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Abstract—In this paper, a Gaussian Process Regression (GPR)
model is implemented to retrieve the Plant Area Index (PAI) of
wheat and canola. Backscatter information from Sentinel-1 dual-
pol GRD SAR data and in-situ measurements collected during
the Soil Moisture Active Passive Validation Experiment 2016
(SMAPVEX16-MB) Manitoba campaign were used to calibrate
and validate the proposed GPR model. A recently proposed
pseudo scattering entropy, Hc derived from dual-pol GRD
SAR data has been used along with backscatter information
to investigate the improvement in retrieval accuracy. Including
the pseudo entropy parameter in the feature, space showed an
improvement of 4.28% and 3.66% in the correlation coefficient
(ρ) for wheat and canola respectively. Similarly, a decrease in
nRMSE by 4% for wheat and 4.76% for canola was observed
during PAI retrieval.

Index Terms—Gaussian Process Regression (GPR), Plant Area
Index (PAI), Sentinel-1, Pseudo Entropy Parameter (Hc),
SMAPVEX16-MB

I. INTRODUCTION

Plant Area Index (PAI) is an essential biophysical parameter
linked to crop productivity and is a crucial variable in crop-
growth models. Knowledge of variation in PAI during the
entire crop phenology is critical for crop growth monitoring
and yield forecasting. Utilizing Earth Observation (EO) data
to estimate biophysical parameters has gained significant im-
portance over the decades because of wide-area coverage, high
temporal revisit, and spatial and spectral diversity. Synthetic
Aperture Radar (SAR) data has drawn appreciable attention
toward various agricultural applications because of its all-

Authors acknowledge the GEO-Planetary Computer Earth Observation
Cloud Credits Program supported the computation with Sentinel-1 on the
cloud platform through the project: “Azure4GEO-Deep learning based crop
characterization with synergistic use of SAR and optical data on cloud
computing platform” and formed the testbed for processing pipelines.

weather imaging capability and sensitivity toward geometric
and dielectric properties of crops [1].

Previous studies have demonstrated how several biophysical
parameters can be modeled from SAR backscatter [2]. Semi-
empirical estimation of bio-physical parameters has received
considerable attention [3]. Although well-suited for the oper-
ational monitoring of crops, the inversion of semi-empirical
models is limited because of their ill-posed nature [4]. In this
regard, several machine-learning algorithms have been imple-
mented to retrieve biophysical parameters from SAR data.
The continuous nature of biophysical parameters motivates
utilizing regression-based algorithms.

Kernel-based methods have shown promising results in re-
trieving different biophysical parameters [5] [6]. These meth-
ods utilize a kernel to quantify the similarity between input
features. One such kernel-based method is Gaussian Process
Regression (GPR) which works on a Bayesian framework. In
addition, unlike other parametric and non-parametric methods,
GPR provides an uncertainty estimate of the target variable,
which helps analyze the error in the model’s predictions. In
earlier studies, GPR has shown impressive results in estimating
biophysical parameters from optical [7] and full-polarimetric
SAR data [8].

Compared to full-pol mode, dual-pol modes have several
advantages, which include larger swath widths and lower
data volume, but at the expense of polarimetric information.
Sentinel-1 SAR sensor acquires data in dual-polarization VV-
VH for land observation. Earlier studies have shown that
polarimetric parameters can be related to the physical prop-
erties of crop canopy and thus helps in monitoring crop
phenology [9]. However, the polarimetric parameters reported20
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in these studies were not critically applicable in the case
of dual-pol GRD SAR data. In a recent study [10], three
polarimetric descriptors derived from Sentinel-1 GRD SAR
data were proposed. The study revealed the sensitivity of
the pseudo scattering entropy parameter (Hc) across different
phenological stages of various crops across different test
sites [11].

In the present study, we implement a GPR model with two
different feature spaces to estimate the biophysical parameter
PAI of Wheat and Canola. The first feature space includes VH
and VV backscatter coefficients from dual-pol SENTINEL-
1 GRD SAR data. The second feature space includes the
pseudo scattering entropy parameter (Hc) along with VH
and VV backscatter coefficients. The efficacy of GPR models
has been characterized by various statistical measures such
as the normalized Root Mean Square Error (nRMSE), Mean
Absolute Error (MAE), and the Pearson correlation coefficient
(ρ).

II. STUDY AREA AND DATA-SET

The test site is located in the Red-river watershed of southern
Manitoba, Canada. The Soil Moisture Active Passive Valida-
tion Experiment (SMAPVEX16-MB) campaign site covers a
vast area of 26 km× 48 km. The test site has an annual crop
mix of spring wheat, soybean, canola, corn, oats, beans, and
other crop types. The current study focuses primarily on spring
wheat and canola which covers 24.12% and 18.24% of the
area respectively. Over 50 agricultural fields were selected
for sampling which had a nominal size of 800m × 800m.
During the campaign, 3 sampling points were selected in each
field over two transects for vegetation sampling. A detailed
description of vegetation ad soil sampling techniques can be
found in the SMAPVEX16-MB field report [12].

This study uses in-situ measurements acquired over wheat and
canola fields to train and validate the GPR model. Further,
five scenes of dual polarimetric (VV+VH) C-band Sentinel-
1A data in Interferometric Wide Swath (IW) mode have
been selected and processed to derive backscatter intensities
(σ◦

VV and σ◦
VH) and the pseudo entropy [13]. The observation

periods considered are 13thJune, 30thJune, 7thJuly, 19thJuly and
24thJuly. For both crop types, the data has been divided by
randomly splitting them into training (70%) and validation
(30%) data sets.

III. METHODOLOGY

A. Gaussian Processes

A Gaussian process is a generalization of multi-variate Gaus-
sian distribution and is defined by its mean function and
covariance (kernel) function [14]. The aim is to find the
function f from an infinite set of unknown latent functions, a
finite number of which are jointly Gaussian distributed. The
posterior distribution provides the probable functions that can
retrieve the unknown target variable y from a set of input
features, x. An additive noise model y = f(x)+ε, is assumed,

where the inherent noise is assumed to follow a standard nor-
mal distribution with 0 mean and variance σn, ε ∽ N (0, σ2

n).
Thus the prior joint distribution of the functional values y at
known points and the unknown functional values denoted by
f∗ is given by,(

y
f∗

)
∽ N

(
0,

(
K + σ2

nI K∗
KT

∗ K∗∗

) )
(1)

where the terms K, K∗ and K∗∗ represent the covariance
matrix between the observed (known) features, between ob-
served and test features and between test features respectively.
The noise variance gets added as a diagonal matrix σ2

nI along
with the covariance matrix K. The role of the kernel functions
is to quantify the underlying non-linear relationships among
the features. In this study, a non-linear Radial Basis Function
(RBF) kernel along with a zero-mean Gaussian additive noise
has been utilized, as shown below,

k(xi, xj) = σ2
f exp

(
− ∥ (xi − xj) ∥2

2 l2

)
+ σ2

nδij (2)

here, δij represents a Kronecker delta function. The hyper-
parameters of the RBF kernel σf known as RBF variance,
and l known as the length scale, are optimized by maximizing
the log marginal likelihood of the Gaussian process. The log
marginal likelihood is expressed as,

log p(y | θ, σn) = logN ( y | 0,K + σ2
n I) (3)

where θ is the set of all the model hyper-parameters. A
gradient-based approach is used while optimizing the log
marginal likelihood. Finally, the posterior predictive distribu-
tion of the Gaussian process gives us the mean (point) and the
variance (uncertainty) estimate of the target variables, which in
our case is the biophysical parameter. The posterior predictive
distribution of the Gaussian process is given by,

f∗ | X,y,X∗ ∽ N (f∗,Σ∗) (4)

The mean (f∗) and covariance (Σ∗) of the predictive distri-
bution are expressed as,

f∗ = KT
∗ [K + σ2

n I]
−1y (5)

Σ∗ = K∗∗ −KT
∗ (K + σ2

n I)
−1K∗ (6)

IV. RESULTS AND DISCUSSION

A. Sensitivity of Hc with Plant Area Index (PAI)

The correlation between the pseudo entropy parameter and the
ground-measured PAI over the entire phenology of wheat and
canola has been analyzed.
1) Wheat: According to in-situ measurements, on 13 June,
the wheat crops were in their tillering stage, while some were
advanced from their tillering stage towards stem elongation
and booting stage. During this period, the scattering entropy
increases, possibly because of a change in crop morphology
in the vertical direction with an increase in the size of the
main stem and side tillers [10]. It is evident from Figure 1
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that the spread of a majority of points in the medium to high
entropy region. As the crop progresses toward its flowering
stage, the complex structure of the wheat canopy increases
randomness in scattering. This increase in scattering random-
ness is probably due to the presence of flowers on the upper
canopy layer of the crop. During this period, high entropy
values are noticeable. The crop reaches its early dough and
maturity stages towards late July. The randomly oriented wheat
heads significantly contribute to the total scattering during this
period. Most of the points cluster around the high entropy
region during this phenological period of the wheat crop.
An overall linear correlation of 0.37 between Hc and in-situ
measured PAI was observed.
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p = 1.5 × 10 3

Fig. 1: Correlation analysis between pseudo scattering entropy
parameter (Hc) and in-situ measured PAI for Wheat.

2) Canola: During the leaf development stage of canola, there
is an increase in PAI. An increase in leaf density and the
formation of branches increase scattering randomness. At this
stage, attenuation of vertically polarized waves occurs. As
evident in Figure 2, most points during this stage are around
the medium entropy region. As the crop progresses towards its
flowering stage, the formation of branches increases scattering
entropy. We can observe that majority of the points have
shifted towards the higher entropy region. This increase can
be attributed to the complex canopy geometry, which occurs
as buds develop into flowers and the branches start to grow.
As the crop progresses toward pod development and maturity,
there is an increase in randomness in the scattering mecha-
nism. The majority of points during this phenological stage of
canola seem to be toward higher entropy region. An overall
linear correlation of 0.73 was observed between the pseudo
entropy parameter and in-situ measured PAI in the case of
canola.

