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Abstract

Background

Leptospirosis is a complex zoonotic disease mostly caused by a group of eight pathogenic

species (L. interrogans, L. borgpetersenii, L. kirschneri, L. mayottensis, L. noguchii, L. san-

tarosai, L. weilii, L. alexanderi), with a wide spectrum of animal reservoirs and patient out-

comes. Leptospira interrogans is considered as the leading causative agent of leptospirosis

worldwide and it is the most studied species. However, the genomic features and phylogeo-

graphy of other Leptospira pathogenic species remain to be determined.

Methodology/principal findings

Here we investigated the genome diversity of the main pathogenic Leptospira species

based on a collection of 914 genomes from strains isolated around the world. Genome anal-

yses revealed species-specific genome size and GC content, and an open pangenome in

the pathogenic species, except for L. mayottensis. Taking advantage of a new set of

genomes of L. santarosai strains isolated from patients in Costa Rica, we took a closer look

at this species. L. santarosai strains are largely distributed in America, including the Carib-

bean islands, with over 96% of the available genomes originating from this continent. Phylo-

genetic analysis showed high genetic diversity within L. santarosai, and the clonal groups

identified by cgMLST were strongly associated with geographical areas. Serotype identifica-

tion based on serogrouping and/or analysis of the O-antigen biosynthesis gene loci further

confirmed the great diversity of strains within the species.

Conclusions/significance

In conclusion, we report a comprehensive genome analysis of pathogenic Leptospira spe-

cies with a focus on L. santarosai. Our study sheds new light onto the genomic diversity,

evolutionary history, and epidemiology of leptospirosis in America and globally. Our findings

also expand our knowledge of the genes driving O-antigen diversity. In addition, our work
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provides a framework for understanding the virulence and spread of L. santarosai and for

improving its surveillance in both humans and animals.

Author summary

Leptospirosis is an emerging zoonosis caused by pathogenic species of a highly heteroge-

neous genus. Most studies have focused on Leptospira interrogans that is responsible for

the majority of human infection cases worldwide. On the contrary, our knowledge is very

limited for other pathogenic species, including L. santarosai, which may represent a public

health problem in both humans and animals in the American continent. Our comparative

genomic analyses of the pathogenic species revealed that L. santarosai is characterized by

an open pangenome state with high genetic and serovar diversity. This first study of L.
santarosai isolates not only contributes to the global understanding of genomics and evo-

lution within the Leptospira pathogenic species but also provides the groundwork for bet-

ter surveillance of this pathogen.

Introduction

Leptospira is a highly heterogeneous bacterial genus divided into pathogenic and saprophytic

species and then further divided into more than 300 serovars, which are defined according to

structural heterogeneity of the lipopolysaccharide (LPS) O-antigen. Nowadays, strain identifi-

cation is mainly based on genome analysis, and core genome multilocus sequence typing

(cgMLST) [1] enables identification of the species and below. Recent studies have also shown

that whole-genome sequences can be used for predicting Leptospira serotypes on the basis of

the rfb locus which contains the genes for the O-antigen biosynthesis [2,3]. This approach

offers a promising alternative to the conventional serotyping method, which is laborious,

time-consuming, expensive and requires a high level of expertise.

Over the past decade, the number of Leptospira species described has rapidly extended from

22 in 2014 to 69 in 2022 [4], largely due to the use of improved protocols for culture isolation

from the environment [5,6] and the generalization of next generation sequencing [7]. Among

the genus Leptospira, eight species (L. interrogans, L. kirschneri, L. noguchii, L. santarosai, L.
mayottensis, L. borgpetersenii, L. alexanderi and L. weilii), which diverged after a specific node

of evolution, constitute the most virulent group of pathogenic species [8]. These Leptospira spe-

cies are the causative agents of leptospirosis in both human and animals, leading to a high dis-

ease burden in tropical countries [9] and major economic losses in the livestock sector [10].

