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Abstract

Naphthenic acids (NAs) are a complex mixture of organic compounds released during bitumen extraction from mined oil sands that
are important contaminants of oil sands process-affected water (OSPW). NAs can be toxic to aquatic organisms and, therefore, are a
main target compound for OSPW. The ability of microorganisms to degrade NAs can be exploited for bioremediation of OSPW using
constructed wetland treatment systems (CWTS), which represent a possible low energy and low-cost option for scalable in situ NA
removal. Recent advances in genomics and analytical chemistry have provided insights into a better understanding of the metabolic
pathways and genes involved in NA degradation. Here, we discuss the ecology of microbial NA degradation with a focus on CWTS and
summarize the current knowledge related to the metabolic pathways and genes used by microorganisms to degrade NAs. Evidence to
date suggests that NAs are mostly degraded aerobically through ring cleavage via the beta-oxidation pathway, which can be combined
with other steps such as aromatization, alpha-oxidation, omega-oxidation, or activation as coenzyme A (CoA) thioesters. Anaerobic
NA degradation has also been reported via the production of benzoyl-CoA as an intermediate and/or through the involvement of
methanogens or nitrate, sulfate, and iron reducers. Furthermore, we discuss how genomic, statistical, and modeling tools can assist
in the development of improved bioremediation practices.
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Glossary .

Commercial NAs: naphthenic acids obtained from petroleum

® ACA: 1-adamantanecarboxylic acid.

AEOs: acid extractable organics (all extractable polar com-
pounds).

Alpha-oxidation: loss of the alpha-carbon, which is the first
carbon atom that attaches to a functional group such as car-
bonyl (C=0).

Aromatization: aromatic ring formation from a non-aromatic
precursor.

Beta-oxidation: oxidation of the beta-carbon, which is the sec-
ond carbon atom that attaches to a functional group, leading
to the formation of a carboxylic acid with two carbons less
than its precursor.

CHCA: cyclohexanecarboxylic acid.

distillates that are used in the industry as preservatives, sur-
factants, paint driers, and other purposes.

CWTS: constructed wetland treatment systems.

NA: naphthenic acid.

NAFCs: naphthenic acid fraction compounds; interchange-
able with AEOs.

Omega-oxidation: when the terminal methyl group (CHs) is
oxidized to form a carboxyl group (COOH), resulting in car-
boxylic acids that can then be degraded by beta-oxidation.
OSPW: oil sands process-affected water.

OSTWAEOs: oil sands tailings water acid-extractable organics
(all extractable polar compounds in OSPW).

Surrogate NA: an individual model NA that is commercially
available.
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e Tertiary carbon: a carbon atom that is connected to three
other carbon atoms. The tertiary carbon blocks beta-
oxidation.

Introduction

Bitumen extraction from oil sands during surface mining oper-
ations uses a hot water extraction process that results in the
production of large volumes of oil sands process-affected water
(OSPW, Nat. Res. Canada 2023). OSPW contains a number of or-
ganic and inorganic components that can vary depending on the
source. Among the organic compound classes in OSPW are naph-
thenic acids (NAs), a complex mixture of carboxylic acids that are
formed over geological time and are naturally present in crude
oils, including bitumen (Clemente and Fedorak 2005). NAs can
be toxic toward various organisms (Li et al. 2017 and references
therein), are difficult to degrade, and persist in the OSPW envi-
ronment. NA concentrations range from 20 to 120 mg/L in OSPW
(Grewer et al. 2010). In Canada, the oil sands industry is a vital part
of the economy and despite interest in investing in renewable en-
ergy, international demand and oil sands production are expected
to increase for years to come (Natural Resources Canada, 2023).

The chemical characteristics of NAs have been extensively
described (e.g. Clemente and Fedorak 2005, Ajaero et al. 2020).
According to the classical definition, NAs are alkyl-substituted
acyclic and cycloaliphatic carboxylic acids which fit the chemi-
cal formula CHjny,0,, where n indicates the number of carbon
atoms (which can range from 7 to 30) and z is a negative even
integer that indicates the hydrogen deficiency due to ring cycliza-
tion (Clemente and Fedorak 2005). However, molecules contain-
ing more than two oxygen atoms (CpHjn:,Ox, 0xy-NAs) or het-
eroatoms such as sulfur (ChHn:,SOx) or nitrogen (CpHzni,NOy)
are also common in OSPW (Tomczyk and Winans 2001). In the lit-
erature, ‘naphthenic acid fraction compounds (NAFCs)’ has been
used to describe all polar acids, including classical NAs, that can
be extracted from OSPW (Ajaero et al. 2020, Vander Meulen et
al. 2021). Other studies have used the term ‘acid extractable or-
ganics (AEOs)’ (e.g. Ahad et al. 2020, Hewitt et al. 2020) and ‘oil
sands tailings water acid-extractable organics (OSTWAEOSs)’ to re-
fer to all extractable polar compounds in OSPW (Grewer et al.
2010). Furthermore, the term ‘commercial NAs’ is used to desig-
nate the NA preparations obtained from petroleum distillates for
use as preservatives, paint driers, emulsifiers, surfactants, and in
the manufacture of tires (Scott et al. 2005). The molecular struc-
ture of NAs is diverse (Fig. 1). NAs can be linear, branched aliphatic,
or can have complex multi-ring structures with z values reaching
-12 (a 6-ring structure) (Clemente and Fedorak 2005). OSPW has
also been shown to contain a variety of other types of petroleum
acids that do not fall under the classical definition of NAs, such
as tricyclic diamondoid acids (Rowland et al. 2011b) and aromatic
carboxylic acids (Rowland et al. 2011a).

Exposure to NAs can result in physiological changes in aquatic
organisms, including narcosis, cellular damage, and impaired em-
bryonic development (Li et al. 2017, Gutierrez-Villagomez et al.
2019). Besides its toxicity towards a variety of organisms, NAs
have corrosive properties and can form precipitates that block
pipelines (Barrow et al. 2009, Dias et al. 2014). Consequently, gov-
ernment regulations in Canada require that “all fluid tailings
should be ready to reclaim within 10 years of the end of a mine’s
life” (Alberta Energy Regulator 2022). Therefore, there is a ma-
jor interest by industry to reduce the level of NAs and toxicity of
OSPW.

The removal of toxic compounds from OSPW is one of the ma-
jor challenges of oil sands tailings reclamation. Numerous tech-
nologies from wastewater treatment have been proposed and
studied for OSPW treatment, including adsorption, advanced oxi-
dation, coagulation/flocculation, filtration, and photodegradation
(Quinlan and Tam 2015, Qin et al. 2019). However, questions re-
main about the scalability, economic viability, and sustainability
of these approaches at the level required to be impactful for the
oil sands industry (Kannel and Gan 2012, Scott et al. 2020). In this
regard, bioremediation represents a low energy and cost-effective
strategy for reducing NA concentrations and associated toxicity of
OSPW (Kannel and Gan 2012). The degradation of NAs is primarily
through metabolic pathways that involve enzymatic degradation,
leading to eventual mineralization or transformation of NAs into
less toxic compounds (Whitby 2010, Yue et al. 2015). This ability
of microorganisms to degrade NAs offers potential as a sustain-
able bioremediation approach for OSPW and is highly scalable
through, for example, constructed wetland treatment systems
(CWTS). CWTS are engineered ecosystems designed to mimic the
natural processes of wetlands to treat and purify polluted wa-
ter. A combination of physical, chemical, and biological processes
including microbial and plant-mediated transformation are ac-
tive in CWTS to remove contaminants from the water before
it is released or reused (Fig. 2). There are many challenges in-
volved in the development of efficient OSPW remediation through
CWTS, such as the presence of recalcitrant NAFCs, low micro-
bial growth, and low oxygen conditions (average of 2.5 mg L% in
North American Database (Kadlec 1995), 1.33-8.22 mg L~ (Simair
etal. 2021),2.65-6.8 mg L-! (McQueen et al. 2017)). Region-specific
challenges, such as a cooler climate in Canada, also limit efficient
OSPW treatment. Therefore, a clear understanding of the ecology,
metabolism, and genomic potential of NA-degraders is required
to develop solutions for optimized OSPW bioremediation. These
solutions could involve biostimulation of microbial growth and
metabolism through manipulation of nutrient availability, as well
as bioaugmentation with microorganisms capable of degrading
recalcitrant NAs or that demonstrate enhanced NA degradation
under specific temperature, oxygen concentration, and pH condi-
tions.

Although the NA-degrading potential of microorganisms was
reported decades ago (e.g. Rho and Evans 1975, Blakley and Pa-
pish 1982), recent advances in analytical chemistry and in ge-
nomics have provided more information on the identity and ecol-
ogy of NA-degrading microorganisms (e.g. Whitby 2010, Yue et al.
2015, Skeels and Whitby 2019), as well as on metabolic pathways
and genes that have potential roles in NA degradation. Here, we
summarize current knowledge on the ecology, metabolism, and
genomics of microbial NA degradation and CWTS. We also offer
suggestions for future research approaches that could be used to
provide additional insight and optimization of the biodegradation
of NAs.

Diversity and ecology of microorganisms
involved in NA degradation

Understanding the diversity and ecology of NA-degrading mi-
croorganisms is critical given the complex nature of environ-
mental NA mixtures and dynamic field conditions, particularly in
northern Canada. Skeels and Whitby (2019) summarized the bac-
terial and archaeal diversity across different NA-impacted envi-
ronments. They reported a relatively large diversity, with a domi-
nance of microorganisms of the Proteobacteria phylum. Most taxa



Reisetal. | 3

General Structure E xample &
S OH
Acyclic CHj3(CH3),,COOH Palmitic acid
(0]
/\, OH
Monocyclic R—  +—(CH2)»,COOH Cyclohexanecarboxylic
J/ acid
R OH
Bicyclic DA ——(CHy)»COOH Bicyclof4.3.0]nonane-3-
carboxylic acid 0
(0] OH
R
Tricyclic X 7—(CH2),»,COOH 1-Adamantanecarboxylic

acid

Figure 1. Examples of classical (O,) naphthenic acids. m is the number of CH, units and R is a small aliphatic group such as a methyl group. Adapted

from Whitby (2010).

were site specific, but a few were common to more than one
environment (e.g. tailings ponds and biofilms/bioreactors). The
genus Pseudomonas within the Proteobacteria was detected across
all environments. Although much less studied than their bacte-
rial counterparts, archaea and fungi have also been reported in
oil sands-affected environments. Methanogenic archaea such as
Methanobrevibacter, Methanolinea, and Methanoregula have been re-
ported in tailings ponds and are associated with the anoxic con-
ditions of such systems (Skeels and Whitby 2019 and references
therein). Some fungal species have demonstrated tolerance to
NAs, as evidenced by their high abundance in an oil sands min-
ing lake (Richardson et al. 2019). Furthermore, the ascomycete
Trichoderma harzianum was shown to improve phytoremediation
of petrochemicals and was able to grow on petrochemicals, bitu-
men, and NAs (NA surrogates cyclohexanecarboxylic acid and 1-
adamantanecarboxylic acid, commercial NAs, and OSPW) as sole
source of carbon (Repas et al. 2017, Miles et al. 2020).

A few studies have identified environmental drivers of micro-
bial community structure in NA-degrading systems, indicating a
key role of electron acceptors, type of NA, and plant species (in
plant-associated microbial communities). For instance, in anoxic
sediments underlying oil sands tailings ponds, Lv et al. (2020a)
found that sediment type (sand or clay), electron acceptor (ni-
trate or sulfate), and NA source (OSPW or commercial NAs) sig-
nificantly affected the microbial community composition. In the
same system, Lv et al. (2020b) showed that the type of electron ac-
ceptor influences the topology of microbial interactome networks
and pinpointed the key role of redox state in NA-degrading mi-
crobial communities. In microbial communities associated with
Typha (cattail) roots, the type of NA (extracted from OSPW or a
commercial NA mixture) was the critical factor influencing the
dominant bacterial species in this system, with high doses of com-
mercial NA favoring the enrichment of potential plant pathogens
such as Dechlorospirillum sp (Phillips et al. 2010). This study also
observed that the effect of NAs on root-associated microbial com-
munities was niche-specific, with the plant itself being the domi-
nant influence on the composition of endophytic microbial com-
munities (Phillips et al. 2010).

Due to the toxicity of NAs, indigenous microbial populations
that thrive in the presence of NAs in OSPW and tailings ponds
are more likely to degrade NAs (Del Rio et al. 2006, Yu et al.
2018b, Skeels and Whitby 2019). Microorganisms have been suc-
cessfully isolated from OSPW or other NA-contaminated environ-
ments and were capable of degrading NAs. These include the gen-
era Pseudomonas, Alcaligenes, Acinetobacter, Kurthia, Rhodococcus, Aci-
dovorax, and Rhodoferax (Herman et al. 1994, Del Rio et al. 2006,
Presentato et al. 2018, Yu et al. 2018b). Some of these microor-
ganisms were shown to degrade NAs and use them as a carbon
source (e.g. Wyndham and Costerton 1981, Presentato et al. 2018,
Yu et al. 2018b). While NA-contaminated environments, such as
OSPW (NA concentration: 20-120 mg/L; Grewer et al. 2010), typi-
cally house microbial communities tolerant to NAs and capable
of NA metabolism, the genetic potential to degrade NAs seems
to be ubiquitous and not restricted to heavily contaminated envi-
ronments. For example, NA-degrading microorganisms have been
successfully isolated from the rhizosphere of undisturbed forest
overlying oil sands deposits (Biryukova et al. 2007) and from un-
contaminated clay and sand sediments underlying tailing ponds
(Lv et al. 2020a). Similarly, Ahad et al. (2018) reported direct evi-
dence of in situ NA degradation of relatively simple NA surrogate
compounds (e.g. cyclohexanecarboxylic acid, or CHCA) in ground-
water down the hydraulic gradient from an oil sands tailings pond.
These findings indicate that natural ecosystems also house the
genetic potential for NA degradation, and that NA metabolism is
favored and becomes enriched under NA contamination.

Factors influencing the biodegradability of
NAs

A major factor affecting NA biodegradation involves the intrinsic
chemical characteristics (i.e. mass and structure) of NAs (Han et
al. 2008). NAs with higher molecular weight and increased struc-
tural complexity, such as alkyl-substituted aliphatic chains, ter-
tiary substitutions, branches, rings, and diamondoid structures,
are more recalcitrant and tend to accumulate in aged OSPW
(Smith et al. 2008, Yue et al. 2016).
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Figure 2. Schematic representation of a horizontal surface flow (HSF) constructed wetland treatment system (CWTS) for oil sands process-affected
water (OSPW) treatment. The figure presented is based on the design described in (Cancelli and Gobas 2020). 1. OSPW deposit. The water deposit
usually consists of a tailings pond, where OSPW is temporarily deposited to allow the sedimentation of particles, preventing clogging of the inlet pipes.
2. Inlet pipes. usually polyvinyl chloride (PVC) pipe, with a variable diameter (at least 100 mm). The inlet pipe can discharge into the wetland directly
(as in this figure). Alternatively, it can connect to a distribution pipe running along the width of the wetland with perforated holes located evenly
through the length of the pipe (~20 mm or more, depending on the flow rates) to help distribute the waterflow. Typically, a constant water flow in and
out of the wetland is ensured by automatic pumps, which stop when adequate water levels are reached. 3. Closed circuit pipes. At a commercial level,
there would be no recirculation. However, for research purposes and pilot studies, a recirculation system can be set up (Cancelli and Gobas 2020). If so,
these pipes recirculate the treated water back into the OSPW deposit. They are typically made of PVC and can be placed above or under the ground. A
closed system with water recirculation allows for subsequent cycles of water filtration through the wetland to further decrease naphthenic acids
(NAs) levels, but it is not an essential element of a CWTS. 4. Impermeable lining. The basin where the wetland is excavated needs to be covered with
an impermeable lining to prevent leakage. Usually, a second layer of geotextile material is added to protect the impermeable layer as well as gravel
media (Cancelli and Gobas 2020). 5. Forebay area. This section receives the water from the inlet pipes and ensures a smooth flow towards the
subsequent pools. 6. and 7. Wetland basin and Rooting media. the composition of both wetland basin and rooting media depend on what is naturally
abundant in the geographical region and can vary from sandy clay loam to coarse sand and an organic matter layer (i.e. peat mineral mix). 8. Shallow
pools. Wetlands can be divided into a series of pools of different or similar depths. Shallow pools are typically 0.5-1 m deep and allow the
establishment of emerging macrophytes. 9. Deep pools. Deep pools are typically 1.5-2 m deep and allow the establishment of mostly submerged
macrophytes, although some emergent species can also be found here (e.g. Phragmites australis). 10. Outlet cell. This collects the water at the lower end
of the basin slope. From here, the water will be either recirculated to the initial water deposit or released into a collection basin for treated water. 11.
Outlet pipes. These pipes can collect the water in a single tube (in this figure), or alternatively, the water can run through a collection pipe running
parallel to the edge of the wetland that will then be merged into a perpendicular outlet pipe. In that case, the outlet collection pipes are perforated
PVC, with a similar diameter than the inlet pipe, and holes with a smaller diameter (5-6 mm). 12. Collection basin. Water that has been successfully
treated is collected at the end of the process and held until analyses confirm the reduction of the targeted pollutants.

Environmental conditions such as oxygen concentration, tem-
perature, nutrients, pH, redox potential, and sunlight may
strongly affect the microbial degradation of NAs (Whitby 2010,
Wong et al. 2015, Kinley et al. 2016). The effectiveness of biodegra-
dation is dependent on the environmental conditions such as
availability of nutrients, temperature, and electron acceptors re-
quired for microbial growth. Despite their major importance to in
situ NA biodegradation in systems such as CWTS, it remains un-
clear how these factors influence the activity of NA-degraders in
NA-contaminated environments. Microbial NA degradation in the
presence and absence of oxygen has been reported, with the latter

often being related to the use of sulfate, nitrate, or methanogene-
sis precursors (e.g. CO», acetate) as electron acceptors (e.g. Rontani
and Bonin 1992, Iwaki et al. 2005, Johnson et al. 2012, Clothier and
Gieg 2016, Presentato et al. 2018). However, significant degradation
of a diamondoid NA compound (1-adamantanecarboxylic acid,
or ACA) was not observed under anoxic conditions, suggesting
that more recalcitrant NAs may be resistant to anaerobic degra-
dation pathways (Folwell et al. 2016). Also, higher degradation
rates were measured for commercial NAs under well-oxygenated
conditions (dissolved oxygen concentration >8 mg L~') when
compared to less oxygenated treatments (Kinley et al. 2016).



Therefore, the availability of oxygen, sulfate, nitrate, or other pu-
tative electron acceptors can be a major factor controlling the
type of NA compounds that are microbially degraded and the rate
of microbial NA degradation (Skeels and Whitby 2019). In addi-
tion, low temperature has been shown to negatively affect NA
degradation rates (Lai et al. 1996). In controlled experiments with
commercial NAs, Kinley et al. (2016) reported lower NA degra-
dation rates and lower microbial diversity in the low tempera-
ture (6-16°C) treatments. Similarly, in the northern region of Al-
berta, Canada, Wong et al. (2015) detected NA biodegradation only
at occasionally high summer temperatures, while no biodegra-
dation was observed at 4°C. This is in agreement with a field
study carried out by Ahad et al. (2018), who reported no biodegra-
dation of ACA in late autumn (6-7°C) in groundwater monitor-
ing wells down-gradient from a tailings pond in a low-lying wet-
land. This poses a particular challenge to the reclamation of oil
sands mining sites at higher latitudes with cooler climates. Nu-
trient availability and pH have also been identified as important
factors influencing NA degradation. Kinley et al. (2016) showed
that higher pH (between 8 and 9) and nutrient availability (ni-
trogen (N) and phosphorus (P)) positively affects NA degradation
rates. This suggests that biostimulation (i.e. the addition of nutri-
ents such as N, P, K) could potentially be used to improve micro-
bial NA degradation in OSPW. Indeed, previous work showed that
indigenous hydrocarbon-degrading microorganisms in contami-
nated soils can be efficiently stimulated by the addition of nutri-
ents (e.g. Yergeau et al. 2009, 2012, Bell et al. 2013), but the efficacy
of such an approach for NA biodegradation remains unexplored.

Microbial community composition also appears to influence
NA degradation. A few studies have reported that mixed indige-
nous microbial communities, rather than a single taxon, are more
likely to promote the degradation of recalcitrant compounds due
to complementary degradation steps or consumption of interme-
diate products in syntrophic relationships (communal metabolic
efforts). For instance, mixed bacterial communities have been
shown to degrade model NAs more rapidly than pure cultures
(Demeter et al. 2014), and Pseudomonas co-cultures degraded a
higher quantity of NAs in OSPW than was observed in pure cul-
tures (Chegounian et al. 2021). Similarly, co-cultures of algae and
microorganisms in inocula from an end pit lake degraded cy-
clohexaneacetic acid while the pure algal cultures or pure end
pit lake inoculum did not (Yu et al. 2019). Furthermore, bacte-
rial and algal consortia from OSPW degraded the recalcitrant ACA
(Paulssen and Gieg 2019), and interactome networks of anaero-
bic NA-degrading bacteria suggested syntrophic relationships in
biodegrading processes (Lv et al. 2020b). In addition, the presence
of bacterial biofilms that could form in plant tissues or in the sed-
iment seems to favor the bioremediation of NAs, as higher and
particularly more durable degradation activity was detected in
biofilms of Pseudomonas when compared to its planktonic coun-
terpart (Shimada et al. 2012).

Plant-microbe interactions in the
degradation of NAs and the use of
constructed wetland treatment systems
(CWTS) for the bioremediation of OSPW

The intimate relationship between plants and microbes could be
the key for the treatment of many hydrocarbon-derived com-
pounds (Correa-Garcia et al. 2018) and this interaction is expected
to contribute to the successful performance of CWTS for OSPW
bioremediation (Fig. 2). Several studies have demonstrated that
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wetland plants and their microbes can dissipate NAs in lab-scaled
hydroponic systems spiked with the AEO fraction of OSPW or with
commercial NA mixtures (Armstrong et al. 2008, 2009, Headley et
al. 2009, Toor et al. 2013). These results demonstrated that wet-
land plants and their associated microbes have the capacity to
remove specific classes of NAs from solution and reduce toxicity
to invertebrates and fish.

The plant-microbiome relationships are often plant-species
specific (Rodriguez et al. 2019), and the dynamics of these in-
teractions depend on the habitat niche (i.e. phyllosphere, rhizo-
sphere, endosphere). For example, root-associated microbial com-
munities appear to be niche-specific under OSPW conditions, as
endophytic communities in cattail remained relatively stable af-
ter OSPW treatment compared to the rhizoplane and the bulk
soil, where exposure to NAs resulted in divergent communities
(Phillips et al. 2010). Additionally, community structure in the rhi-
zosphere and the rhizoplane were both influenced by the type of
NA added to the water (i.e. commercial mix vs. NAs from OSPW),
while NA concentration only had an impact on communities of
the rhizoplane (Phillips et al. 2010). These dynamics can be a key
factor for the bioremediation effectiveness of NAs. Recent evi-
dence with radiocarbon (**C)-labeled NAs has demonstrated the
efficient uptake of recalcitrant NAs by plant roots (Alberts et al.
2021). Using five *C-labeled NAs representing three NA classes
(linear, single ring, and three-ring diamondoid), it was shown that
plant roots can directly take-up simple and complex NAs. These
results suggest a potential plant-microbe collaboration for the re-
mediation of different classes of NA compounds.

Constructed wetland treatment systems (CWTS) can benefit
from the naturally occurring interactions between plants and mi-
crobes to enhance the remediation of OSPW, as shown by recent
studies. CWTS are excavated basin structures built to mimic the
filtration and water depuration effects of natural wetland ecosys-
tems. CWTS consist of several macrofeatures (plant species, wa-
ter depth, sediment type) that can enhance the treatment success
(ITRC 2003, Haakensen et al. 2015, Ajaero et al. 2020). Choosing
native wetland plant will ensure a better plant survival rate since
they are adapted to the local climate (ITRC 2003, Haakensen et al.
2015, Cancelli et al. 2022). Optimal plant species for CWTS would
develop deep and wide root systems and/or strong rhizomes, dis-
play rapid growth and provide efficient oxygen transport into the
root zone to facilitate the oxidation of NAs. Depending on the
geographical location, some of examples of efficient phytoreme-
diation species are Carex aquatilis (water sedge), Phragmites spp.
(common reed), Typha spp. (cattails), Juncus balticus (Baltic rush),
Calamagrostis canadensis (bluejoint reedgrass), Eleocharis palustris
(creeping spike-rush), Scirpus microcarpus (small-fruited bulrush)
or Schoenoplectus tabernaemontani (softstem bulrush) (Cancelli and
Gobas 2022, Cancelli et al. 2022). CWTS can be designed to receive
a horizontal or a vertical water flow, as well as to be surface or sub-
surface flow systems (ITRC 2003, Kuyucak et al. 2006, Haakensen
et al. 2015). The size of the basin will depend on the water volume
to treat, but it is usually built with a slight slope (0.01-0.1%) to
favor water flow through the wetland and towards the collection
pipes (Kuyucak et al. 2006, Cancelli and Gobas 2020).

Treatment wetland-based studies for NA remediation have
been tested at small scales and have demonstrated that this ap-
proach is a viable option for NA remediation in OSPW (Ajaero et
al. 2017, 2018, McQueen et al. 2017, Hendrikse et al. 2018, Simair
et al. 2021). In a recent landmark study, detailed Orbitrap mass
spectrometry analysis demonstrated that the oxidation of classi-
cal NAs (i.e. fitting the chemical formula CpHjn4,05) is a common
outcome of OSPW treatment in a mesocosm-scale CWTS (Ajaero
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et al. 2018). Almost half of the 0,-NAs were degraded in 28 days,
with a portion visible as newly accumulated oxidation products.
In addition, single- and multiple-ring NAs were removed at simi-
lar extents (73%-80%), and NAs with higher carbon numbers (>14)
were removed more efficiently than lower molecular weight NAs.
Cancelli and Gobas (2022) were the first to report NA remedia-
tion results from a full-scale on-site pilot CWTS. In this 1 ha sys-
tem, NA concentrations reduced by 7.5% to 68.9% in two weeks,
and treatment efficiency increased with OSPW turbidity and tem-
perature. This pilot CWTS also reduced polycyclic aromatic hy-
drocarbons (PAHs) by 54 to 83% (Cancelli and Gobas 2020). Thus,
CWTS can remediate NAs and other organic compounds, but fur-
ther studies are needed to characterize the contribution of plants,
microbes, and their interactions on NA remediation.

The characterization of plant-microbe interactions is not typ-
ically included in CWTS studies, but they could be similar to the
interactions described for hydrocarbon rhizodegradation in soils.
In the latter case, microorganisms stimulate plant growth by (i)
reducing toxicity in the root environment following degradation,
(ii) producing phytohormones that stimulates root growth, or (iii)
degrading the precursor of the plant stress hormone ethylene
(Correa-Garcia et al. 2018). This microbe-induced stress reduction
is potentially important in CWTS since plants can be sensitive to
NAs. NAs can negatively affect root cell growth and mitosis, in-
crease reactive oxygen species, and inhibit plant metabolic mech-
anisms to reduce oxidative stress. For example, Phragmites roots
exposed to NAs exhibited reduced antioxidant levels (i.e. GSH) and
impaired stress-related enzymes (CAT, POD) (Jia et al. 2023). In an-
other study using plant cells that expressed fluorescent proteins
to label membrane-bound organelles (mitochondria, endoplasmic
reticulum and peroxisomes), NA treatment was shown to disrupt
the structure and dynamics of these subcellular organelles (Al-
berts et al. 2019). This observation is consistent with the narcosis
model for NA toxicity, where NAs can partition into and disrupt
cellular membranes.

NAs are not the only stressor halting plant productivity in
CWTS for OSPW treatment. High salinity is often a characteris-
tic of OSPW constraining the plant species able to colonize CWTS
or limiting plant reproduction (Cancelli et al. 2022). Specific en-
dophytes could help improve salt tolerance, as demonstrated by
the root endophytic bacterium Sphingomonas prati of Suaeda salsa
plants growing in coastal wetlands (Guo et al. 2021). This type of
plant-microbe interaction could indirectly increase plant produc-
tivity and NA dissipation, by improving the intracellular osmotic
metabolisms and stimulating the production of CAT as antioxi-
dant enzyme (Guo et al. 2021). In turn, plants create an ideal en-
vironment for microbial organic acid degradation that can stimu-
late NA metabolism. Plant roots exude many secondary metabo-
lites that are structurally similar to organic contaminants (Singer
et al. 2003), selecting for microbes with the metabolic capacity to
degrade these complex organic molecules (Jin et al. 2019). This can
be comparable to a priming effect, where the microbial commu-
nities under the plant influence are better prepared than micro-
bial communities in bulk soils to degrade NAs. This was shown
for various hydrocarbon compounds, but it remains unexplored
for NAs in CWTS. For example, the exudation of phenols by P.
australis stimulated bacterial degraders in its rhizosphere com-
munity, such as Mycobacterium spp. (degrading benzo[a]pyrene),
Stenotrophomonas spp., and Sphingobium spp. (4-tert-octiylphenol)
(Toyama et al. 2011). In another example, as compared to bacte-
ria alone, the co-introduction of maize plants and two strains of
Pseudomonas resulted in a higher degradation rate of phenol, an
increase in catechol 2,3-dioxygenase activity, and a reduction in

bacterial ROS levels (Jin et al. 2019). When applied on these Pseu-
domonas isolates, a complex mixture of compounds simulating the
maize root exudates could recreate the effect of maize presence.
This confirmed the strong plant-microbe synergy on pollutant re-
moval and the essential roles of plant-derived monosaccharides
and amino and organic acids in sustaining microbial degradation
(Jin et al. 2019). Furthermore, both synthetic and natural maize
root exudates increased horizontal gene transfer of the plasmid
carrying the phenol degradation genes and stimulated the growth
of both the donor and recipient Pseudomonas strains (Jin et al.
2019).

Finally, the potential of plant-microbe interactions to remedi-
ate NAs in CWTS is expected to be influenced following the suc-
cession of plant species, as both the microbial community and
environmental characteristics shift over time, as observed in nat-
ural wetlands (Ma et al. 2020) and in CWTS (Cancelli et al. 2022).
Microbial community succession has been observed in the rhizo-
sphere and endosphere of Typha orientalis at different plant devel-
opmental stages (Wang et al. 2023), coinciding with seasonal (tem-
perature) and environmental (ammonium, nitrogen, total sulfur,
among others) changes in natural wetlands. Seasonal variations
of plant-associated microbial community composition in other
aquatic macrophytes (Phragmites australis) are a common response
in natural environments (Zhou et al. 2021). However, the nature
and the extent of the influence of seasonal and successional
changes on plant-microbe interactions in NA dissipation remains
unexplored.

Additional support for an NA-degrading role for rhizospheric
microbial communities was observed in experiments demonstrat-
ing the effective removal of low molecular weight NAs (with less
than 14 carbons) by enriched microbial cultures isolated from
roots of native plant species (Biryukova et al. 2007). The organic
acids in root exudates (e.g. malic, acetic, and citric acids) can also
modify the surrounding pH and improve bacterial NA access by
detaching NAs from organic matter in the water and sediments.
Importantly, aquatic plants like P. australis also contribute to main-
taining an aerobic environment in and around their root systems
that could favor aerobic NA degradation in waterlogged sediments
(Srivastava, Kalra and Naraian et al. 2013).

Although underreported in wetland or aquatic environments,
bioaugmentation (i.e. the inoculation of microbes to improve
biodegradation rate) has been studied extensively in plant reme-
diation in upland soil settings. Typically, pre-established soil or-
ganisms dominate over introduced ones, a phenomenon referred
to as the priority effect (Vannette and Fukami 2014). However, this
priority effect is reduced when the indigenous microbial commu-
nity is under environmental stress (Calderon et al. 2017) such as
that caused by the presence of contaminants, or when the in-
troduction of non-indigenous microorganisms occurs during the
early stages of plant development. Indeed, the most active period
for plant microbial recruitment in the soil seems to occur dur-
ing the seedling phase (Edwards et al. 2018), and seed inoculation
can modify the rhizosphere microbiota (Parnell et al. 2016). In-
oculation of wetland plants with microorganisms can stimulate
hydrocarbon degradation (Syranidou et al. 2016, Pan et al. 2017,
Rehman et al. 2018), suggesting it could be used to improve NA
degradation in CWTS. Inoculating endophytic bacteria on upland
plant seedlings can help remove organics from soils (Khan et al.
2014, Doty et al. 2017). Interestingly, cattail endophytes are stable
following long-term exposure to NAs from OSPW (Phillips et al.
2010). Such studies suggest that various bioaugmentation strate-
gies, including early inoculation, and the use of multi-species or
endophytic inocula could be used for NA remediation in CWTS.



Proposed metabolic pathways and genes

involved in the microbial degradation of
NAs

We performed a literature survey to compile the potential path-
ways and genes or gene products involved in the biodegradation
of NAs. Information was first manually gathered from previously
published review papers (e.g. Clemente and Fedorak 2005, Qua-
graine et al. 2005, Whitby 2010). We then performed a systematic
search for more recently published information by searching ti-
tles, abstracts, and keywords in the Web of Science and Scopus
databases using the following search strings:

Web of Science:

TS=("naphthenic acid+” AND (biodegradation OR bioremedia-
tion OR “microbial degradation”) AND (“metabolic pathway” OR
gene OR transcriptx OR enzymesx)

Scopus:

TITLE-ABS-KEY (“naphthenic acid«” AND (biodegradation OR
bioremediation OR “microbial degradation”) AND (“metabolic
pathway” OR gene OR transcriptx OR enzymesx)

The final systematic literature search we performed on 24 Oc-
tober 2022 yielded 63 unique research articles published between
2001 and 2022. After reviewing the title and abstracts of each ar-
ticle, 12 articles that were within the frame of this review (i.e.
that contained information related to metabolic pathways and/or
genes and/or gene products involved in the degradation of NAs)
were retained. In total, we identified 28 studies (gathered manu-
ally or with a search engine) that described at least the microor-
ganism, metabolic pathway, gene, or gene product involved in the
aerobic or anaerobic NA degradation (Table 1).

This literature review indicated that beta-oxidation is a com-
mon pathway in aerobic NA degradation. Various transformation
steps can occur prior to beta-oxidation, such as alpha-oxidation
(Rontani and Bonin 1992), omega-oxidation (Johnson et al. 2012),
aromatization (Iwaki et al. 2005), activation as coenzyme A (CoA)
thioesters (Zampolli et al. 2020, Zan et al. 2022), or ring cleav-
age (Wang et al. 2015). Anaerobic NA degradation has also been
reported, and was proposed to involve several possible mecha-
nisms, including the production of benzoyl-CoA as an interme-
diate (Pelletier and Harwood 2000, Elshahed et al. 2001, Peters
et al. 2004), beta-oxidation (Arslan and Gamal El-Din 2021, Sanz
and Diaz 2022), and/or through the involvement of nitrate, sul-
fate, iron, and methanogenic reducers (Holowenko et al. 2001, Gu-
nawan et al. 2014, Clothier and Gieg 2016, Cheng et al. 2019).

Aerobic pathways

Most aerobic microorganisms with known NA-degrading ability
seem to ultimately utilize the beta-oxidation pathway. This path-
way involves a series of enzymatic reactions (dehydrogenation,
hydration, dehydrogenation, thiolysis) leading to the cleavage be-
tween the alpha and the beta-carbon, which are the first and sec-
ond carbons that attach to a functional group (e.g. COOH) (Fig. 3A).
This cycle leads to the formation of a carboxylic acid with two
carbons less than its precursor and is repeated sequentially, with
the formation of a shorter and more readily oxidized carboxylic
acid at each round. This ultimately generates a two-carbon acetyl-
CoA molecule that can enter central metabolic pathways such as
the citric acid cycle for further degradation. The number of beta-
oxidation cycles required depends on the length and structural
complexity of the compound. Shorter and simpler compounds re-
quire fewer cycles, while longer and more complex structures un-
dergo more cycles to be fully metabolized into acetyl-CoA units.
However, the presence of a tertiary or quaternary carbon at the
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beta position hinders its oxidation, interrupting or delaying the
mineralization process (Quagraine et al. 2005). Several bacterial
taxa have been shown to degrade NAs via the beta-oxidation path-
way, including Acinetobacter anitratum, Pseudomonas putida, Alcali-
genes sp PHY 12, Rhodococcus aetherivorans BCP1, and Mycobacterium
(Table 1). Recent genomic research has connected a gene clus-
ter (chcpca) containing bad-ali genes to the beta-oxidation of NAs.
Those genes encode dehydrogenases, hydrolases and ligases in-
volved in the transformation of benzoate, CHCA and CPCA (Wang
et al. 2015, Presentato et al. 2018, Zampolli et al. 2020, Table 1,
Fig. 3B).

Aromatization is another potential aerobic NA degradation
pathway. In this pathway, alicyclic carboxylic acids are degraded
through hydroxylation at the para position (across from the func-
tional group), followed by dehydrogenation of the hydroxyl group
to form a ketone (Whitby 2010). The next step involves aromati-
zation and ring cleavage by ortho-fission (Quagraine et al. 2005).
Taylor and Trudgill (1978) reported that only one strain (Alcaligenes
strain W1) out of 33 isolated strains performed the aromatiza-
tion pathway. Strains of Arthrobacter sp were also shown to use the
aromatization pathway (Iwaki et al. 2005, Fig. 3C). Using mutant
strain analysis, Iwaki et al. (2005) linked the pobA gene with the
aromatization of non-aromatic NAs in Arthrobacter sp (Table 1).

Microorganisms can also degrade NAs through combined
alpha- and beta-oxidation pathways (Rontani and Bonin 1992,
Fig. 3A) and combined omega- and beta-oxidation pathways
(Johnson et al. 2012, Table 1). Alpha-oxidation is involved in the
degradation of NAs with methyl groups (CHs) attached to the
alpha-carbon (first carbon next to a functional group). In the
alpha-oxidation pathway, the position of the functional group
shifts due to the shortening of the carbon chain by one car-
bon (alpha-oxidation), thereby allowing subsequent oxidation
of the beta-carbon. Alcaligenes sp, for instance, seems to com-
bine alpha- and beta-oxidation pathways to degrade cyclohexy-
lacetic acid as the presence of a carboxyl group and the cyclo-
hexyl ring precludes direct beta-oxidation (Rontani and Bonin
1992, Fig. 3A). Omega-oxidation is a metabolic pathway involved
in the degradation of carboxylic acids with a methyl group at-
tached to the omega-carbon (the carbon farthest from the car-
boxyl group). Omega-oxidation differs from alpha- and beta-
oxidation in that the terminal methyl group is oxidized to a car-
boxyl group, leading to the breakdown of carboxylic acids from
the omega-end. Johnson et al. (2012) reported a strain of My-
cobacterium isolated from hydrocarbon-contaminated sediments
that is capable of omega-oxidation of the tert-butyl side-chain
of 4'-t-BPBA (4-t-butylphenyl)-4-butanoic acid) followed by beta-
oxidation of an intermediate to produce the final compound (4'-
carboxy-t-butylphenyljethanoic acid (Fig. 3D). The presence of
various metabolic pathways potentially allows microorganisms to
efficiently degrade a wide range of NAs with diverse structures,
ensuring optimal NA degradation. For example, the capability of
microorganisms to use other pathways could help degrade com-
pounds that are recalcitrant to the more common beta-oxidation
reactions.

Anaerobic pathways

Much less is known about anaerobic microbial NA degradation.
The benzoyl-CoA degradation pathway seems to have a role in
the anaerobic degradation of benzoate and cyclohexane carboxy-
late in different strains, and variants of the same pathway have
been reported in syntrophic organisms (Pelletier and Harwood
2000, Elshahed et al. 2001, Peters et al. 2004) (Table 1). Using mu-
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Figure 3. Examples of proposed metabolic pathways of naphthenic acid (NA) degradation by microorganisms. (A) Degradation of cyclohexylacetic acid
by Alcaligens sp PHY 12 via combined alpha- and beta-oxidation pathways postulated by Rontani and Bonin (1992). (B) Degradation of cyclohexane
carboxylic acid (CHCA, in blue) and cyclopentane carboxylic acid (CPCA, in green) by Rhodococcus aetherivorans BCP1 involving beta-oxidation and the
enzymes encoded by the chcpea gene cluster, as proposed by Presentato et al. (2018). Genes putatively involved in each step are shown in italics. (C)
Degradation of cyclohexanecarboxylic acid (CHCA) by Arthrobacter sp ATCC 51369 involving ring aromatization and the enzyme encoded by the pobA
gene in the transformation of 4-hydroxybenzoate (4-HBA) to protocatechuate, as proposed by Iwaki et al. (2005). (D) Transformation of
4/-tert-butylphenyl-4-butanoic acid (4'-BPBA) by Mycobacterium sp IS 2.3 involving beta- and omega-oxidation, postulated by Johnson et al. (2012).



tant analysis, Sanz and Diaz (2022) have shown the importance
of the chepca gene cluster in the degradation of cyclohexane car-
boxylate in a denitrifying facultative anaerobic bacterium (Aro-
matoleum sp) under oxic or anoxic conditions. Other studies have
indicated that the degradation of NAs in the absence of oxygen
occurs via the reduction of nitrate or sulfate, or by methanogene-
sis (Holowenko et al. 2001, Gunawan et al. 2014, Clothier and Gieg
2016, Table 1) but the details of such metabolic pathways have not
yet been elucidated.

Microbial growth, co-metabolism, and fortuitous
oxidation of NAs

The biodegradation of NAs may provide a source of carbon and
energy for microbial growth, or NA degradation may take place
as a consequence of other microbial activity with no utilization
of the energy derived from their oxidation. When a contaminant
is degraded during microbial utilization of another compound,
it is often referred to as co-metabolism. However, when a con-
taminant is the only carbon source available and its degrada-
tion does not generate microbial growth, it is referred to as for-
tuitous oxidation (Blakley and Papish 1982, Dalton et al. 1982).
For instance, Blakley and Papish (1982) reported that Pseudomonas
putida was capable of oxidizing 3-cyclohexenecarboxylic acid (3-
ene-CHCA) via the beta-oxidation pathway but without appar-
ent utilization of the released energy derived from the oxida-
tion. Since the oxidation of 3-ene-CHCA occurred in the absence
of other carbon and energy sources, it was suggested to be the
result of a fortuitous oxidation, with no benefit for the micro-
bial population. On the other hand, Presentato et al. (2018) re-
ported growth of Rhodococcus aetherivorans BCP1 on multiple rep-
resentative aliphatic and alicyclic NAs as sole source of carbon
and energy through the detection of increase in cell abundance
and concomitant decrease in NA concentrations in bacterial cul-
tures. Videla et al. (2009) reported *C enrichment in the microbial
biomass incubated with an oil sands-derived NA extract, suggest-
ing that NAs were used for microbial growth. Similarly, in a meso-
cosm study, Ahad et al. (2018) reported direct evidence of in situ
(groundwater) incorporation of *C-labeled NA surrogates (CHCA
and 1,2-cyclohexanedicarboxylic acid) in bacterial phospholipid
fatty acids. In this context, stable isotopes provide a valuable tool
to help link NA degradation to microbial metabolism and can po-
tentially allow tracing of NAs into higher trophic levels in the en-
vironment such as benthic invertebrates and fish (Farwell et al.
2009).

Molecular markers for monitoring of the
potential for NA biodegradation

The enzymes and genes presented in Table 1 can be explored
for the selection of molecular markers for in situ monitoring of
NA-degrading potential of CWTS, other bioremediation settings,
or in natural environments. For instance, Zampolli et al. (2020)
showed that targeting the aliAl gene was a useful method for
biomonitoring of NA degradation in a model laboratory system.
Here we generated a workflow that goes beyond conventional gene
sequence identity matching by integrating their isoforms infor-
mation. Enzyme isoforms perform the same biological function,
but differ in their biological activity, temporal/spatial expression,
and regulatory activity. Determining which isoforms are prevalent
in experimental conditions is important for the thorough under-
standing of NA degradation dynamics. To demonstrate the po-
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tential of such an approach, here a set of Hidden Markov Mod-
els (HMM) was created for each of the six isoforms of the aliA
gene (Wang et al. 2015), encoding a long-chain-fatty-acid-CoA lig-
ase, involved in the aerobic degradation of cyclic carboxylic acids.
Briefly, DIAMOND-blastp (v2.0.15) was used to screen for high sim-
ilarity isoforms present in the NCBI nr database (with parame-
ters -k 1000 and -e 1e-10) followed by filtering hits to keep align-
ments that were greater or equal to 50% of the reference subject
sequence. We then generated multiple alignments (mafft v 7.471;
default parameters) followed by HMM generation (hmmer v3,3.2).
These six isoforms of the aliA gene were then screened (HMM
search) against a shotgun metagenomics dataset from a full-scale
pilot CWTS in the Alberta Oil Sands region, Canada (Bioproject
accession number PRINA1045646). The CWTS was constructed by
Imperial Oil Resources Limited on the Kearl Oil Sands site (near
Fort McMurray, Alberta, Canada) in 2015, and consists of a closed,
recirculating horizontal surface water flow above sediment con-
taining submerged and emergent vegetation (Cancelli and Gobas
2022).

All sixisoforms of the aliA gene were detected in the pilot CWTS
in roots and rhizosphere of water sedge (Carex aquatilis) (Fig. 4). In
the context of NA biodegradation, it is crucial to characterize the
different isoforms as they may thrive best in different conditions.
For instance, in a low oxygen environment, only certain micro-
bial taxa might thrive and the types of NA entering that same en-
vironment might have high affinity towards one isoform only. In
the pilot CWTS metagenomics dataset, the abundance of the aliA
gene and its isoforms in the rhizosphere and roots varied largely
across the samples taken at different locations and time within
the wetland (Fig. 4A). Such information in combination with NA
composition and environmental condition characterization can
help identify and monitor hotspots of NA degradation within the
CWTS, besides providing guidance for future CWTS design and
biostimulation and bicaugmentation practices. Additionally, this
analysis informed that aliA isoforms seem to be enriched in spe-
cific taxa (Fig. 4). For instance, a substantial portion of the isoforms
CR3_148 and CR3_2610 were assigned to the Family Desulfobul-
baceae, while fewer sequences of the other three isoforms were
affiliated with this Family. The isoform CR3_1107 was the most
taxonomically restricted, being affiliated to only three out of eight
detected Families. The phylogenetic tree of the aliA genes found
in the pilot CWTS also revealed that many novel aliA gene se-
quences were present in the shotgun metagenomic dataset. For
instance, no satisfying taxa assignment could be achieved for a
cluster of genes belonging to isoform CR_1107. This represents un-
tapped potential of NA biodegradation that can be traced through
screening of marker genes and can be further explored. Such an
exercise illustrates how marker sequences can be exploited for
in situ biomonitoring of NA degradation based on a culturing-
independent approach and how combining genomic and envi-
ronmental data can provide unprecedent information to maxi-
mize the effectiveness of CWTS for NA degradation and OSPW
treatment.

Future research

Despite significant advances in the field of microbial degradation
of NAs, major knowledge gaps remain that need to be addressed
to develop efficient strategies for microbial remediation of NAs.
For instance, there is much uncertainty around the pathways of
microbial NA degradation, and there is limited direct evidence of
the involvement of particular genes or gene products. Genomics
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Figure 4. A. Abundance (%) of the six isoforms (rows) of the aliA gene (long-chain-fatty-acid-CoA ligase) in the rhizosphere and roots of water sedge
(Carex aquatilis) across samples from different locations within a full-scale constructed wetland treatment system (CWTS) in Alberta (Canada).
Abundances were calculated through screening of a shotgun metagenomic dataset for the six gene isoforms. B. Phylogenetic tree of the aliA gene
(long-chain-fatty-acid-CoA ligase) showing six isoforms (outer circle) and their taxonomic affiliation (Family level; inner circle). Shown are sequences
from a pilot CWTS (red; see text for details) and the reference training dataset (blue).

tools can be combined with more classical microbiological meth-
ods such as enrichment cultures and mutant analysis to confirm
the specific role of taxa and genes in NA degradation. Microbial
isolates studies can provide insight into NA degradation pathways
and optimal degradation conditions (Fig. 4). At the same time, the
discovery of previously uncharacterized taxa and the metabolic
machinery involved in NA degradation strongly relies on culture-
independent methods. These include stable isotope probing (SIP),
as well as wide ‘omic’ surveys (e.g. metagenomics, metatranscrip-
tomics) to scan the degradation potential of unculturable microor-
ganisms. Experiments targeting gene or protein expression analy-
ses (McKew et al. 2021) have so far provided important insight on
the diversity of NA-degrading microorganisms, genes, and path-
ways. This, coupled with the ever-growing accumulation of se-
quence data, provides the opportunity to explore the NA degra-
dation potential in a range of environments where metagenomic
datais available. Conventional alignment tools, such as blastp use
position independent scoring matrices to functionally annotate
sequences. In contrast, HMMs produce position-specific scores
and penalties when searching query sequences, which offer in-
creased sensitivity when identifying homologs of conserved se-
quence regions. Not surprisingly, databases such as KEGG (Kane-
hisa and Goto 2000) and Pfam (Finn et al. 2014) have leveraged
HMMs to annotate functional genes. KEGG and Pfam provide the
capacity to annotate central metabolic pathways using a large
number of profile-HMMs. However, they perform poorly when an-
notating specific secondary metabolic genes, such as the ones in-
volved in hydrocarbon degradation (Khot et al. 2022) and possibly
in NA metabolism.

Recent work has demonstrated that various biological pro-
cesses, including compound degradation, can be predicted
from microbiological data, particularly from metabarcoding and
metagenomic datasets (Correa-Garcia et al. 2023). For instance,
the biodegradation of diesel in Arctic soils could be predicted with

an accuracy of 60% by the relative abundance of three specific
betaproteobacterial taxa (Bell et al. 2013). Similarly, the growth
of willows in highly contaminated soil after 100 days could be
predicted by the initial bacterial and fungal community compo-
sition and the initial relative abundance of specific taxa (Yergeau
et al. 2015). Modeling of the decrease in the concentration of NAs
and in the toxicity for OSPW may be improved by the inclusion
of genomic-based data such as the abundance of taxa and func-
tional genes. Such models can be transferred to oil sands opera-
tors for making data-driven decisions about treatments. However,
genomic-based modeling of NA degradation is currently lacking.

We recommend that research efforts should focus on (i) in
situ experiments that integrate the natural complexity of envi-
ronmental mixtures of NAs as well as dynamic biotic (e.g. mi-
crobial community composition, plant species and biomass) and
abiotic (e.g. temperature, electron acceptors) factors that poten-
tially affect NA biodegradation, (ii) enhancing databases of genes
and proteins involved in microbial NA degradation that can be
achieved through meta-‘omics’ surveys in NA-exposed sites or
direct-evidence techniques such as stable isotope probing (SIP)
and gene knockout analysis (Fig. 5), and (iii) modeling approaches
of compound degradation that integrate genomic information,
such as taxa, marker gene, or transcripts abundance. Such ef-
forts have the potential to provide insight into the optimal con-
ditions for gene expression and NA degradation under ‘real-life’
conditions, the development of molecular primers for marker-
assisted in situ monitoring of NA-degrading microbial populations,
and simulation tests through genomic-based modeling of com-
pound degradation (Fig. 5). In situ experiments in pilot wetland
treatment systems can be challenging due to dynamic conditions
but are key to hypothesis testing and ‘omic’ surveys. Ultimately,
such approaches may allow better monitoring, management, and
optimization of CWTS and other sustainable methods for water
bioremediation.
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improving microbial bioremediation practices from a genomic perspective. The roadmap depicts examples of complementary methodological
approaches (white rectangles) that will lead to the identification of taxa, genes, and gene products (gray rectangles) involved in the degradation of a
compound of interest. The identified taxa, genes, and proteins should be compiled in databases (dashed lines) that can be then used in field surveys in
contaminated and uncontaminated areas to help (in addition to degradation experiments) identify ideal biotic and abiotic conditions for microbial
degradation of the compound and, ultimately, biostimulation and bioaugmentation practices. Databases can also be used for the development of
molecular tools such as primers of marker genes for the detection and monitoring of compound degradation in situ. Further, ‘omics data (taxa, genes,
and transcripts abundance) can be incorporated in the modeling of compound degradation to assess the efficiency and explore optimized scenarios of

bioremediation settings such as CWTS.
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