are always entangled, even if they were prepared independently in
different laboratories and were far away from each other, as can be shown by Von Neumann’s entropy.
In fact, when one trace out either particle 1 or 2 to obtain the single-particle reduced density matrix,
denoted as ρ̂(1 or 2) = Tr2[|Ψ⟩ ⟨Ψ|] = Tr1[|Ψ⟩ ⟨Ψ|], this operation is physically meaningless. The lack
of knowledge about the state is not due to any real physical correlation between the particles but rather a
consequence of the mathematical labels used to describe the state. This operation serves as a measure of
the unphysical entanglement resulting from these fictitious labels [1].

Furthermore, in the scenario described above, particles are treated as distinguishable, and their statis-
tics are considered irrelevant to their dynamics or correlations. However, in certain situations, like in
quantum dot systems, two identical particles may occupy the same spot. In such cases, the statistics of
the particles must be considered and play a crucial role in determining their dynamics and correlations
[124, 125, 126]. In such situations, it becomes vague how to measure the physical entanglement of states
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|L⟩ |R⟩ |L⟩ |R⟩

(a) (b)

Figure 1.2: Schematic illustration depicting two identical particles within a box with two distinct re-
gions: (a) Both particles are in different regions, and (b) Both particles are in the same region.

that involve identical particles occupying the same spatial regions with opposite pseudospins. Differen-
tiating between formal correlations caused by fictitious labels and genuine physical entanglement poses
a challenge.

1.3.2 No-label approach to identical particles

In the previous subsection, I have discussed the challenges faced in detecting and quantifying entangle-
ment between identical particles using the first quantization approach. In order to tackle this issue, an
alternative approach known as the "no-label" approach to identical particles has been proposed [2, 3].
This approach avoids using non-observable properties for identical particles and instead relies on ob-
servables to define states.

As a brief recap of the no-label approach, let us consider two identical particles in separate spatial
regions labeled as L and R. Let |ϕ⟩ and |χ⟩ represent the states of these particles, respectively. It is worth
noting that performing single-particle measurements using devices localized in regions L and R does not
affect the physical predictions. Therefore, the effect of symmetrization, solely due to the particles being
identical, is irrelevant in this context [4, 5, 6, 7]. Consequently, the single-particle density matrix is
calculated by treating the labels L (R) without applying symmetrization. Therefore, the initial state is a
factorized state |Ψ⟩ = |ϕ⟩L ⊗ |χ⟩R, which applies to both bosons and fermions.

Also, a one-particle state is defined by a complete set of commuting observables in the no-label
approach. Thus, the state is represented as a list of one-particle states: |ϕ1⟩ and |ϕ2⟩. Since this repre-
sentation cannot be expressed as a tensor product of one-particle vector states, we fully characterize the
state by listing the states as |ϕ1, ϕ2⟩ /

√
N , where N is a normalization factor.

In the operational context, a one-particle operator A(1) acts on a two-particle state one at a time, re-
sulting inA(1) |Ψ⟩ := |A(1)ϕ1, ϕ2⟩+ |ϕ1, A(1)ϕ2⟩, according to the standard definition [6]. The action of
a one-particle operator is given by A(1) =

∑
i,j aij |ψi⟩ ⟨ψj | in a general form, obtained by a symmetric

inner product between state spaces of different dimensions. The inner product can be expressed as [2]:

⟨ψk |ϕ1, ϕ2⟩ := ⟨ψk |ϕ1⟩ |ϕ2⟩+ η⟨ψk |ϕ2⟩ |ϕ1⟩ , (1.4)

where η = 1 (−1) represents bosonic or fermionic statistics. The Eq. (1.4) above represents the un-
normalized reduced one-particle pure state obtained after projecting a two-particle state onto |ψk⟩ (one-
particle projective measurement). Similarly, the symmetric inner product between state spaces of two-
particle vector state is given by

⟨ϕ′1, ϕ′2 |ϕ1, ϕ2⟩ := ⟨ϕ′1 |ϕ1⟩ ⟨ϕ′2 |ϕ2⟩+ η⟨ϕ′1 |ϕ2⟩ ⟨ϕ′2 |ϕ1⟩ . (1.5)

The expression arises from the indistinguishability effect, where the probability amplitude of finding
one particle in state ϕ′1 (ϕ′2) arises from the possibility of having one particle in either state ϕ1 or ϕ2.

The no-label approach [2] provides fundamental preliminary results that allow us to quantify the
entanglement of two identical particles. This quantification can be achieved by evaluating the von Neu-
mann entropy of the one-particle reduced density matrix obtained from a localized partial trace. The
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reduced density matrix, denoted as ρ̂(1) = Tr(1) [|Ψ⟩ ⟨Ψ|] /M, where M is a normalization constant
such that Tr(1)

(
ρ̂(1)
)
= 1, and the partial trace is given by Tr(1) (|Ψ⟩ ⟨Ψ|) =

∑
k⟨ψk |ϕ1, ϕ2⟩. Thus,

the degree of entanglement is given by (1.2). To illustrate this point, let us consider the scenario of two
identical particles in different sites, as shown in Fig. 1.2(a). One particle is in the state |ϕ⟩ = |L ↓⟩,
where L represents the spatial mode and ↓ represents the pseudospin. The other particle is in the state
|χ⟩ = |R ↑⟩. Thus, the global quantum state is |Ψ⟩ = |L ↑,R ↓⟩. Performing the partial trace on region
L, given as ρ̂(1)R = TrL [|Ψ⟩ ⟨Ψ|] result in a separable state as

ρ̂
(1)
R = |R ↓⟩ ⟨R ↓| . (1.6)

Now, let us assume we perform an operation that brings both particles into the same site, resulting in the
states |Ψ′⟩ = |L ↑,L ↓⟩. By performing the partial trace on the region L and re-normalizing the state, we
obtain the single-particle state as

ρ̂
(1)
L =

1

2
|L ↓⟩ ⟨L ↓|+ 1

2
|L ↑⟩ ⟨L ↑| . (1.7)

In conclusion, the no-label approach describes identical particles that are not dependent on particle
labels. This approach enables the analysis of their entanglement using the same concepts commonly em-
ployed in entanglement theory for distinguishable particles, such as the von Neumann entropy obtained
through the partial trace. Particularly within this framework, the amount of entanglement exhibited by
identical particles depends on local measurements [2, 3].

1.3.3 Second quantization approach

The criteria for separability in quantum systems arise from the absence of quantum correlations among
commuting observables. In this respect, the second quantization approach to quantum statistical me-
chanics provides a consistent framework for analyzing this aspect [8, 9, 10]. Consequently, these ex-
aminations reveal that the notions of separability and entanglement are not absolute or fixed concepts.
Instead, their classification depends on the choice of commuting observables. These observables form
sets that possess the mathematical structure of a C∗−algebra [11]. In simpler terms, the same quantum
state can be regarded as separable when considering one specific set of commuting observables, while
being classified as entangled when examining a different set of commuting observables. This realization
highlights the contextual nature of separability and entanglement, as their characterization depends on
the specific context defined by the chosen observables.

The framework of second quantization is built upon a single-particle Hilbert space H and introduces
creation and annihilation operators, denoted as â†(f) and â(g), respectively. These operators act on
single-particle vector states g and f belonging to H, which are commonly referred to as modes. When
the creation operator â†(f) acts on the vacuum state |0⟩, it produces the single-particle vector state in
mode f , expressed as |f⟩ = â†(f) |0⟩. The commutation or anticommutation relations satisfied by these
operators are known as the canonical commutation or anticommutation relations:

[â†(f), â(g)] = ⟨f |g⟩, {â†(f), â(g)} = ⟨f |g⟩. (1.8)

Polynomials in these creation and annihilation operators form the algebra A of operators used to describe
many-body systems consisting of bosons and fermions. For instance, in second quantization, the state
|Ψ⟩ = |L ↑,R ↓⟩ is given by |Ψ⟩ = â†L ↑â

†
R ↓ |0⟩. This representation captures the concept of locality,

similar to its application to non-identical particles, at the level of observables. Furthermore, any two
orthogonal modes can be addressed by a set of observables. However, when considering entities such as
atoms that are not truly elementary identical particles and cannot be regarded as excitations of a field,
second quantization becomes purely mathematical in nature.

In this context, a state ρ̂ is considered separable with respect to the bipartition Â1 = âj , â
†
j for

j = 1, . . . ,m and A2 = âj , â
†
j for j = m+ 1, . . . , N of a given set of orthogonal modes if and only if it
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can be expressed in the form [10]:

P
(
â†1, . . . , â

†
m

)
Q
(
â†m+1, . . . , â

†
N

)
|0⟩ , (1.9)

where P andQ are general polynomials of the creation operators in theN modes. Separable mixed states
can be expressed as convex combinations of separable pure states, while all other states are considered
entangled. For example, the state |Ψ⟩ = â†L ↑â

†
R ↓ |0⟩ is considered separable. However, in contrast

to the no-label approach described in Eq. (1.7), the state |Ψ′⟩ = â†L ↑â
†
L ↓ |0⟩ can also be considered

separable by applying the criteria mentioned above for both bosons and fermions [7, 12, 13]. This
clearly demonstrates that the entanglement of identical particles is not an absolute property but depends
on the choice of observables.

To further illustrate the comparison between the two approaches, let us consider a linear operation
that transfers a particle from the localized mode C to two distinct modes C and D. This operation can
be described by the creation operator â†L σ = râ†C σ + tâ†D σ, where σ =↑, ↓, and r and t are amplitudes
satisfying the condition |t|2 + |r|2 = 1. These transformations, familiar from optics, are passive linear
optical networks with no polarization dependence and are equivalent to a tunneling operation for Bose-
Einstein condensates, where particles can leak from one mode to another. The output state is given by
[2]:

|Ψout⟩ = r2 |ΦC⟩+ t2 |ΦD⟩+
√
2st |ΦCD⟩ , (1.10)

where |ΦC⟩ = |C ↑,C ↓⟩, |ΦD⟩ = |D ↑,D ↓⟩, and |ΦCD⟩ = 1√
2
(|C ↑,C ↓⟩+ |C ↓,C ↑⟩). This

mapping has significant implications for the analysis of entanglement. The states |ΦC⟩ and |ΦD⟩ retain
the same form as the input state, while the state |ΦCD⟩ represents a maximal linear combination of two
identical particles in two distinct orthogonal modes, similar to a Bell state. This means that the initial
state and the latter do not possess the same entanglement structure based on the criteria in Eq. (1.9).
This allows us to conclude that any entanglement that formally arises among identical particles, includ-
ing entanglement purely due to symmetrization, can be transferred to an entangled state of independent
modes, which can then be utilized for any desired task. In fact, the entanglement of the mode system
corresponds one-to-one with the entanglement between the inaccessible identical particles [14]. Further-
more, this shows that the separability (entanglement) criterion in Eq. (1.9) is not an absolute property but
depends on the choice of orthogonal modes: mode transformations are mode non-local and thus do not
preserve entanglement.

This observation is also in line with the concept of measurement-induced entanglement. When parti-
cles are non-identical, it is stated that «only interaction between particles can lead to an entangled state»
[13]. However, in the case of identical particles, measurements play a significant role in the emergence
of entanglement. Particularly, the utilization of ambiguous measurements, where the apparatus is unable
to determine which particle corresponds to the result detected by each detector (similar to the Hong-Ou-
Mandel experiment), allows for the intrinsic generation of probabilistic measurement-induced entangle-
ment, even in situations where the initial entanglement before the measurement was absent [6, 13].

1.4 Quantum information processing with identical particles

In this section, I explore various research directions and discuss the implications of the indistinguishabil-
ity of identical particles in quantum information processing. The ability to perform quantum information
tasks relies on the capability to address identical particles. However, a significant challenge arises from
the fact that identical particles are not generally individually addressable. In this sense, the most common
approach is to utilize second quantization within the framework of local operations and classical opera-
tions (LOCC) [15], which is based on addressing and performing local operations on orthogonal modes.
The rationale behind this approach is that orthogonal modes, unlike identical particles, can always be
manipulated and addressed individually in experimental settings.

However, when particles spatially overlap, such local operations on specific modes may not be ac-
cessible. To address the issue of operational accessibility for spatially overlapping identical particles,
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the spatially localized operations and classical communication (sLOCC) framework has been introduced
[16]. Based on a particle-based no-label approach, this framework provides a means to address and
manipulate spatially overlapping identical particles. Before diving into the discussion of the role of
indistinguishability in quantum information processing, I briefly recall the sLOCC framework.

1.4.1 Spatially localized operations and classical communication (sLOCC)

To introduce the sLOCC framework, let us take a system of two independently prepared identical parti-
cles in the state

|Ψ⟩ = |ψ ↑, ψ′ ↓⟩ , (1.11)

where ψ and ψ′ are spatial wave functions representing external degrees of freedom, and ↑ and ↓ denote
pseudospin states representing internal states. In order to activate and access the entanglement present
in this system, local measurements of the single-particle pseudospin states are performed in separate
localized spatial regions, labeled as L and R, as illustrated in fig. 1.3. The local particle counting process
is given by the measurement operator:

Π̂(2) =
∑

σ,τ=↑,↓
|L σ,R τ⟩ ⟨L σ,R τ | , (1.12)

which projects the state |Ψ⟩ onto the basis states BLR = {|L ↑,R ↑⟩ , |L ↑,R ↓⟩ , |L ↓,R ↑⟩, |L ↓,R ↓
⟩}. Therefore, the action of the measurement operator on the state Π̂(2) |Ψ⟩ results in a two-particle state
given by the inner product of two-particle states, as described by Eq. (1.5). The resulting non-normalized
two-particle state is given by

|ψLR⟩ = lr′ |L ↑,R ↓⟩+ ηl′r |L ↓,R ↑⟩ , (1.13)

l = ⟨L |ψ⟩, r′ = ⟨R |ψ′⟩, l′ = ⟨L |ψ′⟩, and r = ⟨R |ψ⟩ are the probability amplitudes of finding a
particle in the sites in L and R. The operation resource state provided in the equation above is inherently
post-selective since there exists a non-zero probability of both particles being found in the same regions.
The probability of successful sLOCC, denoted as PLR, is given by

PLR = PLP
′
R + P ′

LPR, (1.14)

where PL = |l|2, PR = |r|2, P ′
L = |l′|2, and P ′

R = |r′|2 are the probabilities of finding a particle in
region L and R, respectively, based on the wave functions ψ and ψ′.

Subsequently, a partial trace can be performed on one region, such as L, followed by a projection
onto the site R, resulting in the reduced density matrix

ρ̂
(1)
R =

1

PLP ′
R + P ′

LPR

(
P ′
LPR |R ↑⟩ ⟨R ↑|+ PLP

′
R |R ↓⟩ ⟨R ↓|

)
. (1.15)

Here, |R ↑⟩ and |R ↓⟩ represent the states of the particle in region R with the corresponding pseudospin
states. The normalization factor in the denominator ensures that the reduced density matrix is properly
normalized. Therefore, the von Neumann entropy gives the operational entanglement as

E(|ψLR⟩) = −
PLP

′
R

PLP ′
R + P ′

LPR
log2

PLP
′
R

PLP ′
R + P ′

LPR
−

P ′
LPR

PLP ′
R + P ′

LPR
log2

P ′
LPR

PLP ′
R + P ′

LPR
(1.16)

which characterizes the quantum correlations between the pseudospins of the particles as observed
through local measurements. The extent of this entanglement is influenced by the probabilities of finding
the particles in the two localized sites, L and R.

As observed, the concept of spatial overlap between the two particles becomes relevant in this con-
text. When each particle is exclusively found in one region, denoted by PR = 1 and P ′

L = 1 (or
P ′
R = 1 and PL = 1), the particles are spatially separated into two regions. In such cases, the state
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|L⟩ |R⟩

Figure 1.3: Schematic illustration of two identical particles with opposite pseudospins (internal states)
have spatial wave functions ψ, ψ′ with a given degree of overlap. The entanglement between pseudospins
is operationally defined by local measurements in two separated localized spatial regions L and R.

|ψLR⟩ = |L ↑,R ↓⟩ is separable with zero entanglement, i.e., E(|ψLR⟩) = 0. However, if there exists a
non-zero probability of spatial overlap between the particles, then the state becomes entangled. Specif-
ically, when the particles are equally distributed in both regions, complete spatial overlap occurs. This
happens when the region where a particle can be found with non-zero probability is the same for both
particles, for example, PR = PL = P ′

L = P ′
R = 1/2. In this scenario, the operational state becomes

maximally entangled, given by |ψLR⟩ = (|L ↑,R ↓⟩ + η |L ↓,R ↑⟩)/
√
2, with a success probability of

sLOCC (PLR) equal to 1/2.
Based on the aforementioned discovery presented in Ref. [16], the sLOCC formalism is expanded

to encompass scenarios involving N particles distributed among N regions [17], as discussed in Section
I, which is a main result of my PhD thesis. This extension allows for the investigation of entangle-
ment in systems with multiple identical particles. Furthermore, the entanglement measure is extended
to encompass any arbitrary mixed state of two spatially overlapping identical particles, also discussed in
Section I. This development provides a comprehensive framework for quantifying and characterizing the
entanglement present in systems of indistinguishable particles.

The sLOCC framework, based on the no-label approach and the operational techniques of spatially
localized operations and classical communication, enables the direct manipulation and exploitation of
the resource states associated with identical particles. This has significant implications for quantum
information processing tasks, as the indistinguishability of identical particles can be effectively harnessed
as a valuable quantum resource. In the following sections, I will provide a brief overview of some of the
applications and benefits of utilizing indistinguishable particles in quantum information processing

1.4.2 Two-particle quantum interference and particle statistics

One of the significant historical consequences of indistinguishability is bi-photon quantum interference
(see the review [127]). In this scenario, an event can occur in multiple alternative ways, and it becomes
impossible to distinguish between these alternatives, leading to interference phenomena. Instead of
creating superpositions of single (or multiple) photons, researchers have generated superpositions of the
origin of a photon pair itself. These consequences stem from the theoretical understanding of the beam
splitter’s action within the framework of quantum mechanics.

Historically speaking, Prasad, Scully, and Martienssen [128] derived a unitary transformation that
connects the input mode set to the outgoing transmitted and reflected mode set. This observation was
then formulated through second quantization [129], considering the contributions of input and output
modes. In this formalism, â† and b̂† represent photon creation operators at the two input ports of the
beam splitter, while ĉ† and d̂† represent photon creation operators at the two output ports of the beam
splitter. In general, it is worth mentioning that the creation and annihilation operators for the input and
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output ports satisfy the commutation relations [â†, b̂†] = 0 and [ĉ†, d̂†] = 0 for bosons, and the anti-
commutation relations â†, b̂† = 0 and ĉ†, d̂† = 0 for fermions. The action of the beam splitter on two
photons can be described as follows:

â† =lĉ† + rd̂†, b̂† = rĉ† − ld̂†. (1.17)

Here, r and l represent the reflectance and transmittance of the lossless beam splitter, respectively. There-
fore, the action of beam splitter on two photons is given by

â†b̂† |0⟩ →
(
lĉ† + rd̂†

)(
rĉ† − ld̂†

)
|0⟩ ,

â†b̂† |0⟩ →
(
lr
(
(ĉ†)2 − (d̂†)2

)
+ l2d̂†ĉ† − r2ĉ†d̂†

)
|0⟩ .

(1.18)

It is important to note that in the context of quantum optics, we assume that the two photons mentioned
above are indistinguishable in all degrees of freedom, including polarization, time, frequency, position,
and momentum, as they are in the same mode of the electromagnetic field. Thus, due to the bosonic com-
mutation relation [d̂†, ĉ†] = 0 and using a lossless beam splitter with a 50:50 reflectance/transmittance,
two-photon interference, known as the bunching effect, occurs. This leads to the output state given by

â†b̂† |0⟩ 50:50−−−→ 1

2

(
(ĉ†)2 − (d̂†)2

)
|0⟩ . (1.19)

This effect, famously known as the Hong, Ou, and Mandel (HOM) effect [130], demonstrates that
for a balanced beam splitter, simultaneous detection at the two output ports behaves like the singlet
state for two orthogonally polarized photons, i.e., 1√

2
(|↑, ↓⟩ − |↓, ↑⟩). In their seminal experimental

work, Hong, Ou, and Mandel showed that this interference of two identical photons at a beam splitter,
represented by the characteristic "dip" in the coincidence detection at the output, can be utilized to
measure very short time intervals. Essentially, when photons overlap spatially at the beam splitter, they
become indistinguishable from the beam splitter’s perspective.

On the other hand, when considering fermions, the action of a beam splitter on fermions is given by

â†b̂† |0⟩ →

(
rl

(
���*

0
(ĉ†)2 −�

��*0
(d̂†)2

)
+ l2d̂†ĉ† − r2ĉ†d̂†

)
|0⟩ ,

â†b̂† |0⟩ r2+l2=1−−−−−→ ĉ†d̂† |0⟩ .

(1.20)

Here, the only accessible state is one fermion per mode, in accordance with the Pauli exclusion
principle. The fermionic creation operators d̂† and ĉ† obey the anti-commutation relation d̂†, ĉ† = 0.
This is why we say fermions will anti-bunch. However, the information regarding the fermions’ origin
remains elusive.

Furthermore, the above formalism can be easily translated into the no-label approach [2, 3]. Let us
assume that we have one particle localized in each region with the same pseudospin, and the elementary
form of the two-particle state is given as |L σ,R σ⟩. Then, a unitary transformation (a beam splitter) is
applied: |L σ⟩ → l |L σ⟩ + r |R σ⟩ and |R σ⟩ → r |L σ⟩ − l |R σ⟩. The transformed state is then given
by

|L σ,R σ⟩ → lr (|L σ,L σ⟩ − |R σ,R σ⟩) + l2 |L σ,R σ⟩ − r2 |R σ,L σ⟩ . (1.21)

Additionally, the two-particle state follows the standard phase change associated with particle exchange,
|L σ,R τ⟩ = η |R τ,L σ⟩, where η = 1 (−1) for bosons (fermions). For bosons in the 50:50 case, the
bunching effect is retrieved, similar to Eq. (1.19): |L σ,R σ⟩ 50:50−−−→

η=1

1√
2
(|L σ,L σ⟩ − |R σ,R σ⟩). Again,

due to the Pauli exclusion principle for fermions, the only accessible state in this case is |L σ,R σ⟩.
It is crucial to highlight an essential aspect that emerges from the symmetrization postulate: when

exchanging a pair of identical particles, the overall state acquires a global phase [131]. This phase can
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be represented as |L σ,R τ⟩ = eiϕ |R σ,L σ⟩, where ϕ denotes the relative phase associated with the
particle exchange, with ϕ = 0 for bosons and ϕ = π for fermions [132]. The measurement of this phase
resulting directly from particle exchange has been successfully demonstrated through the implementation
of a state transport protocol . Additionally, a recent study utilized the sLOCC protocol to directly measure
the exchange described in Eq. (1.12) [133].

Such findings have profound implications for simulating intricate physical systems and enhancing
the accuracy of precise measurements. This transition from classical to quantum physics has spurred
physicists to investigate the phenomenon of two-particle interference in both fermionic and bosonic
quantum entities. Notably, two-particle interference has been observed not only with elementary particles
like electrons and atoms but also with more massive and intricate quantum systems such as plasmons
[134], showcasing the widespread occurrence of this phenomenon across various scales and complexities.

1.4.3 Entanglement generation

Undoubtedly, the first and crucial step towards quantum state manipulation is to have an emitter or source
that can produce a few identical elementary particles. In the field of quantum optics, this is often accom-
plished through a nonlinear process called Spontaneous Parametric Down-Conversion (SPDC), where a
single pumped photon is converted into a pair of photons known as the idler and signal photons. When
these photons are generated with orthogonal polarization, the resulting state is genuinely polarization-
entangled [18, 19]. The design of such sources continues to be widely used today, particularly in the
generation of highly complex photonic entanglement states. Notable examples include the creation of a
12-photon entangled system [20]

Nevertheless, once the particles are generated, passive or active local operations, such as beam split-
ters and polarizers in optics, and projective measurements are employed to engineer the quantum state for
quantum information processing. For instance, as discussed in the previous section, one can determine
the fermionic and bosonic nature of two identical particles by sending both particles to the inputs of a
single beamsplitter. Furthermore, local manipulation plays a crucial role in performing various tasks,
including entanglement swapping [21], quantum teleportation [22], and more, which will be discussed
in the forthcoming sections. Additionally, the output state resulting from the Hong-Ou-Mandel (HOM)
effect, as shown in Eq. (1.19)), takes the form of an N00N state [135]. This state is a valuable quantum
resource for precision measurement in quantum (photonic) metrology, where the N00N state is utilized
to achieve higher measurement precision for physical properties. I will discuss this point in more detail
later.

Although having a single particle source (such as a single-photon source) is crucial, it is not neces-
sary to achieve spatial overlap of particles within a specific region, such as making two photons interfere
in a single beam splitter for quantum state engineering or performing a quantum protocol, as demon-
strated in most of the previous works. In fact, the entanglement of indistinguishable particles is directly
determined by their spatial overlap [16]. Consequently, an experimental proposal was developed in col-
laboration with the University of Science and Technology of China (USTC), resulting in the creation
of the first remote entangling gate that exploits the indistinguishability of identical particles [23]. This
significant achievement is discussed in Chapter II of my thesis. It is also worth mentioning that the
sLOCC-based entangling gate, which utilizes spatial overlap between identical particles, was also im-
plemented in an independent work [24]. Two years later, they extended this approach to the generation
of three-partite entangled states [25]. Such findings show how spatial overlap in separated regions can
serve as fundamental tools for quantum state engineering.

1.4.4 Quantum teleportation and entanglement swapping

One indirect but reliable way to test entanglement is to demonstrate that the output state can perform
quantum information tasks that are classically impossible. In this context, if we rely solely on separable
states without any other quantum resources, the use of local operators on separable states should not
enhance the performance of informational tasks compared to classical counterparts. A prime example
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of such a task is quantum teleportation, which cannot be achieved using classical or separable states
alone. Quantum teleportation [15] is a technique used to transfer quantum information from a source to
a destination by utilizing entangled states, and it plays a crucial role in quantum networking.

In quantum teleportation [27, 15], entanglement in the form of a Bell state is employed to transmit
an arbitrary quantum state |ψ⟩ between two distant observers, commonly referred to as Alice and Bob.
Let us briefly recap the underlying algorithm of quantum state teleportation. The quantum teleportation
system utilizes three qubits, where the first two qubits are in the Bell state

|Φ0⟩AB =
1√
2
(|↑⟩A |↑⟩B + |↓⟩A |↓⟩B) , (1.22)

and the third qubit is an arbitrary state |Ψ⟩C = c1 |↑⟩C + c2 |↓⟩C that needs to be teleported. The state
of the full system consisting of three particles is therefore given by |Ψ⟩ABC = |Ψ⟩AB ⊗ |Ψ⟩C, which
represents a product state between the entangled pair AB and the non-entangled state C. Alice performs
a measurement on the Bell state of particles A and C, entangling A and C while disentangling B. The
measurement of the Bell state projects a non-entangled state into an entangled state, resulting in the
following expression:

|Ψ⟩ = 1

2

∑
i=0,x,y,z

|Φi⟩AC ⊗ σ
(B)
i |Ψ⟩B . (1.23)

Here, σ0 = I represents the identity matrix for the qubit, and the rest are the Pauli matrices. The states
|Φi⟩ correspond to the four Bell diagonal states:

|Φ0⟩AC =
(
I(A) ⊗ σ

(C)
0

)
|Φ0⟩AC =

1√
2
(|↑⟩A |↑⟩C + |↓⟩A |↓⟩C) ,

|Φ1⟩AC =
(
I(A) ⊗ σ(C)

x

)
|Φ0⟩AC =

1√
2
(|↑⟩A |↓⟩C + |↓⟩A |↑⟩C) ,

|Φ2⟩AC =
(
I(A) ⊗ σ(C)

y

)
|Φ0⟩AC =

1√
2
(|↑⟩A |↓⟩C − |↓⟩A |↑⟩C) ,

|Φ3⟩AC =
(
I(A) ⊗ σ(C)

z

)
|Φ0⟩AC =

1√
2
(|↑⟩A |↑⟩C − |↓⟩A |↓⟩C) .

(1.24)

When Alice measures the Bell state of particles A and C, she will obtain one of the four Bell states,
each with a probability of 1

4 . Depending on which |Φi⟩AC state she measures, the state of particle B after

the measurement will be σ(B)
i |Ψ⟩B. To transmit the state of particle C to Bob, Alice doesn’t need to send

him the potentially infinite amount of information represented by the coefficients c1 and c2, which can
be real numbers with arbitrary precision. Instead, she only needs to send the integer i that corresponds to
the Bell state she measured for particles A and C, which requires a maximum of two bits of information.
Alice can use any classical method to communicate this information to Bob.

Bob receives the integer i from Alice, which identifies the Bell state that she measured. After Al-
ice’s measurement, the overall state of the system becomes |Φi⟩AC ⊗ σ

(B)
i |Ψ⟩B. Bob then applies the

corresponding σi operation on his end, resulting in the overall state |Φi⟩AC ⊗ |Ψ⟩B. Thus, Bob has
successfully transformed the spin state of particle B to |Ψ⟩B = c1 |↑⟩B + c2 |↓⟩B, which is identical to
the original state of particle C that Alice intended to send. The information initially encoded in state
C has been "teleported" to Bob’s state, and the final spin state of particle B now matches the original
state of particle C. It is important to note that the particles involved in the process never change between
observers: Alice always has particles A and C, and Bob always has particle B.

As shown above, the necessary condition is that all particles are addressable for any operation using
A, B, and C labels. For identical particles, typically, each particle is assigned to a different orthogonal
and distinguishable mode, such as an optical path in quantum optics. In the case of a no-label approach,
the exact condition must be met to accomplish the task. As shown in ref. [16], the elementary form
of the state |ψ ↑, ψ′ ↓⟩ does not allow for individual local operations on identical particles. Therefore,
an sLOCC operation (equation (1.12)) is performed to separate one particle per region, allowing each
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particle to be addressed according to its spatial region. In fact, as shown in Ref. [16], the elementary form
of the state |ψ ↑, ψ′ ↓⟩ is potentially entangled, which suggests the possibility of performing quantum
teleportation. The experimental implementation and underlying protocol are the subject of my thesis in
Chapter II.

Another important application in quantum communication is entanglement swapping. Entanglement
swapping plays a crucial role in the large-scale distribution of quantum information [136, 137, 138, 139],
as it enables the creation of quantum relays and quantum repeaters [140, 141]. Entanglement swapping
is a fundamental quantum phenomenon that allows the entanglement of two particles that do not share
a common past, with each particle located outside the light cone of the other. In all the implemented
systems thus far, the key components have been the preparation of entangled pairs and Bell measurements
(see Eq. (1.24)). In the standard entanglement swapping process [142], two pairs of entangled particles
are initially prepared (the particles in each pair are not independently prepared), and a Bell measurement
is successively performed on two particles from different pairs. As a result, the other two particles
become entangled even though they have never directly interacted [143, 144]. Entanglement swapping
has been experimentally realized using identical but distinguishable particles (photons) by applying the
usual operational framework for non-identical particles, which is based on particle addressability and
involves local operations and classical communication (LOCC) [145].

In the sLOCC-based protocol, the goal is to spatially overlap identical particles in different opera-
tional regions. Similar to the previous section, two pairs of identical particles with opposite pseudospin
are independently prepared. First, one particle from each pair is distributed in two spatially separated
nodes, allowing both particles to overlap spatially. Then, it is possible to obtain entanglement in the
pseudospin degrees of freedom associated with the spatial overlap of particles in each pair, achieved
through sLOCC [16]. As a result, each node contains one particle As a result, each node contains one
particle and the state becomes

|Ψ(4)
PS⟩ = |1ηAC, 1

η
DB⟩ , (1.25)

where |1ηAC⟩ and |1ηDB⟩ are the two-particle Bell states

|1ηAC⟩ =
1√
2
(|A ↓,C ↑⟩+ η|A ↑,C ↓⟩), |1ηDB⟩ =

1√
2
(|D ↓,B ↑⟩+ η|D ↑,B ↓⟩).

Even though the particles have been independently prepared, the sLOCC procedure leads to the state
|Ψ(4)

PS⟩, which demonstrates that the pair of particles in nodes A and C is maximally entangled in
the pseudospin degrees of freedom, similar to the DB-pair. The probability of obtaining this state is
P (4) = |⟨Ψ(4)

PS|Ψ(4)⟩|2 = 1/4. The procedure is valid only for identical particles and does not require
two entangled pairs at the preparation stage. Very recently, an indistinguishability-based entanglement
swapping protocol has been experimentally implemented using controlled spatial indistinguishability of
four independent photons in three separated nodes of a network [26]. The success of this experiment
demonstrates that the inherent indistinguishability of identical particles provides promising prospects for
feasible quantum communication in multinode photonic quantum networks.

1.4.5 Quantum metrology with indistinguishable particles

Returning to the HOM effect in Eq. (1.19), we observe that two photons can be entirely in either the
upper mode A or the lower mode B. However, due to their indistinguishable and bosonic nature, we
cannot determine which photon is in which mode. This observation allows us to extend the concept to
cases where the total number of N photons is in mode A, which is typically associated with the optical
path or spatial mode. This generalization gives rise to the N00N state, defined as:

|ψN00N ⟩ =
1√
2
(|N, 0⟩+ |0, N⟩) , (1.26)

where |N⟩ represents the state with N photons in the Fock basis. The N00N state allows for improved
spatial and phase resolution by a factor ofN , scaling as 1/N . To achieve the fundamental quantum limit,

17



known as the Heisenberg limit, for phase sensitivity, it is necessary to consider N00N states with a high
number of photons. Several experimental schemes have been proposed to generate N00N states with
a large photon number [146, 135], and some of these schemes have been demonstrated experimentally
[147, 148]. This enhancement arises from the behavior of a coherent state passing through a phase
shifter. When a coherent state interacts with a phase shifter, it acquires a phase shift of ϕ. This property
is intrinsic to classical monochromatic light beams and is also inherited by coherent states in a quantum
mechanical context. However, when N indistinguishable particles in a single mode are employed, the
phase shift experienced is directly proportional to the number of photons, N . In fact, the evolution of
any photon state passing through a phase shifter is governed by the operator Uϕ = eâ

†âϕ, and its effect
on the state |N⟩ is given by Uϕ |N⟩ = eNϕ |N⟩. This behavior arises from the collective behavior of N
identical particles.

Such observation arises from the fact that orthogonal modes can be collectively manipulated, unlike
identical particles, using local operations that address their specific properties, such as their path or other
degrees of freedom. This addressability is crucial for performing various quantum operations, including
computation as described in the Knill, Laflamme, and Milburn (KLM) protocol [149]. The significance
of addressability becomes apparent when considering the elementary state |ψ ↑, ψ′ ↓⟩, which, in its cur-
rent form, does not allow for individual local operations on identical particles. One way to overcome
this limitation, as briefly discussed previously, is to utilize the sLOCC formalism, which enables the ad-
dressing of identical particles based on their spatial regions. For example, the CNOT gate can be realized
for identical particles by identifying the measurement regions L and R as the control and target regions,
respectively.

It is worth noting, as demonstrated in Ref. [28], that the spatial overlap of wave functions is the
sole reason for coherence. The coherence measure explicitly depends on the overlap between particles
in the two operational regions. In the context of quantum metrology, the quantum coherence of states
composed of non-identical particles is known to serve as a resource for phase discrimination tasks [29,
30]. Therefore, indistinguishability-enabled quantum coherence [94] can be regarded as a resource for
quantum metrology. This operational advantage of using indistinguishable particles over distinguishable
ones has been explicitly highlighted in [31], where it has been demonstrated and experimentally shown
to be employed in a phase discrimination protocol.

1.4.6 Indistinguishability-assisted entanglement protection, recovery and distillation

A realistic quantum system inevitably interacts with its surrounding environment, resulting in the loss of
coherence within the system, a phenomenon known as decoherence [40]. Therefore, it is important to
manipulate and control decoherence to preserve and utilize the quantum resources of the system. Various
protection strategies have been proposed to tackle this issue, including the quantum Zeno effect [150],
the utilization of structured environments [151, 106, 152], distillation protocols [153], the implementa-
tion of decoherence-free subspaces [107, 108], and the application of dynamical decoupling and control
techniques [109, 110, 111, 154, 155, 156, 157]. Additionally, researchers have explored quantum error
correction methods [112, 113, 114] and the study of topological properties [115, 116]. However, many of
these techniques require the manipulation of numerous system parameters, and the complexity increases
with the number of particles involved. Furthermore, they often demand near-perfect suppression of ex-
perimental imperfections [158]. Therefore, there is a strong desire to discover inherent properties of the
system that naturally protect entanglement from noise during its dynamics.

In the previous sections, I provided a brief discussion on how spatial overlap or indistinguishability
enables quantum coherence. Furthermore, a previous study [32] experimentally demonstrated that main-
taining spatial overlap and indistinguishability between two photons enables the protection of quantum
coherence. In this mechanism, two indistinguishable non-interacting particles propagate together through
quantum networks affected by non-dissipative noise, resulting in a steady state where coherence, which
accounts for particle indistinguishability, persists indefinitely.

As a contribution to my Ph.D. research, I have demonstrated the use of the indistinguishability of
identical particles to preserve entanglement at various stages, as summarized in the previous sections.
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In Chapter II, I discuss the role of spatial indistinguishability, even in partial form, as a property that
safeguards non-local entanglement from preparation noise, regardless of the specific shape of spatial
wave functions. These findings establish quantum indistinguishability as an inherent control mechanism
for generating entanglement free from noise [17]. In Chapter III, I employ a dynamical approach,
utilizing open quantum system theory, to demonstrate how the spatial indistinguishability of identical
qubits can be a controllable intrinsic property of the system. This property effectively protects exploitable
quantum entanglement against detrimental noise [117].

In Chapter V, I introduce a distillation protocol that operates within the sLOCC. This protocol takes
advantage of the effect of indistinguishability to maximize the distillation of entanglement from mixed
states of two identical qubits under general conditions. This result provides a comprehensive explanation
of the entanglement distillation process and its success probability. I consider standard noisy states, such
as thermal Gibbs states and Werner states, to analyze the protocol’s performance.

It is worth mentioning that throughout my PhD research, I contributed to using the indistinguisha-
bility of identical particles within the sLOCC formalism for an entanglement recovery protocol [100,
101, 159]. The entanglement recovery protocol is based on the sudden bringing together of two initially
spatially separated identical particles prepared in a Bell state and independently interacting with different
environments [100]. By utilizing the operation of spatial overlap, we restore quantum correlations lost
due to the interaction between the particles and their respective environments. In a more generalized
approach presented in Ref. [101], we extended the procedure to consider a realistic scenario where noise
was present throughout the entire process while still exploiting the spatial indistinguishability of identical
particles. Furthermore, in Ref. [159], we provided a coherent formalization of the deformation concept
as the operation that enables spatial overlap among N particles. There, we also discussed the inherent
role of spatial deformations as activators of entanglement within the framework of spatially localized
operations and classical communication.

19



Chapter 2
Robust entanglement preparation against
noise by controlling spatial
indistinguishability

Abstract

Initialization of composite quantum systems into highly entangled states is usually a must to enable
their use for quantum technologies. However, unavoidable noise in the preparation stage makes the
system state mixed, hindering this goal. Here we address this problem in the context of identical particle
systems within the operational framework of spatially localized operations and classical communication
(sLOCC). We define the entanglement of formation for an arbitrary state of two identical qubits. We
then introduce an entropic measure of spatial indistinguishability as an information resource. Thanks
to these tools we find that spatial indistinguishability, even partial, can be a property shielding nonlocal
entanglement from preparation noise, independently of the exact shape of spatial wave functions. These
results prove quantum indistinguishability is an inherent control for noise-free entanglement generation.
This Chapter is related to Publication 1 in the List of Publications.

2.1 Introduction

The discovery and utilization of purely quantum resources is an ongoing issue for basic research in
quantum mechanics and quantum information processing [160, 161]. Processes of quantum metrology
[162], quantum key distribution [163], teleportation [164] or quantum sensing [165] essentially rely on
the entanglement feature [166, 33]. Unfortunately, entanglement is fragile due to the inevitable interac-
tion between system and surrounding environment already in the initial stage of pure state preparation,
making the state mixed [15, 104]. As a result, protecting entanglement from unavoidable noises remains
a main objective for quantum-enhanced technology [167].

Many-body quantum networks usually employ identical quantum subsystems (e.g., qubits) as build-
ing blocks [168, 169, 170, 171, 172, 173, 174, 175]. Characterizing peculiar features linked to parti-
cle indistinguishability in composite systems assumes importance from both the fundamental and tech-
nological points of view. Discriminating between indistinguishable and distinguishable particles has
always been a big challenge for which different theoretical [176, 177, 178, 179] and experimental
[180, 181, 182, 183, 184] techniques have been suggested. Recently, particle identity and statistics
have been shown to be a resource [185, 186, 187, 188, 189, 16] and experiments which witness its pres-
ence have been performed [190]. One aspect that remains unexplored is how the continuous control of
the spatial configurations of one-particle wave functions, ruling the degree of indistinguishability of the
particles, influences noisy entangled state preparation. Moreover, a measure of the degree of indistin-

20



guishability lacks.
Pursuing this study requires an entanglement quantifier for an arbitrary (mixed) state of the system

with tunable spatial indistinguishability. It is desirable that this quantifier is defined within a suitable
operational framework reproducible in the laboratory. The natural approach to this aim is the recent
experimentally-friendly framework based on spatially localized operations and classical communication
(sLOCC), which encompasses entanglement under generic spatial overlap configurations [16]. This
approach has been shown to also enable remote entanglement [28, 34] and quantum coherence [94].

Here we adopt the sLOCC framework to unveil further fundamental traits of composite quantum
systems. We first define the entanglement of formation for an arbitrary state of two indistinguishable
qubits (bosons or fermions). We then introduce the degree of indistinguishability as an entropic measure
of information, tunable by the shapes of spatial wave functions. We finally apply these tools to a situation
of experimental interest, that is noisy entangled state preparation. We find spatial indistinguishability can
act as a tailored property protecting entanglement generation against noise.

2.2 Results

sLOCC-based entanglement of formation of an arbitrary state of two identical qubits. We first
focus on the quantification of entanglement for an arbitrary state (pure or mixed) of identical par-
ticles. For identical particles we in general mean identical constituents of a composite system. In
quantum mechanics identical particles are not individually addressable, as are instead non-identical
(distinguishable) particles, so that specific approaches are needed to treat their collective properties
[13, 191, 192, 14, 193, 2, 3, 194]. Our goal is accomplished by straightforwardly redefining the entan-
glement of formation known for distinguishable particles [195] to the case of indistinguishable particles,
thanks to the sLOCC framework [16].

The separability criterion in the standard theory of entanglement for distinguishable particles [33,
195] maintains its validity also for a state of indistinguishable particles once it has been projected by
sLOCC onto a subspace of two separated locations L and R. In fact, after the measurement, the particles
are individually addressable into these regions and the criteria known for distinguishable particles can be
adopted [16, 94].

Consider two identical qubits, with spatial wave functions ψ1 and ψ2, for which one desires to char-
acterize the entanglement between the pseudospins between the separated operational regions. States of
the system can be expressed by the elementary-state basis {|ψ1σ1, ψ2σ2⟩ , σ1, σ2 =↑, ↓}, expressed in
the no-label particle-based approach [2, 3] where fermions and bosons are treated on the same footing.
The density matrix of an arbitrary state of the two identical qubits can be written as

ρ =
∑

σ1,σ2,σ′
1,σ

′
2=↓,↑

p
σ′
1,σ

′
2

σ1σ2 |ψ1σ1, ψ2σ2⟩ ⟨ψ1σ
′
1, ψ2σ

′
2| /N , (2.1)

where N is a normalization constant. Projecting ρ onto the (operational) subspace spanned by the com-
putational basis BLR = {|L ↑,R ↑⟩ , |L ↑,R ↓⟩ , |L ↓,R ↑⟩ , |L ↓,R ↓⟩} by the projector

Π
(2)
LR =

∑
τ1,τ2=↑,↓

|Lτ1,Rτ2⟩ ⟨Lτ1,Rτ2| , (2.2)

one gets the distributed resource state

ρLR = Π
(2)
LRρΠ

(2)
LR/Tr(Π

(2)
LRρ), (2.3)

with probability PLR = Tr(Π
(2)
LRρ). We call PLR sLOCC probability since it is related to the post-

selection procedure to find one particle in L and one particle in R. The state ρLR is then exploitable for
quantum information tasks by addressing the individual pseudospins in the separated regions L and R,
which represent the nodes of a quantum network. The state ρLR can be in fact remotely entangled in the
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Figure 2.1: Projective measurements based on sLOCC. Illustration of different single-particle spatial
wave functions ψi (i = 1, . . . , N ) associated to N identical particles in a generic spatial configuration.
The amount of spatial indistinguishability of the particles can be defined by using spatially localized
single-particle measurements in N separated regions Ri.

pseudospins and constitute the distributed resource state. The trace operation is clearly performed in the
LR-subspace (see Supplementary Notes 1 and 3 for details). The state ρLR, containing one particle in
L and one particle in R, can be diagonalized as ρLR =

∑
i pi |ΨLR

i ⟩ ⟨ΨLR
i |, where pi is the weight of

each pure state |ΨLR
i ⟩ which is in general non-separable. Entanglement of formation of ρLR is as usual

[42] Ef (ρLR) = min
∑

i piE(|ΨLR
i ⟩), where minimization occurs over all the decompositions of ρLR

and E(ΨLR
i ) is the entanglement of the pure state |ΨLR

i ⟩. We thus define the operational entanglement
ELR(ρ) of the original state ρ obtained by sLOCC as the entanglement of formation of ρLR, that is

ELR(ρ) := Ef (ρLR). (2.4)

We can conveniently quantify the entanglement of formation Ef (ρLR) by the concurrence C(ρLR),
according to the well-known relation Ef = h[(1+

√
1− C2)/2] [196, 195], where h(x) = −x log2 x−

(1− x) log2(1− x). The concurrence CLR(ρ) in the sLOCC framework can be easily introduced by

CLR(ρ) := C(ρLR) = max{0,
√
λ4 −

√
λ3 −

√
λ2 −

√
λ1}, (2.5)

where λi are the eigenvalues, in decreasing order, of the non-Hermitian matrix R = ρLR ρLR, being
ρLR = σLy ⊗ σRy ρ

∗
LRσ

L
y ⊗ σRy with localized Pauli matrices σLy = |L⟩ ⟨L| ⊗ σy, σRy = |R⟩ ⟨R| ⊗ σy. The

entanglement quantifier of ρ so obtained contains all the information about spatial indistinguishability
and statistics (bosons or fermions) of the particles.

sLOCC-based entropic measure of indistinguishability. In quantum mechanics, identical particles
can be given the property of indistinguishability associated to a specific set of quantum measurements,
being different from identity that is an intrinsic property of the system. With respect to the set of mea-
surements, it seems natural to define a continuous degree of indistinguishability, which quantifies how
much the measurement process can distinguish the particles. In this section, we deal with this aspect
within sLOCC. For simplicity, the treatment is first presented for a two-particle pure state and then gen-
eralized to N -particle pure states. It is worth to mention that the framework is universal and also valid
for mixed states.

Let us consider an elementary pure state of two identical particles |Ψ(2)⟩ = |χ1, χ2⟩, where |χi⟩ is a
generic one-particle state containing a set of commuting observables such as spatial wave function |ψi⟩
and an internal degree of freedom |σi⟩ (e.g., pseudospin with basis {↑, ↓}). The 2-particle state |Ψ(2)⟩ is
thus

|Ψ(2)⟩ = |χ1, χ2⟩ = |ψ1σ1, ψ2σ2⟩ . (2.6)
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In general, the degree of indistinguishability depends on both the quantum state and the measurement
performed on the system. This means a given set of operations allows one to distinguish the particles
while another set of operations does not. Let us narrow the analysis down to spatial indistinguishability
within the sLOCC framework, linked to the incapability of distinguish which one of the two particles is
found in each of the separated operational region. This framework thus leads to the concept of remote
spatial indistinguishability of identical particles. The suitable class of measurements to this aim is rep-
resented by local counting of particles, leaving the pseudospins untouched. Inside this class, the joint
projective measurement Π(2)

LR defined in Eq. (3.4) represents the detection of one particle in L and of one
particle in R. We indicate with PXψi

= |⟨X|ψi⟩|2 (X = L,R and i = 1, 2) the probability of finding one
particle in the region X (X = L,R) coming from |ψi⟩. We then define the joint probabilities of the two
possible events when one particle is detected in each region: (i) P12 = PLψ1PRψ2 related to the event of
finding a particle in L emerging from |ψ1⟩ and a particle in R emerging from |ψ2⟩, (ii) P21 = PLψ2PRψ1

related to the vice versa. The amount of the no-which way information emerging from the outcomes of
the joint sLOCC measurement Π(2)

LR is a measure of the spatial indistinguishability of the particles in the
state |Ψ(2)⟩. We thus use Z(2) := Tr(Π

(2)
LR |Ψ(2)⟩ ⟨Ψ(2)|) = P12 + P21, that encloses the essence of this

lack of information, to introduce the entropic measure of the degree of remote spatial indistinguishability

ILR := −P12

Z
log2

P12

Z
− P21

Z
log2

P21

Z
. (2.7)

The entropic expression above naturally arises from the requirement of quantifying the no which-way
information associated to the uncertainty about the origin (spatial wave function) of the particle found
in each of the operational regions. If particles do not spatially overlap in both remote regions, we have
maximum information (P12 = 1, P21 = 0 or vice versa) and ILR = 0 (the particles can be distinguished
by their spatial location). On the other hand, ILR = 1 when there is no information at all about each
particle origin (P12 = P21) and the particles are maximally overlapping in both regions. Notice that a
given value of ILR corresponds to a class of different shapes of the single-particle spatial wave functions
|ψi⟩. Moreover, in an experiment which reconstructs the identical particle state by standard quantum
tomography, the corresponding value of ILR can be indirectly obtained.

The above definition of the degree of spatial indistinguishability for two identical particles allows
us to defining a more general degree of indistinguishability for N identical particles. In general, N
different operational regions Ri (i = 1, . . . , N ) are needed to quantify the indistinguishability of N
identical particles (see Fig. 2.1). Let us consider a N -identical particle elementary pure state |Ψ(N)⟩ =
|χ1, χ2, ..., χN ⟩, where |χi⟩ is the i-th single-particle state. Each |χi⟩ is characterized by the set of
values χi = χai , χ

b
i , . . . , χ

n
i corresponding to a complete set of commuting observables â, b̂, . . . , n̂. For

example, if â describes the spatial distribution of the single-particle states, χai is a spatial wavefunction
ψi. To define a suitable class of measurements, we take the N -particle state

|αβ⟩N := |α1β1, α2β2, . . . , αNβN ⟩ , (2.8)

where the i-th single-particle state |αiβi⟩ is characterized by a subset â, b̂, . . . , ĵ of the â, b̂, . . . , n̂ com-
muting observables with eigenvalues αi = αai , α

b
i , . . . , α

j
i , and by the remaining observables k̂, . . . , n̂

with eigenvalues βi = βki , . . . , β
n
i . In the first member of Eq. (2.8) we have set α := {α1, ..., αN} and

β := {β1, ..., βN}. The N -particle projector on outcomes (α, β) of the complete set of observables is
Π

(N)
αβ = |αβ⟩N ⟨αβ|, while the projector on outcomes α of the partial set of observables is

Π(N)
α =

∑
β

Π
(N)
αβ . (2.9)

Within the sLOCC framework, we can quantify to which extent particles in the state |Ψ(N)⟩ can
be distinguished by knowing the results α of the local measurements described by Π

(N)
α of Eq. (2.9),

considering that single-particle spatial wave functions {ψi} can overlap (see Figure 2.1). The (sLOCC)
measurements have to satisfy the following properties: 1) theN single-particle states {|αiβi⟩} are peaked
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in separated spatial regions {Ri} (see Figure 2.1); 2) ⟨Ψ(N)|Π(N)
α |Ψ(N)⟩ ≠ 0, i.e. the probability of

obtaining the projected state must be different from zero (see Methods and Supplementary Note 1 for the
general formulas).

We indicate with Pαiχj the single-particle probability that the result αi comes from the state |χj⟩. We
then define the joint probability PαP := Pα1χp1

Pα2χp2
· · ·PαNχpN

, where P = {p1, p2, ..., pN} is one
of theN ! permutations of theN single-particle states {|χi⟩}. Notice that PαP can be nonzero for each of
theN ! permutations, since in general the outcome αi can come from any of the single-particle state |χj⟩.
The quantity Z =

∑
P PαP thus accounts for this no which-way effect concerning the probabilities. The

degree of indistinguishability is finally given by

Iα := −
∑
P

PαP

Z(N)
log2

PαP
Z(N)

. (2.10)

This quantity depends on measurements performed on the state. If the particles are initially all spatially
separated, each in a different measurement region, only one permutation remains and Iα = 0: we
have complete knowledge on the single-particle state |χj⟩ which gives the outcome αi, meaning that
the particles are distinguishable with respect to the measurement Π(N)

α . On the other hand, if for any
possible permutation P ′ ̸= P one has PαP ′ = PαP , indistinguishability is maximum and reaches the
value Iα = log2N !. As a specific example, when χai = ψi (spatial wave functions) and χbi = σi
(pseudospins), Iα of Eq. (2.10) is the direct generalization of ILR of Eq. (4.14) and provides the degree
of spatial indistinguishability under sLOCC for N identical particles.

Application: Noisy preparation of pure entangled state. We now apply the tools above to a
situation of experimental interest, namely noisy entanglement generation with identical particles.

Werner state [197] W±
AB for two nonidentical qubits A and B is considered as the paradigmatic

example of realistic noisy preparation of a pure entangled state subject to the action of white noise. In
the usual formulation, it is defined as a mixture of a pure maximally entangled (Bell) state and of the
maximally mixed state (white noise). Its explicit expression, assuming to be interested in generating the
Bell state |ΨAB

± ⟩ = (|↑A, ↓B⟩ ± |↓A, ↑B⟩)/
√
2, is W±

AB = (1 − p) |ΨAB
± ⟩ ⟨ΨAB

± | + pI4/4, where I4 is
the 4 × 4 identity matrix and p is the noise probability which accounts for the amount of white noise
in the system during the pure state preparation stage. The Werner state W±

AB is also the product of a
single-particle depolarizing channel induced by the environment applied to an initial Bell state [166, 33].
It is known that the concurrence for such state is C(W±

AB) = 1 − 3p/2 when 0 ≤ p < 2/3, being zero
otherwise [33] (see black dot-dashed line of Fig. 2.3a).

In perfect analogy, the Werner state for two identical qubits with spatial wave functions ψ1, ψ2 can
be defined by

W± = (1− p) |1±⟩ ⟨1±|+ pI4/4, (2.11)

where I4 =
∑

i=1,2;s=± |is⟩ ⟨is|, having used the orthogonal Bell-state basis B{1±,2±} = {|1+⟩, |1−⟩, |2+⟩, |2−⟩}
with

|1±⟩ := (|ψ1 ↑, ψ2 ↓⟩ ± |ψ1 ↓, ψ2 ↑⟩)/
√
2,

|2±⟩ := (|ψ1 ↑, ψ2 ↑⟩)± |ψ1 ↓, ψ2 ↓⟩)/
√
2. (2.12)

The Werner state of Eq. (2.11) is justified as a model of noisy state. In fact, it is straightforward to see that
W± is produced by a localized depolarizing channel acting on one of two initially separated identical
qubits, followed by a quick single-particle spatial deformation procedure which makes the two identical
qubits spatially overlap (see Supplementary Note 2). Hence, in Eq. (2.11), |1±⟩ is the target pure state to
be prepared and I4/4 is the noise as a mixture of the four Bell states.

Given the configuration of the spatial wave functions and using the sLOCC framework, the amount of
operational entanglement contained in W± can be obtained by the concurrence CLR(W±) = C(W±

LR)
of Eq. (4.13). Notice that the state of Eq. (2.11) is in general not normalized, depending on the specific
spatial degrees of freedom [3]. This is irrelevant at this stage, since the entanglement of W± is calculated
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Figure 2.2: Noisy entanglement preparation with tailored spatial indistinguishability. Illustration
of two controllable spatially overlapping wave functions ψ1, ψ2 peaked in the two localized regions
of measurement L and R. The two identical qubits are prepared in an entangled state under noisy
conditions, giving W±. The degree of spatial indistinguishability can be tuned, being 0 ≤ ILR ≤ 1.

on the final distributed state W±
LR, which is obtained from W± after sLOCC and is normalized (see Eq.

(4.12)). Focusing on the observation of entanglement, a well-suited configuration for the spatial wave
functions is |ψ1⟩ = l |L⟩ + r |R⟩ and |ψ2⟩ = l′ |L⟩ + r′eiθ |R⟩, where l, r, l′, r′ are non-negative real
numbers (l2+r2 = l′2+r′2 = 1) and θ is a phase. The wave functions are thus peaked in the two localized
measurement regions L and R, as depicted in Figure 2.2. The degree of spatial indistinguishability ILR
of Eq. (4.14) is tailored by adjusting the shapes of |ψ1⟩, |ψ2⟩, with PLψ1 = l2, PLψ2 = l′2 (implying
PRψ1 = r2, PRψ2 = r′2). The interplay between CLR(W±) and ILR versus noise probability p can be
then investigated (see Supplementary Note 3 for some explicit expressions of CLR(W±)).

Generally, the entanglement amount is conditional since the state is obtained by postselection. As
a result, the entangled state ρLR is detectable if the sLOCC probability PLR is high enough to be of
experimental relevance. Let us see what happens for ILR = 1 (l = l′). When the target pure state in
Eq. (2.11) is |1−⟩, using in Eq. (4.20) the explicit expressions of |ψ1⟩, |ψ2⟩ with θ = 0 (θ = π) for
fermions (bosons), from W− we obtain by sLOCC the distributed Bell state W−

LR = |1LR− ⟩ ⟨1LR− |, with
|1LR− ⟩ = (|L ↑,R ↓⟩ − |L ↓,R ↑⟩)/

√
2, therefore (see blue solid line of Fig. 2.3a)

CLR(W−) = C(W−
LR) = 1, for any noise probability p (2.13)

for which the probabilities of detecting this state for fermions and bosons are, respectively,

P
(f)
LR = 2l2(1− l2), P

(b)
LR =

2l2
(
1− l2

)
(4− 3p)

2− (1− 2l2)2 (2− 3p)
. (2.14)

Notice that the sLOCC probability for fermions, P (f)
LR, is in this case independent of the noise probability.

Fixing l2 = 1/2 we maximize the sLOCC probability, which is 1/2 for fermions and 1/4 for bosons
in the worst scenario of maximum noise probability p = 1. Differently, targeting the pure state |1+⟩ in
Eq. (2.11), for fermions (bosons) with θ = π (θ = 0), one gets a p-dependent W+

LR by sLOCC with
CLR(W+) = C(W+

LR) = (4−5p)/(4−p) when 0 ≤ p < 4/5, being zero elsewhere. The entanglement
now decreases with increasing noise, remaining however larger than that for nonidentical qubits (see
red dashed line of Fig. 2.3a). The choice of the state to generate makes a difference concerning noise
protection by indistinguishability. However, we remark that identical qubits in the distributed resource
state after sLOCC, W±

LR, are individually addressable. Local unitary operations (rotations) in L and
R can be applied to each qubit to transform the noise-free prepared |1LR− ⟩ into any other Bell state
[33]. Another relevant aspect is that the phase θ in |ψ2⟩ acts as a switch between fermionic and bosonic
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Figure 2.3: Prepared entanglement and indistinguishability. a. EntanglementCLR(W±) as a function
of noise probability p for different degrees of spatial indistinguishability ILR and system parameters:
blue solid line is for target state |1−⟩, ILR = 1 (l = l′), fermions (with θ = 0) or bosons (with θ = π);
red dashed line is for target state |1+⟩, ILR = 1 (l = l′), fermions (with θ = π) or bosons (with θ = 0);
black dot-dashed line is for distinguishable qubits (ILR = 0, l = 1 and l′ = 0 or vice versa). b. Contour
plot of entanglement CLR(W−) versus noise probability p and spatial indistinguishability ILR for target
state |1−⟩, fermions (with θ = 0) or bosons (with θ = π), fixing l = r′.

behavior of entanglement (see Supplementary Note 3 for details on more general instances). The result
for nonidentical particles is retrieved when the qubits become distinguishable (ILR = 0, l = r′ = 1 or
l = r′ = 0).

Since the preparation of |1−⟩, as represented by Eq. (2.11), results to be noise-free for both fermions
and bosons when ILR = 1, it is important to know what occurs for a realistic imperfect degree of
spatial indistinguishability. In Fig.2.3b we display entanglement as a function of both p and ILR. The
plot reveals that entanglement preparation can be efficiently protected against noise also for ILR < 1. A
crucial information in this scenario is the minimum degree of ILR that guarantees nonlocal entanglement
in L and R, by violating a CHSH-Bell inequality [33], whatever the noise probability p. We remark that
a Bell inequality violation based on sLOCC provides a faithful test of local realism [198]. Using the
Horodecki criterion [199], we find that the Bell inequality is violated for any p whenever 0.76 < ILR ≤
1, implying 0.56 < CLR(W−) ≤ 1 (see Supplementary Note 4 for details). This is basically different
from the case of distinguishable qubits where, as known [33], W±

AB violates Bell inequality only for
small white noise probabilities 0 ≤ p < 0.292 (giving 0.68 < C(W±

AB) ≤ 1). These results show robust
quantum entanglement preparation against noise through spatial indistinguishability, even partial. In fact,
rather than addressing individual qubits, here one controls the shapes of their spatial wave functions |ψ1⟩,
|ψ2⟩. Significant changes in these shapes can occur that anyway maintain ILR of Eq. (4.14) beyond the
threshold (≈ 0.76) assuring noise-free generation of nonlocal entanglement. Indistinguishability here
emerges as a property of composite quantum systems inherently robust to surrounding-induced disorder,
protecting exploitable quantum correlations.

2.3 Discussion

In this work, we have studied the effect of spatial indistinguishability on entanglement preparation under
noise, within the sLOCC framework. Firstly, thanks to the analogy with known methods for distin-
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guishable particles, the entanglement of formation, and the related concurrence, has been defined for an
arbitrary pure or mixed state of two identical qubits. Secondly, we have introduced the degree of spatial
indistinguishability of identical particles by an entropic measure of information. This achievement en-
tails a continuous quantitative identification of indistinguishability as an informational resource. Hence,
one can evaluate the amount of entanglement exploitable by sLOCC into two separated operational sites
under general conditions of spatial indistinguishability and state mixedness.

The Werner state W± has been then chosen as a typical instance of noisy mixed state of two iden-
tical qubits, with tunable spatial overlap of their wave functions on the two remote operational regions.
The tunable spatial overlap rules the indistinguishability degree. We have found that, under conditions
of complete spatial indistinguishability, maximally entangled pure states between internal (spin-like) de-
grees of freedom can be prepared unaffected by noise. Even in the more realistic scenario of experimental
errors in controlling particle spatial overlap, we have supplied a lower bound for the degree of spatial
indistinguishability beyond which the generated entangled state violates the CHSH-Bell inequality inde-
pendently of the amount of noise. These findings are independent of particle statistics, holding for both
bosons and fermions. One reasonably may expect that also coherence can be protected by spatial indis-
tinguishability, based on a previous work showing that the latter enables quantum coherence [94]. This
supports the observed effects in an experiment of coherence endurance due to particle indistinguishability
[32].

The degree of spatial indistinguishability exhibits robustness to variations in the configuration of
spatial wave functions, being then capable of shielding nonlocal entangled states against preparation
noise. Therefore, indistinguishability represents a resource of quantum networks made of identical qubits
enabling noise-free entanglement generation by its physical nature. Such a finding, which is promising
to fault-tolerant quantum information tasks under environmental noise, adds to other known protection
techniques of quantum states based on, for example, topological properties [115, 200, 201, 202, 203, 204,
205, 53], dynamical decoupling or decoherence-free subspace [206, 207, 208, 108, 111]. As an outlook,
the effects of spatial indistinguishability on quantumness protection for different types of environmental
noises will be addressed elsewhere.

Various experimental contexts can be thought for implementing the above theoretical scenario. For
example, in quantum optics, spatially localized detectors can perform the required measurements while
beam splitters can serve as controller of spatial wave functions of independent traveling photons (bosons)
with given polarization pseudospin. In a more sophisticated example with circular polarizations, one may
employ orbital angular momentum of photons as spatial wave function and spin angular momentum as
spin-like degree of freedom [209, 210, 211]. Setups using integrated quantum optics can also simu-
late fermionic statistics using photons [212]. Other suitable platforms for fermionic subsystems can be
supplied either by superconducting quantum circuits with Ramsey interferometry [213], or by quantum
electronics with quantum point contacts as electronic beam splitters [214, 215, 216]. The results of
this work are expected to stimulate further theoretical and experimental studies concerning the multiple
facets of indistinguishability as a controllable fundamental quantum trait and its exploitation for quantum
technologies.

2.4 Methods

Amplitudes and probabilities in the no-label approach. For calculating all the necessary probabilities
and traces to obtain the results of the work, under different spatial configurations of the wave functions,
we need to compute scalar products (amplitudes) between states of N identical particles.

The N -particle probability amplitude has been defined in the literature by means of the no-label
particle-based approach, here adopted, to deal with systems of identical particles [3]. Indicating with χi,
χ′
i (i = 1, . . . , N ) single-particle states containing all the degrees of freedom of the particle, the general
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expression of the N -particle probability amplitude is

⟨χ′
1, χ

′
2, . . . , χ

′
n|χ1, χ2, . . . , χn⟩

:=
∑

P η
P ⟨χ′

1|χP1⟩⟨χ′
2|χP2⟩ . . . ⟨χ′

n|χPn⟩, (2.15)

where P = {P1, P2, ..., Pn} in the sum runs over all the one-particle state permutations, η = ±1 for
bosons and fermions, respectively, and ηP is 1 for bosons and 1 (-1) for even (odd) permutations for
fermions. Notice that the explicit dependence on the particle statistics appears, as expected.

Along our manuscript, we especially need two-particle probabilities and trace operations. ForN = 2,
the general expression above reduces to the following two-particle probability amplitude

⟨χ′
1, χ

′
2|χ1, χ2⟩ = ⟨χ′

1|χ1⟩⟨χ′
2|χ2⟩+ η⟨χ′

1|χ2⟩⟨χ′
2|χ1⟩. (2.16)

Supplementary Material

A. Amplitudes and probabilities in the no-label approach

For calculating all the necessary probabilities and traces to obtain the results of the work, under different
spatial configurations of the wave functions, we need to compute scalar products (amplitudes) between
states of N identical particles.

The N -particle probability amplitude has been defined in the literature by means of the no-label
particle-based approach, here adopted, to deal with systems of identical particles [3]. Indicating with χi,
χ′
i (i = 1, . . . , N ) single-particle states containing all the degrees of freedom of the particle, the general

expression of the N -particle probability amplitude is

⟨χ′
1, χ

′
2, . . . , χ

′
n|χ1, χ2, . . . , χn⟩

:=
∑

P η
P ⟨χ′

1|χP1⟩⟨χ′
2|χP2⟩ . . . ⟨χ′

n|χPn⟩, (2.17)

where P = {P1, P2, ..., Pn} in the sum runs over all the one-particle state permutations, η = ±1 for
bosons and fermions, respectively, and ηP is 1 for bosons and 1 (-1) for even (odd) permutations for
fermions. Notice that the explicit dependence on the particle statistics appears, as expected.

Along our manuscript and in the rest of the Supplementary Information, we especially need two-
particle probabilities and trace. For N = 2, the general expression above reduces to the following
two-particle probability amplitude

⟨χ′
1, χ

′
2|χ1, χ2⟩ = ⟨χ′

1|χ1⟩⟨χ′
2|χ2⟩+ η⟨χ′

1|χ2⟩⟨χ′
2|χ1⟩. (2.18)

B. Werner state W± of two indistinguishable qubits

In the following, we describe two different ways which produce the Werner state W± of two indistin-
guishable particles, given in the main text.

Analogy with distinguishable particles. Let us consider the orthogonal Bell states of two indistin-
guishable qubits, with spatial wave functions ψ1 and ψ2, which are defined as

|1±⟩ = (|ψ1 ↑, ψ2 ↓⟩ ± |ψ1 ↓, ψ2 ↑⟩)/
√
2,

|2±⟩ = (|ψ1 ↑, ψ2 ↑⟩)± |ψ1 ↓, ψ2 ↓⟩)/
√
2. (2.19)

Each of these Bell states is not normalized in general. Their normalized expressions are

|1̄±⟩ =
1√
2N1±

(|ψ1 ↑, ψ2 ↓⟩ ± |ψ1 ↓, ψ2 ↑⟩),

|2̄±⟩ =
1√
2N2±

(|ψ1 ↑, ψ2 ↑⟩)± |ψ1 ↓, ψ2 ↓⟩), (2.20)
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where N1− = (1− η|⟨ψ1|ψ2⟩|2) and N1+ = N2± = (1 + η|⟨ψ1|ψ2⟩|2).
For two distinguishable (or nonidentical) qubits A and B, a Werner state W±

AB is a mixture of a
pure maximally entangled (Bell) state and of the maximally mixed state [197]. Its explicit expression,
assuming to be interested in preparing the Bell state |ΨAB

± ⟩ = (|↑A, ↓B⟩ ± |↓A, ↑B⟩)/
√
2, is

W±
AB = (1− p) |ΨAB

± ⟩ ⟨ΨAB
± |+ pI4/4, (2.21)

where I4 is the 4 × 4 identity matrix and p is the noise probability accounting for the amount of white
noise in the system [33]. Notice that I4 can be written either in the computation basis or in the basis of
the four Bell states. The Werner state is of wide interest since it can be meant as a state representing a
(realistic) noisy preparation of pure two-qubit entangled states [166, 33].

In strict analogy with W±
AB, the Werner state of a pair of identical qubits with spatial wave functions

ψ1 and ψ2 can be expressed in the orthogonal Bell-state basis B{1±,2±} = {|1+⟩ , |1−⟩ , |2+⟩ , |2−⟩} by

W± = (1− p) |1±⟩ ⟨1±|+ pI4/4, (2.22)

where I4 =
∑

i=1,2;s=± |is⟩ ⟨is|. The state W is in general unnormalized. Its normalized expression
W̄ = W/N± requires a global normalization constant

N± = 1 + η|⟨ψ1|ψ2⟩|2[p/2± (1− p)]. (2.23)

Using normalized Bell states of Eq. (4.20), this state can be equivalently expressed by

W̄± =
1

N±

(1− p)N1± |1̄±⟩ ⟨1̄±|+
p

4

∑
i=1,2;s=±

Nis |̄is⟩ ⟨̄is|

 . (2.24)

Notice that the state W± reduces to the usual Werner state of two distinguishable qubits W±
AB of Eq.

(2.21) when there is no spatial overlap between the qubits, so that the latter can be individually addressed
in their separated locations.

W± as a model of noisy state. The Werner state of Eq. (2.22) is justified as a model of noisy state,
being produced by a localized single-particle depolarizing channel acting on one of two initially sepa-
rated identical qubits, followed by a quick single-particle spatial deformation procedure which makes the
two identical qubits spatially overlap. In the following we show this in detail.

It is known that the Werner state W±
AB = (1 − p) |ΨAB

± ⟩ ⟨ΨAB
± | + pI4/4 for two distinguishable

(nonidentical) qubits A and B is the output of the single-qubit depolarizing channel action on one of
the two qubits of an initial Bell state [166]. The process is such that the initial (maximally entangled)
pure state tends to remain in the initial state with probability 1− p and changes to the maximally mixed
state I4/4 with probability p. The Kraus (operator-sum) representation of the single-qubit depolarizing
channel acting on an elementary pure state like ρAB = |ϕA, ϕB⟩ ⟨ϕA, ϕB| is given by [15, 166]

ρ(t) =

4∑
i=0

|KA
i ϕA⟩ ⊗ |IB2 ϕB⟩ ⟨KA

i ϕA| ⊗ ⟨IB2 ϕB| , (2.25)

where the Kraus operators are K0 =
√
1− 3p/4 I2 and Ki =

√
p/4σi (i = 1, 2, 3), with I2 being the

single-particle (2×2) identity operator and σi the usual Pauli matrices. Notice that here the channel indi-
vidually acts on the internal degrees of freedom (pseudospins) of qubitA and ⟨KA

i ϕA| = ⟨ϕA|KA†
i . Us-

ing the action on the elementary state of Eq. (2.25), it is then straightforward to see that W±
AB is obtained

by the single-qubit depolarizing channel starting from a Bell state |ΨAB
± ⟩ = (|↑A, ↓B⟩ ± |↓A, ↑B⟩)/

√
2

[166].
Now, let us consider a pair of two identical qubits which are initially separated, for example one in a

location L1 and one a in location L2. If these qubits are initially in a Bell state |ΨL1L2
± ⟩ = (|L1 ↑,L2 ↓⟩±

|L1 ↓,L2 ↑⟩)/
√
2 and the localized single-particle depolarizing channel of Eq. (2.25) acts on L1 (A ↔
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Figure 2.4: sLOCC probability PLR (success probability) as a function of noise probability p for some
degrees of spatial indistinguishability ILR and particle statistics, fixing l = r′ in the wave functions of
Eq. (4.15). a. Target pure state |1−⟩ in Eq. (2.22). b. Target pure state |1+⟩ in Eq. (2.22).

L1, B ↔ L2), for instance, the qubits behave as distinguishable particles labeled, respectively, by L1

and L2. Therefore, the resulting state at this stage is W±
L1L2

= (1 − p) |ΨL1L2
± ⟩ ⟨ΨL1L2

± | + pI4/4, where
I4 =

∑
k=±(|Ψ

L1L2
k ⟩ ⟨ΨL1L2

k | + |ΦL1L2
k ⟩ ⟨ΦL1L2

k |), with |ΦL1L2
k ⟩ = (|L1 ↑,L2 ↑⟩ ± |L1 ↓,L2 ↓⟩)/

√
2

being the other couple of Bell states. After the action of this localized depolarizing channel, one can
apply a quick spatial deformation procedure on each qubit making the following transformation on the
spatial degree of freedom: |L1⟩ → |ψ1⟩, |L2⟩ → |ψ2⟩. The two final spatial wave functions |ψ1⟩, |ψ2⟩ are
in general spatially overlapping and the final output state of the entire procedure (localized depolarizing
channel plus spatial deformation) immediately results to be

W± = (1− p) |1±⟩ ⟨1±|+ pI4/4, (2.26)

which is just the Werner state defined in Eq. (2.22). This result justifies the introduced Werner state for
indistinguishable particles, W±, as a proper noisy state. We stress that a general analysis of different
environmental noises and more general derivations of noise models for systems of indistinguishable
particles is beyond the aim of the present paper and will be provided elsewhere.

C. Concurrence of W± state

Given the state W± of Eq. (2.22) and the structure of the spatial wave functions, the amount of opera-
tional entanglement contained in W± can be obtained by sLOCC. Aiming at observing entanglement in
separated regions, also in view of CHSH-Bell inequality violations [33], a suitable form for the spatial
wave functions appearing in Eq. (2.22) is

|ψ1⟩ = l |L⟩+ r |R⟩ , |ψ2⟩ = l′ |L⟩+ r′eiθ |R⟩ , (2.27)

where l, r, l′ and r′ are non-negative real numbers (with l2 + r2 = l′2 + r′2 = 1) and θ is a phase.
Projecting W onto the (operational) subspace spanned by the computational basis BLR = {|L ↑ R ↑⟩ , |L ↑,R ↓⟩ ,

|L ↓,R ↑⟩ , |L ↓,R ↓⟩} by means of the projector

Π
(2)
LR =

∑
τ1,τ2=↑,↓

|Lτ1,Rτ2⟩ ⟨Lτ1,Rτ2| , (2.28)
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and using the scalar product of Eq. (2.18), we obtain the distributed resource state

W±
LR = Π

(2)
LRW

±Π
(2)
LR/Tr(Π

(2)
LRW

±), (2.29)

with probability PLR = Tr(Π
(2)
LRW̄±). The trace operation is performed in the LR-subspace. The

(normalized) state W±
LR can be then treated as the state of two distinguishable qubits in separated bound

states |L⟩, localized in the region L, and |R⟩, localized in the region R [16]. Therefore, the sLOCC-based
concurrence CLR(W±) := C(W±

LR) can be calculated by the usual criterion for distinguishable qubits
[196, 195], that is by

C(W±
LR) = max{0,

√
λ4 −

√
λ3 −

√
λ2 −

√
λ1}, (2.30)

where the λi’s are the eigenvalues, in decreasing order, of the non-Hermitian matrixR = ρLR ρLR, being

ρLR = σLy ⊗ σRy ρ
∗
LRσ

L
y ⊗ σRy , (2.31)

with localized Pauli matrices defined as σLy ≡ |L⟩ ⟨L| ⊗ σy and σRy ≡ |R⟩ ⟨R| ⊗ σy.
Thanks to the explicit expressions of the spatial wave functions of Eq. (4.15) above, the degree of

spatial indistinguishability under sLOCC ILR, defined in Eq. (9) of the main text, can be then explicitly
calculated by substituting PLψ1 = l2, PLψ2 = l′2, PRψ1 = r2 and PRψ2 = r′2.

We can now report the explicit expressions of CLR(W±) := C(W±
LR) for some cases of particular

interest. As a remarkable aspect, our calculations show that the phase θ of |ψ2⟩, when assuming binary
values 0, π, acts as a switch between fermionic and bosonic entanglement behavior. This is why in the
main text and in the following expressions, only these values of θ are chosen.

When the pure state |1−⟩ is considered in the W− state of Eq. (2.22), for fermions (bosons) with
θ = 0 (θ = π) we find

C(W−
LR) = max

{
0,

(4− 3p)(lr′ + l′r)2 − 3p(lr′ − l′r)2

4 (l2r′2 + l′2r2 + lr′rl′(2− 3p))

}
, (2.32)

with probability

PLR =
2
(
l2r′2 + l′2r2 + lr′rl′(2− 3p)

)
2− η(2− 3p)(ll′ − ηrr′)2

, (2.33)

where η = +1 for bosons and η = −1 for fermions, as said before. The plot of this concurrence as
a function of ILR and p, fixing l = r′, is reported in Figure 3b of the main text. As can be seen from
Eq. (4.31), by setting l = l′ (implying r = r′) so to have maximum indistinguishability ILR = 1, one
gets C(W−

LR) = 1 independently of p. The sLOCC probability is maximized when l = l′ = 1/
√
2,

taking the values PLR = 1/2 for fermions and PLR = 1 − 3p/4 for bosons. The sLOCC probability
PLR of Eq. (2.33) is plotted in Fig. 2.4(a) as a function of noise probability p for some degrees of spatial
indistinguishability ILR.

Differently, when the pure state |1+⟩ is chosen in the W+ state of Eq. (2.22), for fermions (bosons)
with θ = π (θ = 0) we obtain

C(W+
LR) = max

{
0,

(4− 5p)(lr′ + l′r)2 − p(lr′ − l′r)2

4 (l2r′2 + l′2r2 + lr′rl′(2− p))

}
, (2.34)

with probability

PLR =
2
(
l2r′2 + l′2r2 + lr′rl′(2− p)

)
2 + η(2− p)(ll′ + ηrr′)2

. (2.35)

The concurrence of Eq. (2.34) is plotted in Fig. 2.5 in terms of both indistinguishability degree ILR and
noise probability p, fixing l = r′. By choosing maximal indistinguishability ILR = 1 (l = l′), one has
C(W+

LR) = (4 − 5p)/(4 − p) when 0 ≤ p < 4/5, being zero elsewhere. The sLOCC probability is
maximized when l = l′ = 1/

√
2, taking the expression PLR = 1− p/4 for fermions and PLR = 1/2 for

bosons. The probability PLR of Eq. (2.35) is plotted in Fig. 2.4(b) as a function of noise probability p
for some degrees of spatial indistinguishability ILR.
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Figure 2.5: Contour plot of entanglement versus noise probability p and spatial indistinguishability ILR
when the pure state |1+⟩ is chosen in Eq. (2.22), for fermions (with θ = π) or bosons (with θ = 0),
fixing l = r′ in the spatial wave functions of Eq. (4.15).

Figure 2.6: Regions of Bell inequality violation B(W±
LR) > 2 in terms of noise probability p and degree

of spatial indistinguishability ILR. To vary ILR we fix l = r′ in Eq. (4.15). a. Target pure state |1−⟩
in Eq. (2.22) for both fermions (with θ = 0) and bosons (with θ = π). b. Target pure state |1+⟩ in Eq.
(2.22) for both fermions (with θ = π) and bosons (with θ = 0).

Finally, the amount of entanglement for a Werner state of distinguishable qubitsW±
AB can be retrieved

by both Eqs. (4.31) and (2.34) of C(W±
LR) for spatially separated wave functions (ILR = 0). This is

reached when l = r′ = 1 or l = r′ = 0 in Eq. (4.15). In this case, in fact, one can associate A ≡ L and
B ≡ R. We thus obtain the known result [33] about the concurrence, that is C(W±

AB) = 1 − 3p/2 for
0 < p ≤ 2/3, being zero elsewhere.

D. CHSH-Bell inequality violation for the W± state

It is known that for mixed states of distinguishable particles, which are the ones encountered in practice,
a given value of entanglement by itself does not guarantee that the correlations cannot be reproduced by a
classical local hidden variable model [197, 33]. Criteria based on Bell inequality violations are therefore
those utilized to show that a given amount of entanglement of mixed states assures nonlocal quantum
correlations, which are not classically reproducible [33]. For two distinguishable qubits in an arbitrary
state ρ, the experimentally-friendly CHSH-Bell inequality can be written as B(ρ) ≤ 2 [33], where 2
represents the classical threshold. Whenever a quantum state produces B(ρ) > 2, its corresponding
entanglement is inherently nonlocal.

