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Abstract

Stressor-response (SR) functions quantify :co!,gical responses to natural environmental
variation or anthropogenic stressors. Thov are also core drivers of cumulative effects (CE)
models, which are increasingly recogni..d as essential management tools to grapple with the
diffuse footprint of human imphac:s. Here, we provide a process framework for the
identification, developme.nt, aind integration of SR functions into CE models, and highlight their
consequential properties, aehaviour, criteria for selecting appropriate stressors and responses,
and general approaches for deriving them. Management objectives (and causal effect
pathways) will determine the ultimate stressor and target response variables of interest (i.e.,
individual growth/survival, population size, community structure, ecosystem processes), but
data availability will constrain whether proxies need to be used for the target stressor or

response variables. Available data and confidence in underlying mechanisms will determine
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whether empirical or mechanistic (theoretical) SR functions are optimal. Uncertainty in
underlying SR functions is often the primary source of error in CE modelling, and monitoring
outcomes through adaptive management to iteratively refine parameterization of SR functions
is a key element of model application. Dealing with stressor interactions is an additional
challenge, and in the absence of known or suspected interaction mechanisms, controlling main
effects should remain the primary focus. Indicators of suspected interaction presence (i.e.,
much larger or smaller responses to stressor reduction than expec.~a during monitoring)
should be confirmed through adaptive management cycles ¢ r ta) geted stressor manipulations.
Where possible, management decisions should selectiely .ake advantage of interactions to
strategically mitigate stressor impacts (i.e., by usir.g .ntagonisms to suppress stressor impacts,

and by using synergisms to efficiently redur< .he. ).

Keywords: stressor-response functions, cdaptive management, multiple stressors, cumulative

effects, process framework, decisi~.>-n.~king



1. Introduction

As we continue to witness the Anthropocene unfold with its multiple and varied impacts on
the Earth ecosystem, there is an urgency to better understand the short- and long-term
implications of multiple stressors on ecosystem sustainability. Here, a stressor is defined as any
physical, chemical, or biotic factor that has the capacity to affect another response variable in a
linear or non-linear way, be it positive or negative in direction (Pii ~cta et al. 2022 and
references therein). Assessing the combined effects of multiple .tre.sors requires thoughtfully
constructed cumulative effects (CE) models that are typic. 'ly part of an adaptive management
framework designed to reduce uncertainty in managemc =% interventions (Holling et al. 1978;
Duinker et al. 2013; Rist et al. 2013; MacPherson ¢’ al 2023). Simple CE assessments rank
habitat impacts using spatial overlay and . 'm’ nation of multiple stressor scores (Halpern and
Fujita, 2013), but this simple approach te. ds to be of limited value for exploring alternate
management scenarios. More ad' ai.~eu CE modelling usually combine explicit relationships
between stressors and a biolcica! response variable, which we refer to as stressor-response
(SR) functions (Larned ar 1 Schallenberg, 2019). This term is synonymous with stressor-effect
functions, dose-response _urves, physiological performance curves, and suitability curves; the
abundance of similar terms demonstrates the ubiquity of SR functions across research
disciplines in ecology, physiology, toxicology and environmental science. SR functions are a
fundamental component of any predictive study, yet their central role in ecological modelling
tends to be underappreciated (Rosenfeld et al. 2022). In a timely review, Pirotta et al. (2022)

highlighted a data- vs. process-driven continuum as a key driver differentiating SR functions.



We built on their framework by identifying additional key attributes of SR functions including
spatial and biological scale of application, theoretical considerations, and interaction types,
followed by a pragmatic consideration of how to derive and apply them in data-rich and data-

deficient contexts.

The intent of this review and synthesis is to guide the reader through the various stages of a
CE process model centered around SR functions, from manageme n* objectives and causal effect
pathways to SR function attributes and the continuous cycle of noa :l testing and learning that
defines adaptive management. We hope that this will enalile . ~aders to more thoughtfully
derive and integrate SR functions into management quc-tir.ns, objectives, and decisions; all of
which are integral to credible CE modelling and st c.es sful adaptive management plans
(MacPherson et al. 2023). Understanding * ne role and impact of stressor interactions has also
emerged as a priority concern in multi-s.-essor management (Birk et al., 2020; Lade et al.,
2020); we turn a pragmatic eye to'. ~ru- interactions with the goal of providing guidance on
how to deal with interactions under uncertainty, particularly in common data-deficient

contexts.

2. Process model for thz . ole of stressor-response functions in CE modelling

The process model can be divided into three sequential steps (Fig. 1; see also MacPherson et al.
2023). The first focuses on the identification of target (priority) stressor and response variables,
which will ultimately be driven by management objectives (i.e., the species, population, or
ecosystem of concern and associated environmental stressors). The second step involves

developing the optimal function for modelling the effects of the stressor(s) on the target
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ecological response. The last step includes the adaptive loop of stressor simulation (e.g., CE)
scenarios for management planning, implementation of management interventions, and
monitoring of outcomes to generate data that can be used to either validate or better

parameterize SR functions. We elaborate on these steps below.

