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Abstract

Chronic hepatitis B remains a global health problem with 296 million people living with chronic

HBV infection and being at risk of developing cirrhosis and hepatocellular carcinoma. Non-

infectious subviral particles (SVP) are produced in large excess over infectious Dane parti-

cles in patients and are the major source of Hepatitis B surface antigen (HBsAg). They are

thought to exhaust the immune system, and it is generally considered that functional cure

requires the clearance of HBsAg from blood of patient. Nucleic acid polymers (NAPs) antiviral

activity lead to the inhibition of HBsAg release, resulting in rapid clearance of HBsAg from cir-

culation in vivo. However, their efficacy has only been demonstrated in limited genotypes in

small scale clinical trials. HBV exists as nine main genotypes (A to I). In this study, the HBsAg

ORFs from the most prevalent genotypes (A, B, C, D, E, G), which account for over 96% of

human cases, were inserted into the AAVS1 safe-harbor of HepG2 cells using CRISPR/

Cas9 knock-in. A cell line producing the D144A vaccine escape mutant was also engineered.

The secretion of HBsAg was confirmed into these new genotype cell lines (GCLs) and the

antiviral activity of the NAP REP 2139 was then assessed. The results demonstrate that REP

2139 exerts an antiviral effect in all genotypes and serotypes tested in this study, including

the vaccine escape mutant, suggesting a pangenomic effect of the NAPs.

Introduction

Despite an effective vaccine against hepatitis B virus (HBV), the World Health Organization

(WHO) estimates that 296 million people are still living with chronic HBV infection, causing

820,000 deaths annually from cirrhosis and hepatocellular carcinoma [1]. During HBV infec-

tion, the most abundant circulating antigen is the hepatitis B surface antigen (HBsAg). HBsAg

exists in three different isoforms which comprise the three HBV envelope proteins referred to

as L-, M-, and S-HBsAg. The vast majority of these proteins assemble to form non-infectious

subviral particles (SVP) which contain only trace amounts of L-HBsAg [2–4].

HBV can be divided into nine genotypes classified from A to I [5, 6] with an additional

putative genotype J reported in one patient [7]. The worldwide distribution of genotypes

among chronically HBV infected patients varies [8], yet over 96% of patients are infected by one
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of the five most common HBV genotypes. Their proportions have been reported as follows: C

being the most common with 26%, followed by genotype D (22%), E (18%), A (17%) and B

(14%). Genotypes F to I together cause less than 2% of global chronic HBV infections [8].

All HBsAg isoforms contain the primary epitope of HBV required to induce protective antibody

responses. This epitope is exposed on the surface of HBV virions and SVP particles and is called

the “a” determinant [9]. This “a” determinant spans amino acid 124 to 147 [9, 10]. The appearance

of the disease in a child who was vaccinated at birth following maternal transfer of HBV infection

led to the discovery of vaccine escape mutations [11]. The first reported was a glycine (G) to argi-

nine (R) substitution at position 145 within the “a” determinant, causing a conformational change

[11, 12]. As HBV vaccines induce HBsAg antibodies against the “a” determinant region of HBsAg,

some mutations occurring in this region can lead to vaccine escape [10]. Several variants were pre-

viously identified including D144A [13]. This variant has been reported to be found in genotypes

A, C, D, E [10] and is included in this study. Patients infected with HBV vaccine escape mutants do

not benefit from vaccination and are especially in need for effective treatments.

Importantly, HBsAg elimination from blood is considered as a hallmark of achieving func-

tional cure [14] and cessation of therapy [15].

Nucleic acid polymers (NAPs) are amphipathic single-stranded phosphorothioated oligo-

nucleotides [16]. The clinically active lead compound for NAPs is the REP 2139, a 40-mer with

a (AC)20 sequence, with full 2’O-methyl and 5’C methylation [17–20]. In monotherapy as well

as in combination with immunotherapies such as pegylated interferons (pegIFN) and nucleos

(t)ides analogues such as tenofovir disoproxil fumarate (TDF), the antiviral effect of REP 2139

against HBV leads to the inhibition of HBsAg release. This results in rapid clearance of HBsAg

from circulation in phase IIA clinical trials in HBeAg negative and positive chronic HBV

mono-infection and in HBV/HDV co-infection [18–20]. In the most recent phase IIA trial of

NAP-based combination therapy, durable virological control of infection in the absence of

therapy was achieved in 78% of participants, with 39% of participants further achieving func-

tional cure [20]. We have previously succeeded in recapitulating the effect of NAPs in vitro
[17, 21] in HepG.2.2.15 cells and were able to confirm the potent antiviral activity of REP 2139

on HBsAg secretion [21]. However, the efficacy of NAPs has only been demonstrated in a sub-

set of genotypes [17–21]. Pangenomic effect assessment for any antiviral treatment is an

important property to evaluate, since previous studies have demonstrated a genotype-depen-

dent variability in the antiviral response to pegIFN in HBeAg +/- patients [22–24], and stron-

ger pegIFN responses in genotypes presenting a lower HBsAg secretion [24–27]. Additionally,

HBsAg turnover appears to vary with different HBV genotypes [28, 29].

In this study, REP 2139 antiviral effect is being assessed on HBsAg secretion from several

HBV genotypes. HepG2 cells were engineered to secrete HBsAg from wildtype genotypes (A,

B, C, D, E and G) and a vaccine escape mutant (D144A genotype D). These cell lines were cre-

ated using the CRISPR/Cas9 technology to insert the open reading frame (ORF) of L, M and

S-HBsAg and the HBx ORF into the safe-harbor AAVS1 located in chromosome 19. This

locus has been reported to be a robust transgene expression site, reliable and safe for cell engi-

neering, without detectable transcriptional perturbation of endogenous gene activity [30, 31].

Here, we report the pangenomic antiviral effect of REP 2139 on HBsAg secretion in our

HepG2-derived genotype cell lines (GCLs).

Materials and methods

Phylogenic tree

GenBank accession numbers of sequences of L-HBsAg used in the phylogenic tree (Fig 1A)

are listed in the legend. Evolutionary analyses were conducted in MEGA11 [32]. The
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evolutionary history was inferred using the Neighbor-Joining method [33]. The evolutionary

distances were computed using the Poisson correction method [34] and are in the units of the

number of amino acid substitutions per site (next to the branches). This analysis involved 19

amino acid sequences corresponding to the entire L-HBsAg protein. All ambiguous positions

were removed for each sequence pair (pairwise deletion option). There was a total of 540 posi-

tions in the final dataset.

Cells and reagents

HepG2 cells were used for the construction of the genotype cell lines. HepG2.2.15 cells were

used as a control in which NAP activity has been demonstrated [17, 21]. Cell lines were main-

tained in William’s medium E (WME) complemented with 10% fetal bovine serum (FBS) and

gentamicin. NAPs were prepared as previously described [35]. Treatment of cells was per-

formed with stock solutions of REP 2139 in normal saline. The UNC7938 compound, a gener-

ous gift from Dr. Rudolph L. Juliano [36], was resuspended in DMSO. Puromycin

dihydrochloride was purchased from Sigma-Aldrich (#P8833).

Fig 1. Phylogenic classification of the L-HBsAg protein ORF according to genotypes and serotypes. (A) Phylogenic tree for one of each genotype/

serotype couple existing for every genotype. GenBank accession numbers for the sequences included in the phylogenetic analyses are as follows:

AY233288.1, MW357583.1, AY128092.1, AF241407, EU833891, AB241109.1, AB644287.1, AB205123.1, MW357586.1, MW357584.1,

MW357585.1, MW357591.1, MW357589.1, MW357587.1, NC_003977.2, KF170746.1, AB486012.1, AY090461, and LC491577.1. (B) Existing

HBV genotypes identified. (C) Existing HBV serotypes identified.(*) marks those evaluated in this study.

https://doi.org/10.1371/journal.pone.0293167.g001
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Plasmids and cloning

Various pT7HB2.7 [37] plasmids containing PreS1, PreS2 and S genes from various genotypes

and the X gene from genotype D ayw3 were graciously provided by Dr. Camille Sureau. Plas-

mids pAAVS1-HBsAg, pAAVS1-HBsAg-HBx forward and reverse were created from the plas-

mid AAVS1_Puro_Tet3G_3xFLAG_Twin_Strep (Addgene #92099) cleaved with SalI and NsiI

with the subsequent cleaved fragment replaced with the HBsAg ORF +/- the HBx ORF from the

pT7HB2.7. After confirmation of the HBsAg secretion from the pAAVS1-HBsAg-HBx forward

construct (genotype D ayw3), we proceeded in the same way to construct similar plasmids for

all genotypes. These plasmids were used as donors for the CRISPR/Cas9 knock-in to generate

the GCLs. Cell lines generation for all GCLs is described in the CRISPR/Cas9 knock-in section.

Plasmid eSpCas9(1.1)_No_FLAG_AAVS1_T2 (Addgene #79888) was used for the Cas9

delivery.

CRISPR/Cas9 knock-in

For each genotype, 5 × 105 HepG2 cells/well were seeded on collagen-coated 6-well plates and

transfected the next day with Cas9/sgRNA coding plasmid and pAAVS1-puro-HBsAg-HBx

(for each genotype) at a ratio of 1:1, using Lipofectamine™ 3000 Transfection Reagent (Ther-

moFisher Scientific) according to manufacturer’s protocol. Cells were cultured for 14 days

before addition of puromycin (0.5 μL/mL). When previously transfected cells were confluent,

cells were trypsinized and plated at various densities (2 × 105 and 1 × 105 cells/well in 6-well

plates) and cultured with 0.5 μL/mL of puromycin for 52 days. Remaining living cells were

trypsinized, pooled together as population cell lines, and HBsAg secretion in these cell lines

was assessed before performing further experiments.

Touch-down PCR

Genomic DNA (gDNA) was extracted using QIAamp1DNA Mini kit (Qiagen). Total cellular

DNA concentrations were normalized following Nanodrop quantification by adjusting all

gDNA concentration to 50 ng/μL. Amplification of gDNA was performed using iProof™ High-

Fidelity DNA Polymerase (Bio-Rad) along with the following primers: forward primer (5’-
CCCTGGCCATTGTCACTTTG-3’) located in the chromosome 19 in 5’ to the homology arm,

and reverse primer (5’-GAGTTCTTGCAGCTCGGTGAC-3’) located in the puromycin gene.

PCR conditions were as follows: initial denaturation (3 min at 98˚C) followed by 15 cycles of

touch-down [denaturation: 10 s at 98˚C; touch-down: 10 s from 72˚C to 64.5˚C (-0.5˚C/cycle),

elongation: 1 min at 72˚C], then followed by 25 cycles of regular PCR (denaturation: 10 s at

98˚C; annealing: 10 s at 64˚C, elongation: 1 min at 72˚C) and a final elongation (5 min at 72˚C).

Cell viability

Cell viability was assessed using total cellular protein concentration. Previously published data

demonstrated that BCA assay provides similar assessment of cell viability compared to MTS

assays in HepG2.2.15 cells [17]. Cells were lysed in Pierce lysis buffer (25 mM Tris-HCl pH

7.4, 150 mM NaCl, 1% NP-40, 1 mM EDTA, 5% glycerol) and the BCA assay was performed

as per the manufacturer instructions (ThermoFisher Scientific; Pierce TM BCA Protein Assay

Kit).

ELISA

For HBsAg secretion assessment of the GCLs (Fig 4B), 7,5 × 104 cells/well were seeded on col-

lagen-coated 24-well plates and cultured for 48 h. HBsAg secretion assessment following REP
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2139 treatment is as indicated in Fig 5A. HBsAg quantification in supernatants was conducted

using the GS HBsAg EIA 3.0 Kit (Bio-Rad) employing a standard curve from dilution of

HepG2.2.15 supernatant. Presented results are normalized to total intracellular protein content

(BCA). Means and standard deviations were calculated from replicate experiments (N = 3).

Confocal fluorescence microscopy

1 × 105 cells/well were cultured on collagen-coated glass coverslips and fixed the next day for

10 min in 4% paraformaldehyde. Cells were permeabilized for 30 min with 0.2% TritonX-100,

followed by incubation with blocking solution (3% BSA, 10% FBS) for 1 h at RT, then labelled

with an anti-HBsAg (1:150) from Abcam (ab9193) for 1 h at RT. Alexa Fluor1 488 AffiniPure

Goat Anti-Horse IgG (H+L) (1:1000) (# 108-545-003) was incubated for 1 h at RT, followed by

DAPI staining. Coverslips were then mounted on microscope slides using Prolong antifade

reagent (ThermoFisher Scientific). Cells were analyzed using a confocal microscope (Zeiss

LSM 780). Detector sensitivity was constant for all samples.

Statistical analysis

Results shown represents the means of at least three independent experiments. Unpaired Stu-

dent’s t-test was performed for Fig 2D. One-way ANOVA analysis followed by a Dunnet’s

comparison test were performed in Fig 5B to identify statistically significant differences. P val-

ues below 0.05 were considered statistically significant (*, P< 0.05; **, P< 0.01; ***, P<

0.001; ****, P< 0.0001). All the statistical analysis were performed using Prism-GraphPad.

Results

Phylogenic classification of L-HBsAg proteins

A phylogenic classification of L-HBsAg for all the existing genotypes (A-I) associated with

their existing serotypes is represented (Fig 1A). Based on a previous gathering of existing geno-

types/serotypes [5], we selected one of each genotype/serotype couple to construct this phylo-

genic tree in order to have a clear and simple representation. Genotypes presented in this

study are specified (Fig 1B), as well as serotypes (Fig 1C). According to this classification, our

current study covers the majority of existing genotypes and serotypes found in chronic HBV

infection worldwide.

HPRE is essential for the secretion of HBsAg

Because the purpose of this study was to assess the REP 2139 antiviral effect on HBsAg secre-

tion, we first aimed to create the simplest model for HBsAg secretion, expressing only HBV

envelope proteins. To this end, a plasmid pAAVS1-HBsAg containing only the HBsAg ORF

was constructed and transfected into HepG2 cells. At 48 h post-transfection, HBsAg secretion

in the transfected cells was lower than HBsAg secretion in HepG2.2.15 cells (data not shown).

Considering that a transient transfection where HBsAg is expressed from hundreds of copies

of the plasmid, a stable cell line either homo- or heterozygous for the HBsAg gene would

express even less HBsAg. Due to this observation, the importance and the necessity to include

the HBV post-transcriptional regulatory element (HPRE) into our model was assessed.

The HPRE was previously reported to be important for the export of mRNA from the

nucleus to the cytoplasm [38–40], thus being necessary for efficient translation and secretion

of HBsAg. The HPRE sequence folds into an RNA secondary structure acting in a cis- and ori-

entation-dependent manner [38–40]. Since all HBV mRNA share a common polyadenylation

site, the HPRE is fully contained in PreCore/Core (C), L and M/S encoding mRNAs. This
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sequence is also partly contained in the HBx mRNA [41]. Thus, this sequence overlaps the

ORF of the HBx protein (Fig 2A). To confirm the importance and the need for the HPRE in

our model, two new plasmids were constructed: pAAVS1-HBsAg-HBx forward, containing

the HBsAg with the HBx ORF in the proper orientation for the HPRE, and pAAVS1-HBsAg-

HBx reverse, containing the HBx ORF in the reverse orientation (Fig 2B). These constructs

Fig 2. Importance of the HBV post-transcriptional regulatory element (HPRE). (A) Map of the four HBV mRNA

showing S-HBsAg ORF and the localization of the HPRE. (B) pAAVS1-puro backbone used to assess the importance

of the HPRE. The variant portion of the plasmid is described. HA-L/R, homology-arm left/right; Puro, puromycin

resistance gene; SA, splice acceptor; T2A, Thosea asigna virus 2A peptide. (C) HBsAg secretion at 48 h post-

transfection of the plasmids described above. Sup, supernatant; RU, relative unit. Unpaired Student’s t-test was

performed (****, P< 0.0001).

https://doi.org/10.1371/journal.pone.0293167.g002
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were transfected along the pAAVS1-HBsAg plasmid in HepG2 cells. Results confirm the previ-

ous observations from Huang and Liang [38] (Fig 2C). Indeed, cells transfected with the plas-

mid containing the HPRE in the proper orientation were able to increase the HBsAg secretion

up to 96-fold in comparison with cells transfected with the plasmid expressing only HBsAg. Of

note, the transfection with the plasmid bearing the reverse sequence of HPRE was able to

induce a slight increase of the secretion of HBsAg, but to a much lower extent than with the

proper HPRE orientation. Altogether, these results confirm the need of the HPRE and its ori-

entation-dependent function in mRNA export.

Based on these results, the proper orientation of HBx ORF was conserved in the original

HBsAg donor plasmids from which all genotypes were derived. All inserted HBV sequences

contained HBsAg and HBx ORFs along with their own endogenous promoters (Fig 3A).

HBsAg-HBx ORF is properly inserted into the AAVS1 safe-harbor

To confirm the proper CRISPR/Cas9 insertion of transgenes into the AAVS1 safe-harbor

(Fig 3B), cellular DNA was extracted and amplified by touch-down PCR. For all genotype

insertions analyzed, the expected DNA amplicon of 1241 bp was observed (Fig 3C), as well as

the expected fragments of 1017 bp and 224 bp obtained after BglII digestion of the PCR prod-

uct (Fig 3D). Altogether, these data confirm that all transgenes were properly inserted in the

AAVS1 locus.

Genotype cell lines express S-HBsAg

After insertion monitoring, we sought to evaluate the expression and secretion of HBsAg in

the different GCLs. To this end, the intracellular HBsAg was first analyzed by indirect immu-

nofluorescence (Fig 4A). Results showed that all cell lines expressed S-HBsAg with similar

intracellular distributions. Cell cultured supernatants from the GCLs were harvested and ana-

lyzed for the secretion of HBsAg by ELISA (Fig 4B). Results showed that most GCLs secreted

HBsAg at levels similar to HepG2.2.15 cells (D ayw3, B ayw1, B adw2, D ayw2, mutant D144A

and E ayw4, G adw2). However, genotype A ayw1 and C adrq+ secreted 3 times more HBsAg

protein than HepG2.2.15. Overall, all of the GCLs expressed and secreted HBsAg.

REP 2139 is effective against all HBV genotypes

The in vitro antiviral effect of REP 2139 on HBsAg synthesis/secretion was previously demon-

strated in HepG2.2.15 cells [17, 21]. The experimental design used to confirm the effect of REP

2139 in the GCLs and in the HepG2.2.15 control cells is described in Fig 5A. The results dem-

onstrate that REP 2139 inhibits the secretion of HBsAg in every genotype tested in this study

(Fig 5B), the statistical analyses of Fig 5B are presented in S1 Table, and the half maximal effec-

tive concentration (EC50) for each cell line is listed in Table 1. Importantly, we observed that

the inhibition of HBsAg secretion after REP 2139 treatment is greater in the HepG2.2.15 cell

than in all GCLs. Possible reason(s) explaining this discrepancy are explored in the discussion.

Nevertheless, all EC50 are in the nanomolar range, which is in line with previous in vitro and

clinical studies [17–20].

Discussion

This study is the first to demonstrate the pangenomic antiviral effect of NAPs on HBsAg secre-

tion. Indeed, although some genotypes are not represented, a large majority of current global

chronic HBV infections (~ 96%) are covered. Genotypes F, H, I and J, which were not included

in this study, represent less than 2% of global chronic HBV infections [8]. Also, since the
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L-HBsAg from genotype I is genetically similar to L-HBsAg from genotype A and C (Fig 1),

and genotype J has been reported to be closely related to gibbon/orangutan genotypes and

human genotype C [7], our results suggest that REP 2139 would be efficient in these genotypes

as well due to the effect observed in genotypes A and C (Fig 5B). Importantly, the antiviral

effect observed with the vaccine escape mutant D144A suggests that REP 2139 does not target

Fig 3. Integration of HBsAg-HBx sequence into the AAVS1 safe-harbor. (A) Map of the plasmid used for CRISPR/

Cas9 insertion of HBsAg from variant genotypes and HBx. (B) Chromosome 19 (Chr 19) modified to the insertion site

by insert of the transgene. The left homology-arm (HA-L) and the puromycin resistance gene from plasmid described

in A are represented. Experimental design on this gDNA is as shown, primers attachment sites are indicated in red

arrows, and the restriction site of BglII is also indicated. (C) Agarose gel presenting the PCR amplification product of

the insertion site. (D) Agarose gel presenting the BglII digested PCR product.

https://doi.org/10.1371/journal.pone.0293167.g003
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a specific region in the “a” determinant. Altogether, these results show an antiviral effect on

every tested genotypes, serotypes, and escape mutant and are consistent with the fact that

NAPs do not directly target HBsAg [42] and indeed, does not depend on HBsAg sequence or

conformation. Altogether our data strongly suggest a pangenomic antiviral effect of REP 2139

on HBsAg secretion.