Our previous analysis of the distribution of pathogenic Leptospira species showed that L.
interrogans is the most frequently encountered and globally distributed species [1]. This cos-

mopolitan species is also by far the most studied in terms of virulence, and molecular epidemi-

ology, among other aspects. On the contrary, to date, very little is known about the

geographical distribution, reservoirs, genomic features and virulence factors of pathogenic

species other than L. interrogans. In the same analysis, we showed that some pathogenic species

were geographically restricted [1]. Thus, only limited reports have described the existence of L.
santarosai outside the American continent. L. santarosai, named after Carlos A. Santa Rosa, a

Brazilian veterinary microbiologist who pioneered the study of leptospirosis in Brazil, was first

described in 1987 [11]. L. santarosai is predominant in many countries from Central and

South America.
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In the present study, we first performed an analysis of the pangenome in pathogenic Leptos-
pira species and then took a closer look at the genetic diversity of L. santarosai including a set

of strains recently isolated from patients in Costa Rica, which is an endemic country for lepto-

spirosis [12].

Phylogenomics analysis of L. santarosai genomes will enable to better understand the

genetic diversity and genome features of this pathogenic species which is prevalent in most

countries of the American continent.

Material and methods

Ethics statement

According to the decree number 40556-s of the General Health Law of Costa Rica, epidemio-

logical studies that incorporate the review of clinical records do not require the approval of an

ethics-scientific committee. Additionally, no written informed consent from patients was

required, as the study was conducted as part of the routine diagnosis at the Centro Nacional de

Referencia de Bacteriologı́a of the Instituto Costarricense de Investigación y Enseñanza en

Nutrición y Salud (INCIENSA). No additional clinical specimens were collected for the pur-

pose of the study. Human samples were anonymized, and collection of the samples was con-

ducted according to the Declaration of Helsinki.

Strains

Isolates sequenced in this study (n = 153) were obtained from the collections of the French

National Reference Center for Leptospirosis (Institut Pasteur, Paris, France), Laboratorio de

Genética Molecular (Instituto Venezolano de Investigaciones Cientı́fica, Caracas, Venezuela),

Institut Pasteur of Alger (Algiers, Algeria), Institute of Veterinary Bacteriology (University of

Bern, Switzerland), Molecular Epidemiology and Public Health Laboratory (School of Veteri-

nary Sciences, Massey University, New Zealand), Instituto de Higiene (Facultad de Medicina,

Universidad de la República, Montevideo, Uruguay), Universidade Federal Fluminense (Rio

de Janeiro, Brazil), Faculty of Veterinary Medicine (University of Zagreb, Croatia), National

Collaborating Centre for Reference and Research on Leptospirosis (Academic Medical Center,

Amsterdam, the Netherlands), Laboratory of Zoonoses (Pasteur Institute in Saint Petersburg,

Saint Petersburg, Russia), Institute for Medical Research (Malaysia), Faculty of Medicine and

Health Sciences (University Putra Malaysia, Malaysia), and Leptospirosis Research and Exper-

tise Unit (Institut Pasteur Nouvelle-Calédonie, Nouméa, New Caledonia), Kimron Veterinary

Institute (Israel). We also downloaded genomes from our previous studies including isolates

from the collections of Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit (LOM-

WRU) (Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People’s Democratic

Republic), Unidad Mixta Pasteur-Instituto Nacional de Investigación Agropecuaria (Institut

Pasteur of Montevideo, Montevideo, Uruguay), Centre Hospitalier de Mayotte (France), and

Department of Mycology-Bacteriology (Institute of Tropical Medicine Pedro Kourı́, Havana,

Cuba) [1,2,13–15] as well as genomes from the NCBI database. Information on strains and

genomes used in this study are indicated in S1 and S2 Tables.

Whole-genome sequencing

Illumina sequencing was performed from extracted genomic DNAs of exponential-phase cul-

tures using a MagNA Pure 96 Instrument (Roche, Meylan, France). Next-generation sequenc-

ing (NGS) was performed using Nextera XT DNA Library Preparation kit and the NextSeq

500 sequencing systems (Illumina, San Diego, CA, USA) at the Mutualized Platform for
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Microbiology (P2M) at Institut Pasteur. CLC Genomics Workbench 9 software (Qiagen, Hil-

den, Germany) was used for analyses. The generated contig sequences together with the sam-

ple metadata are available in BIGSdb hosted at the Institut Pasteur (//bigsdb.pasteur.fr/

leptospira/). We also downloaded additional genome sequences of Leptospira isolates from the

NCBI database (S1 Table). Only genomes meeting quality requirements, such as i) sequencing

coverage>30x, ii) number of contigs <600, iii) cumulative contigs length within the typical

range of Leptospira genomes (3.6-6Mb), iv) GC content within the typical range of Leptospira
genomes (35–48%), and v)<100 uncalled cgMLST alleles out of the 545 pre-defined core

genes, were selected for further analyses.