B. PAI retrieval results

The Gaussian process regression model discussed in Sec-
tion III-A has been utilized to retrieve the PAI of two different
crop types, namely Wheat and Canola. The retrieval results are
presented in Figures 3 and 4. The red dashed line represents
the best fit line with the shaded region showing the 95%
confidence interval.
1) Wheat: During the campaign period, the in-situ measured
PAI for wheat varied between 0.83m2 m−2 to 7.92m2 m−2.
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 = 0.73
p = 3.2 × 10 11

Fig. 2: Correlation analysis between pseudo scattering entropy
parameter (Hc) and in-situ measured PAI for Canola.

An overestimation for PAI (< 2.0m2 m−2) can be seen, which
is most likely due to the major contribution from bare soil
in the initial phenological stage of the crop. As the crop
progresses towards the booting stage, there is an increase
in the scattering entropy. Subsequently, the crop reaches its
head stage, changing its canopy structure. During this period,
the major scattering contribution occurs from the upper layer
of the canopy. Subsequently, during the flowering stage, a
significant increase in pseudo entropy can be seen from
Figure 3. On the other hand, an underestimation of PAI (>
6.0m2 m−2) can be seen in both Figure 3a and Figure 3b.
During this period, the plant reaches its dough stage. As the
crop advances towards its higher phenological stages with
an increase in biomass, a saturation in C-band occurs. This
saturation is common among crops with erectophile geometry
like wheat. The depolarization of the incident radar signal is
mostly captured by the cross-pol component (VH). It is evident
from Figure 3b with the inclusion of the entropy descriptor
Hc in the feature space, the GPR model has been able to
better estimate PAI for wheat. A 4% and 6.38% decrease in
error estimates nRMSE and MAE can be seen respectively.
In addition, there is an increase of 4.28% in the correlation
between in-situ and estimated PAI of wheat.
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Fig. 3: Comparison of estimated and in-situ PAI for wheat
utilizing (a) VV+VH and (b) VV+VH+Hc. The red dashed
line represents the best fit line with the shaded region showing
the 95% confidence interval.
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2) Canola: Canola is a broadleaf plant with a unique
canopy structure. The in-situ measured PAI varied between
0.3m2 m−2 to 8.33m2 m−2. In case of canola an overestima-
tion of PAI (< 1.2m2 m−2) can be seen in Figures 4a and 4b.
During this period, the crop is in its leaf-development stage. So
the major backscatter contribution that reaches the radar comes
from the bare soil due to sparse vegetation cover. As the crop
progresses towards a higher phenological stage, there is an
increase in PAI with increased leaf density. With the formation
of branches, there is an increase in scattering randomness.
During the inflorescence emergence, flower buds develop,
and the density of leaves increases significantly. Due to this
increase in density, the scattering entropy increased during this
period. Following inflorescence emergence, as the crop reaches
its flowering stage, with the development of a complex canopy
structure, there is a further increase in entropy. Subsequently,
as the crop reaches its maturity, there is a significant decrease
in the overall canopy moisture content. Therefore a significant
underestimation can be seen during maturity stage for PAI (>
5.5m2 m−2). Similar to wheat, it is also evident in the case
of canola that utilizing pseudo entropy descriptor Hc along
with the backscatter intensities as a predictor has shown better
results. There is a 4.7% and 3.4% decrease in error estimates
nRMSE and MAE, respectively. Further, the linear correlation
between in-situ measured and estimated PAI has shown an
increase of 3.65% when we utilize pseudo entropy descriptor
Hc as a predictor along with the dual-polarimetric backscatter
coefficients.
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Fig. 4: Comparison of estimated and in-situ PAI for canola
utilizing (a) VV+VH and (b) VV+VH+Hc.The red dashed line
represents the best fit line with the shaded region showing the
95% confidence interval.

V. CONCLUSION

In this study, retrieval of the biophysical parameter PAI for
wheat, and canola, has been proposed by utilizing a Gaussian
Process Regression (GPR) model. In this regard, C-band
Sentinel-1 dual-pol GRD SAR data and in-situ measurements
obtained during the SMAPVEX16-MB campaign have been
used to calibrate and validate the GPR model. The model
calibration and validation results show that high correlation
and lower error estimates are observed when the pseudo-
scattering entropy parameter, Hc was utilized as a feature

in addition to the dual-pol (VV+VH) backscatter coefficients.
A plausible explanation for this outcome can be the pseudo
entropy parameter Hc, being a better representer of scattering
randomness helps enhance the biophysical parameter estima-
tion. Thus, utilizing the pseudo entropy parameter derived
from dual-pol GRD SAR data and the backscatter intensities
helps in utilizing the available polarimetric information and
consequently enhances the performance of the GPR model.
The proposed approach can be of particular interest to ex-
isting and upcoming dual-pol SAR missions for global scale
estimation of LAI using GRD data only.
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