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Abstract

Reference- based alignment of short- reads is a widely used technique in genomic analysis of the Mycobacterium tuberculosis 
complex (MTBC) and the choice of reference sequence impacts the interpretation of analyses. The most widely used reference 
genomes include the ATCC type strain (H37Rv) and the putative MTBC ancestral sequence of Comas et al. both of which are 
based on a lineage 4 sequence. As such, these reference sequences do not capture all of the structural variation known to be 
present in the ancestor of the MTBC. To better represent the base of the MTBC, we generated an imputed ancestral genomic 
sequence, termed MTBC

0
 from reference- free alignments of closed MTBC genomes. When used as a reference sequence in 

alignment workflows, MTBC
0
 mapped more short sequencing reads and called more pairwise SNPs relative to the Comas et al. 

sequence while exhibiting minimal impact on the overall phylogeny of MTBC. The results also show that MTBC
0
 provides greater 

fidelity in capturing genomic variation and allows for the inclusion of regions absent from H37Rv in standard MTBC workflows 
without additional steps. The use of MTBC

0
 as an ancestral reference sequence in standard workflows modestly improved read 

mapping, SNP calling and intuitively facilitates the study of structural variation and evolution in MTBC.

DATA SUMMARY
The MTBC0 sequence is available in the online data supplement in FASTA format at https://github.com/lukebharrison/MTBC0. 
Included with the MTBC0 sequence in the data supplement are: the reference- free alignment of MTBC closed genomes in 
hierarchical alignment (HAL) format, control files for cactus, annotations for H37Rv and L8, a BED file of regions excluded from 
SNP calls lifted over onto MTBC0, as well as the scripts used to call SNPs and the phylogenetic trees generated in this article. Also 
included is a file with per- position liftover between H37Rv and MTBC0. All previously published sequence data is available at 
the NCBI nucleotide and SRA databases, accession number for sequences used in this manuscript are available in Tables S1 and 
S3, available in the online version of this article.

INTRODUCTION
Tuberculosis in humans and animals is caused by infection with closely related bacteria that comprise the Mycobacterium 
tuberculosis complex (MTBC). Over the past decade, studies of the phylogeny, evolution and molecular epidemiology of 
the MTBC have been conducted using next generation sequencing (NGS) workflows. The vast majority of NGS workflows 
rely on a reference- based alignment of short sequencing reads to assemble genomic sequences, call single nucleotide 
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polymorphisms (SNPs) and investigate structural variation. Current workflows used for MTBC (e.g. MTB- seq [1]) have 
used either the genome of the reference strain H37Rv [2] or an estimated most- recent common ancestor of the MTBC 
developed by Comas et al. [3].

Although widely used, the choice of H37Rv is not ideal: this genome is within lineage 4 of the MTBC and thus variation 
called against this genome represents the sum of evolution up the tree from H37Rv to the MRCA of the MTBC and back 
down the lineage to the sequence in question [4]. Further, as this is a tip- to- tip comparison, the directionality of any 
evolutionary change is not immediately resolved. Further, regions deleted in H37Rv (referred to as Rv- Deletions [RvDs] 
[5]) prevent mapping of reads from those regions, even if present in the genome under investigation. This latter issue has 
led to the use of workarounds based on realignment of unmapped reads to an alternative reference (e.g. Mycobacterium 
canettii, for example in [6]).

Recognizing these issues, Comas et al. [3] proposed the use of an estimate of the MRCA of the MTBC (defined by the closed 
genome sampling available, using lineages L1- L6). This addressed the problem of a tip- to- tip comparison, but this sequence 
does not incorporate newly available genomic data and lineages (L7–9, animal lineages). Furthermore, this estimated MRCA 
is based on the structural variation present in the H37Rv genome and is thus unsuitable for the direct alignment of RvDs.

An alternative approach for the investigation of structural variation is to consider the MTBC pangenome. In a pangenome analysis, 
the totality of all genes present in the genomes under investigation, typically assembled without a reference genome, is considered 
[7]. This approach is well suited to investigate the complete structural variation in gene content present in a given set of genomes, 
including the MTBC [4]. However, its application to the MTBC, where horizontal gene transfer events are generally thought 
not to occur [8], and the basis of structural variation is likely limited to gene duplications, deletions and transposable elements, 
has lead to contradictory results, with studies concluding the MTBC has both an open and closed pangenome (reviewed in [9]). 
These methods can be sensitive to assembly errors, and reference- free assembly of genomes sequenced using second generation 
short read technology can be error prone, which may explain these contradictory results.

Given the evolutionary history of the MTBC, an ancestral genome as reference genome is attractive, as the majority of informative 
structural variation will likely be captured, and the sequence itself is immediately interpretable and usable in existing reference- 
based workflows. Thus, such an ideal reference genome for the MTBC would 1) contain the structural complement present at the 
root of the MTBC to maximize mapping of reads, 2) represent the ancestral state of genomic positions to polarize evolutionary 
events informed by the recent discovery of deeply branching MTBC lineages (e.g. L8 [10]). Here, a new estimate of the ancestral 
state of the genome at the root of the MTBC is derived. Its ability to better capture structural variation absent in H37Rv is 
demonstrated at the TbD1 and RD7/RD713/RvD4496 regions [5] and its use as a reference genome is further demonstrated with 
a common workflow: generation of a reference- based SNP alignment and phylogenetic tree.

METHODS
Estimation of the ancestral genome of the MTBC
To estimate the ancestral genome of the MRCA of the MTBC, 30 closed MTBC genomes (including L1- 6, L8, M. bovis, M. orygis 
and M. microti) and one M. canettii genome available on the NCBI GenBank database were downloaded (Table S1). Genomes 
were adjusted for circularity manually and softmasked for highly repetitive regions using RepeatMasker v.4.1.5 [11]. The progres-
siveCactus genome alignment tool was used to perform simultaneous reference- free genome alignment and estimation of ancestral 
genomes [12]. This algorithm requires a set phylogenetic tree, and so one was generated using a SNP alignment generated using 
Parsnp, executed with default parameters, using H37Rv (NC_000962.3) as a reference sequence [13]. A phylogenetic tree was 
estimated from this SNP alignment using RAxML v8.2.12, with the Lewis correction for ascertainment [14], and with the inter-
relationships of major lineages constrained to accepted relationships from recent large phylogenomic studies (e.g. [10, 15, 16]). 
The position of lineage 8 was collapsed into a polytomy with the two well supported major clades in the MTBC (L5, 6, 9, A1–4) 

Impact Statement

This article describes an imputed ancestral genomic sequence (MTBC
0
) at the base of the MTBC for use as a reference sequence 

for Mycobacterium tuberculosis genomic workflows. Widely used reference sequences are limited to the structural diversity 
present in H37Rv, a lineage four isolate. MTBC

0
 obviates this limitation and complements pangenome approaches by incorpo-

rating the structural variation present at the base of the Mycobacterium tuberculosis complex (MTBC) by encompassing a wide 
sample of human and animal lineages including newly discovered lineages (L8, M. orygis). Use of MTBC
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of more reads and calling of more pair- wise SNPs and allows for the investigation of structural variation not present in the 
currently used reference sequences within this important group of animal and human pathogens.
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and (L1–4, 7) (Fig. S1). After the initial progressiveCactus alignment and reconstruction, the haltools [12] and halPhyloP/
PHAST [17] packages were used to refine ancestral state reconstructions. First, models of nucleotide evolution were fitted to the 
MTBC alignment using the halPhyloFit tool, and the best fit model (REV+Γ4) was chosen by minimizing the corrected Akaike’s 
Information Criterion (Table S2). Marginal ancestral state reconstructions at the root of the MTBC and the per site posterior 
probabilities were then recalculated using the best fit model and the AncestorsML tool in the haltools package, and the hierarchical 
alignment was updated. The NCBI prokaryotic genome annotation pipeline (PGAP, version 2023- 10- 03.build7061) was executed 
with default parameters to annotate the MTBC0 sequence and estimate the ancestral gene content in both the MTBC0 and Comas 
et al. sequences [18].