GCLs were constructed using the CRISPR/Cas9 technology and the proper insertion of the

transgene was confirmed by touch-down PCR (Fig 3). Transgene copies can be inserted either

in a heterologous or in a homologous way. Indeed, the HepG2 parental cell line of the GCLs is

diploid for the chromosome 19 [43] bearing the targeted AAVS1 locus. Based on this state-

ment, one could expect the HBsAg secretion to be within a two-fold range between the various

cell lines. Several factors could explain that those variations are up to 3-fold the lowest secret-

ing cell line. Firstly, the antibody used to detect HBsAg in immunofluorescence (Fig 4A) or the

ELISA kit used to detect HBsAg in the supernatant (Fig 4B) were the same for all genotypes in

each assay, and no variation of antibody nor ELISA kit was employed. This could lead to varia-

tion in the relative detection depending on the specificity of the antibodies used in each tech-

nique to each genotype. Secondly, secretion of HBsAg has been reported to vary according to

the genotype, with the most important release associated to genotype C [29]. In our hand,

genotype C and A were clearly the most efficiently secreted (Fig 4B). Further investigations

will be required to better understand the genotype-dependent HBsAg regulation of secretion.

Regarding the reduction of the amplitude effect of NAPs in the GCLs compared to

HepG2.2.15 cells observed in Fig 5B, several factors could explain this variation. The first likely

reason can be the difference of cell line: HepG2.2.15 and HepG2 are two distinct cell lines, and

GCLs are derived from HepG2. The REP 2139 antiviral activity relies on the ability of the

UNC7938 to release REP 2139 from endosomes [17, 36, 44, 45]. From previous experiments

using the UNC7938 compound with REP 2139 in our lab, both cellular density and cell type

strongly affected the efficacy of the UNC7938 to release the REP 2139 (data not shown). This

observation could explain the difference observed in the antiviral amplitude effect between

HepG2.2.15 and GCLs. The second factor explaining the amplitude difference could have been

the genotypic variability. However, the genotype D ayw3 can be used as an anchor to link

results between HepG2.2.15 and GCLs: this genotype is the HBV genotype of the HepG2.2.15

cell line and is also present in one of the GCLs. A comparison of the antiviral effect observed

in HepG2.2.15 cells and the GCL genotype D ayw3 demonstrate that for a same genotype, the

amplitude of the REP 2139 antiviral effect is different between both cell lines, excluding the

genotypic variability as an explanation for the amplitude variation. Another factor that could

explain this variation is the absence of the complete virus. Previous studies demonstrated that

L-HBsAg can interfere with the secretion process [28], and an accumulation of L- and

M-HBsAg can lead to endoplasmic reticulum stress [46]. As the S- and M-HBsAg are mainly

used in the production of SVP and the L-HBsAg is essential for Dane particles assembly [47],

which does not occur in our model due to the absence of other viral component, we suggest

that the unused L-HBsAg could impact the secretion process in our GCLs, leading to a reduced

amplitude of antiviral effect. While the EC50 are still in the nanomolar range, we believe that

the in vivo effect of REP 2139 would be similar between all genotypes in large scale clinical tri-

als, in accordance with previous results observed in the small scale clinical trials where NAPs

were effective in genotypes D, C and A [18].

Fig 4. Analysis of HBsAg expression and secretion from the indicated cell lines. (A) Intracellular HBsAg expression

analysis was conducted by confocal microscopy. Nucleus are stained in blue and HBsAg in green. (B) Secreted HBsAg

from each cell line was assessed by ELISA, normalized to cell viability and to HepG2.2.15 secretion levels. Sup,

supernatant; RU, relative unit.

https://doi.org/10.1371/journal.pone.0293167.g004
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Fig 5. Antiviral effect of REP 2139 in GCLs and HepG2.2.15 cells. (A) Experimental design is as indicated. (B) Comparative antiviral effect

of REP 2139 on HBsAg secretion for all indicated cell lines normalized to cell viability (BCA) and to 0 nM REP 2139. Sup, supernatant; RU,

relative unit.

https://doi.org/10.1371/journal.pone.0293167.g005
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Conclusions

While the antiviral activity of NAPs has been already proven in vivo and in vitro on a limited

number of genotypes, this study is the first to observe the pangenomic effect of REP 2139.

CRISPR/Cas9 engineered cell lines expressing various HBV genotypes and serotypes allowed a

stable and expression of HBsAg (cells cultured for more than 4 months) from HBsAg promot-

ers, providing a robust and reliable model for the assessment of REP 2139 antiviral effect.

Importantly, these results also demonstrated an antiviral effect in a vaccine escape mutant,

suggesting an effect in the other escape mutants. All together, these data strongly suggest that

NAPs therapy could results in positive clinical outcomes regardless of genotype or serotype in

chronically infected patients, as well as for patients infected with HBV escape mutants.
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Validation: Léna Angelo, Matthieu Blanchet.

Visualization: Léna Angelo.
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