2.1 STEP 1. Management objectives, priorities, and choosing response and stressor variable(s)

The ultimate objective for natural resource managers is to ensure (~e sustainability of natural
resources under environmental and societal changes (Dearing =1 >'., 2014; Mangel et al., 1996;
Rockstrom et al., 2009). More specifically, natural resource management agencies develop
specific management targets and objectives for the priori./ ecosystem components under their
jurisdiction. These become the focal response v iri.“'zs in both CE modelling and SR
relationships. The choice of response varia. . is consequential for both management and the
development of SR functions, and ulti~~ate'v needs to be grounded in carefully considered
management objectives (Schuwirtnh e. al., 2019). Similarly, the corresponding stressors that
drive change in the chosen res. "n_.e variables must also be based on clear management
objectives and local knov 'led; e, including the known dominant stressors and the subset that
are actually subject to pructical management intervention. These choices will then establish the

basis for developing the SR functions that are foundational to all CE assessments.

2.1.1 Causal Effect Pathways and Stressor Chains

While choice of the appropriate stressor may be obvious, in complex multi-stressor contexts
the best driver to establish an SR function may be more cryptic, particularly if causation is

ambiguous or key stressors are difficult to measure or manipulate (Geary et al., 2019). These
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cases warrant identifying causal effect pathways (stressor chains; Fig. 2) that clearly describe
the sequence of stressors that influence the response variable (Yuan et al. 2010; also referred
to as “successive” interactions; Jackson et al. 2016). The pathway starts with the ultimate
stressor—the overarching cause—and ends with the proximate stressor that is the direct driver
of the terminal response (Fig. 2). Distinguishing between ultimate and proximate stressors is
important for interpreting the results of a CE model and determining appropriate management
interventions (Tyack et al., 2022). Developing an SR function linl.ing the ultimate stressor and
terminal response will necessarily integrate across the inter\ enir g stressor links (making it a
composite SR function; Fig. 2), potentially obscuring intern.2diate causative mechanisms. These
composite SR functions may represent very usefu' a.d empirically accurate links between
ultimate causation and terminal responses i1 . su 2ssor chain. However, treating the
intervening stressor links as a black bc.- can musk underlying mechanisms that may be
informative for management decisiois. Fur example—as illustrated in Fig. 2—landuse is an
ultimate stressor that can caus~ a p.thway of effects from nutrients to primary production to
dissolved oxygen concentraticn 'hypoxia). Hypoxia can then impact response variables like
growth, survival, and fec 'naity (proximate responses) that are linked to population density (the
ultimate response). Developing causal effect pathway diagrams is a useful practice at this initial
stage because it will inform the suite of candidate variables available, and how they relate to
one another (Plowright et al., 2008; Yuan et al., 2010). Once the causal effect pathways are
established, the researcher can identify which response and stressor variables are easily
measured or have available data, which can be effectively altered through management

interventions, and which align best with management objectives.
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2.2 STEP 2. Developing stressor response functions: Key attributes and considerations

2.2.1 Empirical versus mechanistic stressor-response functions

SR functions can be empirical relationships based on observational data collected across
stressor gradients (e.g. Poff et al. 2010; Rosenfeld 2017; Larned and Schallenberg 2019), or
mechanistic models based on established theory (ideally parameterized to local conditions), or
some combination of both (Schuwirth et al. 2019; Connolly et al. zc17; see Pirotta et al. 2022
for deeper consideration of the empirical-theoretical continu':m,. Empirical SR functions are
developed using empirical data from field studies (e.g., var.~tion in animal abundance in
habitats with different stressor levels; Rullens et al. 2072, ~r controlled factorial experiments
that manipulate stressor levels (e.g., Piggott et ul. .222). Any type of linear or non-linear
function can be fit to these data to genera.~ *.ne desired SR function (Larned and Schallenberg,
2019). The advantage of using data ce!'~ciod across stressor gradients in the field is that the
relationship will be realistic and c- libi ~ted to the actual observed conditions in nature,
increasing confidence in predic.ions; the disadvantage is that the data are correlative, and
therefore stressor cavsat'on 1; inferred and may be confounded by other uncontrolled
variables. Empirical SR f_:ictions derived from controlled experiments are more definitive in
terms of stressor causation, but if performed in the lab their predictions may be less readily

transferable to realistic field situations (Rullens et al., 2022).

Whether empirical or mechanistic approaches are optimal for any given stressor-response
combination will depend on the availability of empirical data (or the difficulty obtaining it) vs.

the maturity of appropriate theory to apply a mechanistic model in any particular sub-discipline
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of ecology. Data-rich situations will allow for developing empirical SR functions (e.g., Yuan et al.
2010), while data poor circumstances will increase reliance on mechanistic functions, assuming
that appropriate theory is available. In either case, researchers need to be explicit about how
their SR function was derived. Some stressor impact pathways are empirically well described
(e.g., effects of fine sediment on survival of salmonid eggs; Jensen et al. 2009) or may not lend
themselves to mechanistic analysis. Other stressors (e.g., density-dependence) may have well-
established theoretical models that can be reasonably applied v iti. minimal data collection.
Given the onerous nature of developing CE models that acrcunt ‘or multiple stressors, some

pragmatic combination of the two approaches will often be used (MacPherson et al. 2020).

Although there are proponents of both empirical ir.d nechanistic approaches (e.g., Peters
1986; Railsback 2016), they are in fact hig'.ly c b mplementary and can be used in combination to
iteratively refine SR functions in a contir. 'ous cycle of data acquisition and model validation
(Marquet et al., 2014; Pirotta et al , ?0.”, Schuwirth et al., 2019), as long as the sources of
uncertainty in both classes of Sk “unction are clearly recognized. Empirical data are essential for
validating predictions fro'n . ecnanistic models, or to calibrate (parameterize) them to regional
conditions. However, coni ounding factors should be controlled using statistical methods (e.g.,
covariates in regression; Yuan et al. 2010; Feld et al. 2016) and inference of causation from
empirical SR functions should be based on strong mechanistic underpinnings of existing
ecological knowledge (Poff and Zimmerman, 2010). Further, extrapolating empirical
relationships beyond their data range or to other regions with different stressor contexts may

be problematic. In contrast, process-based mechanistic models are usually better at predicting



outcomes in unmeasured stressor ranges—particularly for non-linear relationships—but need
to be parameterized using real data. Mechanistic models are often a simplification of a more
complicated process, and often borrow parameters from different species or systems that can
introduce considerable uncertainty in their predictions (Trudel et al. 2004). A clear
understanding of model assumptions and limitations is essential to account for uncertainty (see

the Uncertainty section below).

Developing SR functions is least challenging for data-rich specie *: th.: greatest challenge is the
transition from narrative descriptions of stressor impacts t > gozatitative SR functions for
severely data-deficient species or populations, a commun s enario in fish and wildlife
management, particularly for Species at Risk. Hov 'eve , tools are available to bridge the gap
between narrative descriptions of stresso” imr acts and quantitative SR functions, and
accelerate the transition from qualitativ. to quantitative modelling. For example, in a data-
limited scenario, SR functions can %> doreloped in workshops using expert opinion (MacMillan
and Marshall, 2006). Here, exne: *s must first determine the direction of the relationship (i.e., a
positive vs. negative slop’: n. the stressor-response space, informed by the endpoints of the
relationship at the extrem 2s of the stressor gradient), and then determine the functional shape
of the relationship(e.g., linear, sigmoidal, asymptotic) by adding intermediate points to the
curve (MacPherson et al. 2020; French et al. 2021). These semi-quantitative models can then
serve as both starting points for quantitative modelling and management, and hypotheses that
can be tested and refined through ongoing data collection and cycles of adaptive management

(Fig. 1; Plowright et al. 2008; Downing, Van Meter, and Woolnough 2010; Pirotta et al. 2022).



2.2.2 Biological hierarchy/organization

Biological hierarchy refers to the level of biological organisation of the response variable of
interest, ranging from individual, to population, species, community, or whole ecosystems.
Overall, it is a question of resolution and the answer depends on the researcher and their
objectives: is it sufficient to use one SR function to describe a group of species (e.g. coldwater
thermal guild, Hasnain et al. 2013; or size classes, Giacomini et al. 2016), or should multiple SR
functions be used to describe the differences between species? A cl.:ar understanding of
response variable location in the biological hierarchy is a n ‘e-, ~4uisite for developing SR
functions. CE models in ecology often focus on the pop.'ation (i.e., local scale of a single
species), but evaluating stressor impacts on comr v:ni‘y structure (multiple species within a
taxonomic group) or ecosystem function ( :.g.. trophic level production) are also key goals of
many CE assessments. SR functions can e developed with data explicit to any level within the
biological hierarchy, and mechanis’.~ t. ~ory can be used to scale functions up from one level to
another (e.g., from the individua: to the population; Schafer and Piggott 2018; Pirotta et al.
2022). However, extrapo'au. g responses across levels in a biological hierarchy should be done
with care and transparency in underlying assumptions, as results may not scale as expected

(Galic et al., 2018) and upscaling errors can propagate across levels.

SR functions at different levels of biological hierarchy are often qualitatively different (Simmons
et al., 2021). At the individual level, multiple stressors affect individual performance (growth,
fecundity, survival) in ways that can be directly measured using fairly standard ecophysiological

or field ecology methods (Selong et al., 2001; Vander Vorste et al., 2020). Such methods allow
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empirical SR functions to be developed to predict individual performance (e.g., effects of
hypoxia on fish growth; Rosenfeld and Lee 2022); however, many biophysical models instead
allow for the development of mechanistic SR functions of individual performance (e.g., drift-
foraging bioenergetic models predicting temperature and velocity effects on salmonid growth;
Naman et al. 2020). