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Abstract
Background: Genome-wide DNA methylation (DNAme) pro�ling of the placenta with Illumina In�nium Methylation
bead arrays is often used to explore the connections between in utero exposures, placental pathology, and fetal
development. However, many technical and biological factors can lead to signals of DNAme variation between
samples and between cohorts, and understanding and accounting for these factors is essential to ensure
meaningful and replicable data analysis. Recently, “epiphenotyping” approaches have been developed whereby
DNAme data can be used to impute information about phenotypic variables such as gestational age, sex, cell
composition, and ancestry. These epiphenotypes offer avenues to compare phenotypic data across cohorts, and to
understand how phenotypic variables relate to DNAme variability. However, the relationships between placental
epiphenotyping variables and other technical and biological variables, and their application to downstream
epigenome analyses, have not been well studied.

Results: Using DNAme data from 204 placentas across three cohorts, we applied the PlaNET R package to estimate
epiphenotypes gestational age, ancestry, and cell composition in these samples. PlaNET ancestry estimates were
highly correlated with independent polymorphic ancestry informative markers, and epigenetic gestational age, on
average, was estimated within 4 days of reported gestational age, underscoring the accuracy of these tools. Cell
composition estimates varied both within and between cohorts, but reassuringly were robust to placental processing
time. Interestingly, the ratio of cytotrophoblast to syncytiotrophoblast proportion decreased with increasing
gestational age, and differed slightly by both maternal ethnicity (lower in white vs. non-white) and genetic ancestry
(lower in higher probability European ancestry). The cohort of origin and cytotrophoblast proportion were the largest
drivers of DNAme variation in this dataset, based on their associations with the �rst principal component.

Conclusions: This work con�rms that cohort, array (technical) batch, cell type proportion, self-reported ethnicity,
genetic ancestry, and biological sex are important variables to consider in any analyses of Illumina DNAme data.
Further, we demonstrate that estimating epiphenotype variables from the DNAme data itself, when possible, provides
both an independent check of clinically-obtained data and can provide a robust approach to compare variables
across different datasets.

Background
The placenta is essential for fetal growth and development, and plays an important role in mediating maternal
exposures that may in�uence newborn and child health. To better understand these roles of the placenta, genome-
wide DNA methylation (DNAme) pro�ling has been widely applied, often using Illumina In�nium Methylation bead
arrays. Alterations in placental DNAme have been reported in association with maternal exposures such as
smoking(1, 2), gestational diabetes, and obesity(3–5), as well as in association with perinatal complications such as
preeclampsia, chorioamnionitis, and low birthweight(6–11). In some cases, these effects are intersectional: for
example, smoking-associated changes in placental DNAme may be confounded, or in some cases mediated, by
lower birth weight(1, 2, 12), although other lifestyle and exposure factors can complicate interpretation of these data.
Despite the range of studies conducted in placenta, replication analyses of epigenome-wide association studies
(EWAS) in independent populations are less common. Even in the context of early-onset pre-eclampsia, which is a
condition associated with widespread alterations in DNAme of large effect size, reported �ndings are often
inconsistent in independent datasets(7, 13, 14).

Part of the issue underlying incomplete replication between studies is inter-dataset heterogeneity. Prior to performing
epigenome-wide analysis, it is important to understand and account for the factors driving variability in each DNAme
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dataset. Relevant technical factors may include differences in sample processing techniques, batch effects, and
poor data quality control, which can all lead to false positive EWAS results, or low signal-to-noise ratios(6). Biological
factors that may confound analyses include differences in bulk tissue sample cell composition(15), sex(16), and
gestational or chronological age (17, 18). In addition, the ethnicity and/or genetic ancestry of subjects are known
confounders in EWAS studies(19–21), and many regions of high DNAme variability across individuals are in�uenced
by genetic variation(22, 23).

To improve replicability across studies from diverse populations and with different sample collection methods,
“epiphenotyping” approaches have been developed whereby the (epigenetic) DNAme data are used to extract
information about phenotypic variables, such as age or sex. In the context of placental DNAme studies, for example,
cell composition can be estimated from bulk tissue DNAme data, and can be used to assess and account for
variation between samples(15). Similarly, genetic ancestry of the placenta, which may not be well captured by self-
reported parental ethnicity, can be estimated from placental DNAme data directly as a continuous variable, which
can be accounted for to improve replication between EWAS studies(24). Gestational age at birth, which is sometimes
missing or inaccurately recorded in clinical records, can also be estimated from placental DNAme pro�les(18).
Estimating epigenetic gestational age could have utility in many contexts, including providing researchers with a
standardized measure of gestational age comparable across studies, and enabling studies of placental epigenetic
age acceleration(18). Since the development of these tools and their implementation in the PlaNET R package (25),
the interactions between these placental epiphenotyping variables, their associations with other technical and
biological variables, and their application to EWAS have not been fully characterized.

In this study, we use three cohorts of placental samples to assess factors contributing to within- and between-cohort
variation in placental DNAme data. We speci�cally apply the PlaNET R package to estimate gestational age,
ancestry, and cell composition epiphenotype variables, and we evaluate the utility of these epiphenotyping
approaches, assess inter-cohort differences, and examine their relationships to technical and biological variables. In
addition, we explore how technical and biological variables common to placental DNAme studies are related to each
other, and to the imputed epiphenotype variables. Finally, based on these extensive studies, we provide a set of
recommendations for the use of these epiphenotyping tools in placental EWAS.

Results

Cohort characteristics
In this study, we use DNAme data from 204 placentas across three independent cohorts to investigate the
relationships between placental epiphenotype variables computed with the R package PlaNET, and other technical
and biological characteristics associated with these samples. The placentas were sourced from three cohorts
consisting of: (i) V-NORM, a normative population of pregnancies recruited at BC Women’s Hospital (BCWH) in
Vancouver, Canada (n = 35), as part of a study on Epigenetics in Pregnancy Complications (EPIC)(7, 26, 27); (ii) V-
SSRI, a population of pregnant individuals recruited in Vancouver, Canada in the 20th week of gestation (n = 64),
with/without clinical depression, and with/without the use of selective serotonin reuptake inhibitors (SSRIs) (28, 29);
and (iii) QF2011, a population of pregnancies, with a wide range of exposure to sudden-onset stress during gestation
due to catastrophic �ooding in the Australian state of Queensland in early January 2011 (n = 105)(30).

The placentas from V-NORM and V-SSRI were obtained and sampled in one processing lab located in Vancouver,
Canada. The QF2011 placentas were collected and sampled in Brisbane, Australia, and subsequently snap-frozen
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and shipped to Montreal, Canada for DNA extractions. The QF2011 DNA samples were shipped to Vancouver for
DNAme array processing. Samples from all three cohorts were assayed on the Illumina In�nium MethylationEPIC
(850K) array at one centre in Vancouver, Canada, and were randomized during array processing for key variables
including cohort, SSRI and �ood-related stress exposure, and infant sex. Exclusion criteria applied to all cohorts
included pregnancies with multiple fetuses, and/or chromosome abnormalities. The V-SSRI and QF2011 cohorts
were prospectively recruited cohorts, and except for four individuals giving birth between 35.7–37.0 weeks, all others
occurred at term. Cases for V-NORM were accordingly selected to have similar gestational ages at birth (i.e. ≥ 36
weeks) to match the other two cohorts, with four samples included between 36–37 weeks gestational age.
Additionally, only for V-SSRI, participants with bipolar illnesses, hypertension, current substance abuse, any diabetes,
or infants with congenital brain malformations or fetal growth restriction were excluded. Pregnancies affected by
preeclampsia were excluded from V-NORM. The respective exclusion criteria were applied to all cohorts to enable
examination of key variables of interest without the presence of large confounding factors (such as chromosome
abnormalities or preeclampsia being associated with DNAme alterations, or bipolar illness possibly confounding
depression analyses in the V-SSRI study). Key technical and biological variables used in this study are reported in
Table 1.

In addition to the analyses conducted on PlaNET epiphenotype variables, we note that although these three cohorts
underwent similar sampling protocols and were processed for DNAme analysis at one centre, there are some key
between-cohort demographic differences that we considered during analyses (Table 1). First, maternal self-reported
ethnicity/race (see Methods) differed between cohorts (p < 0.001), with almost all mothers from the QF2011 cohort
identifying as white. Infant birth weight standard deviation (corrected for sex and gestational age) was also slightly
higher in the QF 2011 cohort (p = 0.04). Finally, sample processing and storage in the QF2011 cohort differed in
subtle, but potentially signi�cant ways (see Methods). These key differences could contribute to cohort differences
that were important to consider in data analysis.
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Table 1
Summary of key biological and technical variables for each cohort. SD refers to standard deviation, QC refers to

quality control.

  V-NORM V-SSRI QF2011 p
value*

n 35 64 105  

Biological variables

Gestational age at birth
(mean weeks (SD))

39.0 (1.1) 39.47 (1.3) 39.4 (1.2) 0.29

Infant sex (n male (%)) 19 (54.3) 33 (51.6) 59 (56.2) 0.84

Infant birthweight (mean
grams (SD))

3412.5 (537.8) 3451.7 (460.7) 3584.2 (403.4) 0.06

Infant birthweight (mean Z-
score (SD))

-0.02 (1.08) -0.02 (0.81) 0.28 (0.82) 0.04

Placental e�ciency -0.09 (1.1) -0.10 (0.93) 0.10 (0.99) 0.37

Population British
Columbia,
Canada

British
Columbia,
Canada

Queensland,

Australia

 

Self-Reported Ethnicity (n
(%))

      < 
0.001

White 14 (40.0) 48 (75.0) 102 (97.1)  

Asian 12 (34.3) 6 (9.4) 1 (1.0)  

Black 0 1 (1.6) 1 (1.0)  

Other 8 (22.9) 1 (1.6) 0 (0.0)  

Missing 1 (2.9) 1 (1.6) 0 (0.0)  

Technical variables

Processing time (median
hours (SD))

2.9 (18.9) 28.7 (59.8) Approximately 1 hour  

Storage -20C -20C Snap Frozen Liquid N2  

DNA extraction method,
location

Salt extraction,

Vancouver

Salt extraction,

Vancouver

Qiagen DNeasy Blood
and Tissue kit,

Montreal, Canada

 

Number of technical
replicates

4 0 8  

EPIC Batch Distribution (n
(%))

       

Batch 1 0 (0.0) 64 (100.0) 94 (89.5)  

Batch 2 18 (51.4) 0 (0.0) 0 (0.0)  

Batch 3 16 (45.7) 0 (0.0) 11 (10.5)  
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*p values are based on ANOVA for continuous variables and Chi-square tests for categorical variables.

Main drivers of DNAme variation across cohorts
Before performing DNAme array data analysis, it is useful to assess the main drivers of DNAme variation in the raw
and processed data. To that end, we used principal component analysis (PCA) in combination with linear models to
assess the relationship between variation in the data (PCs) with major technical and biological variables (Fig. 1).

Our �rst main �nding was that data processing (normalization and probe �ltering) attenuated the association
between DNAme variance and technical factors, and the reduced DNAme variance in the processed data was instead
related to cohort and cell-type differences rather than technical factors. This was evidenced by the fact that in the
raw data, the �rst two principal components (PC1 and PC2) accounted for nearly half (45.2%) of the DNAme
variability across all samples, and were associated with cohort (p < 0.001 for Cohort = V-NORM, V-SSRI, or QF2011)
and technical array variables (batch, chip, row, all p < 0.05) (Fig. 1). After data processing, the proportion of DNAme
variation explained by PC1 and PC2 decreased to 15% and 6%, respectively, and PC1 was no longer strongly
associated with batch, chip, or row effects. In the processed data PC1 remained signi�cantly associated with cohort
(p < 0.001, R2 > 0.25) and cytotrophoblast proportion (p value < 0.001, R2 > 0.25), while PC2 was also associated with
cell type proportions. Array batch and PlaNET-derived ancestry were also weakly associated with PC1 and PC2 in the
processed dataset (p values < 0.001, R2 < 0.25). The fact that PC1 was more strongly associated with cohort than
any other variable suggests that there are unidenti�ed technical and/or biological variables contributing to between-
cohort variability. In summary, data normalization and probe �ltering are essential for reducing DNAme variance
associated with technical factors, and cohort, array batch, cell type proportion, self-reported ethnicity, ancestry, and
sex are all important variables to consider in any downstream analyses of these data.

Placental genetic ancestry epiphenotype accurately captures SNP
genotype-estimated ancestry
DNAme variation is greatly in�uenced by genetic variation, which differs by ancestry of the individual. However,
genetic ancestry data are often not measured, and while many pregnancy studies collect maternal self-reported
ethnicity as an alternative measurement, this approach is inherently limited. First, ethnicity is a social concept that
can be related to but is fundamentally different from genetic ancestry. Further, if only maternal ethnicity is collected,
it ignores the other parent’s contribution to the placental genome and epigenome (31). In addition, genetic ancestry is
interesting to study in its own right, as it may independently drive DNAme variation and/or confound other
interesting associations. Previously, we created a tool to estimate genetic ancestry from the DNAme data directly
(which is implemented in the PlaNET R package (25)), and here we compare this ancestry estimate to (i) maternal
self-reported ethnicity (for details on ethnicity categories see Methods) and (ii) genetic ancestry assessed using
Ancestry Informative Markers (AIMs), an independent set of SNPs that were genotyped for each placenta (32)
(Fig. 2).

Most placentas (n = 172/204) had a high estimated probability (score > 75%) of European ancestry and for most of
these (n = 151/172, 88%) the maternal self-reported ethnicity was “white”/European descent. All 17 placentas with a
high probability (score > 75%) of East Asian ancestry had maternal self-reported “Asian” ethnicity, as did 4 additional
samples (n = 21/204). No cases had a probability score > 75% of African ancestry, but of the 2/204 cases with a
probability score > 50% of African ancestry, the maternal self-reported ethnicity was “Black” in one case. While there
is a strong relationship between PlaNET ancestry estimates and maternal self-reported ethnicity, importantly, 24
placental samples (14% of the combined cohort) did not have values > 75% in any one ancestry dimension. This
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suggests a high degree of genetic diversity, which is important to consider in downstream analyses and cannot be
captured by assigning samples to discrete ethnicities or ancestry groups. Looking at demographic and DNAme-
derived variable relationships, we found that as expected, across all cohorts the various ethnicity and ancestry
measures were associated (R2 0.22–0.95) (Supp Fig. 1).

Although both PlaNET- and AIMs-inferred ancestry metrics yield continuous values in multiple dimensions of
ancestry variation, the outputs of the two methods are not directly comparable. The two primary AIMs coordinates
are su�cient to separate European, East Asian, and African samples, and were thus compared to the three PlaNET-
derived ancestry probabilities (Fig. 2). In general, AIMS coordinates were found to correspond very well to PLANET
ancestry probability scores, and most placentas that had values < 75% in the three PlaNET probabilities had AIMs
scores in the �rst two coordinates in the mid-range of values. As few cases had high estimates for African ancestry
by either method, we could not assess this ancestry dimension for interaction with other variables in subsequent
analyses. As PlaNET ancestry probability is based on placental Illumina array data directly, our �ndings suggest that
it is a useful tool for considering genetic variation that in�uences DNAme variation, particularly when matched
genotyping data is not available.

The placental epigenetic clock can predict reported gestational
age in term placentas
Gestational age at birth is often unavailable in public datasets, but this variable is important to account for in
placental studies as DNAme changes dramatically with gestational age, even late in pregnancy(33). Further,
clinically-reported gestational age, which is estimated by �rst trimester ultrasound (gold standard), later ultrasound,
or based on self-report of last menstrual period (LMP), is associated with inherent variability(34, 35). To address
both of these problems, gestational age can be predicted from DNAme data itself, using several methods. Here, we
applied the re�ned robust placental clock (RRPC) as it was developed to estimate gestational age speci�cally for
term placentas, which make up the vast majority of our cohorts(33).

In each of the three cohorts, we observed a moderate correlation between reported and estimated gestational age
(Pearson’s R = 0.54, 0.59, and 0.66 for V-NORM, V-SSRI, and QF2011, respectively). The median deviations between
predicted and reported gestational age were < 1 week in all three cohorts (median deviations − 0.51, -0.87, and − 0.57
weeks for V-NORM, V-SSRI, and QF2011, respectively) (Fig. 3). Considering the three cohorts together, the average
median deviation between the RRPC and the reported gestational age was − 0.6 weeks, or -4.3 days. To contextualize
this value, a study of > 500,000 pregnant individuals in California reported that LMP-based GA had an absolute
deviation > 14 days in 17.2% of cases compared to ultrasound-derived GA (35), underscoring the relative accuracy of
DNAme-based gestational age.

To further evaluate the gestational age epiphenotype, we compared both reported gestational age and RRPC-
estimated gestational age to birth weight, as we expected both measurements of gestational age to correlate with
infant size. Overall, clinically-reported gestational age was more strongly correlated with birth weight than was the
RRPC-estimated gestational age (Pearson’s R of 0.54 and 0.37, respectively) (Fig. 3). We found that these gestational
age-birth weight relationships were not signi�cantly different by sex or maternal ethnicity (white vs. non-white),
although both measures of gestational age tended to be more strongly correlated with birth weight in placentas that
were female and of non-white maternal ethnicity (Fig. 3). These results suggest that the RRPC-predicted gestational
age is less accurate than clinically-reported gestational age, at least in these cohorts, in which the range of
gestational age at birth was small. However, these results also indicate that the RRPC is still quite accurate and
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could be used to predict gestational age when such data are missing, or when comparing gestational age across
datasets, which may have different standards of gestational age estimation or reporting.

Cell composition epiphenotype estimates can identify systematic
differences between cohorts
The cell composition can vary between chorionic villi (bulk tissue) samples due to localized heterogeneity within the
placenta, or due to systematic differences in sampling techniques between cohorts. As DNAme pro�les vary
markedly between cell types, they can be used to estimate the relative cell type proportions in whole chorionic villi
samples (i.e., bulk tissue). Cell type proportions can then be compared between cohorts, datasets, or disease status
groups to identify systematic between-group differences.

In assessing the inter-relationships between the different cell type proportions calculated with PlaNET, we found that
cytotrophoblast proportion was inversely correlated with syncytiotrophoblast proportion, and that there were no
strong relationships between cytotrophoblasts or syncytiotrophoblasts and any other cell type proportions, (Supp
Fig. 1). The estimated proportions of Hofbauer cells and nRBCs, which are both typically very small, were also
unrelated to other cell proportions.

The estimated distribution of major placental cell types was found to be similar across all three cohorts in our study
(Error! Reference source not found.). We observed that the total proportion of trophoblasts (sum of
syncytiotrophoblast and cytotrophoblast proportions) contributed to an average of 80.9% of each chorionic villus
sample (SD = 3.6%; range 66.9–91.9%), while nucleated red blood cells (nRBCs) were present in only minor amounts
(range 0.0-2.4%). The high trophoblast and low nRBC proportions con�rm that, in these three cohorts, fetal blood
contamination is negligible, and samples originate predominantly from the intermediate and terminal chorionic villi
(15).

When comparing relative cell proportions across cohorts, some subtle but signi�cant differences were noted. A slight
decrease in stromal cells was observed in V-SSRI samples as compared to the other two cohorts (Fig. 4B). As the V-
SSRI cohort was an outlier in that it contained multiple samples with very long processing times (> 100 hours), we
sought to evaluate whether processing time was associated with cell composition estimates (Supp Fig. 2). Increased
processing time correlated with a reduction in stromal cell proportions, even when the SSRI dataset was removed to
assess dataset-processing time confounds (R=-0.37, p < 0.05). Beyond this small impact on stromal cells, however,
processing time appeared to have little effect on placental cell composition estimates.

Samples from the QF2011 cohort displayed a slightly higher median estimate of syncytiotrophoblasts, and a lower
median estimate of cytotrophoblasts, as compared to the other two cohorts (Fig. 4B), leading to a lower
cytotrophoblast:syncytiotrophoblast ratio. We therefore sought to evaluate whether any demographic variables
might also be associated with cytotrophoblast:syncytiotrophoblast ratio, and observed a lower ratio in association
with increasing gestational age, male sex, white maternal ethnicity, and European PlaNET ancestry probability > 75%
(Fig. 4C-F). To distinguish the impact of ancestry/ethnicity and fetal sex on cell types, as opposed to possible cohort
effects (as the QF2011 cohort mainly included mothers that self-reported as white and placentas with European
predicted ancestry) we investigated the associations between cytotrophoblast:syncytiotrophoblast ratio and
maternal white ethnicity and fetal sex in the V-SSRI and V-NORM cohorts separately. Considering only these two
cohorts, we found no association between sex and estimated cell proportions, however, lower
cytotrophoblast:syncytiotrophoblast ratio remained associated with both maternal white ethnicity and with a high (> 
75%) European ancestry probability (Supp Fig. 3). Because ethnicity has been reported to potentially associate with
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gestational age at birth (36), we hypothesized that the observed trophoblast ratio/ethnicity relationship may be
arising from a confounding association between trophoblast ratio and gestational age. In these cohorts, we did
observe a slightly lower gestational age at birth in cases of non-white versus white maternal ethnicity (p = 0.0012),
and also observed a decrease in cytotrophoblast:syncytiotrophoblast ratio with increasing gestational age (p = 
0.00052). However, when the linear model testing for association between white/non-white ethnicity and
cytotrophoblast:syncytiotrophoblast ratio was adjusted for gestational age, trophoblast ratio remained associated
with ethnicity (higher ratio in non-white ethnicity) (p = 3.18e-7).

Further evaluation of relationships between epiphenotypes and
biological and technical variables
Before performing statistical analysis, it is important to assess inter-relationships and possible collinearities between
demographic and technical variables in a dataset, including any relevant epiphenotype variables, and any
necessarily related demographic variables, such as birth weight and gestational age. As the datasets originally used
to construct the PlaNET epiphenotyping tools may have inherent biases towards different technical or biological
variables, investigating the relationships between these epiphenotypes and other dataset metrics in these three well-
characterized cohorts could provide useful knowledge for future applications of these tools. Reassuringly, beyond
the factors already discussed, we did not detect further associations between PlaNET epivariables and other
biological or technical variables (Supp Fig. 1).

Of the remaining variables of interest, birth weight standard deviation (SD) and placental e�ciency (residual of fetal
weight regressed on placental weight, sex, and gestational age) are both metrics of fetal growth during gestation,
and are interesting to evaluate relative to the PlaNET tools for their relationships to both successful gestation and
pathologic conditions such as preeclampsia or fetal growth restriction. Birthweight Z-score characterizes fetal
growth by contextualizing infant birthweight relative to population-based reference groups of sex- and gestational-
age-matched peers, while placental e�ciency is a metric re�ects the growth (mass) of a fetus relative to the growth
(mass) of its own placenta. In principle, larger placentas can support larger infants, but the most “e�cient”
placentas are those that support adequate fetal growth with less relative placental mass. Birthweight Z score and
placental e�ciency were signi�cantly associated with each other, but were not strongly associated with other
variables (Supp Fig. 1). It is worth noting, however, that birth weight Z-score and gestational age were both higher in
placentas with high PlaNET European ancestry probability score (p < 0.001; p < 0.01 respectively), and in cases with
maternal white ethnicity (p < 0.01; p < 0.001). We found that fetal:placental weight ratio was higher at lower
gestational ages as reported in (37), and this ratio was thus also associated with altered cell type proportions (Supp
Fig. 4). The residual of fetal weight regressed on placental weight, as an improved measure of placental e�ciency,
however, was not associated with either gestational age or cell type composition (Supp Fig. 4). Beyond the factors
already discussed, we did not detect further associations between PlaNET epivariables and other biological or
technical variables.

Discussion
Evaluation of the epiphenotyping tools assessed here indicates that they are appropriate for use in placental DNAme
data processing and analysis in a variety of contexts, and we therefore recommend their regular integration on in
standard processing and analysis pipelines for placental DNAme data. Our major �ndings are presented in Table 2.
In summary, we �nd that these placental epiphenotype variables �rst enable detailed technical assessment of data
quality, such as the fact that inter-centre and sampling differences can be identi�ed by comparing cell composition
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across samples). Additionally, epiphenotypes enable analysts to evaluate metadata reporting accuracy by
comparing each epiphenotype variable to analogous clinically-reported data, such as by comparing PlaNET ancestry
to genetic ancestry (AIMs), or by comparing epigenetic age to reported gestational age. See Fig. 5 for an overview of
the suggested integration of epiphenotype estimation in a DNAme processing pipeline.

PlaNET can �rst be used to estimate ancestry along three continuous axes of variation. The main utility of these
PlaNET ancestry probabilities is that they can account for ancestry-driven genetic variation that in�uences DNAme,
particularly when genetic ancestry data are absent. Self-reported ethnicity is often collected and used as an estimate
genetic ancestry, but even when both maternal and paternal ethnicity data are available for prenatal samples such
as placenta, ethnicity is a categorical identity and a poor proxy for genetic ancestry, which is continuous in nature
and more closely re�ects genetic variation(38–40). While human populations are much more diverse than can be
captured on the three dimensions predicted by this tool (African, East-Asian, European)(38), it is a useful method for
ancestry estimation when independent genetic data are unavailable. As DNAme data from more diverse populations
becomes available, new tools can and should be created that improve upon the current ability to distinguish diverse
genetic ancestries. It is also important to note that PlaNET or genetic ancestry estimates are not a substitute for self-
reported ethnicity, which may be associated with important social determinants of health(40), including lifestyle and
exposure factors interacting with the in-utero environment. It is di�cult to examine the effects of self-reported
ethnicity independently from genetic ancestry, as the two are typically associated, though in this dataset, maternal
ethnicity showed a slightly stronger association with PC1 (largest proportion of DNAme variation in the processed
data) than did estimated ancestry. Both ancestry and ethnicity or race should be considered in DNAme analyses
when applicable; many methylated sites are strongly associated with nearby genetic variants (41), and
environmental effects (which may be captured by self-reported ethnicity) should be examined in the context of this
underlying genetic variation.

The PlaNET placental gestational age clock (RRPC) was less strongly correlated with birth weight than was
clinically-reported gestational age, which implies reduced accuracy of the DNAme-derived estimate. Nonetheless, the
RRPC gestational age on average deviated only by -4.3 days from the reported gestational age, which is less than
reported in the original publication of this tool (r = 0.26 with an absolute mean deviation of 7 days) (18). The Lee et
al. (2019) study utilized publicly available placental DNAme datasets, and it is possible these were subject to
variable quality of clinical records, which may explain the higher accuracy observed in our samples. While the
present study focused on evaluating tools presented in the PlaNET R package, two other placental gestational age
clocks, exist, developed by Mayne et al. (2017) (42) and Haftorn et al. (2021) (43). The �rst was trained on publicly
available placental DNAme datasets of diverse pathologies and has a median absolute deviation of (predicted –
reported age) ± 1.47 weeks, while the Haftorn et al. clock was trained on placental samples from a well-characterized
Finnish cohort, and had a mean absolute deviation of ± 3.6 days, which was similar to what we observed in the
present study with the RRPC.

Regarding cell composition, the placenta is a heterogenous solid tissue with multiple cell types, derived from all three
components of the blastocyst: 1) trophoblast from trophectoderm; 2) placental endothelial and endodermal cells
from hypoblast(44, 45), and 3) Hofbauer cells from epiblast(15). Each cell type in the placenta has a unique DNAme
signature, which contributes to DNAme differences across samples of bulk chorionic villi(15). Cell type composition
differences are known to be a major source of variation in DNAme data in general, beyond just the placenta(46).
Although we could not validate our cell type proportion estimates (as the bulk of nuclei come from the
multinucleated syncytiotrophoblast and accurate counts are not possible), the ratios observed here were consistent
with our sampling technique, which aims to obtain consistent samples of free �oating intermediate and terminal villi
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free of very large vessels and washed well of any contaminating blood(47, 48). Using the PlaNET cell proportions
has also been shown to be superior to reference-free approaches applied to the placenta(49). Overall, based on cell
proportions, placental sampling technique applied here appears to have been consistent between QF2011 (sampled
in Brisbane, Australia) and the two Vancouver cohorts: V-NORM and V-SSRI. This between-cohort consistency in cell
composition is reassuring, although in other studies we have observed large variations in cell composition between
public datasets(15). We thus suggest that when estimated placental cell composition indicates that total trophoblast
proportions are signi�cantly beyond the range of ~ 0.65–0.92, as seen here in our three representative cohorts,
studies may bene�t from sample removal to ensure homogeneous study groups, or the region of the
placenta/method of sampling should be considered for possible interaction with results. Speci�cally, we anticipate
that the proportions of total trophoblast, endothelial cells, and stromal cells in a sample may be related to sampling
technique. For example, we have observed that trophoblast levels are lower if placental chorionic villi are sampled
closer to the fetal facing surface of the organ (immediately under the chorionic membrane), where larger vessels
reside (stem villi) (15).

The cytotrophoblast:syncytiotrophoblast ratio was found to be strongly associated with gestational age over the last
few weeks of gestation, which is consistent with the decrease of cytotrophoblast populations over time as these
cells fuse to form the multinucleated syncytiotrophoblast, which in turn becomes increasingly abundant towards full
term (15, 50). The association between cytotrophoblast:syncytiotrophoblast ratio and maternal ethnicity/placental
genetic ancestry (lower ratio in non-white and in low probability European placentas) can be partly explained by a
reduced gestational age in these cases; however, given the association observed in our data between non-white
ethnicity and reduced birth weight standard deviation (even when accounting for gestational age), socio-cultural
in�uences may also be at play and should be explored in more depth in future studies. As placental pathology or
environmental exposures may be associated with altered cell composition, which in turn contributes to changes in
DNAme in bulk tissue, analysts should carefully consider how and when to correct for cell type composition in bulk
tissues epigenetic analyses.
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Table 2
Summary of �ndings in the evaluation of PlaNET package epiphenotyping tools for genetic ancestry, gestational

age, and placental cell type composition.

  PlaNET Epiphenotype Variable

  Ancestry Gestational Age (re�ned robust
clock, RRPC)

Cell composition

Validation PlaNET
ancestry is
highly
correlated with
independent
SNP genotype
derived
ancestry-
informative
markers
(AIMs).

The re�ned robust placenta clock
(RRPC) is less accurate than
clinically reported gestational age
for term placentas, but predicts
gestational age on average within 4
days.

Cell composition results as
expected for term chorionic villi: e.g.
70%-90% total trophoblast; <2%
nucleated red blood cells.

Calculation
considerations

PlaNET
ancestry
estimates are
affected by
normalization;
data must be
BMIQ + noob
normalized
prior to
estimation(25).

Accuracy of placenta epigenetic
clocks likely depends on data
quality and uniformity of bulk tissue
sampling.

Recommended to estimate cell
composition on BMIQ + noob
normalized data(25).

Epiphenotype variation by:

Cohort of
origin

QF2011 has
predominant
European
ancestry, while
V-NORM and
V-SSRI are
more diverse.

Similar across cohorts. Altered trophoblast ratio in QF2011
cohort

Processing
time

No
association.

No association. Slight decrease in stromal cell
composition at high processing
times

Sampling
Method

Not evaluated. Not evaluated. Yes, previously reported(15), though
not able to be evaluated in the
present similarly-sampled cohorts

Sex No
association.

No association. No association.

Ethnicity Correlated with
maternal
ethnicity; but
includes
paternal
contribution
and is
continuous not
categorical.

No association Possibly higher ratio of
cytotrophoblast:syncytiotrophoblast
in placentas with Asian ancestry.
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  PlaNET Epiphenotype Variable

Reported
Gestational
Age

N/A Accelerated epigenetic gestational
age is reported in preeclampsia(18),
though this work was conducted
with an earlier placental epigenetic
clock (not the RRPC).

Decrease in
cytotrophoblast:syncytiotrophoblast
ratio with increasing gestational
age.

Cell
Composition

No
association.

Decrease in the ratio of
cytotrophoblast:syncytiotrophoblast
with increasing gestational age, but
RRPC gestational age is robust to
cell composition.

N/A

The interrelationships between variables that affect placental DNAme are important to understand before
undertaking further analysis. While we identi�ed a small number of variables that differed between cohorts,
including differences in ancestry composition and slight differences in trophoblast ratios, none of these factors
individually explained as much variation in DNAme as the “cohort” variable itself did (signi�cantly associated with
PC1). This is an expected result, and cohort-level differences likely arise from the combination of many factors
including different procedures used in sample processing, storage and DNA extraction, and differences in
environmental exposure between samples comprising each cohort (e.g. diet, medication, environmental exposure,
stress). This is particularly relevant as in this study, the QF2011 cohort was exposed to an acute environmental
stressor (�ood), which will be explored in a future study for its effect on DNAme. Although a subset of the V-SSRI
cohort was exposed to SSRIs and gestational maternal depression, in a previous study we found no consistent
signature of altered placental DNAme in association with these exposures, and thus this particular exposure variable
is likely not a large driver of cohort-level differences(29).

Obstetrical outcomes can differ by the sex of the conceptus; for example, male (XY) placentas tend to be larger and
more prone to proin�ammatory response than female (XX) placentas (51). Accordingly, we explored whether any
epiphenotype variables were associated with sex, and found that overall sex was not strongly associated with
ancestry, gestational age, or cell composition epiphenotype variables. Sex was also not associated with the �rst two
principal components of DNAme variation in these three cohorts. Interestingly, a slightly higher cytotrophoblast:
syncytiotrophoblast ratio was observed in female samples, but this effect was limited to the QF cohort (Supp Fig. 3).
We did not observe sex differences in placental cell proportions in a previous study with a combined cohort size of n 
= 343(16), implying that the observed higher female cytotrophoblast:syncytiotrophoblast ratio �nding could either be
due to statistical noise in these cohorts, or be related to unmeasured cohort-speci�c factors. Sex differences in
DNAme (16, 52, 53) and gene expression pro�les (54) have been observed at autosomal loci in the placenta, likely
secondary to sex chromosome-related gene expression sex differences(16). Additionally, a recent study indicated
that placental DNAme patterns associated with gestational age may be driven by changes in cell composition
across gestation, and suggested that these changes in cell composition across gestation may also differ between
male and female placentas, although effect sizes were small(55). Thus, if estimated placental cell composition and
gestational age do vary by sex, this variation is likely of small effect size.

In summary, cohort, array batch, cell type proportions, self-reported ethnicity, genetic ancestry, and biological sex are
important variables to consider in any analyses of Illumina DNAme data. We �nd that estimating epiphenotype
variables (gestational age, ancestry, cell proportions) from the DNAme itself, when possible, provides both an
independent check of clinically-obtained data and can provide a robust approach to compare variables across
different datasets. The method by which technical, biological and epiphenotype variables are accounted for in
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analyses should be carefully considered, given the associations observed here between cell composition, ethnicity,
genetic ancestry and gestational age/birth weight Z-score. Adjusting or “controlling” for these factors in statistical
models can mask important relationships between these variables and the outcomes of interest. As factors such as
cell composition, ethnicity, genetic ancestry, and gestational age/birth weight may all interact with fetal health in
unique ways, they should be studied directly when possible. If sample size is su�cient, for example, data should be
analyzed separately by maternal self-reported ethnicity groups, and by sex, since DNAme alterations associated with
other variables of interest may differ within these groups. Though not explored here, it is also worth noting that
epiphenotypes could be used for metadata harmonization across cohorts with different reporting standards (one
could calculate the epigenetic gestational age for all samples and using these values in downstream analysis). We
also note that these epiphenotype variables can be analyzed directly in relation to outcome variables of interest,
such as disease status (e.g. Are cell type proportions altered in disease contexts? Does epigenetic age increase
relative to reported gestational age in disease contexts?).

Overall, we recommend the application of epiphenotyping approaches, followed by detailed exploration the
interrelated nature of biological, technical, and epiphenotype variables in any dataset before beginning analysis, and
further recommend that analysts exercise due caution in interpreting results.

Materials and Methods

Cohorts
204 placentas from three cohorts were processed for DNAme arrays in Vancouver, Canada. The three cohorts
consisted of: (i) V-NORM, a normative population of pregnancies recruited at BC Women’s Hospital (BCWH) in
Vancouver, Canada (n = 35), as part of a study on Epigenetics in Pregnancy Complications (EPIC)(7, 26, 27); ii) V-
SSRI, a population of pregnant individuals recruited in Vancouver, Canada in the 20th week of gestation (n = 64),
with/without clinical depression, and with/without the use of selective serotonin reuptake inhibitors (SSRIs) (28, 29);
and (iii) QF2011, a population of pregnancies exposed to a sudden-onset disaster during gestation due to
catastrophic �ooding in the Australian state of Queensland in early January 2011 (n = 105)(30). Ethics approval for
the V-NORM and V-SSRI cohorts, as well as overall approval for the present study was obtained by the University of
British Columbia/Children’s and Women’s Health Centre of British Columbia Research Ethics Board (H04–70488,
H12-00733, and H16-02280 respectively). The QF2011 study received ethics approval for the initial and follow-up
protocols from the Mater Hospital Human Research Ethics Committee (1709M, 1844M). The QF2011 study also has
ethics approval from the University of Queensland Human Research Ethics Committee (2013001236). For all
cohorts, written informed consent was obtained from all participants, and all procedures complied with the ethical
standards on human experimentation and with the Helsinki Declaration of 1975 (revised in 2008). A subset of V-
NORM participants were recruited by the BC Children’s Hospital BioBank (BCCHB) (Vancouver, BC) an institutional
biobank that collects samples and data from both children and women at BC Children’s and Women’s Hospitals and
Health Centres for future, ethically-approved research.

The V-SSRI and QF2011 were prospectively recruited cohorts, and gestational ages ranged from 36 weeks to term.
Cases for V-NORM were thus limited to gestational ages at birth > 36 weeks to match the other two cohorts.
Exclusion criteria applied to all cohorts included pregnancies with multiple fetuses or chromosome abnormalities.
Additionally, V-SSRI excluded mothers with bipolar illnesses, hypertension, current substance abuse, any diabetes, or
infants with congenital brain malformations or fetal growth. V-NORM excluded any pregnancies affected by
preeclampsia, while QF2011 was not subject to any additional speci�c exclusions. Any exclusion criteria applied
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were intended to minimize the presence of confounding factors known to associate with DNAme alterations (such
as chromosome abnormalities or preeclampsia) or outcome variables of interest (e.g. bipolar illness possibly
confounding depression analyses in V-SSRI).

Self-reported ethnicity and/or race are increasingly recognized as important variables to consider in health research,
but there have not been consensus de�nitions of race or ethnicity (56–58). Further, socially meaningful groupings
may differ across countries and cultures, or even change for an individual over time (56). To harmonize these self-
reported variables across cohorts, as well as to create groups with su�cient sample size for analysis, we have
chosen to group samples by maternal self-declared race/ethnicity as follows: (i) “white” if reported as white,
Caucasian, European, or from any European country; (ii)“Asian” if reported as Asian, Chinese, Japanese, Korean,
Filipino, Vietnamese or Thai; (iii)“Black” if reported as Black or African; (iv) and “Other” if reported as Paci�c Islander,
South Asian, South American, Middle Eastern, Latin American, any speci�c country within those areas, or mixed
ethnicity. We acknowledge, however, that these are imperfect descriptors, and that these groupings may not
accurately re�ect the intended response of the participants.

Infant birth weight is presented as standard deviation Z-scores from the mean sex- and gestational age-speci�c birth
weights, based on Canadian birth charts(59). Placental e�ciency was calculated as the residual of birth weight
regressed on placental weight, adjusted for gestational age and sex(37). This residual is independent of gestational
age, whereas infant birth weight to placental weight ratio is positively correlated with gestational age(37).
Untrimmed placental weight (placental weight including the re�ected amniotic and chorionic membranes), rather
than trimmed weight, was used for placental e�ciency calculations as it was available in a greater number of cases,
and the trimmed and untrimmed values were highly correlated in cases for which both measurements were available
(n = 75, Spearman’s Rho = 0.97, p < 2.2e-16). Between-cohort differences were evaluated by ANOVA for continuous
variables and Chi-square tests for categorical variables.

Placental Sampling
Placental sampling after delivery followed two similar but distinct sampling processes. First, the V-NORM and V-
SSRI cohorts were sampled by a single lab in Vancouver, Canada using a standardized sampling protocol(27).
Brie�y, 1.5-2 cm3 samples of chorionic villi were taken from each of four distinct cotyledons (sites) from below the
surface of the fetal-facing side of the placental disc at a depth that targeted intermediate and tertiary villi. Placental
processing time (number of hours from placenta delivery until sampling) ranged from 0.5 hours to 288 hours (with 5
samples missing data). The samples were washed thoroughly to remove blood, and any thick vessels were removed.
Samples were frozen at -20°C until use. DNA was then extracted from all four cotyledon samples using a salting-out
DNA extraction procedure(60), and extracted DNA from the four sites was pooled in equimolar proportions to provide
a representative sample of each placenta. The second sampling process involved the QF2011 placentas, which were
processed in Brisbane, Australia within 60 minutes of delivery, and eight sites (1 cm3 each) representing different
cotyledons were sampled across the fetal-facing side of each placenta. These samples were snap frozen in liquid
nitrogen and subsequently shipped to Montreal, Canada. Pools of �ve samples were ground over dry ice, and DNA
was extracted using the DNeasy Blood & Tissue Kit (Qiagen, Valencia, CA, USA) in Montreal before being shipped to
Vancouver on dry ice for DNAme processing.

DNAme arrays and data quality checks
DNA samples from all three cohorts were run on Illumina In�nium MethylationEPIC arrays in Vancouver, BC, Canada.
Processing included DNA puri�cation after extraction using the DNeasy Blood & Tissue Kit (Qiagen, Valencia, CA,
USA), bisul�te conversion using the EZ DNAme Kit (Zymo Research, Orange, CA, USA), and hybridization to and
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processing of the Illumina In�nium MethylationEPIC BeadChip arrays according to the manufacturer’s protocol
(Illumina, San Diego, CA, USA). Samples from the three cohorts were distributed and run in 3 array batches across 44
eight-sample chips as illustrated in Supp Fig. 5. Samples were carefully distributed across array chips (1–44) and
rows (1–8) with respect to the following variables, to minimize potential batch effects: exposure groups (SSRI
exposed/non-exposed and QF2011 objective �ood stress high/low) and infant sex (all cohorts).

DNAme data from raw IDAT �les were read into R v4.2.2(61) and annotated with the Illumina In�nium
MethylationEPIC v1.0 B4 Manifest. Several data quality control checks were undertaken using the R packages
min�(62, 63), wateRmelon(64, 65), and ewastools(66). First, each sample was assessed at 17 Illumina control
probes to evaluate bisul�te conversion e�ciency and array run quality; all samples passed the manufacturer-
recommended thresholds at the control probes. Next, average total (methylated + unmethylated) �uorescence
intensity was assessed between samples, and between array batches. All samples had similar total �uorescence,
though samples run on the EPIC array in Batch 3 had slightly higher average intensities than those in Batch 1 and 2.
Sample sex was assessed with the ewastools package(66), using the mean total �uorescence intensity (methylated 
+ unmethylated) of the X and Y chromosome probes, normalized to the per-sample mean autosomal total
�uorescence intensity, and was con�rmed to match the clinically-reported sex of the infant in all cases. Sample
genetic identity was assessed using the 59 SNP (‘rs’) probes on the EPIC array with the “call_genotypes” and
“enumerate_sample_donors” functions (ewastools)(66). Finally, DNAme beta value density plots of all samples were
visually assessed to determine overall similarity of the beta value distributions between samples, with no outliers
identi�ed.

Epiphenotype estimation
The PlaNET R package(25) was used to determine DNAme-based estimates of genetic ancestry, placental cell type
composition, and gestational age at birth. These metrics were calculated based on BMIQ-noob normalized data
before probe �ltering, as recommended in the PlaNET package documentation(25). PlaNET-derived genetic ancestry
can be described as a continuous variable on three axes of variation that sum to one, representing contributions of
African, East-Asian, and European ancestry(24). PlaNET-derived cell composition was calculated using the robust
partial corrections method, which yields six compositional estimates of the major placental cell types (endothelial
cells, stromal cells, Hofbauer cells, nucleated red blood cells, cytotrophoblasts, and syncytiotrophoblasts) (15). To
avoid confusion, we use the term “Cytotrophoblast” for the cell type PlaNET reports as “Trophoblasts”, as these were
single-nuclear trophoblasts derived from chorionic villi, and represent stem and columnar cytotrophoblast, but would
not be expected to have signi�cant contribution from extra-villous trophoblast or syncytiotrophoblast(15). PlaNET-
derived gestational age can be calculated using 3 different built-in tools: the robust placental clock (RPC), the control
placental clock (CPC), and the re�ned robust placental clock (RRPC). The RRPC is most appropriate to the present
dataset as it was developed using exclusively samples > 36 weeks of gestational age (including pathological
samples) to improve prediction over the narrow age range at term(18).

Data processing
After estimation of epiphenotype variables, raw data were normalized for analysis, using noob and dasen combined
normalization methods (67, 68). This method was found to outperform functional, BMIQ, SWAN, and quantile
normalization, all with and without noob where possible (69–73), based on the increased correlation of technical
replicate pairs after normalization and amelioration of probe type bias. Correction of probe type bias was evaluated
quantitatively by comparing the maxima and minima of Type I versus Type II probes before and after normalization
(Khan et al., in prep). Subsequently, poor-quality probes (detection p value > 0.01 or bead count < 3 or missing values
in > 5% of samples) were removed from the dataset (n = 4,783), as were cross-hybridizing probes and probes
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overlapping single nucleotide polymorphisms (MASK_general column of (74), n = 99,360). Technical replicates of
twelve genetically-distinct samples (11 replicate pairs and one sample run in quintuplicate) were used to assess data
processing by calculating the correlation between all DNAme beta values of replicate sample pairs in the raw and
processed datasets. The highest quality replicate from each pair was retained for the rest of the analysis, and all
others removed (n = 15 replicate samples removed). One additional non-replicate sample was removed for failing
probe quality checks (> 1% of array probes failed detection P/bead count). After data processing and quality control,
a total of 746,608 probes in 204 samples remained for analysis.

Principal component analysis
Principal component analysis (PCA) was used to assess the primary drivers of DNAme variance in the data using the
R package irlba(75). Linear models were run to assess covariance between each principal component and technical
and biological variables (PC ~ dependent variable) using the plomics package(76), and visualized in a heatmap
method similar to (77).

AIMs data processing
Ancestry informative markers (AIMS) were used as an independent assessment of genetic ancestry. Genotypes at 57
single-nucleotide polymorphisms informative to assess African, East Asian, and European ancestry(32, 78) were
obtained using the Sequenom iPlexGold assay for 192/204 samples, and analyzed as previously described(32).
Brie�y, for each sample individually, AIMS data were combined with external data from 2,418 individuals from the
1000 Genomes Project (1KGP), serving as ancestry reference populations. Multidimensional scaling (MDS) was then
run on the Euclidean distance matrix based on genotype of these samples (coded numerically by the B allele
frequency as 0, 1, or 2). The top two MDS coordinates were used to describe ancestry for each sample across a
continuum relative to 1KGP samples of East-Asian, African, and European ancestry, and are denoted throughout the
article as AIMs coordinates.
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Figure 1

Principal Component Analysis of DNAme variation. Scree plots (A and B) show the proportion of variance explained
by each principal component (PC), while heatmaps (C and D) show the R2 values of association from linear models
run independently for each metadata variable (i.e., PC ~ Variable). (A) PC scree plot on raw data. (B) PC scree plot on
processed, dasen + noob normalized data. (C) Raw data R2 heatmap showing strength of association between each
PC from A and metadata variables. (D) Processed data R2 heatmap showing strength of association between each
PC from B and metadata variables. For all plots, “SD” refers to standard deviation, “GA” refers to gestational age at
birth, “Ethn” is used to denote ethnicity, P(African/Asian/European) represent the continuous probabilities from
PlaNET ancestry prediction, and nRBC refers to nucleated red blood cells estimated by PlaNET.
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Figure 2

Relationship between PlaNET ancestry probabilities, self-reported maternal ethnicity, and Ancestry Informative
Marker (AIMs) Coordinates. (A) Ternary plot of PlaNET ancestry probabilities (P(European), P(Asian) and P(African),
colored by self-reported maternal ethnicity (Black, East Asian, white, other/mixed). Samples of unknown ethnicity
were excluded. The three axis labels give 0 to 100 percent probabilities for samples belonging to each of the three
ancestry groups. (B-D) Scatterplot of AIMs coordinates 1 (x-axis) and 2 (y-axis) colored by PlaNET ancestry
probability score represented as a color gradient from 0 to 100 (Green for P(European) (B), Yellow for P(Asian) (C),
and Red for P(African) (D)). Samples of European ancestry tend to cluster in the lower left; Asian in the upper right,
and African in the lower right by AIMs coordinates.



Page 27/29

Figure 3

Relationships between PlaNET-estimated gestational age, clinically-reported gestational age, sex, birth weight, and
self-reported ethnicity. (A) PlaNET-estimated gestational age (GA) using the re�ned-robust placental clock, compared
to clinically-reported gestational age.(B) Reported and PlaNET-estimated GA versus birth weight, separated by sex.(C)
Reported and PlaNET-estimated GA versus birth weight, separated by self-reported ethnicity.
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Figure 4

Association of cell type proportions with demographic variables. (A) PlaNET cell composition estimates across
cohorts, shown as the estimated cell composition of each sample (column) by cohort. (B) The mean estimated
proportion of each cell type separated by cohort.(C) Cytotrophoblast:syncytiotrophoblast ratio versus reported
gestational age. (D) Cytotrophoblast:syncytiotrophoblast ratio by sex, (E) Self-reported white ethnicity, and (F)
PlaNET European or Asian ancestry probability > 0.75.
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Figure 5

Suggested integration of placental epiphenotype variable estimation and analysis into DNAme processing and
analysis pipelines.
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