Genomic analyses

Comparative analyses of the pangenome were performed using two software: Roary version

3.11.2 [16], and a combination of COG and OMCL algorithms in GET_HOMOLOGUES ver-

sion 20190411 [12]. Both methods yielded a similar number of gene clusters. In the Roary anal-

ysis, a 60% identity cut-off was applied to define gene clusters (option -i 60), and no other

parameters were modified. Among the Roary outputs, a tab-separated file containing the num-

ber of genes in the pangenome was used to create a graph depicting the variation in the num-

ber of gene clusters as a function of the number of genomes analyzed. Roary iterated 10 times,

calculating the number of new genes added as each genome was sequentially incorporated into

the analysis. This graph facilitated a quick determination of whether the pangenome was open

or closed and allowed for the calculation of the α coefficient in Heap’s Law (n = κNγ, with γ =

1- α) [17]. On the other hand, GET_HOMOLOGUES was used to infer the pangenome distri-

bution in cloud-, shell-, soft-core-, and core-genome. This was achieved by generating a tab-

separated pangenome matrix file that included the number of all the clusters identified by both

COG and OMCL algorithms. The matrix represented the intersection of the two methods and

served as input for the parse_pangenome_matrix.pl script within GET_HOMOLOGUES,

which classified the clusters as cloud (shared by up to 2 genomes), shell (shared by more than

2 genomes but less than 93% of genomes analyzed), soft-core (shared by 93–99% of genomes),

or core-genes (shared by 100% of genomes). Due to the substantial number of genomes avail-

able for L. interrogans and L. borgpetersenii, as well as the redundancies observed in serogroups

and serovars, representative genomes of each serogroup/serovar were selectively chosen to

mitigate computational costs. Excluding genomes with redundant identities is not anticipated

to result in significant alterations in the pangenome distribution.

Genome size and GC content for highly virulent Leptospira species were determined

through DFAST annotation [18]. Individual values were plotted and grouped per species, with

the mean and standard deviation displayed. Genome size and GC content were compared

using the Kruskal-Wallis Rank Sum Test, for the comparison of Leptospira spp. and the Wil-

coxon rank test, for the comparison of two phylogenetic-related groups. Post-hoc comparisons

were performed using Dunn’s Kruskal-Wallis Multiple Comparisons (Dunn, 1964). P-values

were adjusted with the Bonferroni method. Statistical analyses were performed in R [19], using

FSA package [20].

Average Nucleotide Identity (ANI) and Percentage of Conserved Proteins (POCP) were

calculated for the 64 L. santarosai genome sequences as well as L. interrogans str. Fiocruz L1-

130 and L. borgpetersenii str. M84 used as outgroups (S1 and S2 Figs). Genomes were anno-

tated by Prokka version 1.13.7 [21]. ANI and POCP matrices were inferred using OMCL algo-

rithm via GET_HOMOLOGUES version 20190411 [12]. Briefly, to calculate ANI, the option

-A was employed along with option -a to utilize nucleotide sequences and perform BLASTN.

This process generated a tab-separated file containing average percentage sequence identity
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values between pairs of genomes, calculated from sequences within all identified clusters

(option t = 0). This tab-separated file served as the input to create a symmetric matrix, where

the genomes were clustered based on their ANI values. Dendrograms based on this clustering

were generated on both sides of the matrix to visually represent the proximity among genomes.

Similarly, POCP was calculated by including the option -P and performing default BLASTP

searches. This step yielded another tab-separated file, which was subsequently used to create a

symmetric matrix. Analogous to the ANI matrix, the genomes were clustered based on the

shared % of conserved proteins between pairs of genomes. These values are calculated as

POCP = (Ca + Cb)/(totala + totalb), where Ca and Cb denote the number of conserved proteins

from genome a in genome b and from genome b in genome a, respectively, normalized by the

sum of total proteins in each genome. The clustering process also generated dendrograms,

indicating the proximity among genomes in terms of conserved proteins.

Core genome MLST (cgMLST) typing was performed using a scheme based on 545 core

genes as previously described [1]. L. santarosai core-genome based phylogeny was constructed

using the 1288 core-genes alignment resulting from Roary analysis (60% identity cut-off,

option -i 60). The best-fit model and the maximum-likelihood phylogenetic tree were deter-

mined by IQ-TREE version 1.6.11 [22], considering 10,000 ultrafast bootstraps [23]. L. interro-
gans str Fiocruz L1-130 and L. borgpetersenii str. M84 were used as outgroups. Tree branches

were transformed with the "proportional" option on FigTree software v1.4.4 (http://tree.bio.ed.

ac.uk/software/figtree/), which adjusts branch distances according to the number of tips under

each node to improve visualization of the tree. Gene presence/absence analyses among rfb
clusters from different genomes here studied were performed by protein-level searches using

BLASTP [24] and subsequent network associations by NetworkX version 2.6.2 [25]. A similar-

ity threshold of 60% was applied, as previously described [2]. The resulting presence/absence

table obtained from the network association analysis was converted into a binary CSV file,

where 0 represents gene absence and 1 represents gene presence. This binary table was sub-

jected to hierarchical clustering based on shared protein-encoding genes (options: euclidean

distance, ward linkage) using available tools at //mev.tm4.org. Jaccard’s similarity index was

used to measure the similarity between rfb patterns.

Genomic data

The sequencing data generated in this study are available in the NCBI database under the Bio-

Sample accession numbers SAMN34670613, SAMN34670614, SAMN34670615,

SAMN34670616, SAMN34670617, SAMN34670618, SAMN34670619, SAMN34670620,

SAMN34670621, SAMN34670622, SAMN34670623, SAMN34670624, SAMN34670625,

SAMN34670626, SAMN34670627, SAMN34670628, SAMN34670629, SAMN34670630.

Genome sequences used in this study are also available at https://bigsdb.pasteur.fr/cgi-bin/

bigsdb/bigsdb.pl?db=pubmlst_leptospira_isolates&page=query&project_list=21&submit=1.

Results and discussion

Distribution of pathogenic Leptospira species shows that L. santarosai

isolates are mostly from the Americas

We first investigated the geographical distribution of pathogenic Leptospira species using 914

genomes of isolates collected between 1928 and 2022 (S1 Table).

Species included in our study are: L. interrogans (n = 410), L. borgpetersenii (n = 264), L.
kirschneri (n = 88), L. mayottensis (n = 33), L. noguchii (n = 31), L. santarosai (n = 64), L. weilii
(n = 24); L. alexanderi, with only 2 isolates in our database, was not included in this study.
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Strains were isolated from human (50%) and animal (49%) samples, in Europe (18 %), Africa

(2 %), Indian Ocean (14%), Caribbean islands (6%), Central America (3%), South America

(13%), North America (4%), Central Asia, South Asia, East and Western Asia (11%), Southeast

Asia (14 %), and Australia and the Pacific region (15%) (Fig 1). Although this study is based

on the genomes available in the databases and may introduce a bias, L. interrogans, L. kirsch-
neri, and L. borgpetersenii are distributed worldwide, L. weilii is mostly found in Asia, Australia

and the Pacific region, L. mayottensis in the Indian Ocean, and L. noguchii and L. santarosai in

America as previously shown [1].

Leptospirosis is endemic in most countries of South and Central America, as well as in the

Caribbean region [9,26–28]. In addition, most outbreaks of leptospirosis have been reported

in the Latin America and the Caribbean region [29], where the disease is widespread in domes-

tic and wild animals [12]. However, comprehensive data concerning human and animal lepto-

spirosis remain largely scarce in most American countries [30]. We previously studied the

genomes of L. noguchii isolated from human and animals in America [2] but our knowledge of

L. santarosai, the other prevalent species in America, is rather limited.

Here, we sequenced 18 L. santarosai strains, including twelve strains that were isolated in

Costa Rica in 2020–2021 from patients. The ANI and POCP values were calculated for the 64

L. santarosai strains further confirming they all belong to the same species (S1 and S2 Figs). Of

the 64 L. santarosai strains in our genome database, 28 were isolated in South America (Brazil,

Colombia, Ecuador, Peru), 21 in Central America (Costa Rica, Panama), 6 in North America

(US; not including Puerto Rico), 7 in the Caribbean region (Martinique, Guadeloupe, Trinidad

and Tobago and Puerto Rico), and only two strains were isolated outside the Americas (China

and Democratic Republic of the Congo) (Fig 1 and S2 Table). Of note, L. santarosai has not

been isolated in Uruguay, where a large number of Leptospira strains have been isolated from

cattle [15].