SNP calling
A sample of 309 MTBC and one M. canettii genomes consisting of short reads was selected from the genomes used by Chiner-
 Oms et al. [19]: all genomes from less common lineages were included, along with sub- sampling (ten random genomes per 
sub- lineage) of the major MTBC lineages with extensive sampling (2,4). SRA accession numbers are provided in Table S3. 
Genomes identified as by Chiner- Oms as drug resistant were excluded. Raw reads were filtered and Illumina tags clipped 
using trimmomatic with parameters: MINLNE:20 SLIDINGWINDOW 5 : 20 TRAILING:10 [20]. Then, Kraken2 [21] was 
used to select only reads mapping to Mycobacterium and duplicate reads were removed using picard v2.23.3. Reads were 
aligned to a reference genome (MTBC0, Comas et al., or H37Rv) with bwa mem [22]. GATK v4.2.2.0 was then used to call 
and filter SNPs and indels using GenotypeGVCF (haploid) and VariantFiltration programmes (filter parameters: QD <2.0, 
FS >60.0, MQRankSum <−12.5, Low40MQ, MQ <40.0, ReadPosRankSum <−8.0, DP <10). Finally, filtered SNPs and indels 
were further filtered to remove SNPs within repetitive and PE/PPE regions (as classified by [23]), as is standard in pipelines 
(e.g. MTBseq, [1]), by translating annotations using the cactus alignments in BED format from H37Rv using the halLiftover 
command [12]. Pairwise SNP distance between all genomes was calculated using pairsnp (https://github.com/gtonkinhill/ 
pairsnp) for SNP calls against each reference sequence.

Phylogenetic analysis
Filtered SNPs were used to construct a multiple sequence alignment of variable positions using samtools v1.13 [24], and a 
phylogenetic tree was estimated using RAxML v8.2.12, with the Lewis correction for ascertainment [14]. A rapid tree search 
was combined with 1000 rapid bootstrap pseudoreplicates under the GTRCAT model, followed by final optimization with the 
GTRGAMMA model. Phylogenies were plotted using the cophyloplot and comparePhylo tools in the phytools and APE R 
packages, respectively [25, 26].

Visualization of TbD1 and RD7/RD713/RvD4496
The location of the TbD1 region (NCBI accession AJ426486.1 [5]) was identified in the MTBC0 reference sequence using 
blastn [27]. The regions of difference were visualized using the Integrative Genomics Viewer (IGV [28]) with MTBC0 as the 
reference genome, and aligned short reads from a selection of genomes in the 310 genome data set with high coverage (one 
per lineage other than L8 where both available genomes are included, see figures for SRA accessions). Reference annotations 
for H37Rv (NC_000962.3), M. canettii (NC_015848.1) and lineage 8 (CP048071.1) are included for context and were mapped 
using the cactus alignments and the halLiftover command [12]. The RD7/RD713/RvD4496 regions, as defined by Brosch 
et al., Mostowy et al. and Liu et al. [5, 29, 30] respectively, were identified based on H37Rv annotations and visualized as 
above in IGV.

RESULTS
MTBC0

The imputed ancestral genome of the MRCA of the MTBC, MTBC0 is a total of 4.436 Mb in length, capturing structural variation 
of an additional ~24 kb relative to H37Rv (4.412 Mb). The ancestral reconstructions are generally well supported, with only 600 
positions that have a posterior probability <0.95. Additionally, regions of uncertainty were concentrated in difficult- to- align 
regions (e.g. PE/PPE genes) which are generally excluded from SNP calling pipelines (Fig. 1). When used to align short reads 
from a sample of 309 MTBC genomes and one M. canettii genome, MTBC0 maps a higher proportion of filtered reads relative to 
H37Rv or the Comas et al. ancestor (summarized in Table 1, complete mapping statistics in Table S4). Using a GATK- based SNP 
calling pipeline with filtering for SNP quality and filtering out SNPs falling in low complexity regions as well as IS elements and 
PE/PPE genes, the use of MTBC0 as a reference calls a mean of nine and seven more pairwise SNPs relative to Comas et al. and 
H37Rv, respectively (Table 1). PGAP annotation of MTBC0 estimated the presence of 3961 protein coding sequences, relative to 
3948 for Comas et al.

The TbD1 region is visualized using the MTBC0 reference sequence (Fig. 2). An approximately 2.1 Kb deletion is detected in 
lineages 2, 3 and 4. The RD7 region is similarly visualized (Fig. 3) as expected in lineages 6, 9 and A1–A4. The RD7 region also 
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overlaps with RD713 in lineage 5 and RvD4496 in lineage 4; relative to MTBC0, these regions have lengths of: 4.4 Kb, 5.9 Kb and 
17.2 Kb, respectively.

Phylogenetic analysis of SNP alignments generated using an identical pipeline, but with varying reference sequence shows 
only small differences in topology (Figs S2 and S3) within lineages, but with similar overall between lineage relationships. 
The topology of the phylogenetic tree is congruent with other recent analyses (e.g. [10, 15, 16]); lineage 8 is the most deeply 
branching lineage, and there is a deep division separating a) lineages 5, 6, 9 and the ‘animal- adapted’ lineages from b) 
Mycobacterium tuberculosis sensu stricto (lineages 1, 2, 3, 4 and 7). Major bifurcations in the tree were well supported in the 
bootstrap analysis for all trees.

DISCUSSION
The use of MTBC0 as a reference sequence incrementally improves mapping of reads and pairwise SNP calling relative to the 
Comas et al. sequence, albeit with only a subtle effect on a phylogeny estimated from these SNPs. The inferred phylogenetic tree 
is very similar (Fig. S2), and is also congruent with recent analyses, e.g. [10]. This is similar to previous work demonstrating only 
subtle effects on phylogeny of reference sequence choice within the MTBC [31]. Although phylogenetically informative SNPs 
may exist in RvDs, additional information to further address fundamental questions in the evolutionary history of the MTBC, 
such as whether the MRCA was human or animal- adapted, which is still an open question, will likely come from further sampling 
and discovery of rare and deeply branching MTBC lineages.

The use of MTBC0 captures structural variation, and approximately 13 more protein coding genes, not present in the Comas 
et al. sequence, and H37Rv upon which it is based. TbD1, an evolutionarily significant deletion specific to lineages 2, 3 and 4 
[32] is clearly identified with MTBC0 used as a reference. It further demonstrates RvD4496, and clarifies the size of the overlap-
ping RD7 and RD713 deletions, which have been underestimated relative to H37Rv/Comas et al. given the concomitant RvD. 

Fig. 1. The imputed 4.436 Mb MTBC
0
 ancestral sequence, linearized, visualized in IGV and annotated. In the first track, uncertainty in ancestral state 

reconstruction is represented by the log posterior probabilities of the imputed nucleotide at each position, where 0 represents a probability of 1, or 
a certain reconstruction. In the second track, regions excluded from SNP calls in the TB SNP annotation pipeline, as published by Goig et al., [23] and 
lifted over onto MTBC

0
. Regions with increasing uncertainty in ancestral state reconstructions overlap with difficult to align regions excluded from SNP 

calls by Goig et al. The third track shows aligned regions between MTBC
0
 and H37Rv (NC_000962.3) in the hierarchical alignment. Previously published 

large regions (>2 kb) absent from H37Rv and present in MTBC
0
 are identified with red triangles. In the fourth and fifth tracks, the average nucleotide 

identity in 100 bp non- overlapping windows along the aligned blocks was calculated using an R script and the APE and SeqinR packages ([25, 34]; 
script available in the data supplement) and is plotted for the Comas et al. and H37Rv reference sequences, respectively. Divergence between MTBC

0
 

and the other reference sequences is concentrated in difficult to align regions with more uncertainty in ancestral state reconstructions.