Thanks to the sLOCC framework, we can straightforwardly translate these arguments to the case of
arbitrary mixed states of indistinguishable particles. In fact, after sLOCC the identical qubits can be
individually addressed and a Bell test can be performed on their global state by spin-like measurements
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Figure 2.7: Contour plot of Bell function B(W±
LR) versus noise probability p and degree of spatial

indistinguishability. To vary ILR we fix l = r′ in Eq. (4.15). a. Target pure state |1−⟩ in Eq. (2.22) for
both fermions (with θ = 0) and bosons (with θ = π). b. Target pure state |1+⟩ in Eq. (2.22) for both
fermions (with θ = π) and bosons (with θ = 0).

onto the separated bound states |L⟩, localized in the region L, and |R⟩, localized in the region R [16].
It is simple to see that the distributed resource state W±

LR, stemming from W± of Eq. (2.22) after
sLOCC, has an X structure in the computational basis BLR = {|L ↑,R⟩, |L ↑,R ↓⟩, |L ↓,R ↑⟩ , |L ↓,R ↓⟩}.
That is, only the diagonal and off-diagonal elements are in general nonzero. According to the Horodecki
criterion for the CHSH-Bell inequality violation of a two-qubit density matrix [199], the expression of
the optimized Bell function for an X-shape density matrix ρX can be written as [217]

B(ρX) = 2
√

P2 +Q2, (2.36)

with

P = ρ11 + ρ44 − ρ22 − ρ33, Q = 2(|ρ14|+ |ρ23|), (2.37)

where ρij are the density matrix elements in the computational basis. For the state of our interest, W±
LR,

these elements are functions of both the degree of spatial indistinguishability ILR, through the wave
function parameters l and l′, and the noise probability p. It is thus possible to look for Bell inequality
violations, that is BLR(W±) := B(W±

LR) > 2, for different values of ILR and p. To continuously vary
the degree of indistinguishability and forbid that the sLOCC probability PLR to get W±

LR is zero, we
fix l = r′ in the wave functions |ψ1⟩ and |ψ2⟩ of Eq. (4.15). It is worth to recall that a Bell inequality
violation based on sLOCC, that is based on local postselection with PLR > 0, provides a faithful test of
local realism [198].

When the target pure state in Eq. (2.22) is |1−⟩, for both fermions (with θ = 0) and bosons (with
θ = π), the behavior of the Bell function B(W−

LR) is displayed in Fig. 2.6a, where only the regions
of violation are evidenced, while in Fig. 2.7a all the possible values of B(W−

LR) are shown. From Fig.
2.6a, it is clear that when 0.76 < ILR ≤ 1, that is 0.56 < C(W−

LR) ≤ 1, the Bell inequality is violated
independently of noise probability p. The fact that this result is independent of p implies that, under
the conditions above, the nonlocal entanglement preparation is always noise free. Moreover, notice that
the degree of ILR beyond the (nonlocality) threshold (≈ 0.76) is reached for many different shapes of
the spatial wave functions of Eq. (4.15). Disturbance in the control of the exact shape of spatial wave
functions does not significantly affect the degree of spatial indistinguishability of the identical qubits.

On the other hand, when the target pure state in Eq. (2.22) is |1+⟩, for both fermions (with θ = π)
and bosons (with θ = 0), the behavior of Bmax(W+

LR) is reported in Fig. 2.6b, where only the regions of

33



violation are evidenced, while in Fig. 2.7b all the possible values of the Bell function are plotted. In this
case, Fig. 2.6b evidences that the Bell inequality, also for a high degree of indistinguishability, can be
violated for a finite range of p. For instance, when ILR = 1, one has B(W+

LR) > 2 for 0 ≤ p < 0.363,
which means 0.6 < C(W+

LR) ≤ 1.
Finally, from both panels of Fig. 2.6 one can also retrieve the range of values of p for which the

Bell inequality is violated in the case of distinguishable qubits A, B. In fact, when ILR = 0, one gets
B(W±

AB) > 2 for noise probability 0 ≤ p < 0.29, which means an entanglement amount 0.68 <
C(W±

AB) ≤ 1 [33]. Nonlocal entanglement of distinguishable particles is unavoidably affected by the
amount of noise present in the state and is violated only for a small amount of white noise.

The main message of this analysis is the following: spatial indistinguishability, even partial, can
guarantee a noise-free preparation of highly entangled states of identical particles, capable to violate
the Bell inequality. Moreover, this result is robust to changes in the configurations of the spatial wave
functions |ψ1⟩, |ψ2⟩, which highlights the behavior of quantum indistinguishability as a protection of
quantum states against external noise.

34



Chapter 3
Experimental quantum entanglement and
teleportation by tuning remote spatial
indistinguishability of independent photons

Abstract

Quantitative control of spatial indistinguishability of identical subsystems as a direct quantum resource
at distant sites has not been yet experimentally proven. We design a setup capable to tune remote spa-
tial indistinguishability of two independent photons by individually adjusting their spatial distribution in
two distant regions, leading to polarization entanglement from uncorrelated photons. This is achieved
by spatially localized operations and classical communication (sLOCC) on photons which only meet at
the detectors. The amount of entanglement uniquely depends on the degree of spatial indistinguishabil-
ity, quantified by an entropic measure I, which enables teleportation with fidelities above the classical
threshold. The results open the way to viable indistinguishability-enhanced quantum information pro-
cessing. This Chapter is related to Publication 2 in the List of Publications.

3.1 Introduction

Discovering how fundamental traits of quantum constituents can facilitate preparation and control of
composite systems is strategic for the scientific progress. In fact, this achievement impacts both on the
advance of our knowledge of the basic features of the natural world and on the development of quantum-
enhanced technologies. Many-body quantum networks are usually made of identical building blocks,
such as atoms, electrons, photons or generic qubits [161, 218, 219, 220, 175]. Indistinguishability of
identical subsystems thus emerges as inherent quantum feature that may play a role in quantum informa-
tion processing.

The usual request to implement quantum tasks in many-body systems is that qubits are individu-
ally addressed, which have been experimentally realized with various apparatuses [33]. For nonidentical
qubits, this requirement is fulfilled by local operations and classical communication (LOCC), where the
term “local” refers to particle-locality independently of their spatial configuration [33]. Differently, iden-
tical qubits are not in general individually addressable [13], spatial distribution of their wave functions
becoming crucial. Despite the long debate about formal aspects on entanglement of identical particles
[13, 12, 221, 222, 223, 192, 224, 225, 191, 14, 2, 226, 3, 227] and some proposals using particle identity
for quantum protocols [175, 187, 188, 28, 16, 94], experimental evidence of spatial indistinguishability
as a direct resource has remained elusive, because of the lack of its proper informational measure and a
suitable control technique.

Here we experimentally implement the operational framework based on spatially localized opera-
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Figure 3.1: (A) Theoretical setup. (B) Generic spatial distribution of particles in the state |Ψ⟩ =
|ψD ↑, ψ′

D ↓⟩, with |ψD⟩ = l |ψL⟩+ r |ψR⟩ and |ψ′
D⟩ = l′ |ψ′

L⟩+ r′ |ψ′
R⟩ (0 < I < 1).

tions and classical communication (sLOCC) which, at variance with the idea of particle locality, relies
on the concept of spacial locality of measurement as in quantum field theory [16]. The setup is capable
to control the distribution of the wave packets of two independent initially-uncorrelated identical pho-
tons towards two separated (remote) operational regions where the photons are collected. This allows
for continuously adjusting the degree of their remote spatial indistinguishability, quantified via a suitable
entropic-informational measure [17]. The two photon paths remain separated along the setup and only
meet in the operational regions. By single-photon localized measurements, we prove that the two uncor-
related photons with opposite polarizations get entangled, the amount of entanglement being only related
to the degree of spatial indistinguishability. We show that the nonlocal entanglement so generated vio-
lates the Bell inequality and activates conditional teleportation of the state of an additional photon with
fidelities higher than the classical threshold.

3.2 Theory

We start describing the basic theoretical setup, depicted in Fig. 3.1A. Two identical particles, com-
ing from independent sources, are in the initial uncorrelated state |ψ ↑, ψ′ ↓⟩, written in the no-label
formalism [2] (see section A in Supplementary Material (SM)). Each particle wave packet is then dis-
tributed in a controllable manner towards two remote operational regions L and R by a beam splitter
(BS), |ψ⟩ BS−−→ |ψD⟩ and |ψ′⟩ BS−−→ |ψ′

D⟩. The sLOCC measurements, represented by the two detectors
in Fig. 3.1A, are realized by localized single-particle counting in each region (sLO) and coincidence
measures (CC). Taking photons as identical particles, this scheme can be seen as a modified Hanbury
Brown and Twiss experiment [228, 229], the modification consisting in initially polarizing the photons
and in controlling their spatial distribution. Before sLOCC, the two-particle state is |Ψ⟩ = |ψD ↑, ψ′

D ↓⟩,
where |ψD⟩ = l |ψL⟩ + r |ψR⟩ (|l|2 + |r|2 = 1) and |ψ′

D⟩ = l′ |ψ′
L⟩ + r′ |ψ′

R⟩ (|l′|2 + |r′|2 = 1), with
|ψX⟩, |ψ′

X⟩ (X = L, R) indicating the two wave packets located in the operational region X. Particle paths
do not share any common past and meet only at the detection level, so that to the eyes of the localized
measurement devices the particles are indistinguishable and individually unaddressable. The question
arises whether |Ψ⟩ contains useful pseudospin entanglement in L and R, a longly debated conceptual
issue [16]. Particle spatial overlap occurs at distant sites, defining a remote spatial indistinguishability
quantified by the entropic measure [17]

I = −
2∑
i=1

p
(i)
LR log2 p

(i)
LR, (3.1)

where p(1)LR = |lr′|2/(|lr′|2 + |l′r|2) and p(2)LR = 1− p
(1)
LR (see section A in SM for details). Here |lr′|2 is

the joint probability of finding a particle in L coming from |ψD⟩ and a particle in R coming from |ψ′
D⟩,

whilst |l′r|2 is clearly the vice versa (see Fig. 3.1B). This measure ranges from I = 0 for separated wave
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Figure 3.2: Experimental setup. (A) Using fiber couplers (FCs), half-wave plates (HWPs) and po-
larized beam splitters (PBSs), two oppositely-polarized independent photons generated from two BBO
crystals go to the separated regions L and R, where a beam displacer (BD) makes the photon paths meet
at detectors. The inset displays the unit of polarization analysis detection (PAD), including a quarter-
wave plate (QWP) and a single-photon detector (SPD). (B) Teleportation part. PAD is removed and the
photons in L proceed to the Bell state measurement (BSM) with coincidence device (CD). The photon
state to be teleported is generated in L′.

packets (|l|2 = |r′|2 = 1 or |l|2 = |r′|2 = 0) to I = 1 for equally distributed wave packets (|l|2 = |l′|2)
(see section B in SM). Any other particle degree of freedom, apart spatial location, has no effect on
I. Applying the projector Π̂LR =

∑
σ,τ=↑,↓ |Lσ,Rτ⟩ ⟨Lσ,Rτ |, which defines localized single-particle

counting in L and R, on |Ψ⟩ gives [16]

|ΨLR⟩ = (lr′|L ↑,R ↓⟩+ ηrl′|L ↓,R ↑⟩)/(
√
|lr′|2 + |rl′|2), (3.2)

with probability PLR = |lr′|2 + |rl′|2, where η = ±1 for bosons and fermions, respectively.

3.3 Experiment

The experimental setup realizing this theoretical scheme is displayed in Fig. 3.5A. Two (uncorrelated)
heralded single photons are emitted independently via spontaneous parametric down conversion (SPDC)
from two BBO crystals, designed to satisfy beamlike type-II SPDC [230] and pumped by pulsed ultravi-
olet light at 400 nm. The two photons (of wavelength 800 nm) are initially polarized in |H⟩ (horizontal,
H ≡↑) and |V ⟩ (vertical, V ≡↓) polarization, respectively, and then collected separately by two single-
mode fibers via fiber couplers (FCs). At this stage, the photons are completely uncorrelated in the state
|H⟩ ⊗ |V ⟩, as verified with high fidelity (95.2 ± 0.7)% (see section C in SM). Before the main ex-
periment, we perform usual two-photon interference to reveal the identity of the employed operational
photons characterized by visibility of Hong-Ou-Mandel (HOM) dip [130], giving a value of ≈ 83.8%
(see section C in SM). The BSs of Fig. 3.1A are actually substituted by the sequence of a half-wave plate
(HWPi, i = 1, 2), a polarizing beam-splitter (PBS) and two final HWPs at 45◦ before the location L. By
rotating HWP1 and HWP2 at angles (π/2 − α)/2 and −β/2, respectively, we can conveniently adjust
the weights of the linear spatial distribution of the photons on the two measurement sites, while the PBSs
separate the different polarizations. The final HWPs at 45◦ are needed to maintain the initial polarization
of each photon unvaried. In each region L and R a beam displacer (BD) makes the paths of the two
photons meet at the detection level. It is straightforward to see that this setup prepares the desired state
|Ψprep⟩ = |ψDH,ψ

′
DV ⟩ with |ψD⟩ = cosα |ψL⟩ + sinα |ψR⟩ and |ψ′

D⟩ = sinβ |ψ′
L⟩ + cosβ |ψ′

R⟩.
By setting α and β, we can prepare a series of |Ψprep⟩ for different spatial distributions and thus for
various values of I. All the optical elements of the setup independently act on each photon, so the
photon states |ψDH⟩, |ψ′

DV ⟩ are independently prepared regardless of the specific photon spatial mode
(e.g., transversal electric magnetic mode like Hermite-Gaussian mode or Laguerre-Gaussian mode). The
sLOCC measurements are implemented by single-photon detectors (SPDs) placed on L and R for single-
particle counting (sLO) and by a coincidence device (CD), which deals with the electrical signals of
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Figure 3.3: ConcurrenceC for α = π/4, versus β (A) and I (B). Blue (upper) curves are ideal theoretical
predictions, red curves are the performance of the setup considering reduced visibility. Red dots (with
error bars) are experimental results.

SPDs and the trigger signals outputting coincidence counting on L and R, for classical communication
(CC). An interference filter, whose full width at half maximum is 1 nm, and a single mode fiber (both
not shown here) are placed before each SPD. A unit of polarization analysis detection (PAD), made of a
quarter-wave plate (QWP), a HWP and a PBS (see inset of Fig. 3.5A), is locally employed to verify the
predicted polarization entanglement by tomographic measurements and Bell test.

The setup generates from |Ψprep⟩ by sLOCC the distributed resource state |ΨLR⟩ of Eq. (3.2), with
η = 1 (bosons), l = cosα, r = sinα, l′ = sinβ and r′ = cosβ. This polarization entanglement is re-
vealed in coincidence post-selection as in a common type of polarization-entangled photon source [231].
However, its origin is fundamentally different, arising from independently-prepared photons which do
not share any common past but only need to meet at detectors. This entanglement is zero when the two
spatial distributions remain separated each in a local region, being I = 0 since the photons are distin-
guished by their locations (see section D in SM). We verify the entanglement versus I by adjusting dif-
ferent spatial distributions |ψD⟩, |ψ′

D⟩. To this aim we fix α = π/4, implying |ψD⟩ = (|ψL⟩+ |ψR⟩)/
√
2

and
|ΨLR⟩ = cosβ |LH,RV ⟩+ sinβ |LV,RH⟩ , (3.3)

whose concurrence quantifying entanglement [33] isC(ΨLR) = sin 2β, while I = − cos2 β log2(cos
2 β)−

sin2 β log2(sin
2 β), as obtained from Eq. (3.1), coincides with the entanglement of formation Ef (ΨLR)

of |ΨLR⟩ [16]. Thus, a monotonic relation C = f(I) exists between concurrence and spatial indis-
tinguishability. The experimental results of C, obtained after state reconstruction, versus both β and I
are shown in Fig. 3.3A and B where the experimental points are lower than the ideal theoretical pre-
diction due to the reduction of visibility while fit with the performance of this setup (see section C in
SM). For β = π/4 (I = 1), |ΨLR⟩ in Eq. 3.3 becomes the Bell state |Ψ+

LR⟩. The generated state, in
correspondence of β = 0.808 ± 0.041, whose reconstructed density matrix is shown in Fig. 3.14A, has
fidelity (88.3 ± 2.5)% compared to |Ψ+

LR⟩. We also perform the Bell inequality violation test (S > 2)
[33] on this distributed resource state to directly prove the presence of nonlocal entanglement [198]. We
experimentally achieve S = 2.32± 0.12, violating the Bell inequality by about 2.7 standard deviations.
Moreover, when β = 3π/4, that is when |ψ′

D⟩ = (|ψ′
L⟩ − |ψ′

R⟩)/
√
2 and |ψD⟩ are orthogonal yet com-

pletely spatially indistinguishable (I = 1), the Bell state |Ψ−
LR⟩ is expected. In the experiment, this state

is created with fidelity (88.3±2.4)% for β = 2.406±0.040 (see Fig. 3.14B) and Bell inequality violation
S = 2.33± 0.16. These results prove that nonlocal entanglement is activated only by the remote spatial
indistinguishability of independent photons.

Due to reduced visibility of the two heralded single photons, the experimental results that fit well
with the performance of the employed setup are obviously lower than the theoretical prediction. Redoing
the experiment with two photons from one BBO crystal, instead of two independent sources, allows us
to obtain data closer to theory (see section E in SM).

Teleportation. We now show the indistinguishability-enabled entanglement is large enough to re-
alize quantum teleportation. We can follow the standard protocol [33, 22] once the cases when both
photons are either in L or in R are discarded. Following the above setup preparing the entangled state,
the setup implementing teleportation is displayed in Fig. 3.5B. One of the two photons used as the trigger
signals in Fig. 3.5A is sent to the side of L′ as the target to be teleported. The combination of a HWP
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Figure 3.4: Real and imaginary part of the reconstructed density matrix for α = π/4 and: (A) β =
0.808± 0.041 (expected state |Ψ+

LR⟩); (B) β = 2.406± 0.040 (expected state |Ψ−
LR⟩).

cccc
state |H⟩ |V ⟩ |+⟩
Fexp (%) 90.4± 4.4 84.6± 5.9 78.7± 5.0

state |−⟩ |ϕ−⟩ |ϕ+⟩
Fexp (%) 79.3± 4.9 93.2± 5.7 88.2± 5.4

Table 3.1: Fidelities of the six states ρexp with respect to the ideal state in the quantum teleportation
process.

and a QWP prepares the photon in a state |ϕ⟩ = a |H⟩ + b |V ⟩ (|a|2 + |b|2 = 1). For teleporting
the state |ϕ⟩ to the photon in R, we perform a Bell-state measurement (BSM) between L and L′, where
the Bell state |ΦLL′⟩ = (|LH,L′H⟩ + |LV,L′V ⟩)/

√
2 is measured by using a PBS and two HWPs at

22.5◦ [232, 233]. Correspondingly, the operation in R rotating its photon state to the desired one is
σx = |H⟩ ⟨V | + |V ⟩ ⟨H|, implemented by a 45◦ HWP. The signals from two SPDs are processed by a
CD to coincide with the signals from R and triggers. Teleportation is achieved exploiting the distributed
Bell state |Ψ+

LR⟩, generated by I = 1 of the original photons. We set α = β = π/4 to maximize the
generation probability (PLR = 50%). The six eigenvectors of σi (i = x, y, z) are the photon states in
L′ to be teleported: |ϕideal⟩ ∈ {|H⟩, |V ⟩, |±⟩ = 1√

2
(|H⟩ ± |V ⟩), |ϕ±⟩ = 1√

2
(|H⟩ ± i|V ⟩). Performing

quantum tomography of single-qubit state in R, the experimental teleported states ρexp are reconstructed
based on four-photon coincidence. Fidelity Fexp = ⟨ϕideal|ρexp|ϕideal⟩ compared to the ideal state ρideal
is the figure of merit of teleportation efficiency. The measured fidelities, without background subtrac-
tion, are reported in Table 3.2, being higher than the classical fidelity limit of 2/3 [234]. The quantum
process matrix χ of teleportation is reconstructed by comparing ρideal and ρexp (see section D in SM),
giving fidelity Fχ = (73.6±7.7)%. All error bars are estimated as standard deviation from the statistical
variation of the photon counts, assumed to follow a Poisson distribution.

3.4 Discussion

We have designed a neat all-optical experiment generating nonlocal polarization entanglement by only
adjusting the degree of remote spatial indistinguishability I of two initially-uncorrelated independent
photons in two separated regions of measurement. This is basically different from swapping or heralded
sources strategies, requiring initially entangled pairs. The value of I is tuned by controlling the spatial
distribution of each photon wave packet towards the two operational regions. The photon paths only meet
at the detection level. The setup implements the sLOCC [16] necessary to directly assess the relation
between I and the amount of produced entanglement, verified by both state tomography and CHSH-Bell
test. We remark that the sLOCC framework cannot produce any entanglement if the photons remain
separated in the two regions, differently from optical interferometry with spread detection [235]. Notice
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that if the setup was run by two initially uncorrelated nonidentical particles, no entanglement would
be obtained by measurements distinguishing particles from one another (LOCC). We have performed
teleportation between the two operational regions, with fidelities (78-93%) above the classical threshold,
by just tuning spatial indistinguishability of photons, with the advantage of not requiring inefficient or
demanding entanglement source devices.

Our experiment fulfills an elementary entangling gate by bringing (uncorrelated independent) pho-
tons with opposite polarizations to the same local regions (nodes) and accessing the (nonlocal) entan-
glement by sLOCC measurements (see also a recent independent experiment [24]). So, entanglement
activated by spatial indistinguishability is the product of both state structure and local measurements.
Multiphoton entanglement can be produced by scalability of this elementary gate. The results open the
way to viable indistinguishability-enhanced quantum information processing and quantum networking.

Supplementary Material

A. Degree of remote spatial indistinguishability

In this section we summarize the theory which brings to the definition of the entropic measure of spatial
indistinguishability of particles by sLOCC in two separated operational regions [17], given in Eq. (1) of
the main text.

Consider the state of two identical two-level subsystems (particles) |Ψ(2)⟩ = |χ1, χ2⟩ = |ψ1σ1, ψ2σ2⟩,
where ψi (i = 1, 2) is the spatial degree of freedom and σi is the pseudospin with basis {↑, ↓}). In gen-
eral, |ψ1⟩ and |ψ2⟩ can be defined in the same space regions so that they spatially overlap. We are
interested in defining the degree of remote spatial indistinguishability I of two identical particles be-
tween the local operational regions L and R, where both particles have nonzero probability to be found.
Such a definition has to quantify how much the measurement process of finding one particle in each lo-
cation can distinguish the particles from one another. Spatially localized operations (sLO) are thus made
by single-particle local counting ignoring the pseudospins, represented by the projector

Π
(2)
LR =

∑
τ1,τ2=↑,↓

|Lτ1,Rτ2⟩ ⟨Lτ1,Rτ2| , (3.4)

which projects the original state onto the operational subspace spanned by the computational basis
BLR = {|L ↑, R ↑⟩,|L ↑,R ↓⟩ , |L ↓,R ↑⟩ , |L ↓,R ↓⟩}. We point out that |L⟩ and |R⟩ represent, re-
spectively, one particle in L and one particle in R. Also, classical communication (CC) is required to
the detection level to know that each of the two separated regions counted one particle. Indicating with
PXψi

= |⟨X|ψi⟩|2 (X = L,R and i = 1, 2) the probability of counting in |X⟩ the particle coming from
|ψi⟩, the degree of the (remote) spatial indistinguishability of qubits is [17]

I =−
PLψ1PRψ2

Z
log2

PLψ1PRψ2

Z
−
PLψ2PRψ1

Z
log2

PLψ2PRψ1

Z
, (3.5)

where Z = PLψ1PRψ2+PLψ2PRψ1 represent the probability that the two possible events (joint probabili-
ties) occur. In general, 0 ≤ I ≤ 1. If the spatial distributions |ψ1⟩, |ψ2⟩ of the particles are separated, we
have maximal information for distinguishing the particles and I = 0. Instead, I = 1 when PLψ1 = PLψ2

and PRψ2 = PRψ1 : in this case the two spatial distributions have the same probability amplitudes (in
modulus), meaning that there is no information about the origin (which way) of the two particles found
one in L and one in R.

For our theoretical and experimental setup, where |ψ1⟩ ≡ |ψD⟩ = l |ψL⟩ + r |ψR⟩ and |ψ2⟩ ≡
|ψ′

D⟩ = l′ |ψ′
L⟩ + r′ |ψ′

R⟩, we have PLψ1 ≡ PLψD
= |l|2, PRψ1 ≡ PRψD

= |r|2, PLψ2 ≡ PLψ′
D
= |l′|2,

PRψ2 ≡ PRψ′
D
= |r′|2. Therefore, the expression of Eq. (4.14) above for I becomes that of Eq. (1) in

the main text. Notice that this entropic measure of spatial indistinguishability at a distance is completely
independent of any other degree of freedom of the particles apart their spatial location.
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Figure 3.5: Sketch of the experimental setup. (A) Two heralded single photons independently gener-
ated from two BBO crystals with polarization |H⟩ (↑) and |V ⟩ (↓), respectively, are collected separately
by two single-mode fibers via fiber couplers (FCs). The control of the spatial wave function of each pho-
ton is realized by the sequence of a half-wave plate (HWP1, HWP2), a polarization beam splitter (PBS)
and a final HWP at 45◦ placed before L, which leaves the initial polarization of each photon unchanged.
Wave packet distributions ψD and ψ′

D, in which the photons share the same wavelength, are marked as
the blue and red colors, respectively, to differentiate. In each region L and R one beam displacer (BD),
made by a calcite crystal which separates the input beam into two with orthogonal polarization, is here
used to make the photon paths meet at the detection level. The inset displays the unit of polarization anal-
ysis detection (PAD) at the final detection placed in L and R, consisting of a quarter-wave plate (QWP),
a HWP and a PBS before the single-photon detector (SPD). A coincidence device (CD) (not shown in
(A)) deals with the electrical signals of the two SPDs and the trigger signals, and outputs the coincidence
counting. (B) Experimental illustration of quantum teleportation. The photons in L are sent to perform
the Bell state measurement (BSM) and meanwhile the PAD here which is marked by the dashed frame
is removed. One of the two photons treated as the trigger signals in (B) is prepared as the state to be
teleported. BSM is implemented with a PBS followed by two HWPs at 22.5◦ and PBSs. The signals
from two SPDs are processed by a CD to coincide with the signals from R and trigger.

B. Spatial distribution of particle wave packets

Consider the prepared state |Ψ⟩ = |ψD ↑, ψ′
D ↓⟩, with

|ψD⟩ = l |ψL⟩+ r |ψR⟩ , |ψ′
D⟩ = l′ |ψ′

L⟩+ r′ |ψ′
R⟩ (3.6)

where |l|2 + |r|2 = 1, |l′|2 + |r′|2 = 1, and |ψX⟩, |ψ′
X⟩ (X = L, R) are the two particle wave packets

located in the operational region X. With the self-evident assumption that |ψD⟩ and |ψ′
D⟩ cannot locate

in only one measurement region simultaneously, that is l = l′ = 1 or l = l′ = 0 do not occur, we have:

• Zero spatial indistinguishability. This case occurs when the two wave packet distributions remain
spatially separated, that is when l = r′ = 1 (0), giving |ψD⟩ = |ψL⟩ (|ψR⟩) and |ψ′

D⟩ = |ψ′
R⟩

(|ψ′
L⟩). Here the degree of remote spatial indistinguishability of Eq. (4.14) is clearly zero, I = 0,

and the distributed state after sLOCC, coming from Eq. (2) of the main text, is the product state
|ΨLR⟩ = |L ↑,R ↓⟩ (|L ↓,R ↑⟩).

• Partial spatial indistinguishability. For 0 < l, l′ < 1, the spatial distributions |ψD⟩ and |ψ′
D⟩ are

linear combinations of the particle wave packets being simultaneously in L and R with different
weights. This leads to an intermediate value of the degree of spatial indistinguishability, 0 < I <
1, as depicted in Figure 1B of the main text. The distributed state |ΨLR⟩ obtained by sLOCC is
that of Eq. (2) of the main text.
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Figure 3.6: (A) Experimental tomography of the initial state |ψH,ψ′V ⟩ ≡ |ψH⟩ ⊗ |ψ′V ⟩ of the two
photons from two BBO crystals with a high fidelity (95.2 ± 0.7)%. Two subgraphs show the real and
imaginary parts of the density matrix, respectively. (B) The intensity distribution of photon with TEM
(transversal electric magnetic) 00 mode generated from the single-mode fiber. (C) The HOM dip of the
two-photon interference. The counts are obtained in 1200 seconds with the pumping power 200 mW.
The red dots are the experimental results. And the red curve presents the fitting Gaussian function Gx.

• Maximum spatial indistinguishability. This case occurs when the two particle wave packets |ψD⟩
and |ψ′

D⟩ are equally distributed in the two operational regions, that is with equal moduli of the
probability amplitudes to be located in the same regions. This means that |l| = |l′| (and thus
|r| = |r′|). In this case the degree of remote spatial indistinguishability is maximum, I = 1
and the distributed state of Eq. (2) of the main text is the maximally entangled state |Ψ±

LR⟩ =
(|L ↑,R ↓⟩ ± |L ↑,R ↓⟩)/

√
2. A special case is retrieved when |l = |l′| = |r| = |r′| = 1/

√
2, for

which this state |Ψ±
LR⟩ is generated with maximum probability (PLR = 50%) from |Ψprep⟩.

Summarizing, by controlling the spatial distribution of the wave packets |ψD⟩ and |ψ′
D⟩, we can

design different configurations with various degrees of remote spatial indistinguishability, continuously
ranging from I = 0 to I = 1.

C. Experimental preparation

For the sake of convenience, we report here again in Fig. 3.5 the sketch of the experimental setup together
with its detailed description in the caption.

Two heralded single photons with the wavelength 800nm from pumping two BBO crystals are emit-
ted independently in the product state |Ψ⟩ = |ψH,ψ′V ⟩ ≡ |ψH⟩ ⊗ |ψ′V ⟩, where H ≡↑ and V ≡↓.
The corresponding experimental reconstructed matrices of this initial state are presented in Fig. 3.6A
with a very high fidelity (95.2 ± 0.7)%. It is then verified that the two photons are initially completely
uncorrelated in polarization. Each photon is then collected in a single-mode fiber via fiber couplers. In
this experiment, the single-mode fiber generates an intensity shape (spatial mode) of each photon with
TEM (transversal electric magnetic) 00 mode, as shown in Fig 3.6B.

Before carrying on the main experiment for the continuous tuning of the degree of remote spatial
indistinguishability of the two photons, we perform the usual two-photon interference and employ the
visibility of Hong-Ou-Mandel (HOM) dip [130] to character the identity of the photons. Fig. 3.7 shows
the setup for the HOM measurement. Fitting HOM dip data with a Gaussian function G(x) = a (1 −
d e−b (x−c)

2
), the parameters a, b, c, d are determined. The visibility of HOM dip is defined as V =

(Gmax − Gmin)/Gmax = d and obtained with a value of about 83.8%, which reveals the identity of
the employed operational photons. Due to the reduced visibility of the setup, a model dealing with this
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Figure 3.7: Experimental illustration of HOM measurement. The first polarization beam splitter (PBS)
combines two photons which are in the polarization |H⟩ (spin up) and |V ⟩ (spin down), respectively. One
photon is placed on a movable stage to scan the position. The photons are detected by two single photon
detectors (SPD) after a half-wave plate (HWP) at 22.5◦ and a second PBS. The coincidence device (CD)
analyzes the signals from two SPDs and outputs the coincidence counting.

reduction is introduced to characterise the performance of the setup. Here, we can write the prepared
state as ρ = xρLR + (1 − x)ρnoise, where ρLR = |ΨLR⟩ ⟨ΨLR| (i.e., Eq. (3)), ρnoise = (|HV ⟩ ⟨HV | +
|V H⟩ ⟨V H|)/2. In this sense, we can estimate the prediction of experimental setup.

A series of target states |Ψprep⟩ = |ψDH,ψ
′
DV ⟩ are then prepared by controlling the spatial distribu-

tion |ψD⟩ and |ψ′
D⟩ of each photon wave packet towards the two separated operational regions L and R

(see Fig. 3.5A). These distributions are determined by adjusting the angles of HWP1 and HWP2. Notice
that the operation of a HWP on the photon polarization with an angle θ with respect to the optical axis
can be written as

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
. As shown in Fig. 3.5A, by setting HWP1 at (π/2− α)/2, the photon

in |ψ⟩ with polarization |H⟩ changes to sinα |H⟩+cosα |V ⟩. Since the PBS transmits |H⟩ polarization
and reflects |V ⟩ polarization, we have |V ⟩ before L which should be instead |H⟩ (the photon polarization
has to remain invariant along the setup). Thus, before the detection device in L, a HWP at 45◦ is used
to flip |V ⟩ to |H⟩. As a result, the initial single-photon state |ψH⟩ is spatially distributed in a controlled
manner by the linear combination |ψDH⟩ = cosα|ψLH⟩ + sinα|ψRH⟩. Following the same method
with HWP2 at −β/2, it is immediate to see that the other initial single-photon state |ψ′V ⟩ is spatially
distributed by the linear superposition |ψ′

DV ⟩ = sinβ|ψ′
LV ⟩ + cosβ|ψ′

RV ⟩. Since the spatial and po-
larization degrees of freedom are independent, the setup eventually distributes each photon wave packet
towards the two operational regions

|ψ⟩ → |ψD⟩ = cosα|ψL⟩+ sinα|ψR⟩,
|ψ′⟩ → |ψ′

D⟩ = sinβ|ψ′
L⟩+ cosβ|ψ′

R⟩. (3.7)

These spatial states for the photons are the same of those of Eq (3.6), predicted by the theoretical scheme,
with the associations l = cosα, r = sinα, l′ = sinβ and r′ = cosβ.

D. More experimental results

As mentioned in the main text and in the section above, via changing the values of α and β of HWP1
and HWP2, respectively, a series of |Ψprep⟩ with different spatial distributions of the wave packets, and
thus of the degree of (remote) spatial indistinguishability I, are prepared by the setup. The angles α and
β are both fixed at the beginning of each experiment and the corresponding values are obtained from the
rotated devices in which the HWPs are mounted. To describe the experimental results more accurately,
the angles’ values are adjusted to increase the fidelity of the experimental state compared with the desired
state. In fact, as |Ψprep⟩ owns two unknown parameters, namely α and β, there will be several groups of
solutions of α and β. Thus, it is necessary to fix one angle first. Here, α is directly read from the mounted
device and the value is fixed at α = π/4 in the experiment. While the other angle β is modulated in
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Figure 3.8: Results for spatially separated wave packet distributions. (A) The two panels correspond to
the real and imaginary part of |ΨLR⟩, respectively, for α = β = 0. The fidelity is (95.2 ± 0.7)%. (B)
The two panels correspond to the real and imaginary part of |ΨLR⟩, respectively, for α = β = π/2. The
fidelity is (95.1± 0.5)%.

Figure 3.9: Results for wave packet distributions sharing only one operational region. (A) Real and
imaginary part of |ΨLR⟩ with α = π/4 and β = π/2, with the fidelity (95.2 ± 0.9)%. (B) Real and
imaginary part of |ΨLR⟩ with α = π/4 and β = 0 with a fidelity (95.1± 0.8)%.

order to increase the fidelity and the corresponding value is estimated around the display of its mounted
device.

When α = β = 0 (π/2), the two spatial distributions |ψD⟩ and |ψ′
D⟩ of Eq. (3.7) are separated, each

one going to only one operational region. The two photons can be thus distinguished by their spatial
locations, I = 0 and the distributed state |ΨLR⟩ obtained by sLOCC is uncorrelated in theory (see
Sec. B. above). The experimental results are presented in Fig. 3.8 and strongly confirm the theoretical
prediction.

The condition of zero entanglement is also retrieved when the two spatial distributions of the wave
packets share only one of the two operational regions. In this case, one of α, β is 0 (π/2). Assuming
the parameter α takes one of these values, one has sinα cosα = 0 and thus sinβ cosβ ̸= 0. Fixing
α = π/4, this configuration is retrieved when β is set at 0 or π/2. The corresponding results are shown
in Fig. 3.9 and confirm the theoretical predictions.

In the teleportation protocol, we first perform the tomography of the effectively prepared ρprep in L′.
Compared to |ϕideal⟩, the fidelity F = ⟨ϕideal|ρprep|ϕideal⟩ of ρprep in our experiment is ≈ 99.8%. To
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Figure 3.10: The quantum process matrix of quantum teleportation. Experimental reconstruction of
quantum process matrix χ for the teleportation protocol. (A, B) show the real and imaginary parts of χ,
respectively. Here, I is identity matrix σ1 and X , Y , Z correspond to σx, σy, σz , respectively.

Figure 3.11: The HOM dip of the two-photon interference. The counts are obtained in 5 seconds with
the pumping power 30 mW. The blue dots are the experimental results. And the red curve presents the
fitting Gaussian function Gx.

characterize quantum teleportation of the photon state from L’ to R, we make the tomographic analysis
of the process and reconstruct its matrix χ [236], which is shown in Fig. 3.10. Here, χ is defined by
ρexp = Σ4

i, j=1 χij σi · ρideal · σj where σ1 = I and σ2,3,4 = σx,y,z , which in the ideal case gives
χ11 = 1 with all the other elements equal to 0 [15]. By assuming χ with several unknown parameters
and comparing the experimental results of ρprep and ρexp, we can calculate the elements of χ. The
experimental results are obtained with a fidelity Fχ = (73.6± 7.7)%.

D..1 Results using two photons from one BBO crystal

To obtain the experimental results close to theory, we use two photons from one BBO crystal instead of
two independent sources to redo the experiment. The corresponding results are followed.

First, we re-investigate the identity of these two photons. The visibility of HOM dip (shown in
Fig. 3.11) is obtained with a value of about 97.7%. Experimental tomography of the initial state |ψH,ψ′V ⟩ ≡
|ψH⟩ ⊗ |ψ′V ⟩ of the two photons from BBO crystal with a high fidelity (99.9± 0.1)%.

Fixing α = π/4, we study the distribution of |ψ′
D⟩ in the operational regions L and R. Here, we

choose the probability that the wave packet |ψ′
D⟩ is located in L to character the distribution, the theoret-

ical prediction being sin2 β. The corresponding results are shown in Fig. 3.12 and significantly confirm
the theoretical curve.

We redo the experiment quantifying entanglement of state |ΨLR⟩ in the main text, i.e., the concur-
rence C. The Bell function S is employed for the Clauser-Horne-Shimony-Holt (CHSH) test that for the
state is S = 2

√
1 + C2 = 2

√
1 + sin2 2β. The experimental results of C, obtained after state recon-

struction, and S versus both β and I are shown in Fig. 3.13(A)-(D). Most of the generated states exhibit
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Figure 3.12: Experimental results of probability of |ψ′
D⟩ in L. The black line represents theoretical

prediction while the red points are the experimental results.

Figure 3.13: ConcurrenceC (A, B) and Bell function S in the CHSH test (C, D), for α = π/4 (parameter
fixing |ψD), versus β (parameter adjusting |ψ′

D) and I (remote spatial indistinguishability of Eq.(1)).
Blue lines in (A), (B), (D) and black curve in (C) are theoretical predictions. Pink dots in (A) and red
points in (C) (with error bars) are experimental results. Red and green dots in (B) (pink and green dots
in (D)) denote experimental data for, respectively, β ∈ [0, π/2] and β ∈ (π/2, π].

S > 2, demonstrating nonlocal entanglement. For β = π/4 (I = 1), |ΨLR⟩ in Eq.(3) becomes the Bell
state |Ψ+

LR⟩. In the experiment, in correspondence of β = 0.776 ± 0.006 we achieve S = 2.79 ± 0.03,
violating the Bell inequality by 26 standard deviations. The generated state, whose reconstructed density
matrix is shown in Fig. 3.14(A), holds a fidelity of (98.6± 0.2)% compared to |Ψ+

LR⟩. Moreover, when
β = 3π/4, that is when |ψ′

D⟩ = (|ψ′
L⟩ − |ψ′

R⟩)/
√
2 and |ψD⟩ are orthogonal yet completely spatially

indistinguishable (I = 1), the Bell state |Ψ−
LR⟩ is expected. In the experiment, this state is created with

fidelity (98.0± 0.8)% for β = 2.352± 0.004 (see Fig. 3.14(B)).
Furthermore, the teleportation is also redone. The second BBO crystal is used to generate a heralded

single photon. One photon is used as the trigger signal while the other photon is sent to the side of L′ as
the target to be teleported. The eigenvectors of σi (i = x, y, z) are chosen as the photon states |ϕ⟩ in L′ to
be teleported, namely |ϕideal⟩ ∈ {|H⟩, |V ⟩, |±⟩ = (|H⟩ ± |V ⟩)/

√
2, |ϕ±⟩ = (|H⟩ ± i|V ⟩)/

√
2}. First,

we perform the tomography of the effectively prepared ρprep in L′. Compared to |ϕideal⟩, the fidelity
F = ⟨ϕideal|ρprep|ϕideal⟩ of ρprep in our experiment is about 99.8%. With tomographic measurements
performed in R, the experimental teleported states ρexp can be reconstructed based on the four-photon
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Figure 3.14: Real and imaginary part of the reconstructed density matrix for α = π/4 and: (A) β =
0.776± 0.006 (expected state |Ψ+

LR⟩); (B) β = 2.352± 0.004 (expected state |Ψ−
LR⟩).

cccc
state |H⟩ |V ⟩ |+⟩
Fexp (%) 90.0± 2.0 84.7± 1.9 83.1± 2.0

state |−⟩ |ϕ−⟩ |ϕ+⟩
Fexp (%) 82.2± 1.9 84.3± 1.7 86.3± 2.2

Table 3.2: Fidelities of the six states ρexp with respect to the initially prepared state in the quantum
teleportation process.

coincidence. The fidelity Fexp compared to the initially prepared state ρprep is then introduced as figure
of merit of teleportation efficiency. For the six initial states above, without background subtraction, the
measured fidelities are reported in Table 3.2 which are clearly higher than the classical fidelity limit of
2/3.

Figure 3.15: Experimental reconstruction of the teleported states |ϕexp⟩. (A), (B), (C), (D), (E) and (F)
correspond to the density matrices of |H⟩, |V ⟩, |+⟩, |−⟩, |ϕ−⟩, |ϕ+⟩, respectively. In each panel, the
upper (lower) subgraph represents the real (imaginary) part of the density matrix.
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For the six prepared states of the additional qubit to be teleported, namely |H⟩, |V ⟩, |±⟩ , |ϕ±⟩ (see
main text for their expressions), the corresponding teleported state ρexp is reconstructed via performing
tomographic measurements. The results are shown in Fig. 3.15. Characterizing teleportation by the usual
process matrix χ, the experimental results are obtained with a fidelity Fχ = (79.4± 1.6)%.
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Chapter 4
Dynamics of spatially indistinguishable
particles and quantum entanglement
protections

Abstract

A complete treatment of open quantum systems made of identical particles has remained elusive due
to the intrinsic problem of these particles being individually unaddressable. Filling this gap is essential
for the full characterization of quantum networks which are typically built by identical subsystems. We
provide a general framework which allows one to obtain the dynamics of N noninteracting spatially in-
distinguishable particles locally coupled to separated environments. This framework is universal, being
valid for both bosons and fermions and for any type of system-environment interaction. It is then applied
to study the dynamics of two identical qubits under paradigmatic Markovian noises, such as phase damp-
ing, depolarizing and amplitude damping. We find that spatial indistinguishability of identical qubits is
a controllable inherent property of the system which protects exploitable quantum entanglement against
detrimental noise. This Chapter is related to Publication 3 in the List of Publications.

4.1 Introduction

Dealing with identical particles, as building blocks of quantum networks, has been subject of debate
because of the difficulty in characterizing their physical quantum correlations [237, 238, 239, 240, 5,
223, 241, 13, 191, 224, 242, 192, 14, 221, 193, 2, 3, 194, 243, 244, 10]. In quantum mechanics, particle
identity refers to particles of the same species having the same intrinsic properties (such as mass, charge,
spin) [6], while indistinguishability can be given a continuous degree related to a given set of quantum
measurements [17]. In contrast, nonidentical (distinguishable) particles are individually addressable bod-
ies of a composite system, where individual operations on a given particle can be performed by means
of local operations and classical communication [33, 145]. As a direct consequence of the addressability
notion (particle-locality), the dynamical treatment of a composite quantum system of distinguishable par-
ticles is well understood [15, 40, 104]. This is not the case when the system is made of indistinguishable
particles, for which the concept of addressability is lost.

A particle-based no-label approach has been introduced to characterize states composed of identical
particles, where the many-body system state is considered as a whole state vector of single-particle states
[2, 3]. Employing this approach together with the operational framework of spatially localized operations
and classical communication (sLOCC) [16], one can directly access exploitable entanglement between
internal degrees of freedom of indistinguishable particles having arbitrary spatial configurations of wave
functions. Experimental evidence of spatial indistinguishability as a direct resource for remote entangle-
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ment has been recently reported [23, 24]. The no-label approach has been compared with other meth-
ods in both first and second quantization [245, 194, 227] and has been applied to analyze the Hanbury
Brown-Twiss effect with wave packets [229] and the quantum entanglement in one-dimensional systems
of anyons [98]. Indistinguishable particles have revealed to be useful as a resource for entanglement
activation and quantum-enhanced information processing [23, 24, 246, 188, 94, 189, 34, 247, 248, 249].
Thanks to the sLOCC framework within the no-label approach, spatial indistinguishability has been
proven to be quantifiable by an entropic-informational measure [17] which is directly connected to the
amount of generated entanglement [23]. A remaining open question is how indistinguishable parti-
cles, under general conditions of spatial overlap, interact with local environments and, as a result, how
their system state dynamically evolves. In fact, some reported studies about the effect of environmental
noise on identical particles have been so far limited to particles occupying specific modes of a system
[250, 251, 252], due to the lack of a method to treat a continuous degree of spatial indistinguishability.
The no-label approach plus sLOCC framework appear to be the ideal tools to fill this gap in the context
of open quantum systems.

Any realistic quantum system inevitably interacts with the surrounding environment, leading to the
decoherence process [40, 253]. Quantum resources, like coherence and entanglement, are more fragile
than the classical ones since even a small perturbation would drive the whole system towards deco-
herence phenomena [254, 255]. Also, the decay rate increases as the number of degrees of freedom
of the quantum system increases. As a consequence of local Markovian environments, for example,
the entanglement between two separated (distinguishable) qubits completely disappears at a finite time
[256, 257, 258, 259]. This is why the preservation of quantum resources is an important challenge in
quantum information and computation science. It is known that quantum entanglement can revive as a
result of local non-Markovian (quantum or classical) environments [104, 105, 106, 167, 260, 261, 154,
79, 80, 262, 263, 264]. However, the degree of entanglement decreases and eventually vanishes after
a certain critical time. Other possible protection strategies have been purposed, such as quantum Zeno
effect [150], structured environments [151, 106, 152], distillation protocols [153], decoherence-free sub-
spaces [107, 108], dynamical decoupling and control techniques [109, 110, 111, 154, 155, 156, 157],
quantum error corrections [112, 113, 114] and topological properties [115, 116]. Some of these tech-
niques rely on harnessing many system parameters, whose number increases as the number of particles
increases. Also, they require near-perfect suppression of experimental imperfections [158]. Finding in-
trinsic properties of the system which can naturally shield entanglement from noise during the dynamics
is highly desirable.

In the present study, we accomplish a twofold purpose: quantum dynamics of indistinguishable sub-
systems (particles) and quantumness protection. Identical particles are here meant as quantum subsys-
tems of the same type (e.g., artificial atoms or qubits) of a larger composite system. We extend previous
results [17] to the general case when spatial indistinguishability of particles is present during the open
system dynamics. In fact, we first provide a dynamical framework for noninteracting identical particles
with an arbitrary amount of spatial overlap which are locally coupled to separated environmental noise
sources. Our derivation, valid for both bosons and fermions, sheds light on the microscopic processes
of N spatially indistinguishable particles that interact with M independent environments. Afterward,
we apply the procedure to study the entanglement dynamics of two identical (bosonic and fermionic)
qubits under general conditions of spatial overlap in Markovian environments at zero temperature under
the effect of the phase damping process, depolarizing process and amplitude damping process. We show
that spatial indistinguishability plays an important role in preserving entanglement against detrimental
noise.

The paper is organized as follows. In Sec. 4.2, we supply the general procedure to deal with the
dynamics of noninteracting spatially overlapping identical particles coupled to separated environments.
The entanglement dynamics is reported in Sec. 4.3 for the case of phase damping, in Sec. 4.4 for the
depolarizing noise, in Sec. 4.5 for the amplitude damping process. Finally, in Sec. 4.6 we summarize our
results.
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4.2 General framework

In this section, we introduce the general framework to treat the dynamics of identical particles under
arbitrary conditions of spatial overlap in the case of localized separated environments. We recall that
this is a typical situation in composite physical systems where the noise sources are localized in space.
While nonidentical (distinguishable) particles individually interact with their own environment [167,
256], when particles are identical and spatially overlapping, they can no longer be individually addressed
by the local environment, so a dedicated treatment is needed.

In the following we provide this treatment by adopting the no-label approach to identical particles [2,
3] together with the sLOCC measurements [16], which are performed to access the indistinguishability-
enabled quantumness contained in the evolved distributed resource state of the system.

4.2.1 System-environment Hamiltonian

A global state composed ofN identical particles, taken as the set of one-particle states |Ψ⟩ := |ϕ1, ϕ2, . . . , ϕN ⟩
[2], must be considered as an holistic indivisible entity. In this notation, as usual, each ϕi contains all the
degrees of freedom characterizing the particle. According to the standard definition [6], a single-particle
operation Â linearly acts on aN -particle state one at a time, namely: Â |Ψ⟩ :=

∑
i |ϕ1, . . . , Âϕi, . . . , ϕN ⟩.

On the other hand, a single-particle quantum operation can be physically restricted to act locally on a
given region of space where the identical particles of the composite system can be found with a given
probability. Therefore, a suitable definition of a localized single-particle operation acting on a global
state of identical particles with arbitrary spatial wave functions is needed to encompass the locality of
the quantum operator.

Definition. A spatially localized single-particle operator ŜX , performed on a region of space X ,
acts on a N -particle state of identical particles |Ψ⟩ = |ϕ1, ϕ2, . . . , ϕN ⟩ as follows

ŜX |Ψ⟩ :=
∑
i

| ⟨X|ϕi⟩| |ϕ1, . . . , Ŝϕi, . . . , ϕN ⟩ , (4.1)

where | ⟨X|ϕk⟩| is the absolute value of the probability amplitude of finding a particle in the region X ,
which weights the strength of the operation as physically desired.

The operator Ŝ is any operator on internal degrees of freedom of single particle. Notice that, if the
regionX represents all the space where the particles of the system can be found, the operator ŜX reduces
to the usual single-particle operator Â above, as expected. Also, the above operator ŜX is similar to the
so-called weighted spin operator [265] which accounts for the different probing strengths of the particles
of a spin system. The definition of Eq. (4.1) shall be a central ingredient to describe the time evolution
of spatially overlapping identical particles that interact with localized environments.

For the sake of simplicity and without loss of generality, we limit our analysis to two identical two-
level (spin 1

2 -like) particles (qubits) coupled to two separated bosonic environments EL and ER, as
depicted in Fig. 4.1, localized in separated sites L and R, respectively. The elementary two-particle
system state |Ψ⟩S = |ϕ1, ϕ2⟩ is characterized by the set of single-particle states {|ϕi⟩ = |ψisi⟩ , i =
1, 2}, where ψi is the spatial wave function with associated pseudospin state si of basis {↑, ↓}. Since the
system-environment interaction occurs locally in two distant space regions, any environmental action on
the internal degrees of freedom of the particles has to take into account the locality of the interaction. So,
indicating with gkL and gkR the coupling constants between the system and the environmental mode k
in regions L and R, respectively, the general system-environment interaction Hamiltonian can be written
as

HI :=
∑
k

(
gkLÊkLσ̂L + gkRÊkRσ̂R

)
+ h.c., (4.2)

where ÊkX (X = {L,R}) is some environmental operator in terms of annihilation or creation operators
of local mode k, σ̂X is a generic localized pseudospin single-particle operator and h.c. indicates Her-
mitian conjugation. The explicit form of σ̂X clearly depends on the type of local system-environment
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localized single-particle 
counting at time t 

Figure 4.1: Sketch of the open quantum system. Two noninteracting identical spin 1
2 -like subsystems

(qubits), with spatial wave functions ψ1 and ψ2, locally interact with separated environments EL and ER
placed in the spatial regions L and R, respectively. At time t, single-particle local counting is performed
(sLOCC measurement).

interaction and its action on the system state follows the definition of Eq. (4.1). The explicit types of
environmental and pseudospin operators are assigned by the given physical process, as we shall see in
the applications of the following sections. To achieve a general treatment of the system dynamics, it is
useful to see how the interaction Hamiltonian above acts on a global system-environment elementary
state vector |Ψ⟩SE = |ϕ1, ϕ2⟩ ⊗ |ξL, ξR⟩, where |ξX⟩ represents a global pure state of the modes of the
local environment EX . By using Eqs. (4.1) and (4.2), we have

HI |Ψ⟩SE =
∑
k

gkL |ÊkLξL, ξR⟩ ⊗ | ⟨L|ψ1⟩| |ψ1σ̂Ls1, ψ2s2⟩

+
∑
k

gkL |ÊkLξL, ξR⟩ ⊗ | ⟨L|ψ2⟩| |ψ1s1, ψ2σ̂Ls2⟩

+
∑
k

gkR |ξL, ÊkRξR⟩ ⊗ | ⟨R|ψ1⟩| |ψ1σ̂Rs1, ψ2s2⟩

+
∑
k

gkR |ξL, ÊkRξR⟩ ⊗ | ⟨R|ψ2⟩| |ψ1s1, ψ2σ̂Rs2⟩

+ h.c.

(4.3)

From this equation, it is immediate to see that the interaction Hamiltonian of Eq. (4.2) can be recast as a
sum of two terms

HI = H
(1)
I +H

(2)
I , (4.4)

with
H

(j)
I =

∑
k

∑
X=L,R

g
(j)
kXÊkX σ̂

(j)
X + h.c., (j = 1, 2) (4.5)

where σ̂(j), and thus H(j)
I , is defined as applied only on the particle pseudospin at the j-th slot of the

system state vector and g(j)kX = gkX | ⟨X|ψj⟩| (X = L,R) is the effective coupling constant between the
particle with spatial wave function ψj and the mode k of the environment EX . The latter shows that the
localized single-particle operator defined in Eq. (4.1) naturally leads to effective coupling constants g(j)kX
directly dependent on the probability amplitude of finding the particle in the regions L and R where the
environment (noise source) is placed, as physically expected. Hereafter, the notation Ô(j) shall indicate
a single-particle operator which only acts on the particle state at the j-th position of the system state
vector.
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Having the above Hamiltonian model of the system-environment interaction, the global (unitary)
time evolution operator is

Û = e
− i

h̄

(
H

(1)
I +H

(2)
I

)
t
. (4.6)

Looking at Eq. (4.4), one can see an analogy with the usual total interaction Hamiltonian Htot =
HA +HB of two nonidentical (distinguishable) particles A and B. However, while HA and HB always
commute due to the individual addressability of the particles (particle-locality), this is not in general the
case for H(1)

I and H(2)
I . Indeed, two important aspects need to be pointed out when one deals with an

open quantum system of identical particles and separated environments:

• A unitary time evolution cannot generally be factorized, that is Û ̸= e−
i
h̄
H

(1)
I te−

i
h̄
H

(2)
I t because of

the nonzero commutative property of interaction Hamiltonians, [H(i)
I , H

(j)
I ] ̸= 0 for i ̸= j. This

property describes the process that particles can interact with the same environment and, as a result,
collective effects of the environment show up. Hamiltonians H(1)

I and H(2)
I commute only when

the spatial wave functions of the identical particles are spatially separated in correspondence of
each local environment, e.g. |ψ1⟩ = |L⟩, |ψ2⟩ = |R⟩ (or vice versa), as easily seen from Eq. (4.5).
In this case, in fact, the identical particles are distinguishable by their position and individually
interact with their own environment.

• On the other hand, one can write the interaction Hamiltonian of Eq. (4.4) as a sum of two terms
corresponding to the two interaction spatial regions HI = HIL + HIR, where each HIX =

H
(1)
IX + H

(2)
IX (see Eqs. (4.3) and (4.4)). Since each environmental operator ÊX is localized and

independent, one has [HIL, HIR] = 0 and the global time evolution of Eq. (4.6) can be written as
product of two (localized) operations Û = e−

i
h̄
HILte−

i
h̄
HIRt = ÛL⊗ ÛR. However, each operator

HIX (and thus ÛX ) does not address in general an individual particle of the system state vector
due to the spatial overlap (indistinguishability) of the identical particles. Again, this happens only
if the identical particles are separated and placed each in a given local environment.

In the following, on the basis of the above points, we shall give the techniques to determine the dy-
namics of the reduced density matrix of the two-particle system. These techniques are easily extendable
to many-particle system and multiple environments, as we shall discuss later (see subsection 4.2.5).

4.2.2 Kraus representation for the reduced density matrix

Assuming that system and environment are initially uncorrelated ρ(0) = ρS(0) ⊗ ρE(0), a typical con-
dition fulfilled within the Born approximation [15, 40], the evolved reduced density matrix of the system
can be obtained by

ρS(t) = TrE

[
ÛL ⊗ ÛR (ρS(0)⊗ ρE(0)) Û

†
L ⊗ Û †

R

]
, (4.7)

where the trace is taken, as usual, over the environmental degrees of freedom [40]. From this equation,
one formally obtains the following operator-sum representation (or Kraus representation) for the reduced
density matrix

ρS(t) =
∑
α,β

KαL · KβR ρS(0) K†
αL · K†

βR, (4.8)

where KαX = ⟨eα| ÛX |e0⟩ (X = L,R) are Kraus operators defined by means of a complete set of
orthonormal states {eα} of the local environment EX [266] and KαL · KβR indicates the product of the
operators.

We notice that the assumption of independent (separated) environments implies that the dynami-
cal map of Eq. (4.8) is given by means of a factorization of operators related to each local environ-
ment. However, as expected in this case due to the general particle indistinguishability, each (local)
Kraus operator is a two-particle operator which cannot be written in a tensor product form of single-
particle operators, that is KαX ̸= K(1)

α ⊗ K(2)
α . On the other hand, when the particles are separated,
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one in EL and one in ER and so spatially distinguishable, the local Kraus operators assume the ten-
sor product form KαL = K(1)

α ⊗(2)
2 and KβR =

(1)
2 ⊗K(2)

β , where 2 is the 2 × 2 identity matrix: this
means that each environmental operator only acts on an individual particle of the state vector. As can
be immediately seen, when the Kraus operators take this tensor product form, the dynamical map of
Eq. (4.8) reduces to the well-known operator-sum representation for nonidentical (distinguishable) par-
ticles ρS(t) =

∑
α,β K

(1)
α ⊗K(2)

β ρS(0) K(1)†
α ⊗K(2)†

β [40, 15].
The Kraus representation of Eq. (4.8) for indistinguishable particles remains a formal solution for the

system dynamics, which can be of difficult practical utility. Finding explicit expressions for the Kraus
operators under general conditions is in fact a challenging task. The next step is therefore to look for a
convenient solution by means of a master equation.

4.2.3 Master equation for the reduced density matrix

The most general dynamics of an open quantum system, under Born-Markov approximation, can be de-
scribed by the Gorini-Kossakowski-Sudarshan-Lindblad equation [267, 268, 40]. We are interested in
deriving this master equation for our system of two indistinguishable qubits, considering local memory-
less bosonic environments at zero temperature. Each local noise channel, at the siteX , is thus assumed to
phenomenologically induce a typical single-particle decay rate γ0X . Following the standard procedure,
i.e. performing the Born-Markov approximation (weak coupling) ρSE = ρS ⊗ ρE and tracing out the
environment degrees of freedom, we obtain the general structure of the master equation for the reduced
density matrix of the two-qubit system in the interaction picture as follows

ρ̇S =
∑

X=L,R

∑
i,j=1,2

γ
(i,j)
X

(
σ̂
(i)
X ρS σ̂

(j)†
X − 1

2
{σ̂(i)†X σ̂

(j)
X , ρS}

)
, (4.9)

where σ̂(i), σ̂(j) are pseudospin single-particle jump operators, whose explicit form depends on the
system-environment interaction, and

γ
(i,j)
X = γ0X | ⟨X|ψi⟩ ⟨ψj |X⟩|, (i, j = 1, 2) (4.10)

are effective decay rates associated to the noise action. We remark that these effective decay rates γ(i,j)X

are independent of particle statistics and crucially depend on particle spatial overlap, so manifesting the
effects of spatial indistinguishability (even partial) of the identical qubits on the system evolution.

When the qubits are spatially separated, Eq. (4.9) reduces to the well-known master equation of two
distinguishable particles each one embedded in its own local environment, as expected. In fact, in this
case the qubits are distinguishable by their location, e.g., |ψ1⟩ = |L⟩ and |ψ2⟩ = |R⟩, so that the only
nonzero effective decay rates are γ(11)L = γ0L and γ(22)R = γ0R.

One can also immediately see the effect of maximal spatial indistinguishability for the two qubits.
This is the situation when particles are present in the same regionX with same probabilityPX (| ⟨X|ψi⟩| =
| ⟨X|ψj⟩| =

√
PX ), so they are completely indistinguishable to the eyes of the local environments

[23, 16]. In this case, the effective decay rates of Eq. (4.10) are equal for a given location X , that is
γ
(i,j)
X = γ0XPX and the master equation of Eq. (4.9) becomes

ρ̇S =
∑

X=L,R

γ0XPX

(
σ̂′XρS σ̂

′†
X − 1

2
{σ̂′†X σ̂

′
X , ρS}

)
(4.11)

where σ̂′X = σ̂
(1)
X + σ̂

(2)
X is a collective single-particle pseudospin operator related to the noise action

at location X . Notice that the above master equation is similar to the situation of noninteracting non-
identical (distinguishable) particles coupled to a common environment, which is known to give rise to
collective effects [269, 270]. However, we remark that here the collective interaction is only due to
the spatial indistinguishability of the identical particles, which continuously rules the interplay between
collective and individual effects of the localized environments.
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The master equation of Eq. (4.9) represents the main tool to solve the dynamics of two identical
qubits, with an arbitrary spatial overlap configuration, coupled to two local environments. The two-
particle basis in which the master equation is solved will be conveniently chosen according to the spe-
cific system-environment interaction. To complete the analysis, one just needs to recall the operational
framework of sLOCC [16], which is required to study the dynamics of quantum properties exploitable
at separated sites, and a suitable degree of spatial indistinguishability [17]. This shall be done in the
following section for convenience.

4.2.4 sLOCC operational framework and degree of spatial indistinguishability

We briefly recall the sLOCC formalism [16] and the spatial indistinguishability measure [17] needed to
exploit, at time t, a state of two spatially overlapping identical particles distributed in two remote regions
L and R.

The state ρS(t), determined by solving Eq. (4.9), is finally projected by the operator Π(2)
LR =

∑
s1,s2=↑,↓ |Ls1, Rs2⟩ ⟨Ls1, Rs2|

onto the operational subspace, spanned by the basis BLR = {|L ↑,R ↑⟩ , |L ↑,R ↓⟩ , |L ↓,R ↑⟩ , |L ↓,R ↓⟩},
to get the distributed state [17]

ρLR(t) = Π
(2)
LRρS(t)Π

(2)
LR/Tr(Π

(2)
LRρS(t)), (4.12)

with sLOCC probability PLR(t) = Tr(Π
(2)
LRρS(t)) (we provide in Appendix A. detailed information

about the sLOCC probability for the physical examples we shall treat in the following sections). Now the
final state ρLR(t) is activated to be used for any quantum information tasks. The action of the projection
operator Π(2)

LR on the two-particle state is obtained by using the probability amplitude ⟨ϕ′1, ϕ′2|ϕ1, ϕ2⟩ =
⟨ϕ′1|ϕ1⟩⟨ϕ′2|ϕ2⟩ + η⟨ϕ′1|ϕ2⟩⟨ϕ′2|ϕ1⟩ [2, 3], where η = ±1 with the upper or lower sign for bosons or
fermions. Particle statistics is thus expected to play a role in the dynamics, especially in the behavior
of the sLOCC probability. Once the state ρLR(t) is obtained, with one particle in L and another one
R, the amount of useful entanglement of ρ(t) within the sLOCC framework can be calculated by the
concurrence [17]

CLR(ρS) := C(ρLR) = max{0,
√
λ4 −

√
λ3 −

√
λ2 −

√
λ1}, (4.13)

where λi are the eigenvalues, in decreasing order, of the matrix R = ρLR ρLR, being ρLR = σLy ⊗
σRy ρ

∗
LRσ

L
y ⊗ σRy with localized Pauli matrices σLy = |L⟩ ⟨L| ⊗ σy, σRy = |R⟩ ⟨R| ⊗ σy.

The degree of spatial indistinguishability of the two identical qubits, emerging from the outcomes of
the joint sLOCC measurement Π(2)

LR, is given by [17]

I =−
PLψ1PRψ2

Z
log2

PLψ1PRψ2

Z

−
PLψ2PRψ1

Z
log2

PLψ2PRψ1

Z
,

(4.14)

where Z = PLψ1PRψ2+PLψ2PRψ1 and PXψi
= |⟨X|ψi⟩|2 (X = L,R and i = 1, 2) is the probability of

finding in |X⟩ the particle coming from |ψi⟩. One has I ∈ [0, 1], being equal to 0 for separated (spatially
distinguishable) particles (e.g., PLψ1 = PRψ2 = 1) and equal to 1 for maximally indistinguishable
particles (PXψ1 = PXψ2).

Hereafter, we assume that the spatial wave functions have the form

|ψ1⟩ = l |L⟩+ r |R⟩ , |ψ2⟩ = l′ |L⟩+ r′eiθ |R⟩ , (4.15)

where l, r, l′, r′ are non-negative real numbers (l2+r2 = l′2+r′2 = 1) and θ is a phase. Such a situation,
illustrated in Fig. 4.1, is particularly convenient for studying the role of spatial indistinguishability when
one is interested in exploiting the state at the two distant operational locations L and R, which can be
two nodes of a quantum network. For this choice, we have I = 0 when (l = r′ = 1 or l = r′ = 0) and
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I = 1 (when l = l′). It is known that, switching the value of θ, bosonic and fermionic behaviors can be
interchanged for some initial state configurations [17]. Of course, one has to pay attention to the specific
values of the parameters defining the spatial wave functions of Eq. (4.15), in order that the system state
at time t obeys selection rules due to the particle statistics and the sLOCC probability remains nonzero.

We now have all the elements to study the dynamics of entanglement of two spatially indistinguish-
able qubits. Before showing the study for three typical noise channels, we briefly discuss the generaliza-
tion of the above formalism.

4.2.5 Generalization to N particles and M separated environments

We notice that the dynamical formalism introduced above naturally leads to define the local coupling
of N noninteracting identical qubits to M independent environments ELm placed in separated locations
Lm (m = 1, . . . ,M ). In fact, one can easily extend Eqs. (4.4) and (4.5) to this more general case as

HI :=

N∑
j=1

∑
k

M∑
m=1

g
(j)
kLm

ÊkLm σ̂
(j)
Lm

+ h.c., (4.16)

where g(j)kLm
= gkLm ⟨Lm|ψj⟩ (j = 1, 2, . . . , N ) is the effective coupling constant between the particle

with spatial wave function ψj and the mode k of the environment ELm . The operators ÊkLm are some
environmental operators as a function of annihilation or creation operators of local field mode k, while
σ̂
(j)
Lm

are single-particle pseudospin operators acting on the particle state at the j-th position in the global
state vector. From Eq. (4.16), one immediately has

HI =

N∑
j=1

H
(j)
I =

M∑
m

HILm , (4.17)

so that the evolved reduced density matrix ρS(t) of the system of N indistinguishable qubits can be
formally derived by straightforward generalization of the master equation provided in Eq. (4.9).

We highlight that the evolution for a system made of d-level identical particles (qudits) can be easily
derived by the above formalism, by simply changing the pseudospin operators σ̂ appearing in the Hamil-
tonian of Eq. (4.16) with suitable d-level single-particle operators. Analogously, different types of local
environments can be considered (such as spin-like or fermionic environments) by adopting the suitable
environment operators in place of ÊkLm . Finally, it is clear how the dynamical framework above is flexi-
ble and generalizable to specific system-environment interactions, provided that the identical subsystems
are noninteracting and the environments are localized and separated.

4.3 Phase damping noise

Phase damping as a noise process describes the loss of quantum coherence without loss of energy
(nondissipative channel). For example, it is the result of random telegraph noise or phase noisy lasers
[271, 272, 273, 274, 275, 276] and characterizes typical nanodevices and superconducting qubits under
low-frequency noise [277, 278, 279, 280, 281, 282].

We study the dynamics of two identical qubits interacting with two spatially separated phase damping
environments. The environments are assumed to be Markovian and identical, so that γ0X = γ0 (X =
L,R). From the general expressions of Eqs. (4.4) and (4.5), the total interaction Hamiltonian is HI =

H
(1)
I +H

(2)
I with

H
(j)
I =

∑
X=L,R

∑
k

g
(j)
kX âkX σ̂

(j)
z + h.c., (4.18)
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Figure 4.2: Entanglement evolution under localized phase damping environments. a. Concurrence
dynamics C(ρLR(t)) as a function of dimensionless time γ0t starting from the initial state |1−⟩ for
different degrees of spatial indistinguishability I, fixing l = r′: blue dotted line I = 1 (l = l′), black dot-
dashed line I = 0.75, green dashed line I = 0.5 and red solid line I = 0. b. Stationary entanglement
C∞(ρLR) as a function of I. All the plots are valid for both fermions (with θ = 0) and bosons (with
θ = π).

where σ̂(j)z is the usual Pauli pseudospin operator representing the pure dephasing interaction. Substitut-
ing σ̂X = σ̂z in Eq. (4.9), the master equation for the phase damping process is

ρ̇S =
∑

X=L,R

∑
i,j=1,2

γ
(i,j)
X

(
σ(i)z ρSσ

(j)
z − 1

2
{σ(i)z σ(j)z , ρS}

)
, (4.19)

where γ(i,j)X = γ0| ⟨X|ψi⟩ ⟨ψj |X⟩| are the effective decay rates.
For the case of two distinguishable qubits undergoing nondissipative channels (such as pure dephas-

ing and depolarizing processes), a Bell-diagonal state structure is maintained during the evolution, the
preferred basis being that of the four usual Bell states [283, 284]. We find here an analogous behavior.
So, we study the dynamics in the basis of the four orthonormal Bell states B = {|1±⟩ , |2±⟩} for spatially
indistinguishable qubits, defined as [17]

|1±⟩ =
1√
2N1±

(|ψ1 ↑, ψ2 ↓⟩ ± |ψ1 ↓, ψ2 ↑⟩),

|2±⟩ =
1√
2N2±

(|ψ1 ↑, ψ2 ↑⟩)± |ψ1 ↓, ψ2 ↓⟩), (4.20)

where N1− = (1 − η|⟨ψ1|ψ2⟩|2), N1+ = N2± = (1 + η|⟨ψ1|ψ2⟩|2). As a consequence, the evolved
two-particle density matrix can be written in Bell-diagonal form as

ρS(t) =
∑

u={1±,2±}

pu(t) |u⟩ ⟨u| (4.21)

where pu(t) is the probability that the system occupies the Bell state |u⟩ at time t, with
∑

i pu(t) = 1.
One expects that the time-dependent population coefficients pu(t) will be affected by the degree of
spatial indistinguishability. Moreover, effects of the specific spatial wave functions reflect on the initial
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population coefficients pu(0), establishing selection rules allowing or forbidding some initial states due
to the particle statistics.

Using the master equation of Eq. (4.19) and for any ψ1, ψ2, we obtain the time-dependent populations
pu(t) of the four Bell states

p1±(t) =
1

2

(
1 + e−γ−t/2

)
p1±(0) +

1

2

(
1− e−γ−t/2

)
p1∓(0),

p2±(t) =
1

2

(
1 + e−γ+t/2

)
p2±(0) +

1

2

(
1− e−γ+t/2

)
p2∓(0),

(4.22)

where the decay rates γ± are

γ± =
∑

X=L,R

∑
i,j=1,2

(±1)i+jγ0| ⟨X|ψi⟩ ⟨ψj |X⟩|. (4.23)

Notice that, as expected, one-excitation states (|1±⟩) and two-excitation states (|2±⟩) remain in their own
subspace during the dynamics. The expressions above make it evident how specific choices of the spatial
wave functions |ψ1⟩, |ψ2⟩ determine the two-particle state evolution under localized Markovian pure
dephasing. This is a direct consequence of spatially indistinguishable particles. From Eq. (4.22) one can
easily see that the system eventually tends to a steady state.

We first analyze the dynamics of the two extreme cases: spatially distinguishable qubits (I = 0)
and maximally indistinguishable qubits (I = 1). For spatially distinguishable qubits, when one qubit
interacts with the environment EL and the other qubit with ER (e.g., l = r′ = 1), the decay rates of
Eq. (4.23) are γ+ = γ− = 2γ0 and the well-known dynamical behavior due to independent Markovian
dephasing noises is retrieved. When particles are perfectly spatially indistinguishable (l = l′), the dy-
namics drastically change. The decay rates from Eq. (4.23) become γ+ = 4γ0 and γ− = 0, so that the
evolved Bell-state populations of Eq. (4.22) are

p1±(t) =p1±(0),

p2±(t) =
1

2

(
1 + e−2γ0t

)
p2±(0) +

1

2

(
1− e−2γ0t

)
p2∓(0).

(4.24)

The above equations clearly show an interesting consequence of maximum spatial indistinguishability,
which decouple the states |1±⟩ from the phase damping process as noise-free subspaces, provided that
the initial states are allowed by the particle statistics. Quantum properties contained in the states |1±⟩
are thus frozen and exploitable by sLOCC at any time.

Starting from the initial state |1−⟩, for fermions (bosons) with θ = 0 (θ = π), and obtaining ρLR(t)
after sLOCC on ρS(t), we calculate the entanglement amount CLR(ρS(t)) = C(ρLR(t)), which is
plotted versus the dimensionless time γ0t in Fig. 4.2a for different values of I, fixing l = r′. The
sLOCC probability is PLR(t) ≥ 0.5 for any time (see Appendix A.; the choice l = r′ is just made
to maximize the sLOCC probability in the case of maximal indistinguishability). As can be seen in
Fig. 4.2a, entanglement sudden death (occurring for I = 0) is forbidden thanks to the spatial overlap
of the identical qubits and the entanglement evolution achieves a stationary value which increases as
spatial indistinguishability increases. The reason for this entangled steady state is that the randomization
process of the relative phase between the states |L ↑, R ↓⟩ and |L ↓, R ↑⟩, due to the dephasing process,
is mitigated or even prevented for I ̸= 0. The characteristic time of the evolution is τ− = 1/γ− and
spatial indistinguishability has the effect of inhibiting the decay rate γ−. The asymptotic amount of
entanglement can be analytically found as

C∞(ρLR) =
2(ll′)2

l4 + l′4
, (4.25)

with associated sLOCC probability depending on the degree of spatial indistinguishability, namely:
PLR = l4 + l′4 when I < 1, PLR = 1/2 for fermions and PLR = 1 for bosons when I = 1 (see Ap-
pendix A. for details). The stationary entanglement C∞(ρLR) is plotted as a function of I in Fig. 4.2b.
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Figure 4.3: Entanglement evolution under a localized depolarizing environment. a. Entanglement
dynamics C(ρLR(t)) as a function of dimensionless time γ0t starting from the initial state |1−⟩ for
different degrees of spatial indistinguishability I, fixing l = r′: blue dotted line I = 1 (l = l′), black dot-
dashed line I = 0.75, green dashed line I = 0.5 and red solid line I = 0. b. Stationary entanglement
C∞(ρLR) as a function of I. All plots are valid for both fermions (with θ = 0) and bosons (with θ = π).

It is remarkable that the amount of preserved quantum correlations directly depends on how much the
two identical qubits are spatially indistinguishable in the two separated environmental sites. In particular,
maximum entanglement is frozen (C∞(ρLR) = 1) for I = 1 (l = l′). Adjusting the value of I in the
initial preparation stage allows one to exploit the remote entanglement at any time during the evolution,
despite the action of the pure dephasing. Spatial indistinguishability is a shield for quantum correlations
against local dephasing.

4.4 Depolarizing noise

Depolarizing noise is an isotropic (symmetric) decoherence process of a qubit, such that the qubit state
remains untouched with a given probability p while an error (white noise) occurs with probability 1− p
[15, 285, 286]. This kind of noise can be the result of an isotropic interaction of a spin-1/2-like particle
(qubit) with a bosonic or spin-like environment [287, 288, 289, 290]. Experimentally, the depolarization
process can be found in nuclear magnetic resonance setups [291, 292] and Bose-Einstein condensates
[293, 294], where decoherence process is often caused by a residual fluctuating magnetic field. De-
polarization processes for photons can also occur, caused by optical scattering when photons become
randomly polarized [295, 296, 297].

We consider two identical qubits isotropically interacting with a single Markovian bosonic reservoir
localized in region L, characterized by the decay rate γ0L = γ0 (there is no noise channel assumed
at location R). From Eqs. (4.4) and (4.5), being gkR = 0, the total interaction Hamiltonian is HI =

H
(1)
I +H

(2)
I with

H
(j)
I =

3∑
n=1

∑
k

g
(j)
kL σ̂

(j)
n (âkL + â†kL), (4.26)

where σ̂(j)n (n = 1, 2, 3) are the Pauli pseudospin operators. Substituting σ̂X =
∑3

n=1 σ̂n in Eq. (4.9),
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the Markovian master equation corresponding to the depolarizing process is

ρ̇S =

3∑
n=1

∑
i,j

γ
(i,j)
L

(
σ(i)n ρSσ

(j)
n − 1

2
{σ(i)n σ(j)n , ρS}

)
, (4.27)

where the effective decay rate γ(i,j)L is defined in Eq. (4.10) with X = L. The depolarizing noise is also
nondissipative, like the phase damping noise, so the convenient basis for the dynamical description is the
Bell-state basis of Eq. (4.20). The solution of the master equation of Eq. (4.27) gives an evolved density
matrix of the form of Eq. (4.21), with time-dependent population coefficients

p1−(t) = p1−(0)e
−γ−t +

1

4

(
1− e−γ−t

)
,

pu′(t) = pu′(0)e
−(3γ++γ−)t/4 +

1

4
(1− e−(3γ++γ−)t/4)

+
1− 4p1−(0)

12
(e−γ−t − e−(3γ++γ−)t/4),

(4.28)

where u′ = {|1+⟩ , |2±⟩} and γ± are given in Eq. (4.23) withX = L only, that is γ± =
∑

i,j=1,2(±1)i+jγ
(i,j)
L .

In the case of distinguishable (separated) qubits (I = 0), the decay rates are γ+ = γ− = γ0, so that
the state at time t is determined by the population coefficients

pu(t) = pu(0)e
−γ0t +

1

4

(
1− e−γ0t

)
, (4.29)

which, from Eq. 4.21), gives the well-known Werner state ρW = pρ0 + (1 − p)4/4 [33, 197], with
p = e−γ0t, as expected. In fact, the Werner state describes the action of a depolarizing channel on an
individual qubit of the pair, with the system which remains in its initial state ρ0 with probability p and
degrades to the maximally mixed state 4/4 with probability 1 − p. In contrast, for maximally spatially
indistinguishable qubits (I = 1, l = l′), the decay rates become γ+ = 4l2γ0 and γ− = 0. The most
interesting consequence is that, from Eq. (4.28), one has

p1−(t) = p1−(0), (4.30)

so that the initial state |1−⟩ (p1−(0) = 1) is a noise-free state. Quantum features of this state can be
utilized by sLOCC at any time.

For the intermediate cases, we plot the entanglement dynamics individuated by C(ρLR(t)) in Fig.
4.3a for different values of I, fixing l = r′, starting from the initial state |1−⟩ for fermions (bosons)
with θ = 0 (θ = π). Analogously to the findings for the dephasing noise, the two-qubit entanglement
is protected against the depolarizing noise thanks to nonzero spatial indistinguishability. Early-stage
disentanglement, occurring for distinguishable qubits (I = 0) is prevented when I > 0, for which a
stationary entangled state is achieved. The characteristic decay time of the evolution is τ− = 1/γ−,
which increases as I increases. Eventually, the concurrence C(ρLR(t)) converges to the asymptotic
value

C∞(ρLR) = max

{
0,

3l2l′2

2 (l4 + l′4 − l2l′2)
− 1

2

}
, (4.31)

which is plotted in Fig. 4.3b as a function of I. For I = 1, one hasC∞(ρLR) = 1 with probabilityPLR =
1/2 for fermions and PLR = 1 for bosons (see Appendix A. for details on the sLOCC probabilities).
In contrast with what happens for distinguishable qubits, for which the steady-state ρ(∞)LR =4 /4 is
always a maximally mixed state, the spatial indistinguishability modifies the time-dependent population
of each Bell state during the evolution so that the steady state can be entangled. The frozen entanglement
is exclusively due to nonzero spatial indistinguishability, which tends to suppress the decay rate γ− and
protects entanglement from depolarizing noise.
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Figure 4.4: Entanglement evolution under localized amplitude damping environments a. Entangle-
ment dynamics C(ρLR(t)) as a function of dimensionless time γ0t starting from the initial state |1−⟩
for different degrees of spatial indistinguishability I, fixing l = r′: blue dashed line I = 1 (l = l′),
black dotted line I = 0.75, green dot-dashed line I = 0.5 and red solid line I = 0. b. Entanglement
C(ρLR(τ)) at the critical time τ versus I. All plots are valid for both fermions and bosons with θ = π/2.

4.5 Amplitude damping noise

The amplitude damping process is a well-known model for energy dissipation in open quantum systems.
It describes a two-level system (a qubit) of transition frequency ω0 that interacts with a reservoir by
excitation exchange due to spontaneous emission [15]. This kind of dissipative channel is found in
different contexts, such as atoms in cavities [298, 299, 300], superconducting qubits in circuit QED
[301, 302], spin chains with ferromagnetic Heisenberg interactions [303] or photon scattering from a
single-mode optical fiber [304], and is also well simulated by linear-optics devices [305, 306].

We take here two identical qubits, with a given degree of spatial indistinguishability, interacting
with two localized amplitude damping environments in L and R sites, respectively. The environments
are assumed to be Markovian and identical, so that the (local) characteristic decay rates are γ0X = γ0
(X = L,R). From Eqs. (4.4) and (4.5), the total interaction Hamiltonian is HI = H

(1)
I +H

(2)
I with

H
(j)
I =

∑
X=L,R

∑
k

g
(j)
kX â

†
kX σ̂

(j)
− + h.c., (4.32)

where σ̂(j)± are single-particle pseudospin creation and annihilation operators. Substituting σ̂X = σ̂
(j)
− in

Eq. (4.9) we have the master equation for localized amplitude damping noises

ρ̇ =
∑

X=L,R

∑
i,j

γ
(i,j)
X

(
σ
(i)
− ρσ

(j)
+ − 1

2
{σ(i)+ σ

(j)
− , ρ}

)
. (4.33)

Considering the dissipative effects of this type of evolution, the general dynamics can be easily solved in
the basis B1 = {|1±⟩ , |2⟩ , |0⟩}, where |1±⟩ are the two Bell states defined in Eq. (4.20) and

|2⟩ = 1√
N1

|ψ1 ↑, ψ2 ↑⟩ , |0⟩ = 1√
N0

|ψ1 ↓, ψ2 ↓⟩ , (4.34)

with N0 = N1 = (1 + η|⟨ψ1|ψ2⟩|2). Starting from a state which is a mixture of the four basis states
above, the structure is maintained during the evolution: ρS(t) =

∑
u′ pu′(t) |u′⟩ ⟨u′|, where |u′⟩ ∈ B1.
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This choice leads to the following differential equations for the basis state populations

ṗ1− = (1− ξ)γ0
(
p2 − p1−

)
,

ṗ1+ = (1 + ξ)γ0
(
p2 − p1+

)
,

ṗ2 = −2γ0p2,

(4.35)

with p0(t) = 1− (p1+(t) + p1−(t) + p2(t)) and where ξ = ll′ + rr′ is a spatial overlap parameter (see
Appendix B. for details on the general solutions).

For spatially separated qubits (I = ξ = 0), one retrieves the known dissipative two-qubit dynamics,
eventually decaying to the ground state |0⟩. On the other hand, for maximally indistinguishable qubits
(I = ξ = 1), from Eq. (4.35) we obtain

p1−(t) = p1−(0), (4.36)

which clearly shows that state |1−⟩ is unaffected from the detrimental environment. Perfect spatial
indistinguishability prevents the decay to the ground state of the two-qubit system and maintains the Bell
state |1−⟩ frozen (noise-free).

The evolution of two-qubit entanglement, identified by C(ρLR(t)), is displayed in Fig. 4.4a for
different values of I, starting from the initial state |1−⟩ for fermions and bosons with θ = π/2. As can be
seen, spatial indistinguishability significantly extends the timescale of entanglement decay in the system
compared to the one for distinguishable particles (red solid line, entanglement asymptotically goes to
zero [167, 257]). In Fig. 4.4b we plot the concurrence C(ρLR(τ)), calculated at a fixed critical time τ
when the distinguishable-qubit entanglement is very small (∼ 10−5), as a function of I, which highlights
the direct relationship between preserved entanglement and spatial indistinguishability. When I < 1 the
system eventually decays to the unentangled ground state |0⟩LR = |L ↓, R ↓⟩ after sLOCC. We remark
that the probability to obtain the frozen exploitable maximum entanglement C(ρLR(t) = 1, contained in
the state |1−⟩ when I = 1, is PLR = 1/3 for fermions and PLR = 1 for bosons (see Appendix A. for
details on the sLOCC probabilities). Collective effects enabled by spatial indistinguishability can thus
very efficiently preserve two-qubit entanglement from decoherence also under dissipative noise.

4.6 Conclusions

In conclusion, we have introduced a formalism that allows us in principle to obtain the dynamics of a
system of noninteracting identical particles, with an arbitrary degree of spatial indistinguishability I,
coupled to separated localized environments. The value of I is related to the amount of spatial overlap
of the particle wave functions in the operational sites where the noises operate. The distributed resource
state of the system at a given time is then activated by spatially localized operations and classical com-
munications (sLOCC). The procedure is valid for any form of system-environment interaction and for
any particle statistics (fermions and bosons). As a general aspect, we have found that environmental
collective effects on the many-particle system are inevitable as long as particles are spatially indistin-
guishable. In fact, the dynamics of identical particles is not only determined by the localized interaction
between system and environment but also directly by the value of I. Spatial indistinguishability is the
property of the system acting as a continuous knob which governs the interplay between collective and
individual effects of the localized environments.

The introduced dynamical framework has been then applied to the typical case of two identical qubits
interacting with local Markovian (memoryless) environments. In particular, we have considered paradig-
matic quantum noises such as phase damping, depolarizing and amplitude damping. As a result valid for
all the noise channels, we have found that spatial indistinguishability plays a sort of dynamical decou-
pling role of some states of the system from the environment, in that it inhibits the effective decay rate:
the larger I, the smaller the decay rate. For maximal spatial indistinguishability (I = 1), a maximally
entangled state can be perfectly preserved against noise, leading to frozen entanglement. Ultimately, spa-
tial indistinguishability is a property capable to efficiently shield exploitable entangled states at distant
sites against noise.
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Figure 4.5: sLOCC probability for fermions. PLR as a function of dimensionless time γ0t, starting
from the initial state |1−⟩, fixing l = r′, under localized: a) phase damping noise, b) depolarizing noise,
c) amplitude damping noise. The plots are given for different degrees of spatial indistinguishability:
I = 1 (blue dashed line), I = 0.75 (black dot-dashed line), I = 0.5 (green dotted line) and I = 0 (red
solid line).

Generalizing previous results [17], these findings are very promising to fault-tolerant quantum in-
formation tasks, since controllable indistinguishability is an intrinsic resource of a composite quantum
network made of identical subsystems. Experimental verification of our predictions is thus one of the
main outlook of this work. Various experimental platforms can be indeed brought up for implement-
ing protection by spatial indistinguishability, such as quantum optics [23], integrated photonics [172],
superconducting circuit QED [213], Bose-Einstein condensates [307] and quantum electronics [215].

The setups are to be engineered in such a way that the identical quantum building blocks remain
spatially indistinguishable from the local observer viewpoint, so they can globally interact remotely and
simultaneously with separated environments. Spatial wave functions of the subsystems have to be con-
trolled (e.g., by beam-splitting operations [23, 215]) to maintain nonzero indistinguishability during the
dynamics. In quantum optics, it is known that decoherence channels localized in the operational regions
can be simulated. For example, amplitude damping can be realized via Sagnac-like interferometers for
[258], while phase damping by either Fabry-Perot cavities [264] or quartz plates [154]. As long as
particles are indistinguishable to the eyes of environments, entanglement protection by spatial indis-
tinguishability holds until the projection measurement, namely sLOCC, is performed to start quantum
information tasks. This is a general scenario, independent of specific implementations. The sLOCC pro-
cedure consists of local single-particle counting and coincidence measures, as already realized in recent
experiments [23, 24].

Our results provide the theoretical background for a full characterization of open quantum systems
dynamics with identical constituents, motivating analyses of non-Markovian system-environment inter-
actions and generalizations to composite systems of larger size (many-qudit systems). They open the way
to further studies investigating the effects of indistinguishability for other types of local environments,
e.g. spin-like surroundings and classical noises, different classes of initial states and various figures of
merit of quantumness.

A. sLOCC probability

In this appendix we provide the expressions of the the time dependent sLOCC probability for the three
localized noise channels considered in the manuscript.

In general, the sLOCC measurement giving the distributed resource state ρLR(t) of Eq. (4.12) comes
with a cost, since it corresponds to the post-selection procedure to find one particle (qubit) in the region
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Figure 4.6: sLOCC probability for bosons. PLR as a function of dimensionless time γ0t, starting from
the initial state |1−⟩, fixing l = r′, under localized: a) phase damping noise, b) depolarizing noise, c)
amplitude damping noise. The plots are given for different degrees of spatial indistinguishability: I = 1
(blue dashed line), I = 0.75 (black dot-dashed line), I = 0.5 (green dotted line) and I = 0 (red solid
line).

L and the other one in the region R. This post-selection probability is given by the sLOCC probability

PLR(t) = Tr(Π
(2)
LRρS(t), (4.37)

where ρS(t) is the two-qubit density matrix solution of the master equation of Eq. (4.9) for the given
noise channel. As a result, the exploitable entanglement of ρLR(t) is conditional in general. So, it
is important that the value of PLR(t) remains high enough during the evolution to be of experimental
relevance. Here we explicitly show that this is the case.

We consider the state |1−⟩ of Eq. (4.20) as initial state since it shows noise-free characteristics. In
the main text, we have already reported that, for maximum spatial indistinguishability I = 1 with l = r′

in the spatial wave functions of Eq. (4.15) (meaning l = r = l′ = r′ = 1/
√
2), PLR(t) = 1 for

bosons at any time for all the three types of local noise. This means that for bosonic qubits the maximum
entanglement protection is even deterministic. The choice l = r′ is made such as to forbid that the
sLOCC probability is zero and, at the same time, to maximize it when I = 1.

Phase damping noise. For this kind of local system-environment interaction, the general expression
for the sLOCC probability is

PLR(t) =
|l′r|2 + |lr′|2 − 2ηll′rr′e−γ−t cos θ

1− ηe−γ−t (|l′l|2 + |rr′|2 + 2ll′rr′ cos θ)
, (4.38)

where γ− is defined in Eq. (4.23). It is interesting to notice that, when I < 1, that is γ− > 0, the
sLOCC probability at the stationary state (t → ∞) is simply PLR = |l′r|2 + |lr′|2. For maximal
indistinguishability I = 1 (l = l′ and r = r′), for which γ− = 0, from Eq. (4.38) one has PLR(t) = 1
for bosons with θ = π and PLR(t) = 2l2

(
1− l2

)
for fermions with θ = 0 (the latter becomes 1/2 when

l = r′). In Figs. 4.5a and 4.6a we plot PLR(t) for the phase damping process, fixing l = r′, associated
to fermions and bosons, respectively, considering different degrees of spatial indistinguishability.

Depolarizing noise. For a local depolarizing system-environment interaction, the general expression
for the sLOCC probability is

PLR(t) =
2
(
l2r′2 + l′2r2 + ηlr′rl′ cos θ (1− 3e−γ−t)

)
2 + η(1− 3e−γ−t) (l2l′2 + r2r′2 + 2ll′rr′ cos θ)

. (4.39)

For maximal indistinguishability I = 1 (l = l′ and r = r′), for which γ− = 0, from Eq. (4.39) with
l = r′ we again find, as before, that PLR(t) = 1 for bosons with θ = π and PLR(t) = 1/2 for fermions
with θ = 0. In Figs. 4.5b and 4.6b we plot PLR(t) for the depolarizing process, fixing l = r′, associated
to fermions and bosons, respectively, for different values of I.
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Amplitude damping noise. For localized amplitude damping system-environment interaction, the
general expression for the sLOCC probability is

PLR(t) =
l2r′2 + l′2r2 + 2ηlr′rl′ cos θ (1− 2e−γ0(1−ξ)t)

1 + η(1− 2e−γ0(1−ξ)t) (l2l′2 + r2r′2 + 2ll′rr′ cos θ)
, (4.40)

where ξ = ll′ + rr′ is the spatial overlap parameter. For maximal indistinguishability I = 1 (l = l′

and r = r′), for which ξ = 1, from Eq. (4.40) with θ = π/2, we have that PLR(t) = 1 for bosons

and PLR(t) =
l2(1−l2)

1−l2(1−l2) for fermions (the latter becomes PLR(t) = 1/3 for l = r′). When ILR < 1

(ξ < 1), the sLOCC probability for the stationary ground state (t → ∞) with θ = π/2 and l = r′

is PLR = l4+l′4

1+2ηl2l′2 . We display in Figs. 4.5c and 4.6c the time behavior of PLR(t) for the amplitude
damping process, fixing l = r′, corresponding to fermions and bosons, respectively, for different values
of I.

The general conclusion of this detailed analysis is that the entanglement resource, shielded by indis-
tinguishability from the noise, is efficiently exploited by sLOCC, since the sLOCC probabilities remains
of experimental value during the dynamics. In particular, bosonic qubits admit a deterministic entan-
glement protection. We finally point out that for both the two extreme cases, I = 1, 0, the sLOCC
probability is time-independent.

B. Solution of the amplitude damping channel

From the master equation for the local amplitude damping channels acting on two spatially overlapping
identical qubits, given in Eq. (4.33), we have obtained the differential equations of Eq. (4.35). These
differential equations can be conveniently solved separately for the cases when I < 1 and for maximal
spatial indistinguishability I = 1.

The solution for the case when the spatial indistinguishability is not maximum, I < 1, so that the
spatial overlap parameter 0 ≤ ξ < 1,

p2(t) = p2(0)e
−2γ0t,

p1+(t) = p1+(0)e
−(1+ξ)γ0t +

(
1 + ξ

1− ξ

)
p2(0)

(
e−(1+ξ)γ0t − e−2γ0t

)
,

p1−(t) = p1−(0)e
−(1−ξ)γ0t +

(
1− ξ

1 + ξ

)
p2(0)

(
e−(1−ξ)γ0t − e−2γ0t

)
,

p0(t) = 1− p1+(t)− p1−(t)− p2(t),

(4.41)

where ξ = ll′ + rr′. The above equations clearly show that the system state eventually decays to the
ground state |0⟩ = |ψ1 ↓, ψ2 ↓⟩, where |ψ1⟩, |ψ2⟩ are defined in Eq. (4.15). In the special case when
the two identical qubits are spatially separated, one in the site L and one in R, one has l = r′ = 1
or l = r′ = 0, leading to ξ = 0 (distinguishable particles I = 0). In this case, the time-dependent
populations given in Eq. (4.41) reduce to the usual decaying functions for the one-excitation Bell states
|1±⟩ = (|L ↑, R ↓⟩ ± |L ↓, R ↑⟩)/

√
2 and for the two-excitation state |2⟩ = |L ↑, R ↑⟩.

When the qubits are maximally indistinguishable (ILR = 1 and ξ = 1), the time-dependent popula-
tions are

p1−(t) = p1−(0)

p1+(t) = p1+(0)e
−2γ0t + 2p1(0)γ0te

−2γ0t

p2(t) = p2(0)e
−2γ0t,

p0(t) = 1− p1+(t)− p1−(t)− p2(t),

(4.42)

from which the system dynamics of an initial state being a mixture of the basis states B1 = {|1±⟩ , |2⟩ , |0⟩}
can be completely determined.

Of course, different classes of initial states can be considered which will lead to different solutions.
This is left to detailed investigations elsewhere.
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Chapter 5
Indistinguishability-assisted two-qubit
entanglement distillation

Abstract

Production of quantum states exhibiting a high degree of entanglement out of noisy conditions is one of
the main goals of quantum information science. Here, we provide a conditional yet efficient entanglement
distillation method which functions within the framework of spatially localized operations and classical
communication. This method exploits indistinguishability effects due to the spatial overlap between
two identical qubits in distinct sites and encompasses particle statistics imprint. We derive the general
conditions for the maximum entanglement distillation out of mixed states. As applications, we give a
thorough description of distilled entanglement and associated success probability starting from typical
noisy states, such as thermal Gibbs states and Werner states. The influence of local temperatures and
of noise parameter is discussed, respectively, in these two cases. The proposed scheme paves the way
towards quantum repeaters in composite networks made of controllable identical quantum particles. This
Chapter is related to Publication 4 in the List of Publications.

5.1 Introduction

Indistinguishability plays an important role in understanding systems made of identical quantum enti-
ties. Usually, this genuinely quantum trait arises from the unaddressability of individual particles of the
same kind when particles themselves become spatially overlapping [1, 13, 2]. This property profoundly
affects how these particles assemble to form composite quantum states of light and matter [103, 308].
Beyond these fundamental aspects, it is known that tailoring spatial overlap of identical particles allows
controllable entanglement generation schemes [34, 16, 23, 24, 25, 35] and quantum information tasks,
including teleportation [16, 23], quantum estimation [94, 31], and entanglement distribution between
nodes of a quantum network [28, 26]. Also, bosonic bunching, a symptom of indistinguishability, can
enhance the conversion of information and work [36, 37, 38]. Recently, it has been reported that bosonic
indistinguishability leads to an efficiency at maximum power larger than the classical Curzon-Ahlborn
limit [39].

Entanglement and quantum coherence are essential resources at the heart of quantum-enhanced tech-
nologies, including computation, secure communication [309], and sensing [310]. Nonetheless, noise
and environmental interaction are inevitable, leading to decoherence and entanglement degradation [40,
41]. Hence, quantum information and computation science faces the challenge of preserving quantum re-
sources within a given noise model. Many protection schemes have been proposed to preserve such quan-
tum resources [150, 107, 109, 157, 264, 311, 152, 312, 313, 101, 100, 156, 156, 80, 79, 314, 154, 261].
However, instead of maintaining entangled pairs, a distillation protocol (also referred to purification) con-
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verts mixed states to entangled states using local operations and classical operations (LOCC) performed
by two local observers [42, 43]. As a result, many distillation techniques have been introduced, aiming
at increasing entanglement in quantum states utilizing LOCC, local filtering [315], distillation protocols
[153], noiseless linear amplification, and one-shot distillable entanglement [316]. Furthermore, entan-
glement distillation is a crucial feature of many proposals for quantum repeaters [317, 318, 319].

In this work we provide a probabilistic entanglement distillation procedure based on spatial overlap
between identical particles in the context of spatially localized operations and classical communication
(sLOCC). We identify the essential conditions for a nonzero success rate of entanglement distillation.
Due to the probabilistic nature of the distillation protocol, there is an interesting trade-off between the
degree of distilled entanglement and the probability of success. Hence, we optimize the success proba-
bility of distillation at the expense of a lower entanglement degree. As relevant applications, we present a
thorough examination of the requirements for entanglement distillation starting from thermal and Werner
input states. Our procedure only uses inherent properties of identical particles as elementary building
blocks of composite quantum networks. Therefore, it is particularly suitable in quantum communication
scenarios, allowing for the conversion of seemingly useless noisy states into operational resource states
for transferring information.

This paper is structured as follows. In Sec. 5.2 we describe the distillation protocol, examine some
general properties of the final state, and present some quantities useful to study the trade-off between
the amount of distilled entanglement and the success probability of the protocol. In Sec. 5.3 and 5.4 we
present our analysis of the protocol in the case of, respectively, thermal and Werner input states. Finally,
in Sec. 5.5 we draw our conclusions and present some remarks, while some details of our analysis can
be found in the Appendixes.

5.2 Distillation protocol

Before introducing the distillation protocol, let us briefly recall our primary framework for dealing with
identical particles. We assume each particle to be endowed with an external and an internal degree of
freedom, namely a spatial wave function and a pseudospin. In the no-label approach [2, 3], an elementary
form of the two-particle state |Ψ⟩ = |Φ1,Φ2⟩ is defined by single-particle state vectors |Φi⟩ = |ψi σi⟩
(i = 1, 2), where |ψi⟩ is the spatial wave function and |σ⟩ = {|↑⟩ , |↓⟩} is the pseudospin.

As illustrated in Fig. 5.1, the indistinguishability-assisted distillation protocol involves two steps:
(i) an unitary transformation of the spatial wave functions, which we call spatial deformation [159];
(ii) a postselection measurement typically involving classical communication between two observers
(detectors) situated in separated regions L and R, which we name activation.

We assume that each qubit is initially in a diagonal state ρ̂X =
∑

σ={↑,↓} λ
X
σ |X σ⟩ ⟨X σ| in the

basis {|X σ⟩}, with X = {L,R} and σ = {↑, ↓}, characterized by the probabilities of occurrence λXσ
(λX↑ + λX↓ = 1). Since the qubits are initially distinguishable in two distinct sites, they are individually
addressable by their spatial modes. Thus, the initial two-particle state is separable and factorizable in the
two spatial regions, that is ρ̂LRinit = ρ̂L ⊗ ρ̂R. This state can be written as

ρ̂LRinit =
∑

σ,τ={↑,↓}

λLRσ,τ |L σ,R τ⟩ ⟨L σ,R τ | , (5.1)

where the probability coefficients are λLRσ,τ = λLσλ
R
τ . We show below how two observers located in two

spatial distinct regions can accomplish entanglement distillation (purification), by performing spatially
local particle counting on the shared pair of identical qubits, and coordinating their actions through
classical messages if needed.

Step I: spatial deformation. The spatial deformation involves a transformation of the spatial wave
functions which distributes them onto the two operational spatial sites L and R. In this way, the identical
qubits can spatially overlap and are not localized anymore in their own respective regions. In an opera-
tional context, we consider the case of an input state experiencing a spatial deformation transformation,
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Figure 5.1: Scheme of indistinguishability-assisted entanglement distillation. As an input, each (spa-
tially distinguishable) qubit is independently prepared, so that ρ̂LRinit = ρ̂L ⊗ ρ̂R. Step 1: spatial defor-
mation. An unitary spatial deformation D̂(θ) is applied which allows the identical qubits to spatially
overlap in the two distinct measurement regions. Step 2: activation. The postselection measurement
Π

(2)
LR is performed and entanglement is thus distilled.

in which only the shapes of single-particle wave functions are altered, leaving the internal pseudospin
degrees of freedom unchanged. To do so, we perturb the system by means of a spatial deformation
Hamiltonian, defined as (hereafter we take h̄ = 1)

ĤD =
ΩR
2

∑
σ={↑,↓}

(
eiϕL̂†

σR̂σ + e−iϕL̂σR̂
†
σ

)
, (5.2)

where ΩR is the coupling strength and ϕ is an arbitrary phase. Here, X̂†
σ and X̂σ (X̂ = {L̂, R̂}) are,

respectively, the creation and the annihilation operators in the site X = {L,R}, with the action of X̂†
σ on

the vacuum state |0⟩ given by X†
σ |0⟩ = |X σ⟩. These creation and annihilation operators obey standard

anticommutation rules, {X̂†
σ, X̂

′†
σ } = δσ,σ′ for fermions, and commutation rules, [X̂σ, X̂

′†
σ ] = δσ,σ′ for

bosons [132]. These rules make the two-particle state fulfil the standard phase change associated to a
particle exchange, |L σ,R τ⟩ = η |R τ,L σ⟩ with η = 1(−1) for bosons (fermions), and, therefore, the
Pauli exclusion principle for fermions [103]. The time-evolution operator associated to the spatial defor-
mation is D̂(θ) = exp (−itĤD), with θ = ΩRt, so that the initial state evolves as ρ̂D = D̂(θ)ρ̂LRintD̂

†(θ).
As a consequence, the deformed state has the form

ρ̂D =
∑

σ,τ={↑,↓}

λLRσ,τ |ψ σ, ψ′ τ⟩ ⟨ψ σ, ψ′ τ | , (5.3)

where |ψ⟩ and |ψ′⟩ are the deformed spatial wave functions defined as [see A. for the derivation of
Eq. (5.3)]

|ψ⟩ = cos

(
θ

2

)
|L⟩+ ieiϕ sin

(
θ

2

)
|R⟩ ,

|ψ′⟩ = ie−iϕ sin

(
θ

2

)
|L⟩+ cos

(
θ

2

)
|R⟩ . (5.4)

After this deformation, one may find each of the two particles in both regions, allowing them to spatial
overlap. With spatial overlap we mean that the particles can be found in the same region of space with
nonzero probability. It is worth mentioning that fermions with the same pseudospin are always forced to
be in different sites due to the Pauli exclusion principle: the only accessible state in this case becomes,
up to a global phase, |L σ,R σ⟩.

Step II: activation. In the last step, the two observers in regions {L,R} distillate or purify ex-
ploitable quantum states by selecting only one particle per spatial region, via particle projective mea-
surements Π̂

(2)
LR =

∑
σ,τ=↑,↓ |L σ,R τ⟩ ⟨L σ,R τ | [16]. The procedure is probabilistic since it discards
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the cases when both particles are detected in the same site. The action of projective measurements on the
deformed state of Eq. (5.3), that is ρ̂LRfin = Π̂

(2)
LRρ̂DΠ̂

(2)
LR/Tr(Π̂

(2)
LRρ̂D), gives

ρ̂LRfin =
∑

σ1,σ2,τ1,τ2={↑,↓}

Λσ2,τ2σ1,τ1 |L σ1,R τ1⟩ ⟨L σ2,R τ2| , (5.5)

which is written in the computational basis BLR = {|L ↑,R ↑⟩ , |L ↑,R ↓⟩, |L ↓,R ↑⟩ , |L ↓,R ↓
⟩}. The coefficients Λσ2,τ2σ1,τ1 of Eq. (5.5) depend on initial probabilities, spatial deformation, and both
fermionic and bosonic statistics (see B. for a full description of the coefficients Λσ2,τ2σ1,τ1). There is a
success probability PLR = Tr(Π̂

(2)
LRρ̂D) associated to the case when only one particle is found in a

given region. The entanglement distillation protocol is thus conditional and encompasses the possibility
of failure. We remark that classical communication between the two observers is typically involved in
the protocol to check if each of them actually finds one particle per region. We also point out that the
post-selected state is independent of the phase ϕ.

In general, indistinguishability depends on both the quantum state and the measurement performed
on the system [17]. Since we are interested in the condition of spatial overlap between two identical
qubits in two distinct regions, our goal is to determine whether the qubits are spatially distinguishable.
To this aim, we can use the joint sLOCC measurement Π̂(2)

LR, to evaluate the indistinguishability due to the
spatial overlap of the particles within the state by means of the success probability PLR = Tr(Π̂

(2)
LRρ̂D).

If PLR = 1, indicating the presence of a single particle in each region with certainty, then the particles
are considered spatially distinguishable with no spatial overlap. Conversely, if PLR < 1, the particles
overlap in the two regions and are considered to be spatially indistinguishable. Once fixed the sLOCC
measurement, the success probability depends in our setup on the initial state and on the parameter θ
governing the spatial overlap.

Before considering specific input states from two different physical scenarios of interest, we examine
some general properties of the final state of Eq. (5.5). We first observe that for equally deformed spatial
wave functions in the case of bosons, i.e., for θ = π/2 in Eq. (5.4) and η = 1, the output state reduces
to a pure maximally entangled state in the singlet state form, |ΨLR

− ⟩ = (|L ↑,R ↓⟩ − |L ↓,R ↑⟩) /
√
2,

with a success probability given by

PLR =
λLR↑,↓ + λLR↓,↑

2
. (5.6)

The above expression implies that the occurrence of maximum entanglement distillation is conditional
to the presence in the initial state of at least one term with opposite pseudospins. In fact, the success
probability of Eq. (5.6) tells us that not every mixed state is distillable to a pure entangled singlet state,
in line with previous observations [320]. Furthermore, the upper bound for the success probability of
maximum entanglement distillation is PLR = 1/2 (when λLR↑,↓ + λLR↓,↑ = 1), independently of the purity
of the input state. Interestingly, the same result does not apply to fermions, for which the degree of
distilled entanglement depends on the input state. The general final state in the case of fermions is
described by Eq. (5.16). Independently from the value of θ, the output state depends on the values of
λLR↑,↑ and λLR↓,↓ , which are connected to the initial state. Consequently, for example, in the case of an input
state with nonzero values for at least one of these two coefficients, maximum entanglement distillation
becomes unattainable.

More in general, there is a trade-off between the amount of distillable entanglement and the likelihood
of success of the procedure. This aspect could be exploited in a practical scenario where the source is
probabilistic and increasing the distillation success probability is demanding. In fact, one can optimize
the success probability by distilling non-maximal entanglement: sacrificing perfect entanglement in favor
of success probability can be strategical in many realistic scenarios.

We remark that the profound quantum property activating this entanglement distillation is the indis-
tinguishability of the identical qubits stemming from their established spatial overlap in two distinct sites
after spatial deformation of the wave functions.

Many ways can be employed to characterize the amount of distilled entanglement. For example, it
can be quantified by the sLOCC-based concurrence, C(ρ̂LR) = max{0,

√
λ4−

√
λ3−

√
λ2−

√
λ1}, used
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for identical particles [17], where λi are the eigenvalues in decreasing order of the operator R̂ = ρ̂LR ρ̂LR,
being ρ̂LR = σ̂Ly ⊗ σ̂Ry (ρ̂

LR)∗σ̂Ly ⊗ σ̂Ry , with localized y-Pauli matrices σ̂Xy = |X⟩ ⟨X| ⊗ σ̂y (X = L,R).
Notice that this sLOCC-based concurrence is directly connected to the usual concurrence defined for
distinguishable qubits [195].

Interestingly, one may want to ensure that the procedure will distillate enough entanglement to violate
a Bell inequality. According to the Horodecki criterion for the CHSH-Bell inequality violation of a two-
qubit density matrix [321], the expression of the maximum of the Bell function for the X-shape density
matrix ρ̂LRfin can be written as BLR = 2

√
P2 +Q2 with P = Λ↑,↑

↑,↑ + Λ↓,↓
↓,↓ − Λ↑,↓

↑,↓ − Λ↓,↑
↓,↑ and Q = 2Λ↓,↑

↑,↓,

where we used the fact that here Λ↓,↑
↑,↓ is real and Λ↓,↓

↑,↑ = Λ↑,↑
↓,↓ = 0. In particular, the condition BLR > 2

is sufficient to perform quantum teleportation.
On the other hand, one may find a mixed bipartite state that does not violate any Bell inequality but is

still useful for quantum teleportation [322]. A possible way to also include these cases is to characterize
the amount of entanglement using the state’s distance to an ideal one, such as the singlet state |ΨLR

− ⟩,
in terms of the fidelity FLR(ρ̂

LR
fin ) = ⟨ΨLR

− | ρ̂LRfin |ΨLR
− ⟩. For instance, for bosons when θ = π/2 the

fidelity is maximum, i.e., FLR = 1, and the success probability is given by Eq. (5.6). However, a fidelity
FLR > 2/3 is enough for achieving quantum teleportation [323]. In such a case, one may prefer a higher
probability of success at the expense of a lower fidelity.

As a result of the above considerations, the entanglement distillation analysis is a constrained op-
timization problem in which we seek to maximize the success probability with respect to θ, Pmax

LR =

max
θ

[
Tr(Π̂

(2)
LRρ̂D)

]
, with the constraintBLR(ρ̂

LR
fin ) > 2 (for the Bell inequality threshold) orFLR(ρ̂

LR
fin ) >

2/3 (for the fidelity threshold).
In the following sections, we shall analyze the performance of the indistinguishability-assisted en-

tanglement distillation in the case of two well-known input states: a thermal state and a Werner state.

5.3 Application I: Thermal state

As a first example, we consider the distillation of thermal Gibbs states of two spatially separated identical
qubits. From a resource theory point of view, a thermal state is a free state that one can generate and
use at no cost. Therefore, one can interpret the distillation process as a quantum thermal machine that
produces entanglement out of a thermal state.

To define the initial thermal state, we consider the bare system Hamiltonian ĤX
0 = ω

2 σ̂
X
z (X = L,R),

where σ̂Xz = σ̂z ⊗ |X⟩ ⟨X| is the localized z-Pauli matrix, and ω = ω↑ − ω↓ is the frequency spacing
between the energy levels associated to the values of the pseudospin. Each qubit is initially coupled with
its own local bosonic bath BX at inverse temperature βX = 1/TX (hereafter we take the Boltzmann’s
constant kB = 1). Thus, each particle thermal state is in the Gibbs form ρ̂X = e−βXĤ

X
0 /Z(βX), where

Z(βX) = Tr
(
e−βXĤ

X
0

)
is the partition function. Therefore, the initial two-particle state is factorizable

in terms of single-particle states, ρ̂LRinit = ρ̂L ⊗ ρ̂R.
For the sake of simplicity, in the next analytical considerations we limit ourselves to the case of equal

temperature baths, that is β = βL = βR (the case of different temperatures will be explicitly considered
via a computational analysis shown in Fig. 5.3). After spatial deformation and projection, the activated
output state of Eq. (5.5) becomes

ĜLR
fin =

∑
i={0,1,±}

Z−1
LRΛ

LR
i |ΨLR

i ⟩ ⟨ΨLR
i | , (5.7)

which is written in the singlet-triplet basis BLR
st = {|ΨLR

0 ⟩ , |ΨLR
1 ⟩ , |ΨLR

± ⟩}, where |ΨLR
0 ⟩ := |L ↓,R ↓⟩,

|ΨLR
1 ⟩ := |L ↑,R ↑⟩, |ΨLR

± ⟩ := (|L ↓,R ↑⟩ ± |L ↑,R ↓⟩) /
√
2, and ZLR =

∑
i={0,1,±} Λ

LR
i [see

B. for some details concerning the derivation of Eq. (5.7)]. The thermal coefficients for fermions are
ΛLR
0 = eβω, ΛLR

1 = e−βω, ΛLR
+ = 1, and ΛLR

− = cos2 (θ). The thermal coefficients for bosons are
ΛLR
0 = eβω cos2 (θ), ΛLR

+ = cos2 (θ), and ΛLR
− = 1.
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Figure 5.2: Distilled entanglement and success probability for thermal input states with baths at
the same temperature. (a) Concurrence CLR = C(ĜLR

fin ) and (b) success probability PLR as functions
of the baths’ temperature T/ω for different values of θ, in the case of bosons.

We now provide some analytical results for both bosons and fermions. To quantify the amount of
distilled entanglement out of the thermal state we use the concurrence C. For bosons (η = 1), one gets
C(ĜLR

fin ) = max {0, C} with

C =
2− 6 cos2 (θ)

4 cos2 (θ) cosh (βω) + cos (2θ) + 3
, (5.8)

while the success probability is equal to

PLR = 1−
[
1 + 2 cosh (βω)

2 + 2 cosh (βω)

]
sin2 (θ). (5.9)

Both C and PLR range in [0, 1] and depend on the bath temperature and the spatial deformation parameter
θ. Differently, it is possible to show that for fermions (η = −1), the entanglement amount is always zero,
although the state is non-diagonal in the computational basis BLR.

For spatially distinguishable qubits (i.e., for θ = 0), the output is the separable state expressed
in Eq. (5.1) for both bosons and fermions. For an equally weighted spatial deformation of the wave
functions (θ = π/2) in the case of bosons, the state of Eq. (5.7) reduces to the maximally entangled
singlet state |ΨLR

− ⟩, as previously observed, with a success probability PLR = 1/[2 + 2 cosh (βω)], that
ranges between 0 and 1/4. For θ = π/2 in the case of fermions, the singlet state is ruled out and the
state of Eq. (5.7) becomes ĜLR

f =
∑

i={0,1,+}Z
−1
LRΛ

LR
i |ΨLR

i ⟩ ⟨ΨLR
i |, with ΛLR

0 = eβω, ΛLR
1 = e−βω,

and ΛLR
+ = 1.

Using Eqs. 5.8 and 5.9, valid for bosons, we display in Fig. 5.2 CLR = C(ĜLR
fin ) [panel (a)] and PLR

[panel (b)] as functions of the bath temperature for some values of θ, i.e., for different settings of the
spatial deformation of the wave functions. As commented above, for θ = π/2 entanglement is always
maximum irrespective of the bath temperature. For the other cases, contrarily to common expectations,
the amount of entanglement increases with the temperature until it reaches a stationary value. This
behavior can be explained with the fact that increasing the bath temperature leads to populating two-
qubit states which exhibit quantum correlations arising from indistinguishability effects due to the spatial
overlap. Instead, decreasing the temperature increases the likelihood of finding qubits in their ground
state |L ↓,R ↓⟩, which is a pure separable state from which entanglement cannot be distilled. The plot
of the corresponding success probabilities shows that the process is ineffective for very low temperatures
and that curves with smaller degrees of distilled entanglement are linked to curves with larger values of
PLR.
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Figure 5.3: Distilled entanglement and success probability for thermal input states with baths at
different temperatures. (a) Counter plot of the concurrence CLR and (b) success probability PLR as
functions of the temperatures TL/ω and TR/ω for θ = 2π/5, in the case of bosons.

0 5 10
T=!

0

0.25

0.32
0.37

0.50

P
m

ax
L
R

(a) 

0 5 10

T=!

0:35:

0:40:

0:45:

0:50:
3
op

t
(b) 

FLR(ĜLR
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Figure 5.4: Maximum success probability of entanglement distillation with thermal input states
in baths at the same temperature. (a) Maximum success probability Pmax

LR as a function of T/ω for
bosons subject to the constraints FLR(Ĝ

LR) > 2/3 (blue solid line)) and BLR(Ĝ
LR) > 2 (red dotted

line). The black dashed line shows the success probability in the case of perfect entanglement distillation.
(b) The corresponding optimized spatial deformation parameters θopt as a function of T/ω.

We have seen that the amount of the distilled entanglement depends on the baths’ temperature
T = TL = TR. However, it may be useful to understand how the indistinguishability-assisted entan-
glement distillation procedure works in the case when the two baths have different temperatures. Fig. 5.3
shows a contour plot of the distilled entanglement, quantified by the concurrence CLR, and its corre-
sponding success probability PLR in terms of two temperatures TL and TR in the case of a partial spatial
deformation corresponding to θ = 2π/5. As an interesting aspect, one can notice that by increasing the
difference between the two temperatures it is possible to augment the degree of the distilled entangle-
ment.

To conclude our study for the case of input thermal states, taking baths at the same temperature,
we report in Fig. 5.4 the maximum success probability Pmax

LR , obtained by maximizing Eq. (5.9) with
respect to θ under the constraints FLR(Ĝ

LR
fin ) > 2/3 and BLR(Ĝ

LR
fin ) > 2, also considering the ideal case

of maximum entanglement distillation when FLR(Ĝ
LR
fin ) = 1 [panel (a)]. We also plot the corresponding

optimized spatial deformation parameter θopt which maximizes the success probability for all the cases
[panel (b)]. The fidelity between the output state of Eq. (5.7) and the singlet state is in particular given

72



0 0.5 1
p

0

0.25

0.5

0.75

1

C
L
R

(a)

0 0.5 1
p

0

0.25

0.5

0.75

1

P
L
R

(b)

3 = :=2
3 = 2:=5
3 = :=3
3 = :=4

Figure 5.5: Entanglement distillation and success probability for Werner input states. (a) Concur-
rence CLR = C(ŴLR

fin ) and (b) success probability PLR as functions of the noise degree p for different
values of θ, for bosons.

by

FLR(Ĝ
LR
fin ) =

2

3 + cos (2θ) + 4 cos2 (θ) cosh(βω)
. (5.10)

When compared to the ideal case, the curve for the maximum success probability ensuring that the output
state violates the Bell inequality shows that the success probability is increased. This result can be further
improved considering that, as shown in Ref. [322], Bell inequality violation is a sufficient condition for
nonclassical teleportation but is not necessary: in fact, some states fulfilling the necessary condition of
FLR(Ĝ

LR
fin ) > 2/3 do not violate any Bell inequality but are still valuable for teleportation. The curve

of Pmax
LR under the condition FLR(Ĝ

LR
fin ) > 2/3shows that even larger values of the success probability

can be now achieved. The curves for the optimized spatial deformation parameters θopt provide useful
information to reproduce experimentally the above results.

5.4 Application II: Werner state

We now consider a Werner state [197] as input state, that is the experimentally relevant example of a
pure state subject to the action of white noise. In the usual formulation, the Werner state is a mixture of a
pure state and the maximally mixed state (white noise). It has been shown that simply bringing identical
particles with opposite pseudospins, initially in the elementary state |ΨLR⟩ = |L ↑,R ↓⟩, to spatially
overlap allows to access and generate entanglement by sLOCC measurements [16, 23]. However, in
a realistic scenario this process might be subject to a certain extent of white noise, modeled by the
maximally mixed state 1

4 ILR = 1
4

∑
σ,τ={↑,↓} |L σ,R τ⟩ ⟨L σ,R τ | with weight p. Under this condition,

the input state has the form of the separable (unentangled) Werner state

ŴLR
int = (1− p) |ΨLR⟩ ⟨ΨLR|+

p

4
ILR. (5.11)

Following the proposed procedure, we apply the spatial deformation followed by the postselection
measurement to distillate the entanglement. The output state is given by ŴLR

fin = Π̂
(2)
LRŴDΠ̂

(2)
LR/Tr(Π̂

(2)
LRŴD),

with the spatially deformed state ŴD = D̂(t)ŴLR
int D̂

†(t). The corresponding success probability is given
by PLR = 1

8 [6− p+ (p+ 2) cos (2θ)]. The explicit expression of the output state ŴLR
fin can be straight-

forwardly obtained by using the general Eqs. 5.1 and 5.5, and the structure of the coefficients reported in
Appendix B., where some indications to derive the output state are given.

For bosons, when θ = π/2, the maximum entanglement distillation to the singlet state is possible
for any noise degree with a success probability PLR = 2−p

4 ranging from 1/4 (maximum noise, p = 1)
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Figure 5.6: Maximum success probability of entanglement distillation with Werner input states.
Maximum success probability Pmax

LR as a function of the noise degree p for bosons subject to the con-
straints FLR(Ŵ

LR
fin ) > 2/3 (blue solid line) and BLR(Ŵ

LR
fin ) > 2 (red dotted line). The black dashed line

shows the success probability in the case of perfect entanglement distillation, PLR = (2− p)/4. (b) The
corresponding optimized spatial deformation parameters θopt as a function of p.

to 1/2 (no noise, p = 0). Differently, for fermions, maximum entanglement distillation is only possible
when there is no noise (p = 0), while generally the amount of distilled entanglement is noise dependent.

For the bosonic case, in Fig. 5.5 we plot the degree of distilled entanglement, quantified by the
concurrence CLR [panel (a)], and its corresponding success probability PLR [panel (b)] as functions of
the noise parameter p for different values of θ. We find that to distill a given degree of entanglement from
a Werner state with a high amount of noise (e.g., p > 0.5), a spatial deformation more equally distributed
onto the two sites (θ closer to π/2) may be required, leading to a larger spatial overlap. This property
comes at the cost of a smaller success probability.

We now study the maximization of the success probability with respect to θ under the desired con-
straints FLR(Ŵ

LR
fin ) > 2/3 and BLR(Ŵ

LR
fin ) > 2. In particular, the expression for the fidelity between

the output state ŴLR
fin and the singlet state is

FLR(Ŵ
LR
fin ) =

2(2− p)

6− p+ (p+ 2) cos (2θ)
. (5.12)

In Fig. 5.6, we plot the maximum success probability Pmax
LR under the two desired conditions for fidelity

and Bell inequality violation as a function of the noise parameter p, also considering the ideal case of
maximum entanglement distillation when FLR(Ĝ

LR
fin ) = 1 [panel (a)]. We also display the optimized

spatial deformation parameter θopt which maximizes the success probability for all the cases [panel (b)].
We see how the distillation performance depends on the amount of noise in the initial state, pointing out
that relatively high probabilities of success can be obtained even for large values of the noise parame-
ter. Looking at the curve associated to the violation of the CHSH-Bell inequality, we point out that the
maximum success probability Pmax

LR becomes very high for very low values of the noise degree (p→ 0),
with the output state resulting close to a pure entangled state for p ̸= 0, and being a pure non-maximally
entangled Bell-like state for p = 0. This fact has a relevant operational consequence within the proposed
indistinguishability-assisted entanglement distillation: under weak white noise, small spatial deforma-
tions (θ0), and thus small amounts of spatial overlap between the qubits, are sufficient to efficiently
prepare an entangled state violating the Bell inequality (as one can see from the corresponding curve for
the optimized spatial deformation parameter θopt). Such an observation is in line with the theorem that
any pure Bell-like state violates a Bell inequality [324]. From Fig. 5.6 we also see that Pmax

LR reaches
the minimum value of approximately 0.32 when the input state is a maximal mixture (p = 1). After
comparing with to the ideal case (FLR(Ŵ

LR
fin ) = 1), one can clearly see how much we can increase the
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success probability, yet guaranteeing that the distilled entangled state is a resource for quantum informa-
tion processing such as teleportation. The curve of Pmax

LR under the condition FLR(Ĝ
LR
fin ) > 2/3 shows

in particular that a minimum value of approximately 0.37 can be obtained for p = 1. Once again, the
curves for the optimized spatial deformation parameters θopt can be useful from an experimental point
of view.

5.5 Conclusions

In this work, we have introduced an entanglement distillation protocol enabled by indistinguishability
effects originating from particle statistics and spatial overlap of two identical qubits. The spatial overlap
is created by means of a spatial deformation of the wave functions which are distributed towards two
distinct measurement sites. The protocol is characterized by a success probability, linked to postselecting
the cases where only one particle is found at each site.

We have shown that maximum entanglement distillation is always possible for bosons provided that
the initial input mixed state contains at least one term where the two qubits have opposite pseudospins,
and determined the corresponding success probability. We have then studied the trade-off between the
amount of distilled entanglement and the success probability of the procedure using for the initial con-
figuration thermal Gibbs states and Werner states. We have maximized the success probability with
respect to the spatial deformation parameter θ at the expense of a lower degree of entanglement which
yet guarantees Bell inequality violation and teleportation usefulness. The latter is identified using a
threshold based on the fidelity of the output state to the maximally entangled singlet state. This analysis
is particularly relevant in practical scenarios where efficiency optimization is required.

For the case of initial thermal states we have found that increasing the common temperature of the
two local baths is beneficial to the distillation protocol. In the case of different local temperatures,
increasing their difference can be also exploited to augment the final entanglement. For the case of
initial Werner states, we have found that entanglement distillation can be obtained also for any values of
the noise parameter p by increasing the degree of indistinguishability at the expense of a lower success
probability.

It is worth mentioning that our protocol is similar to a local filtering protocol [315] which allows
entanglement distillation. However, we remark that the filtering process is here played by the controllable
spatial overlap of identical particles and their statistical nature, that is by indistinguishability effects.

The proposed procedure is amenable to be implemented in the lab, especially in quantum optics
platforms. In fact, several experimental tests have been recently realized which exploit the required
indistinguishability effects via photons and optical devices [23, 24, 31, 26, 25, 133]. Based on the theo-
retical scheme of Fig. 5.1, the spatial deformation is a two-mode unitary gate produced by a conventional
beamsplitter. Hence, the beamsplitter is why photon bunching, or Hong-Ou-Mandel effect [130], occurs
when both photons are indistinguishable in all their degrees of freedom (polarization, temporal, and so
on). Since photons are temporally indistinguishable, they simultaneously arrive at the detectors in the
two separated regions, where we only postselect one photon in each region (by means of sLOCC) to
generate the entanglement.

However, as demonstrated experimentally in Ref. [23], photons do not always need to cross paths
at the same beamsplitter. Depending on the input state, a setup can be assembled where the optical
paths of the photons remain detached along their travel until they reach the detection regions where the
photons eventually spatially overlap. In such a scenario, two beamsplitters independently distribute each
particle wave packet towards two remote operational sites [23, 133] according to the spatial deformations
D̂φ(θ) |0⟩ = cos

(
θ
2

)
|φL⟩ + ieiϕ sin

(
θ
2

)
|φR⟩ and D̂χ(θ

′) |0⟩ = ieiϕ
′
sin
(
θ′

2

)
|χL⟩ + cos

(
θ′

2

)
|χR⟩,

where |φ(χ)⟩L and |φ(χ)⟩R are orthogonal spatial modes and D̂φ(χ)(θ) is the corresponding spatial
deformation operator. The particles are then indistinguishable for the final local detectors. The sLOCC is
then performed and the entanglement gets distilled. These optical experimental settings can also simulate
different particle statistics [325, 133], such as fermions and anyons. The above apparatuses are then well
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suited to design experiments which realize the indistinguishability-assisted entanglement distillation not
only for bosonic qubits via photons but also for simulated fermionic particles. Such achievements may
open the way to developing quantum repeaters in quantum networks based on indistinguishability effects.

A. Details on the spatial deformation step

Let us consider a generic state with a qubit with pseudospin σ and another one with pseudospin τ re-
spectively in regions L and R: |L σ,R τ⟩ = L̂†

σR̂
†
τ |0⟩, where L̂†

σ (R̂†
τ ) is qubit creation operator of with

pseudospin σ (τ ) in region L (R). In the step I of the procedure, each operator is spatially deformed as
L̂†
σ(θ) = D̂(θ)L̂†

σD̂†(θ) and R̂†
τ (θ) = D̂(θ)R̂†

τ D̂†(θ), resulting in

L̂†
σ(θ) = cos

(
θ

2

)
L†
σ + ieiϕ sin

(
θ

2

)
R†
σ,

R̂†
τ (θ) = ie−iϕ sin

(
θ

2

)
L†
τ + cos

(
θ

2

)
R†
τ . (5.13)

Therefore, the single-particle states are |ψ σ⟩ = L̂†
σ(θ) |0⟩ and |ψ′ τ⟩ = R̂†

τ (θ) |0⟩. Also, the elementary
two-qubit states for different pseudospins (σ ̸= τ ) are, for both fermions and bosons,

|ψ σ, ψ′ τ⟩ = i

2
sin (θ)

(
e−iϕ |L σ,L τ⟩+ eiϕ |R σ,R τ⟩

)
+cos2

(
θ

2

)
|L σ,R τ⟩ − η sin2

(
θ

2

)
|L τ,R σ⟩ , (5.14)

which satisfy particle exchange symmetry: |L σ,R τ⟩ = η |R τ,L σ⟩. However, when qubits’ pseu-
dospins are identical (σ = τ ), the situation drastically changes depending on particle statistics. For
example, when we have fermions the qubits anti-bunch in the state L̂†

σ(θ)R̂
†
σ(θ) |0⟩ = |L σ,R σ⟩, where

each qubit resides in a different site. Differently, the elementary two-particle state for bosons becomes

|ψ σ, ψ′ σ⟩ =
i√
2
sin (θ)

(
e−iϕ |L σ,L σ⟩+ eiϕ |R σ,R σ⟩

)
+cos (θ) |L σ,R σ⟩ , (5.15)

where bosonic bunching happens for θ = π/2 since both particles are in the same regions. Taking into
account these considerations allows for deriving every element of the deformed state in Eq. (5.3).

B. Details on the activation step

In the activation step (step II of the procedure), we select only one particle per region using the projective
measurement Π̂(2)

LR. The nonzero probability coefficients in Eq. (5.5) for fermions are

Λ↑,↑
↑,↑ =

1

PLR
λLR↑,↑ , Λ↓,↓

↓,↓ =
1

PLR
λLR↓,↓ ,

Λ↑,↓
↑,↓ =

1

PLR

[
λLR↑,↓ cos

4

(
θ

2

)
+ λLR↓,↑ sin

4

(
θ

2

)]
,

Λ↓,↑
↓,↑ =

1

PLR

[
ΛLR
↓,↑ cos

4

(
θ

2

)
+ λLR↑,↓ sin

4

(
θ

2

)]
,

Λ↓,↑
↑,↓ =

1

4PLR

[
sin2 (θ)

(
λLR↑,↓ + λLR↓,↑

)]
, (5.16)

with Λ↓,↑
↑,↓ = Λ↑,↓

↓,↑ and the success probability is PLR = 1− 1
2 sin

2 (θ)(λLR↑,↓ + λLR↓,↑).
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On the other hand, the nonzero bosonic probability coefficients of Eq. (5.5) are

Λ↑,↑
↑,↑ =

1

PLR
λLR↑,↑ cos

2 (θ), Λ↓,↓
↓,↓ =

1

PLR
λLR↓,↓ cos

2 (θ),

Λ↑,↓
↑,↓ =

1

PLR

[
λLR↑,↓ cos

4

(
θ

2

)
+ λLR↓,↑ sin

4

(
θ

2

)]
,

Λ↓,↑
↓,↑ =

1

PLR

[
λLR↓,↑ cos

4

(
θ

2

)
+ λLR↑,↓ sin

4

(
θ

2

)]
,

Λ↓,↑
↑,↓ =

−1

4PLR

[
sin2 (θ)

(
λLR↑,↓ + λLR↓,↑

)]
, (5.17)

with Λ↓,↑
↑,↓ = Λ↑,↓

↓,↑ and the success probability is PLR = 1− 1
2 sin

2 (θ)
(
1 + λLR↑,↑ + λLR↓,↓

)
.

It is worth mentioning that the derivation of Eq. (5.7) involves substituting the following thermal
coefficients in Eq. (5.16) and Eq. (5.17): λLR↑,↑ = eβω, λLR↑,↓ = 1, and λLR↓,↑ = 1, and λLR↓,↓ = e−βω. After
diagonalization, Eq. (5.7) can be obtained. This approach is also applicable to the Werner state, where
the substitutions λLR↑,↑ = p/4, λLR↑,↓ = 1 − 3p/4, and λLR↓,↑ = p/4, and λLR↓,↓ = p/4 lead to the final state
for entanglement distillation.
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Part II

Quantum walk for quantum information
processing
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Chapter 6
Introductory remarks II

In part II of my PhD thesis, I explore the application of quantum walks in quantum information process-
ing. This part consists of chapters that are based on previously published papers in reputable scientific
journals. However, before delving into the results, I provide a brief introduction to the background.

The concept of quantum random walk serves as the quantum counterpart to classical random walks
and was initially introduced by Aharonov et al. in 1993 [44]. Quantum walks model the coherent
evolution of quantum particles, and their most distinguished characteristic is the ability of the walker
to exist in superposition states during propagation. This property leads to the emergence of interference
effects, which significantly differentiate quantum walks from their classical counterparts. Quantum walks
have demonstrated computational speed-up in various algorithms such as spatial search [45]. Over the
past decade, they have evolved into a universal computational model and have been employed in the
design of quantum computers [46, 47].

In general, quantum walk models can be categorized into two main types: discrete-time and contin-
uous quantum walks. As the primary focus of this thesis is on the discrete-time quantum walk (DTQW),
I provide a brief overview of discrete classical and quantum random walk models. Additionally, I will
discuss the key properties of ordered and disordered quantum walks, emphasizing the aspects that are
relevant to our investigation. Finally, I will review a background framework for utilizing quantum walks
as generalized measurement devices, which will offer a clear perspective on our results concerning high-
dimensional bi-photon interference on the coupled-fiber loop systems.

6.1 Classical random walk

A classical discrete random walk on a line is a specific type of stochastic process. In its simplest form,
a classical random walk involves a particle, referred to as "the walker", making jumps to the left or right
based on the outcomes of a probabilistic system known as "the coin", This coin system produces two
mutually exclusive outcomes, which determine the particle’s movement according to a probability dis-
tribution. Discrete random walks can be extended to higher-dimensional spaces or graphs, with classical
random walks on graphs being understood as Markov chains.

Let us consider a stochastic process denoted as Zk, which represents the path of a particle moving
along an axis. The particle takes steps of one unit at time intervals, and each Zk corresponds to the
particle’s position at time k [326]. At each step, the particle has a probability p of moving to the right
and a probability q = 1 − p of moving to the left. We introduce random variables, Xi, which indicate
the direction taken by the particle at a particular step i. These variables are independent and identically
distributed, taking the values of 1 or −1 based on the outcome of the aforementioned probabilistic event.
Assuming an initial position Z = 0, the position at a certain step n is given by Zk = X1 +X2 +X3 +
· · ·+Xk. A random variable Yi is defined such that if it is zero, the walker will go right as Xi = 1, and
if it is one, the walker will go left as Xi = −1. The random variable follows a binomial distribution.
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Therefore, the probability of finding the walker at position X after k steps is given by

P (X, k) =

(
k

k+X
2

)
p

k+X
2 (1− p)

k−X
2 , (6.1)

where
(
n
k

)
represents the binomial coefficient. The expectation value of finding the particle at position

X after k steps is ⟨X⟩ = k · (2p− 1). Additionally, the expectation value of ⟨X2⟩ = k · (2p− 1)2, one
gets that the variance is given by

Var(X) = 4kp(1− p). (6.2)

Indeed, the variance (or, equivalently, the standard deviation) provides valuable information about the
spread or deviation of the particle’s positions from the mean value in the random walk. A larger variance
indicates a greater dispersion of the particle’s positions around the average value. In the case of a classical
random walk, the variance is proportional to the number of steps taken, Var(X) ∝ k. This means that
as the number of steps increases, the spread of the particle’s positions also increases linearly. This linear
spreading pattern is a characteristic feature of classical random walks.

6.2 Discrete-time quantum walk on a line

The quantum walk is a quantum counterpart of the classical random walk, taking advantage of quantum
phenomena such as superposition, interference, and entanglement. In the following, I explain the key
components of this model.

The state. A DTQW comprises several essential components: a walker, a coin, evolution operators that
involve both the coin and shift, and a set of observables. The walker is a quantum system described by
an infinite but countable dimensional Hilbert space denoted as Hp. Typically, the basis vectors of Hp are
used to represent the "position sites" of the walker, denoted as |x⟩ ∈ Hp.

In the case of the quantum walker moving on a line with discrete sites in the simplest scenario, the
coin represents a quantum system residing in a 2-dimensional Hilbert space spanned by basis vectors |0⟩c
and |1⟩c, denoted as Hc. Therefore, the total state of the quantum walk is defined in the tensor product
space H = Hp ⊗ Hc, encompassing both the position and coin aspects. Consequently, the elementary
form of the quantum walker state is given by the joint state of the position and its corresponding coin,
expressed as |ψ⟩ = |x, c⟩.

The evolution. The evolution of the DTQW can be divided into two parts, which resemble the behavior
of a classical random walk. Similar to the classical case, though, a coin will drive the system’s evolution
by going left or right based on the outcome of the quantum coin. In the quantum case, the role of the
coin operator is to transform the coin state into a superposition, introducing quantum randomness into
the evolution. Afterward, a conditional shift operator moves to the quantum system. The most general
form of a 2-dimensional quantum coin operator, denoted as Ĉ, is given by

Ĉ =

( √
p eiφ1

√
1− p

eiφ2
√
1− p −ei(φ1+φ2)√p

)
, (6.3)

where p is the bias controlling the probabilities of transitioning between the basis states |0⟩c and |1⟩c,
and φ1 and φ2 are the phase factors associated with the coin operator [327]. These phases introduce
additional quantum interference effects in the evolution of the quantum walk and can influence the overall
behavior of the system. If we set the bias p = 1/2 and φ1 = φ2 = 0, the general form reduces to the
most commonly employed coin operator, the Hadamard operator:

Ĥ =
1√
2

(
1 1
1 −1

)
. (6.4)
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(a) Random walk (b) Quantum walk
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Superposition principle! 

Figure 6.1: Comparison between spatial distribution of quantum walk and Classical random Walk.
In the left, we report the spatial distribution of a classical random walker after 100 evolution steps:
the probability of finding the walker is localized around the initial position (x = 0) and features the
characteristic Gaussian shape. On the right, we see the completely different case of a quantum walker,
which started its evolution at position x = 0, with two specific initial coin states.

The conditional shift operator is a unitary operator that determines the movement of the walker based
on the state of the coin system, which can be expressed in the following form:

Ŝ = |0⟩c ⟨0|c ⊗
∑
x

|x+ 1⟩p ⟨x|p + |1⟩c ⟨1|c ⊗
∑
x

|x− 1⟩p ⟨x|p . (6.5)

Specifically, if the coin system is in |0⟩c, the walker will move one step forward. Conversely, if the coin
state is in the other basis state, as |1⟩c, the walker will move one step backward. The shift operator is
performed in a coherent manner, preserving the quantum nature of the system. Thus, the unitary operator
representing a single step of the DTQW Û = Ŝ · (I⊗ C) with I denoting the identity operator. To obtain
the unitary evolution of a single quantum walker, one iteratively applies the coin and conditional shift
operators for the desired number of steps, denoted as k. For instance, after k steps, the state of the walker
can be expressed as:

|ψk⟩ = (Ŝ · Ĉ)(Ŝ · Ĉ) . . . (Ŝ · Ĉ) |ψ0⟩ . (6.6)

Here, Ĉ =
∑

x |x⟩ ⟨x| ⊗ Ĉ represents the time-position dependent coin operator. In the case of time-
independence, the evolution simplifies to |ψk⟩ = Ŝ(Î⊗ Ĥ)Ŝ(Î⊗ Ĥ) . . . (Î⊗ Ĥ) |ψ0⟩ .

Observables. Observables play a crucial role in quantum walks by extracting valuable information and
showcasing advantages over classical random walks. One notable advantage arises from the interference
effects that emerge after multiple applications of the evolution operator. Quantum entanglement between
the walk’ position and coin also contribute to these benefits. These advantages comes from the mea-
surements or observable that we choose to employ to extract information from the composite quantum
system.
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Specifically, one might be interested in studying the average behavior of the quantum walk, such as
the probability distribution in position, which can be represented by the operator Mp = |x⟩p ⟨x|p. In
Fig. 6.1, an illustration is provided that showcases the comparison between a quantum walker dynam-
ics and its classical counterpart. The probability distributions of the classical and quantum walks are
numerically plotted. In the classical case, the probability of finding the walker is localized around the
initial position (x = 0) and features the characteristic Gaussian shape. On the other hand, the quan-
tum walker exhibits a distinct behavior. Depending on the initial coin state, which can be set as |0⟩c or
(|0⟩c + |1⟩c) /

√
2, the probability distribution focuses on a position far from the center. Additionally,

one may wish to measure the spreading behavior of the DTQW and compare it with its classical coun-
terpart. Similar to classical case The operator X̂ that measures the walker position is the operator of
interest, since the variance of the position operator provides a simple measure to quantify the spread of
the walker

σ2(X̂) = ⟨X2⟩ − ⟨X⟩2, (6.7)

as a function of the number of steps. In chapter VII and VIII, I will get back to this point.

6.3 The role of disorder

Disorder in DTQWs refers to the introduction of randomness or irregularity in the evolution of the walker.
In a standard quantum walk, the evolution is determined by a fixed set of unitary operators, namely coin
and shift operator. For an ordered quantum walk, we say the spreading behavior is ballistic since the
variance measure of the position is proportional to a quadratic number of steps σ2(X̂) ∝ t2 compared
to the classical case, which is linear. This means the quantum walker spreads quadratically faster in
position space. However, when disorder is introduced, these rules exhibit variations. The role of disorder
in DTQWs can have several effects on the behavior of the system. Here are some key aspects:

• Localization. The disorder can lead to a phenomenon called Anderson localization [48], where
the walker becomes localized or confined to a particular region of the lattice. This contrasts with
the spreading behavior observed in an ordered quantum walk. The reason is that a form of disor-
der, such as time-independent or static disorder, disrupts the interference patterns and can cause
the probability distribution to become localized around specific positions. This effect applies to
quantum walks and has been investigated using physical quantum walk platforms such as photon-
ics [49, 50, 51, 52]. In Chapter VII, I will discuss how random time-independent or static disorder
leads to disorder.

• Decoherence. Disorder can be introduced in the evolution of a quantum walk through random dis-
order, which is a physical phenomenon that typically arises from the interaction between quantum
systems and their environment. In fact, with disorder, randomness disrupts constructive interfer-
ence and leads to a loss of coherent evolution. However, there are cases in which decoherence
can be considered useful, such as in the development of quantum algorithms [75]. Decoherence
through measurement or free interaction with a classical environment provides a typical framework
for studying the transition of quantum walks into classical random walks [72, 328]. Nevertheless,
disorder can also be coherently imposed [56] or introduced through random disorder, which will
be discussed in the next chapter.

• Anomalous and normal diffusion. The linear increase in the mean square displacement, as de-
scribed in the previous sections, with respect to the number of steps, has become universally rec-
ognized as indicative of normal transport. Anomalous diffusion refers to any stochastic process
that deviates from this linear growth trend. In particular, ordered quantum walks exhibit a ballis-
tic spreading pattern in the absence of disorder. Processes that show a superlinear growth in the
mean square displacement are called superdiffusive phenomena [329, 330, 331]. Superdiffusion
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is observed in diverse transport or propagation processes, including complex biological environ-
ments [332, 74, 333], chaotic Hamiltonian systems [334, 335], transport in disordered systems
[336, 337, 338], quantum optical systems [339], and single-molecule spectroscopy [340, 341].

On the other hand, disorder can lead to subdiffusion, where the spreading of the walker is slower
than that observed in classical random walks. This occurs when random fluctuations introduced by
disorder hinder the walker’s efficient exploration of the entire lattice [342, 343, 344, 345, 346, 347].

In Chapter VII of my Ph.D. thesis [120], I propose a quantum probing protocol that utilizes quan-
tum walks to investigate the spreading of quantum information. As an example, we employ the
p-diluted model [348], which can be simulated using an optical setup. This model maintains the
unitarity of the evolution and is characterized by spatial and temporal disorder. It allows for the
exploration of transitional regimes and the manipulation of propagating quantum walkers.

• Topological Effects. Disorders in quantum walks can interact with the underlying topology of
the lattice. Depending on the specific type of disorder and the lattice structure, the interplay be-
tween disorder and topology can give rise to interesting phenomena, such as topological Anderson
insulators or the appearance of localized edge states [53, 54].

• Non-classical enhancement. While disorder is often considered a source of unwanted noise,
it can actually be harnessed and manipulated to achieve specific goals in quantum information
processing, quantum simulations, and other quantum technologies. In the context of quantum
walks, disorder can lead to the generation of entanglement between the walker and coin states, as
well as correlations between different parts of the system [55].

Furthermore, in my Ph.D. thesis [56], as discussed in Chapter VIII, we demonstrate the optimiza-
tion of disorder control to enhance the quantum correlation between two indistinguishable photons
in separate modes of a quantum walk network. This research highlights the potential for utilizing
and controlling disorder to achieve desired outcomes and advance the field of quantum information
science

6.4 Discrete-time quantum walk as generalized measurement device

In addition to their role in quantum algorithms and simulations, DTQWs can also be viewed as gener-
alized measurement devices [57]. In quantum mechanics, a measurement typically involves obtaining
information about a quantum system by projecting it onto a specific basis state. Similarly, in a DTQW,
the walker’s position can be interpreted as a measurement outcome.

It has been shown that a DTQW can be used to implement a generalized measurement in terms of a
positive operator value measure (POVM), where

∑
i Ê

†
i Êi = Î and Êi represents the POVM elements.

The evolution of a general quantum walk, denoted as Û =
∑

i |i⟩ ⟨ψin|, maps the initial state |ψin⟩ to the
final state |i⟩. Therefore, projective measurements M̂ = |i⟩ ⟨i| on the final state correspond to POVMs
on the initial state.

For clarity, let me give an example to illustrate how a simple quantum walk can be interpreted as an
unambiguous state discrimination protocol [15]. In this protocol, we consider a set of quantum states
represented by density operators. These states are not necessarily orthogonal, meaning they may overlap
in their quantum properties. The challenge is to design a measurement strategy that minimizes the
probability of making an incorrect assignment while allowing for an inconclusive outcome when the
states cannot be unambiguously distinguished.

Various measurement strategies have been developed to achieve unambiguous state discrimination,
such as the Helstrom measurement and the minimum-error measurement. These strategies involve con-
structing a set of positive operator-valued measures (POVMs) that correspond to different measurement
outcomes. The design of these POVMs aims to maximize the probability of correctly identifying each
state while minimizing the probability of making an erroneous assignment. As an example, let us con-
sider two non-orthogonal pure states:
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|ψ1⟩ = cos
θ

2
|0⟩+ sin

θ

2
|1⟩ , |ψ2⟩ = cos

θ

2
|0⟩ − sin

θ

2
|1⟩ . (6.8)

The goal is to design an optimal measurement strategy to discriminate between these states. To do so, we
can initialize the quantum walk with the particle located at the origin and in one of the two given states:

|ψ±⟩ = cos
θ

2
|1⟩p |1⟩c ± sin

θ

2
|1⟩p |1⟩c , (6.9)

where |1⟩p and |1⟩c represent the position and coin states, respectively. The dynamic tunability of the
coin’s bias, as given by equation (6.10), is essential for performing the state discrimination protocol. In
the next step, we perform two different coin operations at positions x = 1 and x = −1, respectively, as
follows:

Ĉ(x = 1, 1) =

(√
1− tan2 θ/2

√
tan2 θ/2√

tan2 θ/2 −
√
1− tan2 θ/2

)
, Ĉ(x = −1, 1) =

(
0 1
1 0

)
. (6.10)

Therefore, the first step evolution can be represented as Û1 = Ŝ · Ĉ(x = −1, 1)⊗|−1⟩ ⟨−1|+ Ŝ · Ĉ(x =
1, 1)⊗ |1⟩ ⟨1|. After the first step, the evolved states are given by:

|ψ±⟩ =
√
cos θ |2⟩p |0⟩c + sin

θ

2
|0⟩p |1⟩c ± sin

θ

2
|0⟩p |0⟩c . (6.11)

For the final step, we choose the coin operator to be the identity everywhere except at position x = 0,
where we apply the Hadamard coin operator, (6.4). This results in the following expression:

|ψ±⟩ =
√
cos θ |3⟩p |0⟩c ±

√
2 sin

θ

2
|±1⟩p |0⟩c . (6.12)

As a consequence, if a particle is measured at position x = 1, it immediately reveals that the initial
state was |ψ+⟩, whereas a measurement at position x = −1 indicates the initial state was |ψ−⟩. Indeed,
as demonstrated in Ref. [57], it has been shown that any desired positive operator-valued measures
(POVMs) can be constructed. Furthermore, experimental implementations of single-qubit generalized
measurement scenarios have been achieved through a quantum walk model, utilizing the encoding of
qubit states using single-photon polarization and optical paths [66, 67]. This technique has also been
extended to enable generalized measurements on qudits [67]. Moreover, the application of this approach
to two-qubit systems has allowed for the implementation of deterministic collective measurements on
two identically prepared qubits using a controlled-quantum walk based on an optical mesh [68].

In Chapter X of my thesis, I revisit this topic and delve into these achievements once again. Specif-
ically, I demonstrate how the DTQW model can be effectively utilized to perform high-dimensional
bi-photon quantum interference and extract visibility in a coupled fiber-loop system.

6.5 Physical realization of discrete-time quantum walk

Numerous proposals and experimental realizations have been made for physically realizing different
types of quantum walks using various optical and solid-state schemes. The implementation of DTQWs
distinguishes itself by how it encodes the coin and position of the quantum walkers. Different physical
platforms have been explored, including ion trap systems [58], cavity quantum electrodynamics systems
[59], superconducting qubits [60], and ultra-cold atoms [61, 62]. In addition, quantum walks can also be
implemented using single photons and linear optical elements [63, 64]. Surprisingly, it has been discov-
ered that the quantum nature of light is not essential for the development of quantum walks. Classical
optics can simulate quantum walks using an interferometric analogy [65]. For a more systematic review,
please refer to Ref. [119]. However, since my thesis focuses on the DTQW implementation in quantum
optics, I will review some previous implementations in the following paragraphs.
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In the conventional approach in optical systems, optical paths are commonly used to encode the po-
sition, while polarization is employed to encode the quantum walker’s coin state [63, 64]. This approach
involves utilizing an optical mesh consisting of spatially separated optical elements, phase shifters, beam
splitters, and other components to construct a quantum processor [66, 67, 67, 68]. Additionally, it en-
ables extensions beyond ordered quantum walks by incorporating elements like disorder [348, 347, 56]
or mesh topology [54].

However, these optical systems tend to be bulky, and the physical complexity increases, especially
when dealing with a large number of steps. To overcome these challenges, one approach is to simulate
quantum walks using a bulk-optics multipass double Sagnac interferometer. In my Ph.D. thesis, specifi-
cally in Chapter VIII [56], I will demonstrate the capability of this implementation to introduce control-
lable disorder, aiming to enhance the quantum correlation between two indistinguishable photons. Worth
mentioning that, by utilizing an array of on-chip coupled waveguides [349, 212], it becomes feasible to
implement quantum walks on chips, significantly reducing the system’s size. This approach enables the
simulation of various quantum phenomena, including bosonic bunching, fermionic anti-bunching [212],
two-particle Anderson localization [52], and other related phenomena.

Additionally, orbital angular momentum (OAM) can serve as a positional attribute, functioning as a
synthetic dimension for simulating the model [69, 70]. Such an implementation enables an increase in
the dimensions of the quantum walk, including the position and coin space [350], providing controlla-
bility for the quantum coin for high-dimensional state transfer and engineering [351]. Another approach
involves using an optical-fiber loop configuration that mimics the behavior of a synthetic photonic lat-
tice to simulate the DTQW [71, 72]. This method leverages the time-bin degrees of freedom, where
discrete-time modes offer advantages such as noise resilience and ease of manipulation using standard
telecom-compatible components [352, 82, 83, 84]. This reduction in resource requirements enhances the
practicality of photonic platforms for various quantum information tasks. Furthermore, the implemen-
tation of the synthetic photonic lattice offers excellent testbeds to simulate intriguing effects, including
decoherence [72] and parity-time symmetry [85]. In chapter X of my thesis, I will present the imple-
mentation of a fully fiber-integrated coupled loop system. This system will be utilized for tasks such as
bi-photon state preparation, manipulation, and the realization of time-bin two- and four-level interference
between two photons.
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Chapter 7
Readout of quantum information spreading
using disordered quantum walk

Abstract

We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information
spreading pattern. We employ Quantum Fisher Information, as a figure of merit, to quantify extractable
information about an unknown parameter encoded within the Quantum Walk evolution. Although the
approach is universal, we focus on the coherent static and dynamic disorder to investigate anomalous
and classical transport as well as Anderson localization. We provide a feasible experimental strategy to
implement, in principle, the quantum probing protocol based on the quantum Fisher information using
a Mach-Zehnder-like interferometric setup. Our results show that a Quantum Walk can be considered
as a readout device of information about defects and perturbations occurring in complex networks, both
classical and quantum. This Chapter is related to Publication 5 in the List of Publications.

7.1 Introduction

Quantum Walk (QW) is the quantum equivalent of a random walk, which benefits from quantum features
such as quantum superposition, interference and entanglement [44, 353, 326, 354]. In contrast with a
classical walker, the quantum walker spreads quadratically faster in position space [44, 353, 326, 354,
355]. This notion brings up a motivation to introduce algorithms for quantum computers that solve
the problem exponentially faster than the best classical algorithm [46, 47]. On the other hand, QW
provides a powerful model to describe energy transport phenomena in heterogeneous systems either
biological, in the case of photosynthesis [74, 333], or solid state ones, in the case of Luttinger liquids
[356]. Besides, nonclassical features play a substantial role in the dynamics of a quantum walker, as a
sign for quantum coherence effects in biological systems [357, 358]. Finally, it is worth noting that the
QW model is applicable to simulate a wide range of quantum phenomena such as topological phases
[54, 359], neutrino oscillations [360, 361], and relativistic quantum dynamics [362, 363, 364].

A relevant quantity, useful to characterize the walk, is the Mean-Square Displacement (MSD) of
the walker in absence of bias. The linear growth of the MSD as a function of the evolution time has
become the universal identifier of what is known as normal transport. Any stochastic process that does
not follow a linear growth trend with time is called anomalous. In particular, processes characterized by a
superlinear growth of the MSD are usually addressed as superdiffusive [329, 330, 331]. There are several
cases in which superdiffusion settles in transport or propagation processes, such as complex biological
environments [332, 74, 333], chaotic Hamiltonian systems [334, 335], transport in disordered systems
[336, 337, 338], quantum optical systems [339], single-molecule spectroscopy [340, 341]. On the other
hand, numerical evidence has been notified for the existence of subdiffusive transport [342, 343, 344,
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Figure 7.1: Typical representation of a quantum probing protocol using a Mach-Zehnder-like interfer-
ometer. A phase difference ϕ is applied between two paths which is acquired by the probe thanks to an
adjustable path length L.

345, 346]. Also, an extremely slow process of matter-wave spreading, subdiffusion transport, has been
experimentally implemented in Bose-Einstein condensates [365].

In recent years, there has been substantial interest in formulating QW models that can exhibit differ-
ent transport behaviors with respect to the typical one, consisting in a MSD growing quadratically with
time. The spreading behavior of quantum walkers can be modified by suitably tuning the evolution of a
quantum walker through various types of disorder [52, 366, 348] and decoherence effects [72]. Due to
the latter ones, it has been shown that the ballistic growth of the variance changes to a superdiffusive one,
reaching the diffusive spread [348]. Moreover, by means of the same techniques, the subdiffusive region,
between diffusive and Anderson localization regime [48], can be exploited [347]. On the contrary, there
are few reports in which a QW in presence of evolution nonlinearities avoids complete trapping in a finite
region of the lattice. In these cases, the spreading has to slow down to a subdiffusive case, but it does not
converge, generating a phenomenon known as delocalization of the wave packet [367].

In the context of quantum probing strategies [368, 369, 370, 371, 372], one may characterize proper-
ties of a complex environment, such as fragile biological samples, by a small and controllable quantum
probe that interacts with the bigger complex system. These features may be conveyed through error
analyses of the quantum probe, having a natural connection with the theory of quantum parameter es-
timation [373, 374, 375, 376, 377, 310] where unknown parameters are inferred via repeated measure-
ments on the system of interest. The quantum Fisher information (QFI), that depends on the kind of
probe-environment interaction, is used to measure this error through the quantum Cramer-Rao bound.

Despite the high number of studies about transport features in a QW, as far as we know, investigations
in a quantum probing fashion have remained elusive. The idea behind this work is to infer how much in-
formation about the features of the QW network can be extracted using quantum estimation merits from
the characteristics of the quantum walker evolution. In quantum metrology, the extractable information
about an unknown parameter, such as a phase ϕ, is usually given by the quantum Fisher information
(QFI), which is also linked to the measurement accuracy of the estimation strategy. We take quantum
Fisher information for granted to investigate the different transport regimes of information due to the
properties of the quantum network. From another perspective, the growth pattern of QFI is a faithful in-
dicator to describe defects and perturbations occurring in complex networks, both classical and quantum.
We find that the disorder pattern plays a significant role in the spreading pattern of quantum information.
The growth trend of QFI allows one to characterize the anomalous and normal spreading pattern, and
also Anderson localization of the walker.

7.2 Discrete-time Quantum walk based quantum probe

7.2.1 State-of-art quantum probing scheme

Due to the sensitivity of the probe to the perturbations induced by the environment, quantum probes may
effectively infer characteristics of the environment. One of the possible strategies is to send a quantum
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Figure 7.2: Typical representation of a quantum probing protocol using disordered quantum walk dy-
namics. A phase difference ϕ between coin (internal) states of the walker is applied after each step,
including possible fluctuations ∆ϕ′i,j depending on step i (time) and position j within the circuit. This
way, static and dynamic disorder can affect the quantum walk process.

probe through a Mach-Zehnder-like interferometer (MZI). As illustrated in Fig. 7.1, a MZI consists of
a lower arm, the so-called reference path where the probe travels free, and of an upper arm, where the
probe acquires a phase shift ϕ due to environmental action. Finally, at the probe is measured employing
a suitable procedure to estimate environment properties of interest. Typically, the parameter ϕ is encoded
in a unitary operator UL(ϕ). Here, the phase shifter is length-dependent so that the probe is capable to
capture the coding process with respect to the phase shift length. We aim to analyze the phase sensitivity
in terms of controllable phase shift length.

In parameter estimation schemes [373, 378, 375, 376, 377], a parameter of interest, like ϕ, is esti-
mated by processing the data by means of estimator observable outcomes Ô = {o1, o2, . . . , on}. The
measurement sensitivity of the phase parameter is given by the Cramér-Rao inequality δϕ ≥ 1/

√
MFϕ,

where δϕ is the mean square error in the measure of parameter ϕ, M is an asymptotically large number
of independent measurements, and Fϕ is the QFI given by

Fϕ =

∫
do p(ϕ|o)

(
∂

∂ϕ
ln p(ϕ|o)

)2

. (7.1)

In this equation, p(ϕ|o) = Tr[M̂oρ] is the conditional probability distribution that may gives information
about parameter ϕ a result of the measurement outcome, where M̂ is a set of positive operator-valued
measurements (POVMs) [377] and ρ is the density operator. The optimal estimator is the one that sat-
urates the Cramér-Rao inequality and maximizes the QFI. According to the Symmetric Logarithmic
Derivative (SLD) approach, the QFI is Fϕ = Tr[L2

ϕρ], where Lϕ is the Symmetric Logarithmic Deriva-
tive (SLD) operator satisfying the equation dρ/dϕ = {L, ρ}/2, with {·, ·} indicating the anticommutator.
For a pure state ρ2 = ρ, the SLD operator reduces to Lϕ = 2dρ/dϕ. It is worth mentioning that QFI
provides an upper bound to the sensitivity which is independent of the choice of measurement. Also,
the set of optimal POVMs is given by the eigenstates of the SLD operator Lϕ. However, in operational
conditions, Lϕ may not be the optimal observable that one tends to perform in the measurement setup, so
optimization strategies, such as maximum likelihood method, have been suggested to supply an optimal
estimator that saturates [377]. To the scope of this paper, we focus on the probing strategy in a discrete
QW network to address maximum extractable information spreading pattern using QFI.

7.2.2 Discrete Quantum Walk as a quantum probe

Here, We design a quantum probing protocol to address the spreading behavior of a QW and the ex-
tractable information that the walker can assess, examining the problem by quantum estimation strat-
egy. The discrete-time QW process is a multi-path interferometer setup, equivalent to a chain of Mach-
Zehnder interferometers. A typical representation of a quantum walk network is displayed in Fig. 7.2 for
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Figure 7.3: Quantum Fisher information for a quantum walker. Average QFI F of a quantum walker
versus the number of steps t for static (top panels) and dynamic (bottom panels) disorder, at different
degrees of disorder: a) p = 0, b) p = 0.1, c) p = 1. In all plots, the initial input is |Ψ0⟩ = |0⟩p ⊗ |↑⟩c.
The simulated data (blue dots) are plotted along with a power-law fitting function (red line).

four steps. Each line linking two different vertical bars corresponds to a mode along which the walker can
travel. As can be seen in Fig. 7.2, the rightmost path is the reference path along which the quantum probe
(walkers) travels freely. The length-dependent phase shifter is implemented by the sequence of (discrete)
sites that the quantum walkers pass through along the multi-path dynamics. A measurement strategy is
finally employed after each step to perform the optimal estimator and extract the information spreading
about the phase. It is important to note that the probing continues until the relative error converges to the
lowest value for the 99.9% confidence interval. Here, we numerically address the achievable bound QFI
that one may tend to measure by a suitable and practical measurement strategy.

The dynamics of a Quantum Walker on a one-dimensional lattice is defined on the joint Hilbert space
H = Hp ⊗Hc of position (Hp) and coin (Hc) subspaces of the walker [353, 326]. The coin basis states
set is Bc = {↑, ↓}, which can be seen as an internal degree of freedom of the walker, while the position
space is spanned by the discrete set {|x⟩p}, which represents the sites of the lattice. The evolution of the
quantum walker is determined by the coin operator Ĉ = 1√

2
(|↑⟩c ⟨↑|c + |↑⟩c ⟨↓|c + |↓⟩c ⟨↑|c − |↓⟩c ⟨↓|c)

and the shift operator

Ŝ =
∑
x

|x+ 1⟩p ⟨x|p ⊗ |↑⟩c ⟨↑|c + |x− 1⟩p ⟨x|p ⊗ |↓⟩c ⟨↓|c , (7.2)

which moves the walker according to the coin state. Repeated action of the unitary operator Û =
Ŝ(Îp ⊗ Ĉ) defines a completely ordered QW evolution, where the coin operator is uniform in both
space and time. However, in order to have a general nonuniform evolution structure, we need suitable
phase maps [379]. Here, we consider the case in which ϕ is encoded in the QW process through the
unitary operator Û(ϕ) = Ŝ(Îp ⊗ Ĉ)P̂ , where P̂ is a phase-shift operator defined as

P̂ =
∑
x

|x⟩p ⟨x|p ⊗
(
|↓⟩c ⟨↓|c + ei(ϕ+∆ϕ′(t,x)) |↑⟩c ⟨↑|c

)
. (7.3)

As can be seen in Fig. 7.2, the phase-shift operator P̂ is ideally responsible for applying a phase differ-
ence ϕ between coin states |↓⟩c and |↑⟩c at each position. However, the encoding process might come
with unwanted time-position-dependent fluctuations ∆ϕ′(t, x) that coherently affect the evolution itself.
For dynamic disorder, the walker state at step t is given by t repetitive action of step-dependent unitary
operator is

|Ψt⟩ = ÛtÛt−1 . . . Û2Û1 |Ψ0⟩ . (7.4)

In addition, when phase fluctuations are frozen in time, therefore the quantum state at step t is |Ψt⟩ =
(Û)t |Ψ0⟩. This way, static and dynamic disorder can affect the QW probability distribution (see ap-
pendix for further analysis).

The main aim of quantum estimation strategy is to evaluate the maximum extractable knowledge
about an unknown parameter, which we call ϕ, from repeated measurements on the probe. One can
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Figure 7.4: a) Logarithmic scale of average QFI F of a quantum walker and its fitted curve F ∝ tα as
a function of the number of steps t for complete static disordered p = 1. b) Step-dependent coefficient
α(t) and its fitted curve as a function of the number of steps t. The simulated data (blue dots) are plotted
along with a power-law fitting function (red line).

Figure 7.5: Quantum Fisher information for two quantum walkers. Average QFI F of a quantum
walker versus the number of steps t for: a) ordered case (p = 0), b) complete static disorder (p = 1),
and c) complete dynamic disorder (p = 1). In all plots, the blue circles and red squares represent,
respectively, indistinguishable and distinguishable two-particle inputs. The simulated data (blue dots)
are plotted along with a power-law fitting function (red line).

numerically obtain the QFI Fϕ = 4Tr [L2
ϕρ] using the walker state at step t, |Ψt⟩ = Û(ϕ) |Ψt−1⟩, and

its derivative with respect to parameter ϕ, which is∣∣∣∣∂Ψt

∂ϕ

〉
=
∂Û(ϕ)

∂ϕ
|Ψt−1⟩+ Û(ϕ)

∣∣∣∣∂Ψt−1

∂ϕ

〉
. (7.5)

Similar to earlier suggestions [380, 381], QW circuit is a multi-path interferometric arrangement
where an input state is split into many beams by a chain of beamsplitters. In measurement stage of
multi-path interferometer [380, 381], output modes are recombined and then are detected by M identical
photodetectors to construct the probability distribution of detector i. This allows one to obtain the joint-
probability distribution p(ϕ|x) using a POVM set given by

Mkk′ = ei(k(ϕ)−k′(ϕ)) |k⟩ ⟨k′|+ c.c, (7.6)

satisfying the completeness condition
∑

k,k′ Mkk′ = I where k ̸= k′ , each mode |k⟩ being defined by
both position |x⟩ and corresponding coin state |σ⟩ (σ = {↑, ↓}), namely |k⟩ := |x⟩ |σ⟩. In Eq. 7.6, k(ϕ)
is the phase that probe acquires at k mode.
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7.3 Application: single probe and pair of probes

In the following, we study the case of both a single probe and a pair of probes sent into the quantum
walk network under the effect of static and dynamical disorder. We limit our analysis to the case in
which the random fluctuations ∆ϕ′(t, x) can be only 0 or π. Afterwards, the degree of disorder p is
defined as the percentage of random phases that the walker experiences during the evolution. This simply
means that a p percentage of the random fluctuations ∆ϕ′(t, x) are selected to have π value and to be
randomly distributed in time and position. By iterating over enough random phase samples, it is possible
to numerically calculate the QFI in presence of a given percentage of randomness p. A key point in
the particle evolution is the type of disorder: static disorder, where the phase fluctuations are frozen in
time, or dynamic disorder, where the imposed phase can change in both time and space, as happens
in the p-Diluted model [348]. The degree of disorder p is directly connected to the time evolution of
the probability distribution of the quantum walker (see SM for the probability distribution of a quantum
walker corresponding to both cases of static and dynamic disorder).

7.3.1 Single Probe

Let us first consider the simplest instance where a particle starts the quantum walk in the position |0⟩p
with the |↑⟩c coin state, that is |Ψ0⟩ = |0⟩p ⊗ |↑⟩c. For both static and dynamic disorder, we simulate
the behavior of the average QFI for different degrees of disorder p. For each value of p, the simulation
is performed by averaging over 104 different phase maps. The average QFI is plotted in Fig. 7.3 as a
function of the step number t. As a result of the power-law fitting data, we find that the average QFI is
F ∝ tα where the range of α is 0 ≤ α ≤ 2 and 1 ≤ α ≤ 2 for the static disorder and the dynamic
disorder, respectively. Without any disorder (p = 0), the QFI of the QW grows quadratically in time
F ∝ t2, analogously with a ballistic transport pattern, as displayed in Fig. 7.3a. Also, this means that
the phase variance upper-bound is proportional to the inverse of the number of steps δϕ ∝ t−1. Similar
to earlier studies, the phase sensitivity decreases with the number of available paths [380]. For static
disorder (Fig. 7.3 (I)), the superdiffusive (α > 1) to subdiffusive (α < 1) transition is reachable by
increasing the value of disorder p out of 50 steps. Therefore, the way information spreads in the quantum
network can be determined as a result of the disorder strength. For dynamic disorder, we plot the average
QFI in Fig. 7.3 (II). Here, we use the QFI to probe the transition from the ballistic regime with p = 0
(Fig. 7.3a), superdiffusive with p = 0.1 (Fig. 7.3b) and diffusive one with maximum degree of disorder
p = 1 (Fig. 7.3c), analogous to the case of classical probe. This indicates that the output information,
which is inferred trough measurements performed exclusively on the probe, shows a superdiffusive to
classical transition in transport pattern. The observed fluctuation in the QFI value is due to the limited
number of iterations which can be realized for each step number. Similarly to the variance of the position
operator of the quantum walker [72, 348, 347] (see also SM), QFI provides a simple measure to quantify
the transport pattern of the walker.

It is worth mentioning that the probing pattern depends on the number of steps that a walker takes. In
the static disorder case, we find out that the QFI eventually tends to a given value. This is a clear signature
of Anderson localization given by average upper-bound of QFI, as clearly seen in Fig. 7.4a where the
growth trend declines until average QFI reaches a maximum value. As an additional clarification, the QFI
is fitted with the power function F ∝ tα(t), where α(t) is the step-dependent coefficient in a nonlinear
fitting process. In Fig. 7.4b, α(t) is plotted by increasing the step number of the QW process. We observe
how the growth trend depends on the step number t, and how it significantly declines for higher t. This
property shows that information stops spreading within the quantum network as an indicator of particle
localization.

7.3.2 Pair of Probes

To enrich the physics of the phenomenon, we now consider two input quantum walkers, either distin-
guishable or indistinguishable, in position |0⟩p with initial opposite coin states. When two identical

91



particles arrive at a beamsplitter with temporal delay, one in each input port, they are distinguishable in
the eyes of the beamsplitter. For distinguishable particles (walkers) named 1 and 2, the input state is
separable, that is

|Ψs
0⟩ = |0⟩1p |↑⟩1c ⊗ |0⟩2p |↓⟩2c . (7.7)

For indistinguishable particles, the pair overlaps perfectly in time at beamsplitter [130]. Here, the input
state is physically entangled in the coin states by virtue of complete spatial mode overlap [2, 14]: in
the no-label approach [2, 3] this state is simply written as |Ψ0⟩ = |0p ↑c, 0p ↓c⟩, which in the first-
quantization formalism with labels becomes the symmetrized state

|Ψ±
0 ⟩ = |0⟩1p |0⟩2p ⊗

(
1√
2
(|↑⟩1c |↓⟩2c ± |↓⟩1c |↑⟩2c)

)
(7.8)

where ± being for bosons and fermions, respectively. The evolution can be studied by repeatedly apply-
ing the two-particle unitary operator Û(ϕ) ⊗ Û(ϕ) to the states above. We plot the average QFI versus
the step number t in Fig. 7.5 for the ordered case p = 0 (a) and for the completely disordered one p = 1,
with static (b) and dynamic (c) disorder. In general, the state of two indistinguishable particles exhibits
a higher value of QFI compared to the distinguishable one. This property is explained by the fact that
particle indistinguishability is an enriching resource for quantum information distribution within a com-
posite system of identical particles [16, 17, 23]. Interestingly, we also notice that both input states follow
the same spreading pattern. In the case of ordered case (p = 0), the growth pattern is ballistic, while for
the completely disordered one (p = 1), the QFI follows a subdiffusive pattern (Fig. 7.5b) and a classical
one (Fig. 7.5c) due to static and dynamic disorder, respectively. Notice that the QFI, as a spreading pat-
tern indicator, is independent of the number of quantum walkers, in contrast with the position variance
dimension which grows accordingly to the particle number [348].

7.4 Conclusion

In this work, we have proposed a quantum probing protocol using the quantum walk process to infer
information about defects and perturbations occurring in both quantum and classical networks. This goal
has been achieved by applying quantum metrology techniques to the QW process. We have exploited
QFI to describe extractable information concerning an unknown phase ϕ that the quantum walker ac-
quires at each step, plus random fluctuations, through the QW. Even though the framework is general,
we have studied coherent static and dynamic disorder in the QW to describe the transport pattern of infor-
mation about the unknown parameter ϕ. We have found that different disorder regimes, corresponding
to a disorder percentage p in the QW process, lead to different spreading patterns, including ballistic,
superdiffusive, classical, subdiffusive regimes, and Anderson localization. Quantum Fisher information,
as a spreading pattern indicator, is independent of the number of quantum walkers, in contrast with the
position variance dimension which grows accordingly to the particle number [348]. Ultimately, our re-
sults show that QW can play the role of a readout device of information about internal characteristics of
complex networks.

Our results provide a general characterization of the spreading pattern using the quantum probing
scheme of QFI bound. One may put the complex system in an interferometric scheme (like a MZI) to
examine how a quantum probe interacts with the complex system. Also, we have applied the disordered
quantum walk dynamics to explain the system-probe interaction. In Refs. [348, 347], it has been ex-
perimentally demonstrated the control over the parameter p by performing a selective random disorder
for photons in a bulk optics scheme. Indeed, it is challenging to implement an optimal estimation strat-
egy with accuracy associated with QFI bound [377]. Quantum Cramer-Rao bound needs available prior
knowledge to adopt a local approach and the large number of experimental observations. Also, symmet-
ric logarithmic derivative (SLD) operator itself may not represent the optimal observable to be measured.
In fact, projection over eigenstates of SLD operator determines the POVM and not the estimator. If it
is practically possible, one may try to perform the optimal measurement which are projections over the
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Figure 7.6: Probability distribution. Average probability distribution of an unbounded discrete QW on
the line as a function of step number and position, for different values of disorder: a) p = 0 b), p = 0.1,
c) p = 1, by averaging over 104 phase maps for both static (left panels) and dynamic (right panels)
disorder. In all cases, the initial input state is |Ψ0⟩ = |0⟩p ⊗ (|↑⟩c + |↓⟩c) /

√
2.

eigenstates of the SLD operator. Moreover, one can compute the classical Fisher information (FI) by
exploring all possible POVMs for a fixed input state. If the maximized FI reaches the QFI obtainable,
we can conclude that the POVMs are optimal. This strategy is largely determined by how successful the
POVMs can be implemented in each scheme. To saturate the Cramer-Rao bound, one may pursue the
classical post-processing of data using maximum likelihood, which is known to provide an asymptoti-
cally efficient estimator [373]. In addition, the adaptive measurement strategy is employed to decrease
the number of measurements [382]. Furthermore, machine learning might be a powerful tool to obtain
the goal of interest [383, 384].

This protocol is on track to be experimentally implemented, and several platforms are likely candi-
dates. An example of a potential candidate is a cascade of balanced beam splitters arranged in a network
of Mach-Zehnder interferometers [52]. In this scheme, phase shifters are involved in implementing the
randomized disorder to a certain degree. This experiment faces many challenges, but the most challeng-
ing one is probably utilizing phase-stable POVMs (possibly an optimal set or performing an optimization
protocol, such as maximum likelihood method, to reach the quantum Cramer-Rao bound) along multiple
paths. Indeed, the experiment also depends on measurement components that have low noise and phase
stability. Our work is expected to motivate further studies such as: studying different types of disorder
like the spatio-temporal correlated disorder [385], probing the QW on high-dimensional graph network
[386], detecting memory effects of the environment on quantum walkers [387], assessing material char-
acteristics of complex random media [388].

A. Further Analysis

In this Appendix, we address the probability distribution and the variance displacement of a single walker
under the effect of different degrees of static and dynamic disorders. Let us consider a given initial state

|Ψ0⟩ =
1√
2
|0⟩p ⊗ (|↑⟩c + |↓⟩c) , (7.9)

to explore the probability distribution of a quantum walker in presence of both static and dynamic disor-
der. We limit our analysis in the case that a p percentage of phase fluctuations are selected out of 0 and
π. We show the density plots of the evolution of single particles in Fig. 7.6, in terms of step number and
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Figure 7.7: Position variance. Position variance σ2 of a quantum walker on the line in terms of the step
number t for different values of disorder a) p = 0 b), p = 0.1, and c) p = 1, by averaging over 10000
phase maps for both static disorder (top panels) and dynamic disorder (bottom panels). In all cases the
initial input is |Ψ0⟩ = |0⟩p ⊗ (|↑⟩c + |↓⟩c) /

√
2. The simulated data (blue dots) are plotted along with a

power-law fitting function (red line).

walker position. Here, both static disorder (Fig. 7.6(left panels)) and dynamic disorder (Fig. 7.6(right
panels)) is realized with different degrees of disorder p: a) p = 0, which corresponds to a standard
ordered QW; b) p = 0.1; c) p = 1 completely disordered QW. The horizontal axis denotes different
positions that the walker can reach while the vertical one represents the step number t, increasing from
top to bottom. We averaged the probability distributions over 10000 random phase maps realizations.
As can be seen, the particle follows different transport pattern affected by static (Fig. 7.6(left panels) or
dynamic disorder (Fig. 7.6(right panels)). Also, we show how the degree of disorder would affect the
probability distribution of the quantum walker. It seems that the probability of finding a particle in the
center raises by increasing the degree of disorder p.

In the QW problem, the operator X̂ that measures the walker position is the operator of interest since
the variance of the position operator provides a simple measure to quantify the spread of the walker [72]

σ2(X̂) = ⟨X̂2⟩ − ⟨X̂⟩2. (7.10)

This measure has been proven to be particularly useful to compare the effects of different kinds of
disorder on the spreading pattern of the walker(s). Generally, the variance of the position operator is
given by σ2(X̂) ∝ tα, where range α > 1 is called superdiffusive and α < 1 subdiffusive. For instance,
an ordered QW presents a ballistic spread with σ2(X̂) ∝ t2, while the classical random walk is diffusive
with σ2(X̂) ∝ t .

As an example, we study the spreading behavior of a walker for the given input state |Ψ0⟩ of Eq. 7.9
with three different values of disorder. The position variance of a quantum walker generally depends
on type of the disorder, degrees of disorder p and number of steps t. The variance of a single walker
is plotted versus the number of steps for both static disorder (Fig. 7.6(top panels) and dynamic disorder
(Fig. 7.6(bottom panels)). For an ordered QW, the walker shows a ballistic pattern, displayed in Fig. 7.7a.
In static disorder, a super-diffusive pattern appears because of the increasing value of disorder degree to
p = 0.1 (see Fig. 7.7(top panel (b)). Interestingly, in Fig. 7.7(top panel (c)), the subdiffusive pattern
also can be simulated by increasing the value of the disorder degree to the maximum. In the dynamical
disorder case, the quantum walker exhibits a transition from ballistic to superdiffusive behavior, and then
a classical spreading pattern by increasing the degree of disorder to p = 1.
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Chapter 8
Enhancing nonclassical bosonic correlations
in a quantum walk network through
experimental control of disorder

Abstract

The presence of disorder and inhomogeneities in quantum networks has often been unexpectedly benefi-
cial for both quantum and classical resources. Here we experimentally realize a controllable inhomoge-
nous quantum walk (QW) dynamics, which can be exploited to investigate the effect of coherent disorder
on the quantum correlations between two indistinguishable photons. Through the imposition of suitable
disorder configurations, we observe two-photon states that exhibit an enhancement in the quantum cor-
relations between two selected modes of the network, compared to the case of an ordered QW. Different
configurations of disorder can steer the system toward different realizations of such an enhancement,
thus allowing spatial and temporal manipulation of quantum correlations between remote modes of QW
networks. This Chapter is related to Publication 6 in the List of Publications.

8.1 Introduction

A thorough characterization of genuine quantum traits is crucial to understand the boundary between
classical and quantum phenomena [253] and to perform quantum information tasks [15]. To this aim,
several quantification methods have been introduced to faithfully identify the presence of quantum (non-
classical) resources such as entanglement [33], coherence [389], discord [390], joint measurability [391],
steering [392], or thermal operations [393] in the case of composite systems.

Indistinguishability of quantum identical particles [222, 16] has also been revealed as a useful non-
classical resource. From an operational point of view, particles are so-called indistinguishable if they
are in the same mode with respect to a characterization via two-particle interference [394]. From a
broader perspective, the indistinguishability concept is related to a given set of quantum measurements
[17]. In fact, indistinguishability plays a fundamental role in raising quantum processes, such as many-
body interference [394, 17, 184], entanglement generation [222, 16, 10, 395, 24, 23], quantum telepor-
tation [23], quantum metrology [396, 310], quantum coherence [397, 398, 94], quantumness protection
[17, 32, 117], quantum key distribution [399, 400] and the high state complexity exploited by boson
sampling algorithms [401, 402]

In this context, it is important to understand how quantum features based on indistinguishability
behave in a dynamical framework, specifically in the case of bosons propagating through a nonhomo-
geneous system. For a large variety of systems, the disorder plays a detrimental role because it drives
the system into decoherence [73]. Contrarily, for some systems, the disorder can enhance physical
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Figure 8.1: Network representation of a disordered QW according to p-diluted model. The green
bars stand for the presence of π phases on the path which can be added to or removed from the network.

properties such as coherent transport [74], quantum algorithms speedup [75], and quantum correlations
[76, 77, 78, 55]. These effects commonly appear due to the interaction with an external environment,
though not always featuring a back-action mechanism [79, 80].

In this context, it is important to understand how quantum features based on indistinguishabil-
ity behave in a dynamical framework, specifically in the case of bosons propagating through a non-
homogeneous system. A suitable theoretical platform to perform such a study is represented by Quantum
Walk (QW), which provides a very general coherent propagation model: at variance with classical Ran-
dom Walks, QWs are able to preserve genuine nonclassical features such as superposition, interference,
and entanglement [44, 403, 353]. QWs provide powerful models to describe energy transport phenomena
in different types of systems like, photosynthetic complexes [74, 333], or solid state ones, as in the case
of Luttinger Liquids [356].

It has been shown that adjustable disorder plays a significant role in the evolution of quantum walk-
ers in which the ballistic growth can become anomalous, classical, or localized [72, 52, 366, 348] . The
dynamics of a quantum walker is intimately connected to its nonclassical features. This has also high-
lighted the role of quantum coherence in biological systems [357, 358]. The way quantum-correlated
walkers, realized by photon pairs, evolve in a homogeneous optical lattice has been studied, in which
distinguishable or indistinguishable photons exhibit different behavior [404, 349, 405, 212, 406]. More-
over, the spreading pattern of the quantum walker(s) can be modified through various types of disorders
[407, 52, 348, 347]. For a large variety of systems, the disorder plays a detrimental role in Quantum
Walk dynamics because it drives the system into decoherence [73, 72]. Contrarily, for some systems, the
disorder can enhance physical properties such as coherent transport [74], quantum algorithm speedup
[75], and quantum correlations [76, 77, 78, 55]

At a variance with previous studies so far [55], it remains to find strategies via disorder control for
enriching two-particle correlations in separated modes of a quantum walk network. Here we fill this gap
by injecting two indistinguishable photons (biphoton) in a one-dimensional inhomogeneous Discrete
Time Quantum Walk (1D DTQW) and experimentally adjusting specific disorder configurations, while
keeping the system isolated. Moreover, we numerically show that averaging over randomized disorder
configurations results in diminishing the initial biphoton quantum correlations (details are reported in the
Supplementary Material (SM)). Our findings unambiguously prove that the presence of disorder assists
in the dynamical enhancement of biphoton quantum correlations in a controllable fashion, paving the
way to its potential employment in quantum information scenarios.

8.2 Theoretical framework

The 1D QW model consists of one or more walkers coherently moving along the discretized sites of
a line [408]. In general, the state of the system can always be written as a superposition of the QW
modes |Ψ(t)⟩ =

∑
k αk(t) |k⟩, where each mode |k⟩ := |x⟩ |σ⟩ is defined by both position |x⟩ and its

coin |σ⟩ = {|L⟩ , |R⟩}, and amplitudes αk(t) depend on the past evolution of the walker. Therefore, the
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Figure 8.2: Numerical simulation of violation matrices. Step 15 matrices of the Vij values of indistin-
guishable photons in the (a) ordered case (p = 0) and the (b) completely disordered one (p = 1). The
disordered matrix has been computed by averaging over 104 disorder configurations

Figure 8.3: Numerical simulation of coincidences matrices. Step 15 matrices of output distributions of
indistinguishable photons in the (a) ordered case (p = 0) and the (b) completely disordered one (p = 1).
The disordered matrix has been computed by averaging over 104 disorder configurations

single step evolution can be written as |Ψ(t+ 1)⟩ =
∑

k Ûαk(t) |k⟩ , where Û = Ŝ · (Î ⊗ Ĉ) is the one-
step evolution operator on mode |k⟩ with Ŝ =

∑
x |x+ 1⟩ ⟨x|⊗|L⟩ ⟨L|+ |x− 1⟩ ⟨x|⊗|R⟩ ⟨R| being the

shift operator, that moves the walker according to the coin state, Î the position identity operator and Ĉ is
the coin operator, which in our case reads Ĉ = 1√

2
(|L⟩ ⟨L|+ i |L⟩ ⟨R|+ i |R⟩ ⟨L|+ |R⟩ ⟨R|). We also

allow for the presence of stepposition-dependent phases ϕk(t), which are responsible for the dynamical
disorder that the quantum walker experiences, according to the so-called p-diluted model [348].

In this disorder framework, the single-step evolution of the quantum state of the system can be written
as

|Ψ(t+ 1)⟩ =
∑
k

eiϕk(t)Ûαk(t) |k⟩ , (8.1)

where step-position-dependent phases ϕk(t) are chosen out of two choices 0 or π. Here we assume
that the phases experienced by the quantum walker during its evolution are independently and randomly
generated. In order to generate a random phase map, a Bernoulli process determines whether the phase
shift at step t and position x is ϕ = 0 [with a certain probability 1 − p/2] or ϕ = π (with probability
p/2). In the end, a phase map is a set of matrices {Φp(t)}t=0,...,tmax . that describe all the phases imposed
on the walker during the QW process with a given fixed p. This results in a network structure underlying
the QW evolution, clearly represented by Fig. 8.1. On average, photons will experience a p/2 percentage
of “flipped” phases during the quantum evolution. It is worth noting that the evolution stays coherent; in
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Figure 8.4: Numerical simulation of total violation trends. Step 15, step 10, and step 6 plot of the
average total violation, computed over 104 disorder configurations, as a function of the disorder level p.

fact, there is no decoherence in this framework: If the initial state is pure, the final state stays so. In the
following, we especially focus on the single phase maps that enhance the quantum correlation. between
the walkers; in that case, the average level of disorder p is no more a relevant quantity.

In order to study the effect of disorder over nonclassical bosonic correlations in a QW dynamics,
we consider two indistinguishable photon walkers as input. This choice is strategical since, unlike states
of distinguishable photons, the state of an indistinguishable photon pair (biphoton) |Ψ(2)⟩ = |k1, k2⟩
(|ki⟩ = |xi⟩ |σi⟩ exhibits intrinsic quantum correlations [2, 3]. The two-particle evolution is then obtained
by applying Û ⊗ Û to the state expressed in the standard symmetrized first quantization formalism.
Inspired by the classical intensity correlation of light, one way to measure the nonclassicality of the
correlation between two detected outputs is by violating the Cauchy-Schwarz inequality [404, 349]

Vij =
2

3

√
ΓiiΓjj − Γij < 0, (8.2)

where Γij is the probability of finding a photon in mode i and the other one in j, namely the probability of
measuring a coincidence between modes i and j. Inequality (8.5), in fact, stands for classically correlated
light and its violation is assumed to witness the presence of quantum correlations and a sign of photon
bunching [404, 349, 406]. In a discrete network, the violation of the inequality between two modes can
be considered as evidence of quantum correlation which contains part of the total correlation information
(see Appendix A for a detailed discussion of Vij interpretation).

8.3 Numerical Results

Preliminary simulations were carried on in a ideal p-diluted framework: two indistinguishable photons
travelling a bulk-optics 1D DTQW, provided with space-time disorder. We studied the average behavior
of the violation matrix by averaging over many different evolution realizations with randomness p. The
average probability distribution is used to obtain the output violation matrices. We show the violation
matrix of an indistinguishable photon pair after 15 steps for the ordered case in Fig. 8.2 (a), correspond-
ing to the disorder level p = 0 and the completely disordered one Fig. 8.2 (b), featured by maximal
randomnessp = 1. In this case, the disorder level p is a relevant quantity, since it indicates the average
quantity of disorder imposed on the evolution. As can be seen, the violations are present both in the or-
dered and in the disordered case, though there is an evident migration of the violating values towards the
matrix tails. In (Fig. 8.3), we report the values of probability Γij of finding a coincidence between two
photons emerging from mode i and j. Indeed, in the completely disordered case, a strong funneling of
population toward central modes is present, while quantum correlations disappear in the central region.
This phenomenon may nourish the idea that correlations specifically generated by the QW dynamics are
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Figure 8.5: Numerical simulation compression between ordered and enhancing disordered QW. (a)
MAV and (b) maximum achievable total violation versus the number of steps (discrete time) t for the
ordered (blue circles) and enhancing disordered (red squares) QW.

classical and may even smother the underlying nonclassical correlations, especially in the completely
disordered case, when the QW dynamics emulates the one of a classical random walk [409, 65]. Here,
the dynamical average behavior of quantum correlation has been studied through total violation, defined
as the sum of all the Vij of the violating coincidences. It has been considered as a measure of the total
quantum correlation present in the system. The normalized trend in function of the disorder level is
reported in Fig 8.4 for different evolution time lengths. total violation has a decreasing trend as p in-
creases, which can be seen as a consequence of the migration picture described above. Since violations
are bound to appear only between scarcely populated modes, the global quantum correlations dimin-
ishes. In general, the average evolution appears naturally featured by a decrease of global nonclassicality
in time. Nevertheless, this nonclassicality degradation can be challenged by specific single realizations
of disorder. In order to find such phase maps, we adopt a random search protocol: We simulate the evo-
lution with 104 4 different phase maps for each step number t up to 30 steps for a total amount 3 × 105

of explored configurations. These configurations are generated for a fixed level for disorder, but, since
we focus on specific realizations, the average level of disorder becomes irrelevant. We compute the Vij
between each pair of output modes for each simulated probability distribution, obtaining the correspond-
ing violation matrices. Then, the entire set of Vij elements corresponding to any combination of i and
j modes is reported. Now we can compare the values for any pair (i, j) and for each simulated phase
map at a given step to find the maximum achievable violation (MAV), i.e., the maximum positive value
of Vij which could be achieved at that given step. In this way, it is also possible to recognize the specific
phase maps enerating the MAVs, which can then be experimentally exploited. A more detailed numeri-
cal study about the conditions for emerging of MAVs is reported in Appendix B. Summarizing, for each
configuration, the procedure consists of comparing maximum positive violations of inequality (2) at step
t. This also allows to know where and when it is beneficial to apply the π phase shift within the QW
network to identify and select enhancing phase maps. Simulation results are shown in Figs. 8.5 (a) and
(b), respectively. We report the MAV as a function of the number of steps, and the stepwise trend of the
maximum achievable total violation, defined as the sum of all the positive values Vij of the considered
violation matrix (named here as total quantum correlation). Since the explored configurations may not
cover the entire set of possible disorder patterns, the results cannot be considered absolutely optimal, but
rather enhancing in comparison with the ordered case. Nevertheless, the analysis highlights that disorder
helps to retrieve quantum correlations after a specific step of QW, both for MAV and for total violation,
suggesting that the two quantities are related although not bound to be maximized together. From nu-
merical results, we can conclude that disorder, acting through mere interference, significantly modifies
the evolution of the walker, not only reshaping the probability distribution but also affecting the amount
of quantum correlation between the photons. As a consequence, disorder may enable enhancement of
the quantum correlation of a bipartite system. It is worth noting that no violations are observed, whatever
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Figure 8.6: The 2D sketch of the experimental setup. BS, beam splitter; BD, beam displacer; RP,
rotating glass plates; MM, moving mirror; S1, Sagnac interferometer 1; S2, Sagnac interferometer 2.
Blue and red beams circulate in opposite directions and impinge on the BS1 in the same horizontal point
but at different heights along the z direction, due to the effect of BDs.

the phase map, when a state of distinguishable photons is employed.

8.4 Experimental setup

The experimental setup, designed to test the theoretical predictions, consists of a bulk-optics multipass
double Sagnac Interferometer (SI), already exploited in a previous experiment [348], in which inho-
mogeneities, described by the phases ϕk(t), can be addressed independently both in step number and
evolution mode. The bulk-optics setup shown in Fig. 8.6 is analogous to a chain of intrinsically phase-
stable Mach-Zehnder Interferometers (MZIs), each of them provided with an individually tunable phase
shifting. The additional exploitation of the z direction allows to effectively realize a Beam Splitter (BS)
network, which reproduces a 1D DTQW dynamics. Thanks to the particular geometry of the implemen-
tation, each propagation mode of the QW at the given step has a specific position in the plane transverse
to the propagation direction. Therefore, the phase shifts can be independently addressed in each mesh
of the QW by the simple insertion of Rotating Glass Plates (RP) along the propagation path. The output
state can be measured through a set of Moving Mirrors (MMs), intercepting, and extracting from the
setup only modes of the selected step tj . Also, the previous propagation steps t < tj are not affected
in any way by the measurement procedure. The extracted radiation is then coupled on a single-mode
fiber and measured (for further details on the setup see Ref. [348, 347]). Using couplers to collect the
extracted photons, we can measure coincidences between all possible modes at each step and experimen-
tally reconstruct the two-photon probability distribution. The single-photon source is described in detail
in Appendix B, together with further specifics of the experimental setup.

8.5 Experimental Results

To experimentally verify disorder-induced changes in the violation matrix, we measure both ordered and
disordered evolution QW output distributions. In fact, based on the simulation study displayed in Fig. 5,
the first quantum correlation enhancement, due to disorder, shall occur at the sixth step of QW. Therefore,
the output violation matrices for optimal phase maps are measured up to the sixth step. Since there is
no enhancement until the fifth step, the corresponding optimal phase maps can be considered equivalent
to the ordered one, while for the sixth step it is possible to find many specific disorder configurations
enhancing the nonclassicality in the correlation between two chosen output modes for both the ideal
case and the accounting for experimental parameters. The phase map selected for the experimental
implementation features phase shifters at step t = 4, position x = −2 with coin σ = L and x = 2
with coin σ = R are π, while all the others are left to zero; the corresponding experimental output
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Figure 8.7: Comparison between the theoretical and the experimental violation matrices at the
sixth step for an enhancing disorder configuration. Numerical simulations are performed taking into
account experimental parameters. The expected peak in the value of V is experimentally found, while
the measured output coincidence distributions reach globally a similarity value of 97.5 (± 1.3)%

violation matrix is shown in Fig. 8.7 compared with the expected one, where the mode |k⟩ = |x⟩ |σ⟩
is indicated by xσ . A strong quantum correlation peak appears at modes (2L,−2R) and (−2R,−2L)
confirming the expectation. As a further relevant result, the experimental stepwise trend for MAV is
shown in Fig. 8.8 in comparison with the expected enhanced one obtained by numerical analysis, taking
into account experimental constraints. They are plotted together with the ordered case trend to provide
a clear display of the beneficial effect of the nonhomogeneous evolution. Theoretical patterns are shown
up to the 10th step as a reference. The corresponding trends for the total violation computed over the
same output distributions are also reported in Fig. 8.5. Simulations of the MAV values in the ordered
case show that the quantum correlation spreads in a homogeneous network so that the values of Vij
and the total violation are going to decline as the propagation proceeds. However, as can be seen in
Fig. 8.5, the inhomogeneity enriches the quantum correlation between two indistinguishable photons at
the given modes. Experimental evidences, reported in Fig. 8.8, show that the very same configuration also
enhances the total quantum correlation of the QW. Experimental errors are derived from the Poissonian
statistics of the measured coincidences. Deviations from the expected results are mainly due to modest
drops in photons indistinguishability along the evolution. Nevertheless, the indistinguishability decline
slightly affects the exact violation values, while not changing the overall trend.

8.6 Conclusion

The presented numerical and experimental analysis demonstrates that two-mode quantum correlations
due to particle indistinguishability, which disperse through the lattice and rapidly decay in an ordered
evolution, can be retrieved after a minimum evolution time by inserting suitable inhomogeneity pat-
terns in the system. By changing the disorder configurations, it is possible to tune the two-mode and
total enhancement of nonclassicality in position and intensity; this corresponds to an adaptive network
whose parameters evaluation determines the focusing of nonclassical resources in selected modes. These
findings allow for enriching quantum correlation through controlling unitary evolution (effective Hamil-
tonian engineering) of the biphoton. Also, we show that the two-mode quantum correlation diminishes
in the case of random-phase disorder in the system, which can be interpreted as a manifestation of detri-
mental classical noise. Nevertheless, this quantum correlation degradation can be challenged by single
realizations of disorder. These results supply a conceptual and practical advance compared to previous
studies limited to single-photon disorder-assisted quantum correlation enhancement between two degrees
of freedom of the photon [55]. In fact, since violations of Eq.(8.5) indicate biphoton quantum correla-
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Figure 8.8: Experimental results compression between the order and the enhancing disordered
configuration QW. Experimental results for (dark dot) (a) MAV and (b) corresponding total violation
versus the number of steps. The trends are compared with the simulation for enhancing disorder (red
squares) and ordered evolution (blue circles). The expected results are obtained by numerical simulations
performed, accounting for experimental parameters and asymmetries, so that the theoretical trends show
some discrepancies with respect to those in Fig. 8.4

tions between two modes, our method may also be interesting for quantum metrology issues. It is yet to
be understood whether this enhancement procedure can be generalized to systems with N > 2 photons
or not, which could result in a benchmarking outcome in the context of quantum resource theories.

A. Quantitative analysis of violation

The aim of this section is to provide a clearer interpretation of the quantity Vij, which, in the main
text, is exploited as a quantifier for nonclassicality in bosonic correlations. In particular, we focus on
the relationship lying between this quantity and the two-particle boson bunching, the most simple and
straightforward effect of bosonic indistinguishability; then, this relationship is extended to the network
case, fitting the experimental implementation presented in the main text. As already described in the
main text, the violation of the inequality:

2

3

√
Pi,iPj,j − Pi,j < 0 (8.3)

allows to point out the presence of non-classical correlations in photonic systems [404, 407, 405, 406].
The meaning of this simple relation can be traced back to the result of an elemental boson bunching
phenomenon, i.e. the HOM effect [130], for the case of non perfectly indistinguishable photons. We
consider a photon pair with a given probability q of being distinguishable, traveling through a suppos-
edly balanced BS. After the BS, photons can be measured in three possible combinations of the two
output modes and the probability of each combination depends on the probability of the photons being
indistinguishable (which is 1− q). Therefore, inequality can be written as:

2

3
(
1

2
− q

4
)− q

2
< 0 (8.4)

which, in order to be violated, requires a value q > 1
2 , corresponding to photons which are more likely to

be indistinguishable than distinguishable. Hence, the inequality 8.3 provides a straightforward quantifier
of the effective indistinguishability of photons, in the operative context of boson bunching occurrence.
In the general case of a BS network, such as the one exploited in the present work, a value of Vij > 0
can be subject to multiple interpretations. In the general case for a pure initial state, after an n step
propagation the system will be in a superposition state, which can be written considering the number of
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photons traveling in the modes of interest:

|Φ⟩ =
√
1−Π(...)+

+
√
Π(α11 |2⟩1 |0⟩2 + α12 |1⟩1 |1⟩2 + α22 |0⟩1 |2⟩2)

where Π is the overall probability of having both photons in the selected modes, which normalizes
the αij coefficients. while {|k1⟩ |k2⟩ are the two output modes under observation, corresponding to
combined states of position and coin of the form |k⟩ =: |x⟩ |σ⟩. We do not consider contributions of
other modes included in the first term (...). It is possible, obviously, to also have single-photon states of
the two modes, but they would be invisible to coincidence like measurements. In this case, the amount
of violation between modes k1 and k2 can be computed as:

V12 = Π ∗ (2
3

√
|α11|2|α22|2 − |α12|2) (8.5)

Therefore, the violation amount depends on two factors:

• The actual nonclassicality of the correlation determining a positive or negative value.

• The global probability of the selected output modes (given by Π)

The first factor is the one pointing out the form of a hypothetically postselected state of the two photons
emerging from the considered modes. The higher this factor, the cleaner the distillation ofNOON states
is by postselection, since it necessarily corresponds to a low |αk1k2 |2. The second factor is an amplifi-
cation parameter, which gives the probability of actually finding two photons in the two-modes selected
subsystem; hence, it gives the efficiency of the NOON states distillation. In conclusion, the violation
value provides an indication over the composite effect of the two parameters; hence, its maximization
can be related to either one or the other. Hence, this aspect needs to be taken into account in a hypo-
thetical application of this protocols. For instance, the most external output modes will provide the most
pure NOON states, since they are the mere propagation of the first HOM resulting state, but with a very
low probability. On the other hand, by means of disorder, it is possible to manipulate the probability for
central modes and get an higher efficiency, but at the cost of a nonzero chance of extracting a useless
state.

B. Additional Numerical analysis

The highest MAV, besides the first step, is achieved at the output of the ninth step: The MAV for each
modes pair (i, j) of the ninth step output distribution was computed by analyzing 106 6 different phase
maps each. The resulting landscape in Fig. 8.9 shows that this maximum can be achieved in different
positions, depending on the chosen enhancing disorder configuration. In particular, it suggests that the
proper MAV can be achieved only in “central” modes pairs: The MAV can be induced between different
mode pairs by imposing different (yet equally enhancing) phase maps, although that is not possible in
modes that have not interfered enough. In fact, photons emerging from central modes will have the most
interfering paths, becoming more affected by inhomogeneities along the evolution. This phenomenon is
quite understandable considering the underlying network structure of the evolution (Fig. 8.1). Indeed,
central modes are subjected to more complex interference phenomena with respect to those close to the
boundaries, even more complex when their correlations are considered. This can be directly linked to the
amount of MZIs jointly traveled by photons emerging from the two selected modes, i.e., the amount of
phase shifts that are imposed over both photons. Therefore, regarding central modes, the manipulation
of nonclassicality results is more powerful and effective.
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Figure 8.9: Numerical simulation of 9 step MAV landscape. Plot of the maximum violation achievable
for each output modes pair at step 9 obtained by comparing 106 different disorder realizations.

Figure 8.10: BD and spatial structure of the QW. (a) A sketch of the BD functioning, provided with
relevant geometrical parameters. Through this device, it is possible to realize (b) a spatial structure
featured by a distinct localization of each QW mode at any evolution step in the plane orthogonal to the
propagation direction.

C. Experimental details

The exploitation of the z axis for the realization of the QW network relies on BDs Fig. 8.11 (a), im-
plementing the unique spatial distribution of the network nodes Fig. 8.11 (b), essential to the actual
realization of a space-time disorder. Photon pairs are generated by a high brilliance source realized ac-
cording to the model described in Ref. [410]: A PPKTP crystal, embedded in a Sagnac interferometer,
pumped by a CW laser radiation (λp = 405 nm), which generates a collinear pair of photons (idler and
signal) with opposite polarization at a wavelength of λi,s = 2λp = 810 nm. They are coupled to a pair
of optical fibers and experience an additional path through air before starting the actual QW evolution.
They are made indistinguishable in all possible degrees of freedom such as polarization, wavelength, and
propagation mode. In particular, we tuned the relative free-space path to get the best bunchin effect when
they impinge on the bulk-optics BS (BS1 in Fig. 8.6) for the first time, corresponding to the first step of
the QW. The unavoidable, critical free-space adjustment of beam superposition on the BS mainly limits
the achieved visibility of HOM effect to an average V ∼ 89%.

It is also worth mentioning the experimental method of measurement of the autocorrelation term Γii
for each i: A BS (BS2 in Fig. 8.6) placed at the output of the setup allows to split two photons traveling
the same mode with probability 2RT with R (T ) being the reflectivity (transmissivity) of the BS. By
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Figure 8.11: Violation matrices at the fifth step.Theoretical and experimental violation matrices at
the fifth step for [(a) and (b)] ordered evolution and [(c) and (d)] disordered evolution. The disorder
configuration has been chosen randomly.

Figure 8.12: Numerical and experimental coincidences matrices.Fifth step (a) theoretical coinci-
dences matrix and (b) corresponding experimental measurement output for the ordered QW. Sixth step (c)
theoretical coincidences matrix and (d) corresponding experimental measurement output for the optimal
disordered configuration. The similarities between theoretical and experimental coincidences distribu-
tions are 98 (±1)% for the fifth step case (a, b) and 97.5 (±1.3)% for the sixth step case (c, d). Errors
are computed accounting for Poissonian statistics of measured coincidences.

carefully characterizing the BS2 we can weigh the measured coincidences in order to compare them with
the values of Γij for i ̸= j. Our QW implementation is limited to a six-step evolution because of the
internal losses in each unit passage (nearly 17%) and because of both the geometrical structure and the
length of the QW that make it difficult to guarantee a high quality spatial overlap of the two photons at
each passage of light through the BS1. On the other hand, the main advantages of the QW configuration
consist of both phase stability and a flexible disorder configurability and also by the fact that the output
distribution for any step of the QW is directly accessible and measurable. As a consequence, this QW
platform is a powerful instrument for investigating the dynamical behavior of quantum features under
any type of disorder. An evolution of six steps through this setup is enough to investigate on the photon
correlation enhancement effect. Indeed, the numerical analysis reported in the main text indicates that a
larger number of steps would not have brought any further physical insight into the experiment.

D. Additional Experimental results

The output violation distributions corresponding to the fifth step are shown in Fig. 8.11. They provide
a preliminary demonstration of the dependence of quantum correlation distributions from the disorder
pattern imposed on the evolution. It is useful to observe the corresponding coincidence matrices for
the ordered fifth step and the optimal sixth step (Fig. 8.12). Disorder, as demonstrated in several pre-
vious works [72, 52, 348, 410], determines first an effect of spread hindering, also for multiparticle
systems. This effect can be noticed even in the case of a single disorder configuration (Fig. 8.12). The
manipulation of this localization effect can change the nonclassicality pattern in the output distribution in
many different configurations, changing the probability of finding coincident photons between the output
modes. Indeed, the corresponding experimental coincidence distributions result in good agreement with
the expected ones.
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Chapter 9
Generation and bi-photon quantum
interference of high-dimensional entangled
states via temporal photonic lattices

Abstract

Quantum walks [44] on photonic platforms represent a physics-rich framework for quantum measure-
ment, simulation, and universal computing. Dynamic reconfigurability of photonic circuitry is the key
to control the walk and retrieve its full operation potential. Universal quantum processing schemes
based on robust gated fiber loops have been proposed but never demonstrated due to gate inefficiencies
[89, 90, 91]. Here, we present a potentially scalable quantum walk processor by exploiting temporal
photonic lattices based on a coupled fiber-loop system. We use such system to demonstrate critical op-
erations, such as the generation and processing of two- and four-level discrete time-entangled photon
pairs. Our scheme enables the realization of quantum interference measurements without post-selection
for two-level entangled photons by controlling the quantum walk evolution. Our results introduce prac-
tical ways to utilize synthetic dimensions to efficiently perform quantum algorithms, such as quantum
phase estimation or boson sampling. This Chapter is related to the Paper 7 (to be submitted) in the List of
Publications. The task accomplished in the context of this thesis was to theoretically perform the d-level
bi-photon quantum interference using quantum walk model.

9.1 Introduction

Photonic entanglement is a vital resource at the heart of quantum-enhanced technologies, including com-
putation [149, 411, 412], secure communication [413, 414], and sensing [310, 415], owing to photons’
noise resilience, ease of control at room temperature, and transmission in both free space and fiber in-
frastructures (e.g., satellite and fibers, respectively) [416]. Exploiting this resource requires phase-stable
quantum circuitries delivering key operations, including entanglement generation, quantum state ma-
nipulation, and detection [417, 418, 419]. In conventional all-optical circuits [149, 415, 420], the light
flow is controlled by optical paths (i.e., spatial modes) connected in a (real space) mesh intertwined with
beam splitters. These devices usually require precise control over several spatially separated optical el-
ements, which are resource heavy as well as increase the complexity of the circuit, especially when the
number of operations or quantum modes grows [421]. Synthetic dimensions, created in complex lattices
of interacting optical modes [422], promise a scalable solution. They offer resource-efficient quantum
processing on large topologies, as they build on the intrinsic parallelism of optical operations at reduced
device complexity [423, 424].

Discrete time modes (also known as time bins) have shown many benefits among photons’ degrees
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Figure 9.1: (a) The coupled fiber-loops system consists of long and short loops (shown by green and red
colors, respectively) connected by an ultra-fast optical dynamical coupler and τ is the time delay among
adjacent pulses. (b) The coupled fiber-loops system is mapped to a fully controllable discrete quantum
walk network with the coin operator Ĉ(x, t) as a coupler (including, 50:50 F̂ , full transmission T̂ and
reflection R̂), where the arrival of photons is a function of the discrete synthetic position x in the lattice
and the number of round trips t.

of freedom, including noise resilience and easy manipulation with standard telecom-compatible compo-
nents [81, 82, 83, 84]. In this regard, temporal photonic lattices (TPLs), in which time bins are realized
via temporal delays between optical pulses, offer ideal platforms to create synthetic scalable dimensions.
TPLs can straight-forwardly be implemented using accessible fiber technologies, as well as offer excel-
lent testbeds to simulate intriguing effects, including parity-time symmetry [85, 86], superfluidity of light
[87], and topological matters [88]. However, despite the multiple proposals to use TPLs for quantum pro-
cessing [89, 90, 91, 92] experimental implementations are halted by inefficiency of current devices, such
as low-error tolerance and gate inefficiencies.

In this work, we present a novel route towards employing TPLs for practical and scalable quantum
information processing on discrete time-entangled photon states. We experimentally realize the TPL on
a fully fiber-integrated coupled loop system and use it for bi-photon state preparation and interference
based on the discrete-time quantum walk [44, 92]. Building on the dynamic control over the quantum
circuitry, we can perform and optimize time-bin two-and four-level interference of two photons.

9.2 Result

In our experiment, we operate on a one-dimensional synthetic TPL created through an unbalanced fiber
loop system with a δl = 20 m difference between the length of the two loops. Light can enter the
system at defined modes (i.e., lattice grid points) in one loop and may dynamically couple to the other
loop through an ultra-fast optical coupler that acts as a dynamic interconnect between the loops (See
Methods). As pulses propagate through two loops, they arrive at the coupler at different times (see
Fig. 9.1 (a)), delayed by τ = δl/v = 100 ns, where v is the speed of light in the fiber, and hop to
their next-neighboring mode at the upcoming round trip. In other words, the delay between the pulses
propagating within the two loops is equivalent to a transverse dimension in a conventional photonic mesh
lattice resembling the spatial quantum walk model [44, 92], as illustrated in Fig. 9.1 (b). The quantum
walker can be defined as |ψ⟩ =

∑
n αn |n⟩ with probability amplitude αn of finding the walker at mode

|n⟩. The mode |n⟩ can be written as |n⟩ = |x⟩p |σ⟩c, where c and c label the position and the coin states,
respectively. In our platform, the coin state |σ⟩c = {|S⟩c , |L⟩c} is given by the short (|S⟩c) and the long
(|S⟩c) paths in the loop, while the synthetic position |x⟩p is given by the time bin. The whole evolution
of a quantum walker can be attributed to the repetitive action of the unitary operator Û = Ŝ · Ĉ(x, t),
which is the product of the shift Ŝ and the time-dependent coin Ĉ(x, t) operators. A unique feature of
our all-fiber design is the dynamic tuneability of the coin’s reflectance/transmittance ratio using an ultra-
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Figure 9.2: Schematic illustration of a different sequence of coin operations and quantum interferences
of two-level bi-photon entangled states. We show two-photon coincidence counts (b) and (d) (in blue
squares) of two-level bi-photon entangled states obtained based on controlled (a) and uncontrolled (c)
schemes. Data are taken at a single site (marked by a dashed rectangle and light blue box in single photon
histogram in (a) and (c)) for varying relative phase θ and show a raw visibilities of Vd=2 = 95.45% in
(b), V ′

d=2 = 90.17% (d). Classical intensities (in a solid red circle symbol) of two and four trains of
pulses using different measurement strategies (a) and (d). Experimental data are fitted with the expected
theoretical quantum interference in solid blue and red-dash lines for quantum and classical interference,
respectively (See Methods).

fast coupler allowing for transitions from full transmission to equal splitting (i.e., 50:50 ratio) and full
reflection within 50 ns (i.e., half of the time bin spacing), See Methods for a detailed description. We
have used the dynamic TPL to prepare discrete time entangled photon pairs (See Methods) and perform
quantum interference measurements. In a typical measurement, we prepare two-photon states in the form
|ψd⟩ = 1√

d

∑d−1
k=0 e

2ikθ |k⟩s |k⟩i, where d = 2, 4 and θ denotes the relative phase between different time
bins. Here, the time width is typically 7 ps ( 150 GHz bandwidth), while the temporal delay between
the bins is given by τ . We thus inject the entangled state into the coupled loops and tune their evolution
within the TPL. Finally, from the output of the coupled fiber loop, each photon is routed through a
separate channel to a superconducting nanowire single-photon detector for coincidence counting [425].
Thus, we perform quantum interference measurements by realizing projections on product states of the
form (See Methods) [425]:

|ψp⟩ =
1

d

(
d−1∑
k=0

eikθ |k⟩s

)(
d−1∑
k=0

eikθ |k⟩i

)
(9.1)

We first exploit the dynamic control over the quantum walk in the qubit case to perform post-selection-
free quantum interference measurement (See Methods).

In a controlled scheme as illustrated in Fig. 9.2 (a), we inject the two-photon qubits |ψ2⟩ =
(
|−1 S⟩s |−1 S⟩i+

e2iθ |1 S⟩s |1 S⟩i
)
/
√
2 (indices s and i stand for signal and idler, respectively) into the short loop and

optimize their evolution to perform direct interference measurement. As schematically illustrated in
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Fig. 9.2 (a), this is realized by directing the photon(s) in the earlier time bin (position x = −1) into
the long loop and by fully transmitting the photon(s) in the later time bin (position x = 1) into the
short loop using the tuneable coupler. The delay experienced by the time bins in the second round-trip
allows them to coherently interfere as both arriving at the coupler (now 50:50 ratio) simultaneously. Fi-
nally, we measure coincidences between the photons extracted from the short loop as a function of phase
θ (see Fig. 9.2 (b)) across the entire gated time window (i.e., 550 ns) of the detectors, meaning that
no post-selection is applied. Such a controlled strategy can precisely implement quantum interference
without any noise subtraction with maximum detection efficiency p0 = 1 (See Methods). Fitting the
expected interference response to the data yields a raw visibility (i.e., including background noise) of
Vd=2 = 90.17%, which exceeds the threshold of 70.71% required to violate the Bell inequality [425].
We also repeat the same measurement with classical light and compare the obtained normalized light
intensity in Fig. 9.2 (b) with the quantum interference pattern (Fig. 9.2 (b)). The latter shows half of the
period of classical light due to the nonclassicality of the sources. Our setup further allows a comparison
between this scheme displayed in Fig. 9.2 (a) with that of an uncontrolled quantum walk (i.e., based on
a fixed 50:50 coupling ratio), as illustrated in Fig. 9.2 (c).To this end, we let the photons propagate for
two round trips. By post-selecting the coincidence events in the central mode of the short loop, we can
measure quantum interference as shown in Fig. 9.2 (d), yielding a raw visibility of V ′

d=2 = 95.45%. In
our controlled scheme, negligible side peaks appear on sides as shown in the single-photon histogram
in Fig. 9.2 (a), which implies that post-selection in the time bins is avoidable in that case. In addition,
the uncontrolled quantum walk has significantly lowered the probability of detection to p0 = 1/4 (See
Methods). The guided evolution of the controlled quantum walk enhances the coincidence counts from
21 to 77 per minute and practically reduces the time needed in the post-selection-free configuration. It is
worth mentioning that the lower visibility in the post-selection-free case is due to the imperfect behavior
of the couplers.

Another unique feature of our TPL is its scalability to higher time modes. Increasing time-bin di-
mensionality typically requires the implementation of multiple-arm unbalanced interferometers to ap-
propriately project the modes for quantum state processing. However, the stabilization of multiple-arm
fiber interferometers is highly resourceful, time-consuming, and impractical, while our system bypasses
the need for multiple-arm interferometers. Here, we demonstrate the scaling properties of TPLs by in-
jecting four-level (i.e., d = 4) time-bin entangled photon pairs in the form |ψ4⟩ =

(
|−3 S⟩s |−3 S⟩i +

e2iθ |−1 S⟩s |−1 S⟩i+ e4iθ |1 S⟩s |1 S⟩i+ e6iθ |3 S⟩s |3 S⟩i
)
/2 into the loop system. We have performed

quantum interference measurements on indeterministic quantum walk through the fiber loop system.
However, we bi-photon quantum interference measurements are not possible with this scheme (see Suppl.
Information for details). Hence, it was necessary to employ a deterministic quantum walk scheme. As
a first controlled scheme in Fig. 9.3 (a), the coupler is set to 50:50 in the first two roundtrips and then
to full reflection in the third roundtrip. Afterward, the coupler is assigned to 50:50 splitting during the
last roundtrip to mix all four bins. Eventually, we measure coincidences between the photons at the cen-
tral mode out of seven extracted from the short loop after evolution. Coincidences between photons are
shown in Fig. 9.3 (b) for varying phase θ. This procedure results in a raw visibility of Vd=4 = 91.55%,
which exceeds the threshold of 81.7% necessary to violate four-dimensional Bell’s inequality [425], as
well as in a coincidence detection efficiency of p0 = 1/4. The second control pattern (maximally con-
trolled) was employed to maximize the detection efficiency and directly operates on the quantum state
by slicing it into two parts as illustrated in Fig. (9.3) (c).

Here, the coupler keeps the first two-time bins (|1 S⟩ and |1 S⟩) in the short loop and sends the other
two (|−1 S⟩ and |−3 S⟩) into the long loop in the first roundtrip. Then, the pure reflection is carried
out in the second roundtrip, followed by the 50:50 ratio in the last two roundtrips. After extracting the
photons from the short loop, we post-select the central mode out of only three modes. Such an optimized
control strategy leads to quantum interference with maximum probability for coincidence detection (i.e.,
p0 = 1). The biphoton interference is shown in Fig. 9.3 (d) with raw visibility of V ′

(d=4) = 89.51%.
Despite the increase in the coincidence counts from 4.5 to 8.3 per minute, the achieved visibility is lower
due to the imperfect temporal response of the coupler.
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Figure 9.3: Quantum interference measurements of four-level bi-photon entangled states using two dif-
ferent controlled schemes of coin operations (a) and (c). Using these schemes, we show two-photon
coincidence counts (b) and (d) (in blue squares) of four-level bi-photon entangled states by varying rel-
ative phase θ with raw visibilities of Vd=4 = 95.45% in (b), V ′

d=4 = 89.55% in (d). The classical
intensities of four trains of pulses with these two controlled schemes are shown by solid red circle sym-
bols in (b) and (d).

9.3 Discussion

We provide a first proof-of-principle experiment demonstrating a TPL as a platform for the preparation,
generation, and processing of high-dimensional time-bin entangled photon pairs based on a dynamically
coupled fiber loop system. The versatility of our realization allows us controlling the walk of a biphoton
state such that it results in a post-selection-free quantum interference measurement for two levels. It
further allows the optimization of the quantum walk evolution for higher detection efficiency and co-
incidence counts potentially for any number of levels. Furthermore, our measurement strategy can be
theoretically generalized to perform quantum interference for arbitrary d levels (See Methods). Hence,
the proposed route may inspire new designs for engineering TPLs capable of generating and processing
entangled modes higher than four and performing the biphoton quantum interference with maximum ef-
ficiencies. Controlled quantum walks along TPL offer a cost-effective, practical route towards complex
state operations with considerably reduced instabilities and performance limitations of the numerous op-
tical elements required to perform comparable operations in photonic devices based on path and OAM
modes [66, 68, 93, 57]. We have shown that a dynamically coupled fiber loop can replace a cascade
of unbalanced optical Mach-Zehnder interferometers without any fine adjustments of successive delays.
Moreover, our entire implementation is fiber-integrated and compatible with telecom infrastructures, be-
ing hence cost-effective and practically applicable. However, faster optical couplers (e.g., 1 ns response
time) with lower injection losses (i.e., < 1 dB) are pivotal to elevate the technological potential of our
prototype. Yet, our results demonstrate how our TPL based on synthetic scalable dimensions can be used
to perform a variety of quantum information protocols, such as quantum tomography, phase discrimina-
tion, and sensing.
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Figure 9.4: Experimental setup. A coupler connects two polarization-maintaining fiber loops of 120
m (600 ns) for the long loop and 100 m (500 ns) for the short loop. Arbitrary function generators
(AFG) control the coupler’s transmittance dynamically. The set-up also includes: a pulsed laser, peri-
odically poled lithium niobate (PPLN) nonlinear crystals to generate photons through second harmonic
generation (SHG) and spontaneous parametric down-conversion (SPDC), phase modulator, wavelength
demultiplexer (WDM), oscilloscope, photodetector (PD), and two superconducting nanowire single pho-
ton detectors (SNSPDs). The oscilloscope and PDs are used in the classical part of the experiment.

9.4 Method

Experimental setup. The sketch of the experimental setup used to realize synthetic dimensions is pre-
sented in Fig 4. Our scheme has two main scopes, i.e., generating the time-entangled photon pairs and
performing quantum state projections. For photon pair generation, a single pulse from a femtosecond
fiber laser source (1550 nm wavelength, 10 MHz repetition rate, and timing jitter < 1ps) is sent into
the fiber-loop system after its repetition rate and bandwidth are reduced to 181.8 kHz and 0.3 nm using
an acousto-optic modulator (AOM ) and a tunable filter, respectively. Due to the length of the fiber loops
( 220m (1100 ns) combined), reducing the repetition rate is necessary to have enough time to complete
the measurement procedure.

Afterward, the light pulse is injected into the longer loop to enter the fiber system through a dynam-
ical coupler. The pulse is then split by the central coupler into two pulses, one circulating in the longer
and the other in the shorter loop. Both couplers are precisely controlled by arbitrary function generators
(AFGs). The pulses return to the coupler with a 100 ns time delay between them before they are split
again by the dynamical (i.e., the central). Repeating this process in each round trip eventually leads to
the generation of a pulse train. In the next step, the pulse train pumps a cascade of two periodically poled
lithium niobate (PPLN) nonlinear waveguides. The first PPLN converts two pump photons into two one
at 775 nm during the second harmonic generation (SHG) process. Residual pump photons are filtered
out and a second PPLN splits the newly generated photon into two entangled photons at 1550 nm via
spontaneous parametric down-conversion (SPDC). A time dependent phase is imprinted on the down
converted photons to allow for quantum interference measurements. Finally, photon pairs are generated
in a time bin entangled state of the form |ψd⟩ = 1√

d

∑d−1
k=0 e

2ikθ |k⟩s |k⟩i, where, in the cases analyzed
here, d = 2, 4. These dimensionalities are given by the injection of two and four pulses after two and
four roundtrips, respectively. This results in a two-photon entangled state, where each photon is in a su-
perposition of two- and four-time modes, respectively. Those generated and phase modulated entangled
photon pairs are reinserted into the loop for further interference measurements. After they have inter-
fered, signal and idler are separated by a dense wavelength division multiplexer (DWDM) at 1553 nm
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and 1547 nm, respectively, and then routed to two superconducting nanowire single-photon (SNSPD)
detectors. A time tagger records timing events, which are used for coincidence measurements.
Uncontrolled operation: In the uncontrolled configuration, the central coupler was maintained at a
fixed 50:50 ratio throughout the experiment. We used classical light for setup alignment and sent two
or four pulses directly to the loop system without passing through a PPLN crystal cascade. After the
required number of roundtrips, we obtained the data and transmitted it to classical detectors, repeating
this procedure for a range of phase values. Subsequently, we performed quantum measurements by
sending a prepared quantum state into the loop system. After the required number of roundtrips, we
obtained the data and separated the signal and idle components. These components were then sent to
separate channels of single photon detectors to generate single photon histograms. We identified different
bins and measured coincidence counts within a specified window, repeating this procedure for a range
of phase values. In the case of the two bins, the measurement of each phase point took of 3 minutes.
Subsequently, we utilized Eq. (9.2) to perform curve fitting and determine the visibility, as demonstrated
in Fig. 9.2 (d) of the main manuscript. In the four-bin case, the uncontrolled measurement scheme proved
to be insufficient for performing measurements for the violation of the Bell inequality. Even under ideal
conditions, 100% visibility is not possible with this configuration, as theoretical calculations showed, so
controlled measurement schemes are used to obtain meaningful data.
Controlled operation: In the case of controlled operations, the measurement procedure resembled that
of the uncontrolled case, with the exception that the central coupler was dynamically controlled instead
of being statically fixed at 50:50. To achieve this, we utilized Matlab to generate precise waveforms
for different schemes, which were then transferred to the variable coupler as per the desired application.
Here also, prior to conducting quantum experiments, we carried out experiments using classical light
for alignment. In the scenario with two bins, the controlled configuration led to a significant decrease
in photon counts outside coincidence window compared to the uncontrolled scheme, as evidenced by
the single-photon histograms presented in Fig. 9.2 (a and c) of the main manuscript. While no temporal
filtering was required to measure the coincidence counts, the number of coincidences remained the same
for a specific coincidence window and the entire round-trip window. Each phase point measurement had a
duration of approximately 1 minute. Finally, we utilized Eq. (9.2) to fit the curve and determine visibility,
with the results presented in Fig. 9.3 (b) of the main manuscript. For the scenario with four bins, it is
necessary to conduct deterministic measurements in order to perform biphoton quantum interference.
Two different schemes were investigated: one involving the distribution of photons across seven bins in
each loop after four round trips, resulting in a low count in the coincidence window but still sufficient to
draw conclusions; and another controlled scheme, where photons were maximally controlled, resulting
in a lower number of bins (three in this case) after the same four round trips and a higher count in the
coincidence window. Each phase point measurement took approximately 60 minutes, and curve fitting
using Eq. (9.2) was performed to determine visibility. The results are presented in Fig. 9.3 (b and d) of
the main text.
Theoretical aspect: Quantum interference measurement. We performed biphoton quantum measure-
ments to extract the visibility associated with high dimensional states |ψd⟩ = 1√

d

∑d−1
k=0 e

2ikθ|k⟩s|k⟩i
with two d = 2 and four d = 4 dimensions. The intended quantum interference measurement is Ep =
|ψp⟩ ⟨ψp| [425], result in Eq. (9.1). Thus, the expected ideal quantum interference is Pd = | ⟨ψp|ψd⟩|2.
We implemented the measurement by evolving the biphoton according to a controlled unitary evolution
for t roundtrips, which is |ψd(t)⟩ = Πtn=1Ûn |ψd⟩, where Ûn is the controllable unitary evolution at
roundtrip n. Ultimately, we choose a proper coincidence window between the idler and signal, and then
the expected biphoton quantum inferences are given by

P2(ϵ2) =
1

4
(1 + ϵ2 cos (2θ))

P4(ϵ4) =
1

26
(4 + ϵ4 (3 cos (2θ) + 2 cos (4θ) + cos (6θ)))

(9.2)

where ϵ2 and ϵ4 are the result of a symmetric noise model [425], and depicts the decoherence process, a
transition from a pure to a mixed state.
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Figure 9.5: Schematic illustration of a different sequence of operations to implement quantum inter-
ference measurement: (a) controlled, (b) un-controlled quantum walk schemes for two-level biphoton
interference, (c) controlled I, (d) controlled II quantum walk schemes for four-level biphoton interfer-
ence.

Supplementary Information

1. Discrete-time quantum walk.

A discrete-time quantum walk (DTQW) on the line [353] describes the dynamics of photons on a one-
dimensional temporal photonic lattices (TPLs). Many photonic platforms have been developed to imple-
ment DTQWs using different optical degrees of freedom to encode the coin operation and the position
of the quantum walker [71, 328, 70]. Each mode of the discrete quantum walk, i.e., |n⟩ = |x⟩p |σ⟩c,
comprises two degrees of freedom, i.e., the (synthetic) position |x⟩p and the coin state with basis
|σ⟩c = {|S⟩c , |L⟩c} where |S⟩c and |L⟩c stand for the short and the long paths in the loops, respec-
tively. The single-particle state can always be written as a superposition of the quantum walker modes
|ψ⟩ =

∑
n αn(t) |n⟩, where αn(t) is the probability amplitude of finding the quantum walker at mode

|n⟩. The single-step quantum walk evolution Û = Ŝ.Ĉ(x, t) is given by the product of the shift Ŝ and
the time-dependent coin Ĉ(x, t) operators, where the latter acts on the coin state, and then the former
moves the quantum walker according to its coin. The shift operator reads [353]

Ŝ =
∑
x

|x+ 1⟩p |x⟩p ⊗ |L⟩c ⟨L|c + |x− 1⟩p |x⟩p ⊗ |S⟩c ⟨S|c (9.3)

which mimics different delays that photons experience in different loops. The coin operator has the form
Ĉ(x, t) =

∑
x |x⟩ ⟨x| ⊗ Ĉ, which can be expressed in terms of matrix representation as

Ĉ(x, t) =

(
cos θx,t i sin θx,t
i sin θx,t cos θx,t

)
(9.4)

when written in the coin bases |σ⟩c = {|S⟩c , |L⟩c}. Here, the factor θ(x, t) is responsible for the trans-
mission and reflection coefficients. In our scheme, the coin operator is experimentally realized by an

113



ultra-fast optical dynamical coupler. The coin operator in Eq. (9.4) is not the most generic form for
the quantum coin operator [327]. However, our optical dynamical coupler simulates various operations
within different time bins and roundtrips with different transmission/reflection ratios. These include the
transmission coin T (x, t) (with θx,t = π/2), which sends the walker from the short (long) to the long
(short) loops, the Fourier coin F (x, t) with 50:50 splitting ratios (with θ(x, t) = π/4), which puts the
walker in the superposition of the two loops, as well as the reflection coin R(x, t) (with θ(x, t) = 0) ,
which keeps the light in the short (long) loop. It is worth recalling that the single-step unitary evolu-
tion of two quantum walkers is given by Ût = Û st ⊗ Û it , where the first operator acts on the signal and
the latter acts on the idler [426]. The evolution of the quantum walker after the t-th step is given by
Ût = Πtn=1Ûn, which provides t repetitive actions of the independent single-step unitary evolution of
two quantum walkers.

2. Discrete-Time quantum walk as a measurement device.

It has been shown that DTQW can be used to implement a generalized measurement in terms of a positive
operator value measure (POVM),

∑
i ÊiÊ

† = I with I denoting the identity operator and (Êi ) repre-
senting POVMs. Û =

∑
i |i⟩ ⟨ψin| maps maps the initial state |ψin⟩ into the final state |i⟩. Therefore,

projective measurements M̂ = |i⟩ ⟨i| on the final state corresponds to POVMs on the initial state. Also,
the probability of measuring the ith POVM element on a quantum state density matrix ρ is pi = Tr (Eiρ)
where Tr labels the trace. The intended POVM that leads to quantum interference measurement is
Êp = |ψp⟩ ⟨ψp| with

|ψp⟩ =
1

d

(
d−1∑
k=0

eikθ |k⟩s

)(
d−1∑
k=0

eikθ |k⟩i

)
(9.5)

Thus, the expected quantum interference is Pd = | ⟨ψp|ψd⟩|2 which is given by

Pd =
1

d3
sin2 dθ

sin2 θ
(9.6)

To perform the quantum interference pattern, we let the system evolve according to a controlled unitary
evolution for t round-trips, which is |ψd(t)⟩ = Πtn=1Ûn |ψd⟩.Then, the projection measurement M̂ =
|−1 S⟩s |−1 S⟩i ⟨−1 S|s ⟨−1 S|i is applied, corresponding to the coincidence between the signal and idler
photons at time slot −1 in the short loop corresponding to the mode |−1⟩p |S⟩c. Therefore, the expected
quantum interference can be rewritten as

Pd = ⟨ψd(t)| M̂ |ψd(t)⟩ /pd0 (9.7)

where pd0 ∈ [0, 1] is a constant factor ranging same as detection efficiency. The factor p0 allows having
different evolutions that provide the projection measurement with different detection efficiency. In other
words, the quantum interference pattern, given by Eq. (9.6), can be realized with various evolutions of
the two photons.

2..1 Controlled evolutions to perform two-and four-level biphoton quantum interference
measurements.

We provide a theoretical framework for different evolution operators of the biphoton states to realize
quantum interference measurements, as shown in the main text. As a first example, we design the
scheme to measure the quantum interferences. After injecting the qubit state |ψ2⟩ =

(
|−1 S⟩s |−1 S⟩i+

e2iθ |1 S⟩s |1 S⟩i
)
/
√
2 into the short loop, we let it evolve with two independent unitary operators. The
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unitary operation for the first step is

ÛTR =Ŝs.

(∑
x

|−x⟩p ⟨−x|p ⊗ T̂s +
∑
x

|x⟩p ⟨x|p ⊗ R̂s

)

⊗Ŝi.

(∑
x

|−x⟩p ⟨−x|p ⊗ T̂i +
∑
x

|x⟩p ⟨x|p ⊗ R̂i

) (9.8)

which sends the photons at the earlier time bin (position x = −1) into the long loop with the transmission
coin Ŝi(s) and keeps those at the latter time bin (position x = 1) into the short loop using R̂i(s) . In the
next step, we let the photon interfere (at x = 0) with the Fourier coin F̂i(s) given by the unitary operator

ÛF = Ŝs

(
Ip ⊗ F̂s

)
⊗ Ŝi

(
Ip ⊗ F̂i

)
(9.9)

where Ip is the identity operator over the position space. Thus, after these two steps, the evolved state
is |ψ2(t = 2)⟩ = ÛF · ÛTR |ψ2(t = 0)⟩, as illustrated in Fig. 9.5 (a). Finally, the exact interference in
Eq. (9.6) with d = 2 is obtained by performing the projective measurement M̂ . However, the quantum
system interacts inevitably with its surrounding environment [40]. Therefore, one can consider the sym-
metric noise model as [40] ρ̂ = ϵ |ψd(t)⟩ ⟨ψd(t)|+ 1−ϵ

d Î where ϵ is the pureness of prepared state |ψd(t)⟩,
d is the state dimension. Ultimately, the quantum interference reads

P2(ϵ2) =
1

4
(1 + ϵ2 cos (2θ)) (9.10)

which is obtained by performing the projective measurement as P2(ϵ2) = Tr
(
M̂ρ̂(t)

)
. It is worth re-

calling that Fig. 9.2 (a) of the main text shows the experimental quantum interference. As mentioned
in the main text, the same quantum interference pattern can be observed with the uncontrolled quan-
tum walk (i.e., based on a fixed 50:50 coupling ratio, as shown in Fig. 9.5 (b)) for two round trips.
Similarly, the expected interference Eq. (9.10) is obtained using the measurement outcome as Pd=2 =
⟨ψ2(t = 2)| M̂ |ψ2(t = 2)⟩ /pd=2

0 , where pd=2
0 = 1/4 is the detection efficiency and |ψ2(t = 2)⟩ =

ÛF · ÛF |ψ2(t = 0)⟩ is the evolved state. The slightly different visibilities measured in our experiment,
i.e.,Vd=2 = 90.17% and V ′

d=2 = 95.45% for controlled and uncontrolled cases, respectively can be jus-
tified as different noise amounts affecting the two evolution schemes due to the executions of different
operations.

The scalability of our platform allows us to perform DTQW with high-dimensional discrete input
states. Specifically, we could inject a 4-level entangled state of the form |ψ4⟩ =

(
|−3 S⟩s |−3 S⟩i +

e2iθ |−1 S⟩s |−1 S⟩i + e4iθ |1 S⟩s |1 S⟩i + e6iθ |3 S⟩s |3 S⟩i
)
/2 (i.e., d = 4) into the loop system. Two

different evolution strategies are designed to perform the measurement described by Eq. (9.5). As the first
controlled scheme illustrated in Fig. 9.5 (c), we design the unitary evolution as Ûd=4 = ÛF · ÛR · ÛF · ÛF
composed of two 50:50 splitting in the first two roundtrips, a pure reflection as

ÛR = Ŝs

(
Ip ⊗ R̂s

)
⊗ Ŝi

(
Ip ⊗ R̂i

)
(9.11)

in the third, and another 50:50 split at the last step. Quantum interference, given in Eq. (9.6) with d = 4,
is finally obtained by performing projections of the form Pd=4 = ⟨ψ4(t = 4)| M̂ |ψ4(t = 4)⟩/pd=4

0 where
|ψ4(t = 4)⟩ = Ûd=4 |ψ4(t = 0)⟩ is the evolved state and pd=4

0 = 1/4. However, an optimal evolution
can be designed to maximize the detection efficiency, meaning pd=4

0 = 1. Thus, in the following scheme,
as depicted in Fig. 9.5 (d), we devise the unitary operator as Ûd=4 = ÛF · ÛF · ÛR · ÛTR, which keeps
the first two time-bins (|−3 S⟩ and |−1 S⟩ )in the long loop and sends the other two ((|1 S⟩ and |3 S⟩
)) into the short loop in the first roundtrip, followed by full reflection and 50:50 splitting operations at
the two last steps. Finally, the exact expected quantum interference pattern is given by the projective
measurement Pd=4 = ⟨ψ′

4(t = 4)| M̂ |ψ′
4(t = 4)⟩ /pd=4

0 , where |ψ′
4(t = 4)⟩ = Û ′

d=4 |ψ4(t = 0)⟩ is the
evolved state. The quantum interference pattern of a four-level input state is given by

P4(ϵ4) =
1

26
(4 + ϵ4 (3 cos (2θ) + 2 cos (4θ) + cos (6θ))) (9.12)
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which is obtained by assuming the symmetric noise model introduced earlier. As shown in the main
text, the imperfect behavior of the dynamical coupler increases the noise ratio. This affects the visibility,
which declines from Vd=4 = 91.45% to Vd=4 = 89.51%.

2..2 Biphoton quantum interference for arbitrary discrete dimensions using TPLs

As discussed in the main text, our realization can perform a sequence of time-position-dependent op-
erators to serve a particular purpose. Although the experimental realization of the biphoton quantum
interference measurement is limited to 4 levels, the measurement scheme can be generalized to more
than four dimensions with d = 2n (n = 1 . . . ). We assume that the process starts with sending the
input state through one of the loops, then adjusting the coupler to implement the projection of Eq. 9.6.
The first rule is that we need d roundtrips to verify two-photon quantum interference of the d-level input
state. Specifically, d independent unitary operators Ûd = Πdn=1Ûn are constructed to make the initial state
evolve as |ψd(t = d)⟩ = Ûd |ψd(t = 0)⟩. Then, the projection measurement M̂ is applied to achieve the
quantum interference of Eq. (9.6). We also divide the process into preparation and mixing stages, each of
them being half the biphoton’s evolution time. The preparation process begins with the unitary operator
ÛTR (given in Eq. (9.8)), and d/2 − 1 number of pure reflection operators (given in Eq. (9.11)). In the
time-mode mixing stage, we let the photons evolve with different sequences of the 50:50 splitting and
reflection operators. Finally, we take photons out from the short loop and performed coincidence mea-
surements at position x = −1 for different values of θ, thus obtaining Eq. (9.6). As a summary, we write
the sequence of operations per roundtrip for d-level two-photon quantum interference measurement:

d = 2, Ûd=2 = ÛF · ÛTR
d = 4, Ûd=4 = (ÛF )2 · ÛR · ÛTR
d = 8, Ûd=8 = ÛF · ÛR · (ÛF )2 · (ÛR)3 · ÛTR
d = 16, Ûd=16 = ÛF · (ÛR)2 · ÛF · ÛR · (ÛF )2 · (ÛR)3 · ÛTR

(9.13)

116



Conclusive remarks

This ongoing doctoral dissertation introduces novel research that focuses on the characterization and
preservation of quantum resources in composite quantum systems. Part I of the study primarily explores
the concept of indistinguishability among identical particles, which is a pivotal resource for quantum
information processing. Moving to Part II, the thesis delves deeply into the controllable dynamics of in-
distinguishable particles, specifically emphasizing photons, as they propagate through diverse quantum
photonic configurations. In Part I, four chapters delved into various aspects of quantum information pro-
cessing using the indistinguishability of identical particles. Chapter II introduced a novel entanglement
measure for two identical qubits, showcasing the protection of non-local entanglement from preparation
noise through spatial indistinguishability. In Chapter III, I discussed an experimental framework for
remote entangling gates and performed quantum teleportation with fidelities surpassing classical thresh-
olds. Chapter IV investigated the preservation of entanglement during open system dynamics under
spatial indistinguishability. In Chapter V, an entanglement distillation method was presented, maxi-
mizing entanglement from mixed states through spatial overlap and examining the influence of noise
parameters and temperatures. These chapters contributed to our understanding of quantum information
processing using indistinguishability, offering valuable insights for practical applications.

In recent years, there has been growing research interest in the concept of spatially overlapping
identical particles in different regions to utilize the effect of indistinguishability in quantum information
processing. Previous studies have demonstrated that indistinguishability can be harnessed to perform
various quantum information processing tasks, including teleportation [16, 23], quantum estimation [94,
31], and entanglement distribution between nodes of a quantum network [28, 26].

Numerous theoretical and experimental designs have been proposed to exploit indistinguishability
for generating entanglement. These designs range from extending bipartite resource generation to mul-
tiple particles [25, 95], to utilizing graph theory approaches for generating complex multipartite states
using linear quantum networks [96]. Building upon these studies, we have developed a general control-
lable scheme for generating a comprehensive class of multipartite entangled states, including W, Dicke,
GHZ, and cluster states (this is a work in progress which is going to be submitted soon). Our scheme
relies on spatially localized operations and classical communication. Furthermore, the entanglement
concurrence based on sLOCC, as introduced in Ref. [17], has enabled researchers to investigate entan-
glement monogamy [97], study entanglement in anyonic systems [98, 99], and more. Additionally, we
have provided an entanglement recovery protocol due to the indistinguishability effect [100, 101]. Re-
cent developments have also motivated the robust engineering of maximally entangled states [35, 102].
However, experimental verification of entanglement preservation remains a major prospective area for
our proposed schemes.

In the realm of quantum thermodynamics, it has been shown that indistinguishability can play a role
as fuel in quantum engines to enhance the conversion of information and work [36, 37, 38], resulting
in higher efficiency at maximum power beyond the classical Curzon-Ahlborn limit [39]. In a work in
preparation, we propose an indistinguishability-based cyclic quantum cooling machine that can cool the
system particles to a very low temperature.

As a comment on the entropic measure of spatial indistinguishability introduced in [17], we have
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found that the measure is not general for any arbitrary input state. In general, the degree of indistin-
guishability depends on both the quantum state and the measurement performed on the system. To
clarify this point, let me consider an example of two fermions with the same internal degrees of free-
dom, having elementary states of |Lσ,Rσ⟩, where each can be found in different regions. In such a
state, the two fermions are initially distinguishable and addressable by their spatial regions. Then, we
spatially distribute the particles by unitarily modifying their single-particle wave functions. However,
even though we modify the spatial wave functions in the two regions L and R, the two-particle state
remains unchanged due to the Pauli exclusion principle or fermionic anti-bunching. Therefore, there is
no change in spatial indistinguishability. Hence, the transformation may not always result in spatially
indistinguishable output states. Instead, the entropic measure of spatial indistinguishability introduced
in Ref. [17] quantifies the deformation settings or spatial distribution of particles in different regions.
The same observation applies to the bosonic singlet state, given as |ψ1 ↑, ψ2 ↓⟩ − |ψ1 ↓, ψ2 ↑⟩. If we
substitute the general expressions of the single wave functions as |ψ1⟩ = cos

(
θ
2

)
|L⟩ + ieiϕ sin

(
θ
2

)
|R⟩

and |ψ2⟩ = ie−iϕ sin
(
θ
2

)
|L⟩ + cos

(
θ
2

)
|R⟩ with arbitrary values of θ and ϕ, the singlet bosonic state is

|L ↑,R ↓⟩ − |L ↓,R ↑⟩, which is a spatially distinguishable state.
Nevertheless, spatial indistinguishability or spatial overlap, as discussed in Chapter VI [118], is

expected to be observed. We can assess spatial indistinguishability by measuring the probability of
finding particles in each region. For example, if the probability of finding a particle in each region is
one, then the two particles are spatially distinguishable. Quantifying such a measure is an immediate
prospect.

In part II my thesis, three research papers were presented, each corresponding to a separate chap-
ter and published or submitted in peer-reviewed journals. Chapter VII introduces a probing protocol
based on discrete-time quantum walks, enabling the detection of coherent static and dynamic disorders,
as well as the investigation of transport phenomena and Anderson localization. This protocol offers a
feasible experimental strategy for quantum probing using the quantum Fisher information. Chapter
VIII explores the controlled disorder’s role in enhancing the quantum correlation between two identi-
cal photons. The results indicate that carefully imposed disorder configurations can enhance quantum
correlations, surpassing those observed in ordered quantum walks. Finally, Chapter IX presents a scal-
able discrete-time quantum walk processor utilizing temporal photonic lattices. This processor allows
for generating, manipulating, and testing high-dimensional time-bin entanglement. The experimental
demonstration showcases the control of high-dimensional biphoton quantum interference and highlights
the potential of temporal photonic lattices as reconfigurable quantum photonic circuits.

As an outlook, our research opens up several avenues for further exploration. Firstly, there is po-
tential for studying different types of disorders, including spatiotemporally correlated disorders, to gain
a deeper understanding of their effects on quantum systems. Additionally, investigating the role of dis-
order in quantum walks with fermions could provide valuable insights. Furthermore, whether disorder
can enhance quantum correlations between more than two particles remains to be seen, which could
have significant implications in quantum resource theories. Another exciting prospect is the potential
for engineering synthetic photonic lattices that can generate and process entangled modes with dimen-
sions higher than four. This would enable the efficient manipulation of biphoton quantum interference,
leading to advancements in quantum tomography, phase discrimination, and sensing. Overall, our re-
search opaves the way to the development of innovative designs and protocols in the field of quantum
information processing.

In conclusion, this thesis highlights the significance of indistinguishability as a valuable resource for
quantum information processing tasks. It also emphasizes the promising prospects for further advance-
ments in this field. Moreover, the thesis demonstrates the versatility of the quantum walk model and its
applicability in quantum optical platforms with different degrees of freedom. Throughout the thesis, we
have thoroughly investigated and analyzed various topics of interest to the scientific community work-
ing in quantum science and technologies. The substantial impact of our work can be seen through the
publications referenced in this text. However, the true value of this thesis lies not only in the knowledge
acquired by exploring diverse topics in quantum information, but also in the practical experience gained
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from working with different theoretical frameworks and from collaborating with many different research
fellows.
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