L. santarosai strains in our study were isolated from humans (n = 38), bovine (n = 12),

rodents (n = 8, including rats, spiny rats, capybara and muskrat), opossum (n = 2), dog

(n = 1), goat (n = 1), pig (n = 1), and racoon (n = 1) (S2 Table).

Previous studies have shown that L. santarosai can be detected from different sources in

many countries of America and the Caribbean region. It is the predominant species in

humans, rodents and dogs in Peru and Colombia [31,32]. In Peru, it has additionally been

found in rural environmental water samples (but not in urban samples), as well as in associa-

tion with pigs and cattle [33]. In Brazil, L. santarosai has been isolated from dogs [34], cattle

[35], goats [36], and capybaras [37]. Moreover, it has also been identified in patients in French

Guiana [38], Guadeloupe [39] and the US [40].

Only a few reports have described the existence of L. santarosai outside the American conti-

nent. Some years after the original description of L. santarosai [11], Brenner et al. listed 65 L.
santarosai strains, of which only three were isolated from outside America [41]. One L. santar-
osai strain was isolated from a patient in Sri-Lanka in 1966 but has never been reported in this

country afterwards [42, 43]. The other two strains were isolated in Denmark and Indonesia

but, again, L. santarosai has not been subsequently isolated in these countries. More recently, a

strain belonging to L. santarosai serogroup Grippotyphosa was isolated from a patient in India

and its genome sequenced [44]. However, because of highly fragmented genome (884 contigs)

and missing genomic data (135 uncalled cgMLST alleles), the cluster assignment was not pos-

sible for this isolate and we removed its genome from our analysis.

The serogroup Shermani, is commonly reported in serological surveys in animals in Asia

[45–48]. Unfortunately, there is no evidence that the infecting strains described in these stud-

ies were L. santarosai or another species such as L. noguchii and L. inadai which also contain

serovars from the serogroup Shermani [49]. Finally, the other country outside Americas where
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L. santarosai was reported is Taiwan in East Asia. Serogroup Shermani, presumably belonging

to L. santarosai, is predominant among patients with severe leptospirosis in Taiwan [50]. How-

ever, only one L. santarosai strain, strain CCF, has been isolated from a patient with leptospi-

rosis in Taiwan [51] and this strain, for which we do not have the complete genome [52], is no

longer available (personal communication of Prof Chih-Wei Yang).

Genome analysis shows species-specific features and an open pangenome

for most pathogenic Leptospira species

Phylogenetic analysis of the eight pathogenic Leptospira species using the saprophyte L. biflexa
as the outgroup shows two distinct groups as previously shown [8, 53]. One phylogenetic

group constituted by L. santarosai, L. mayottensis, L. borgpetersenii, L. alexanderi and L. weilii
(group I), and another one with L. interrogans, L. kirschneri and L. noguchii (group II) (Fig

2A). The genome size and GC content vary widely among pathogenic species usually correlat-

ing with these two phylogenetic subgroups (Fig 2B and S3 and S4 Tables). Notably, the

genome size of the group I (3.96 ± 0.17 Mb) is significantly smaller to species from the group

II (4.63 ± 0.32 Mb; Wilcoxon rank test, W = 4985, p< 2.2e-16; Fig 2B, left panel). Inversely,

guanine+cytosine content (G+C%) is higher in the group I (40.4 ± 0.7 G+C%) than the group

II (35.5 ± 0.43%; Wilcoxon rank test, W = 207668, p< 2.2e-16; Fig 2B, right panel). Interest-

ingly, with the exclusion of L. weilii, the genome sizes were not significantly different between

species of the group I (Dunn´s test, all pair comparisons with p adjusted >0.05), supporting

their characterization as a monophyletic group. However, the G+C% content did differ signifi-

cantly between Leptospira spp. within group I. (Dunn´s test, all pair comparisons with p
adjusted value�0.04). Variation was larger within the species of group II, as L. interrogans
shows a larger genome size than L. kirschneri (Dunn´s test, p adjusted�0.0000003), whereas G

+C% was significantly different between L. interrogans and L. kirschneri, and L. interrogans

Fig 1. Geographic origins of the most frequent pathogenic Leptospira species in our genome database (n = 914). Each pie chart corresponds to a given

world region. As shown in our map, L. santarosai (n = 64) is mostly found in America (North America, Central America, South America and the

Caribbean islands). The base layer of the map is freely available from outline-world-map.com.

//doi.org/10.1371/journal.pntd.0011733.g001
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and L. noguchii (Dunn´s test, all pair comparisons with p adjusted value�0.0002). These dis-

parities in GC content and genome size may be a response to long-term niche adaptation of

pathogens which emerged hundred million years ago at the same time as the appearance of

mammals [54].

Most pathogenic species exhibit a strong enrichment (>3X) of accessory genes (Fig 3).

However, it is important to notice that L. mayottensis stands as an exception, where the analy-

sis of 33 strains showed a distribution of 1,949 and 2,284 genes constituting the core and the

accessory genomes, respectively (1.2X enrichment), which probably resides in the fact that L.
mayottensis is restricted to the Indian Ocean (Mayotte and Madagascar) and its specific adap-

tation to tenrec, described as the main reservoir of this pathogenic species [55,56].

Fig 2. Genome characteristics of pathogenic Leptospira. A. Phylogenetic tree built using IQTREE on the alignment of 645 soft-core genes (60% identity cut-off, present

in at least 95% of the genomes). The bootstraps values are indicated in the tree (as a percentage). B. The variation of size and G+C% are indicated for L. interrogans
(n = 410), L. borgpetersenii (n = 264), L. kirschneri (n = 88), L. mayottensis (n = 33), L. noguchi (n = 31), L. santarosai (n = 64) and L. weillii (n = 24); L. alexanderi, with

only 2 isolates in our database, was not included in this study. Statistical differences between L. santarosai and other pathogenic species were determined with the non-

parametric ANOVA test (Kruskal-Wallis).

//doi.org/10.1371/journal.pntd.0011733.g002
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Concerning specifically L. santarosai, it harbors an open pangenome suggesting a great

diversity in its gene repertoire (S3 Fig). Our analysis shows a strong enrichment (�5X) of gene

clusters that are unique to a maximum of two genomes (6,889) compared to core genome gene

clusters (1,320) (Fig 3).

High genetic diversity of L. santarosai strains

To further investigate the genetic diversity of L. santarosai isolates, we used a core genome

MLST (cgMLST) scheme [1] (Fig 4). The species L. santarosai (n = 64) were divided into 55

cgMLST clonal groups (cgCGs) showing a high intraspecies genetic diversity (Fig 4) as shown

in previous studies [29,32,39,57,58]. Among the 55 cgCGs, none is composed of more than 3

strains (S1 Table), and none is composed of both human and animal strains. We cannot there-

fore identify transmission of L. santarosai clones between different hosts. There is a wide range

of possible reservoirs for L. santarosai in the Americas. Some countries in the region are

among the largest cattle producers in the world so these animals could be important reservoirs

for human infections. The Americas also exhibit a great biodiversity, so many species of wild

animals such as rodents, marsupials, and domestic animals, such as dogs may be involved in

transmission cycles. Among the 15 strains isolated from patients in Costa Rica, only two

(id1256 and id1260) exhibit the same clonal group further confirming the great diversity of

strains even within one small country.

Unfortunately, analyses to identify associations of Leptospira genotypes to particular epide-

miological variables (host reservoir, disease outcome, etc.) cannot be performed with our

small sample size. However, we could determine some phylogeographic lineages. A clear

Fig 3. Pangenome distribution in four categories (cloud, shell, soft core and core) for Leptospira pathogenic species. Analyses done with GET_HOMOLOGUES

showing the U-shaped distribution of pangenome from L. santarosai, L. mayottensis, L. borgpetersenii, L. weilii, L. interrogans, L. kirschneri and L. noguchii. For L.
interrogans and L. borgpetersenii, a subset of representative genomes of all sizes and from all geographic locations was selected to reduce computational costs and avoid

redundancy.

//doi.org/10.1371/journal.pntd.0011733.g003
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geographical separation of the clonal groups was observed for strains from (i) Central Amer-

ica, comprising isolates from Costa Rica (15; all human strains), Panama (6) but also one strain

from South America (Colombia); South America which was further divided in two divergent

groups, (ii) one containing strains from Brazil (10; mostly bovine strains) and the other (iii)

including strains from Peru (9); and (iv) Caribbean islands, with strains from Guadeloupe (2),

Martinique (2), Trinidad (1) and Puerto Rico (1) (Fig 4). This suggests ancestral presence of

this species in these different countries and further separated evolution with no or low

Fig 4. Phylogenetic tree of L. santarosai strains. Maximum-likelihood phylogeny based on the variable sites of the

cgMLST scheme consisting of 545 core genes showing the distribution of species, serogroups and geographic origins.

The species L. santarosai (n = 64) were divided into 55 cgMLST clonal groups belonging to 9 different serogroups; for

20 strains the serogroup is unknown or undetermined. Colors indicate strains isolated from the same geographic

region (Central America in red, South America in blue, North America in green, Caribbean in orange, Southern Asia

in purple, and Middle Africa in black). Branch lengths were not used to ease readability of groups and isolates.

//doi.org/10.1371/journal.pntd.0011733.g004
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geographic diffusion. On the contrary, previous phylogenetic analyses of L. noguchii [2] and L.
interrogans [1] did not reveal a correlation of genotype with geographical distribution.

Diversity of serovar and O-antigen-encoding locus in L. santarosai

Further identification of L. santarosai strains was performed at the level of serovar and ser-

ogroup. Serogroups Grippotyphosa (8), Shermani (6), Tarassovi (8), Mini (5), Javanica (3),

Pyrogenes (7), Sejroe (3), Hebdomadis (2), and Sarmin (2) were identified by serogrouping,

but serovar/serogroup could not be assigned for 20 strains (no agglutination in serogrouping

analyses or absence of serotyping information in the genome database). The three strains of

the Javanica serogroup have been identified as belonging to a new serovar, Arenal, circulating

in patients in Costa Rica [59,60].

We recently showed that the analysis of the gene content of the LPS O-antigen–encoding

cluster, or rfb cluster, correlates with Leptospira serovar and serogroup identity [2]. We then

analyzed the gene composition of the rfb cluster of our set of L. santarosai strains, including 20

strains of unknown serogroup, in comparison to the rfb from reference strains of known sero-

vars/serogroups (Fig 5). Strains were organized after hierarchical clustering considering pres-

ence/absence of the rfb genes. As previously shown, well-typed reference serovars from the

same serogroup share the same patterns [2] but serovars from different serogroups may also

share a similar genetic fingerprint: this is the case, for example, between serovars Copenhageni,

Lai (both from serogroup Icterohaemorrhagiae) and serovar Canicola (serogroup Canicola),

or serovars belonging to serogroups Grippotyphosa, Cynopteri and Autumnalis or between

serovars from serogroups Mini, Sejroe and Hebdomadis. Four major clusters of genetic finger-

prints can be distinguished (Fig 5) and were further confirmed using Jaccard’s similarity index

(S4 Fig): cluster 1, containing reference strains from serogroups Australis, Grippotyphosa,

Cynopteri and Autumnalis; cluster 2, which includes more variability of genetic fingerprints

with reference strains from serogroups Pomona, Javanica, Pyrogenes, Celledoni, Icterohae-

morrhagiae, Canicola and Sarmin; cluster 3, composed only of reference strains from ser-

ogroups Tarassovi and Shermani; and cluster 4, that comprises reference strains from

serogroups Sejroe, Hebdomadis and Mini (Fig 5). The 64 L. santarosai strains were then

assigned to the different cluster according to rfb gene composition (S1 Table). Cluster 1 con-

tains all L. santarosai strains identified as belonging to serogroup Grippotyphosa (id1259,

id1257, id1296, id445, id1328, id1329, id1330, id1253), as well as four strains of unknown ser-

ogroups (id220, id1321, id286, id90) showing patterns related to Grippotyphosa. Interestingly,

id220, id1321 and id286 were isolated at three different geographic locations: North (id220),

Central (id1321) and South America (id286). The three strains are phylogenetically distant,

but exhibit an identical rfb cluster gene composition, suggesting that the rfb genomic island,

important for bacterial persistence and adaptation to specific reservoir hosts, has disseminated

in unrelated L. santarosai strains. Strains from the serogroups Sarmin (id1459, id1461), Java-

nica (id91, id1310, id92; all from the new serovar Arenal recently described in Costa Rica),

Pyrogenes (id1307, id1260, id1475, id1215, id1256, id526, id1189) belong to Cluster 2. Cluster

2 also includes two strains (id285 and id257) from an unknown serogroup exhibiting Sarmin/

Pyrogenes/Javanica-like patterns. Cluster 3 comprises all L. santarosai strains belonging to ser-

ogroups Shermani (id96, id261, id262, id1304, id1252, id1255) and Tarassovi (id266, id289,

id1295, id1303, id1467, id1254, id1214, id1261), along with strains of unknown serogroups