Table 1. Summary of mapping results and SNP calls for 309 short- read MTBC genomes and one M. canettii genome using the MTBC
0
, Comas et al., and 

H37Rv reference sequences

Reference 
genome

Length (bp) % reads mapped, 
median (IQR)

% reads unmapped, 
median (IQR)

Pairwise filtered SNPs called 
relative to MTBC0, mean (SD)

Protein coding genes (Automatic 
PGAP annotation)

MTBC0 4 435 783 99.7 % (0.15) 0.3 % (0.15) – 3961

Comas et al. 4 411 532 99.3 % (0.33) 0.7 % (0.33) 9 (7) 3948

H37Rv 4 411 532 99.3 % (0.33) 0.7 % (0.40) 7 (8) 3906 (RefSeq annotation)
3952 (PGAP re- annotation)

PGAP, Prokaryotic Genome Annotation Pipeline.
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Previous studies using the reference sequences of H37Rv or Comas et al., have relied on supplementary workflows examining 
unmapped reads followed by alignment against M. canettii. Although RvDs can be characterized in this manner, their position 
is then reported relative to one of the diverse M. canettii genomes, e.g. [30]. Other analyses may also benefit from the use of the 
MTBC0 as a reference sequence. These include the phylogenetic placement of genomes from ancient DNA analysis or from to be 
discovered deeply branching MTBC clades, and the intuitive analysis of regions of difference present. A final potential application 
is fine- grained molecular epidemiology analysis of clades distant from H37Rv that may benefit from the marginally increased 
SNP resolution and incorporation of SNPs present in the RvDs.

This approach has several drawbacks. The structural variation present in MTBC0 is based on the alignment of 30 closed genomes 
and is thus limited to variation present in that sample. The discovery of additional deeply branching lineages similar to what was 
found with L8 may reveal additional regions for future consideration and iteration. Further, as it is an estimate of the ancestral 
genome present at the base of the MTBC, the structural variation represented in MTBC0 is limited to that estimated to be present 
at the root of the complex. Given this, MTBC0 would not be ideal for studies seeking to capture and analyse the full repertoire 
of structural genomic diversity present in the MTBC, where a pangenome approach might be better suited. This latter concern 
is somewhat mitigated by the paucity of reported horizontal gene transfer events in the evolutionary history of the MTBC [8], 
and so MTBC0 will likely capture sufficient structural diversity for a large variety of use cases.

In the longer term, the continued development and refinement of long- read- based third generation sequencing technologies may 
enable the widespread use of reference- free workflows and pangenomics (e.g. EnteroBase [33]) that rely on de novo assembly. 
However, until the availability of long- read- based genomic data approaches that contained in the vast databases of short- read 
genomic sequences available and being generated for the MTBC, reference- based methods are likely to predominate. MTBC0 
is designed to complement H37Rv and Comas et al.’s reference sequences, and pangenomic approaches as another tool in the 
toolbox, perhaps as a new ‘North star’ to facilitate genomic analyses in the MTBC, particularly for studies that need to capture 
the evolution of and within structural variation absent in H37Rv. Further, although not comprehensively examined here, MTBC0 
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provides a new estimate of the ancestral genomic states, both in terms of gene content and sequence. These permit intuitive 
interpretation of evolutionary changes and may inform estimates of ancestral phenotypic parameters in the search for the origin 
of the Mycobacterium tuberculosis complex.
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