(id1323, id1331, id282, id1320, id1324) showing patterns related to serogroups Tarassovi and

Shermani and one strain (id944) with many rfb genes not present in other genomes, suggesting

that it may belong to a new serovar/serogroup or a serovar/serogroup not included in our anal-

ysis. Finally, strains from cluster 4 belong to the antigenically related serogroups Mini,
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Hebdomadis and Sejroe which share a similar rfb gene composition [3]. L. santarosai strains

from cluster 4 share similar genetic fingerprints and belong to serogroups Mini (id1325,

id1319, id219, id89, id88), Sejroe (id1327, id1285, id1284), and Hebdomadis (id1251, id1322)

[12], in addition to strains of unknown serogroups (id1309, id221, id1353, id281, id283,

id1326) and strains id290 and id291 with more variability of genetic fingerprints.

Our analysis of the gene composition of the rfb cluster is consistent with previous studies

showing that L. santarosai only contains serovars from serogroups Shermani, Hebdomadis,

Tarassovi, Pyrogenes, Autumnalis, Bataviae, Mini, Grippotyphosa, Sejroe, Pomona, Javanica,

and Sarmin [49], as well as probable new serovars. However, it must be noted that most of the

L. santarosai genomic assemblies analyzed here are fragmented (average contig number, 149),

Fig 5. Gene presence/absence matrix of rfb clusters from different Leptospira strains and species, covering a range of distinct serogroup/serovar identities

compared to L. santarosai strains. Horizontal lines correspond to individual genes or set of genes grouped according to their percentage of similarity (cut-off

60%), green meaning presence, and black absence. Scales on the left of the matrices indicate the number of different genes being compared. Columns

correspond to different Leptospira strains as indicated on the columns’ labels. Those whose name begins with the species, correspond to the rfb cluster of known

serovar/serogroup strains (serovar indicated in red, serogroup in brackets and in bold). Names of the L. santarosai strains analyzed in the present study begin

with their ID number followed by the name of the strain. In brackets, serovar is indicated in red, if assigned, and serogroup in bold. For the latter strains, the

whole genome was used and compared against the other rfb and a pan-rfb reference. Strains were organized after hierarchical clustering considering presence/

absence of rfb genes. Four major clusters can be evidenced: 1) including serogroups Australis, Grippotyphosa, Cynopteri, and Autumnalis; 2) the most variable,

comprising serogroups Tarassovi, Pomona, Javanica, Pyrogenes, Celledoni, Icterohaemorrhagiae, Canicola and Sarmin; 3) composed only of serogroups

Tarassovi and Shermani; and 4) including serogroups Sejroe, Hebdomadis and Mini.

//doi.org/10.1371/journal.pntd.0011733.g005
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which could lead to inaccurate serotype assignations. Further studies should include less frag-

mented genomes, ideally closed genomes, for a correct interpretation of the rfb patterns and to

better identify the genes determining the serovar identity. As previously shown [1] most ser-

ogroups had a polyphyletic distribution. Thus, isolates from the serogroups Tarassovi and

Grippotyphosa did not all cluster together in the phylogenetic tree based on either cgMLST

alleles (Fig 4) or core-genes (S5 Fig).

Conclusion

In conclusion, genome analyses showed species-specific genome size and GC content and an

open pangenome in pathogenic species, with the exception of L. mayottensis. Taken together,

these analyses suggest an ancient speciation of pathogens and their adaptation to diverse

niches resulting in a great genotypic and phenotypic diversity across species. We also showed

that despite the limited geographic distribution of L. santarosai to America, this species exhib-

its great diversity and an open pangenome. This study represents the largest and most detailed

analysis of the genetic and serotype diversity of this pathogen to date, thus providing a com-

prehensive analysis of this pathogenic species. Our collection of L. santarosai exhibits an over-

representation of isolates from America and more genomes representing undersampled

regions and different animal reservoirs will be necessary to better understand the evolutionary

history, epidemiology, and population dynamics of L. santarosai. We discovered a large

genetic diversity among isolates from both human and animal samples, with no apparent

transmission from one host to another, although circulation of strains that share the same ser-

ogroup was evident in multiple hosts. Outbreak investigations performed at the local level

would likely improve the identification of animal reservoirs. These results will improve our

understanding of the dissemination of genotypes in specific geographic regions and update the

knowledge of strains circulating in America for effective disease surveillance.
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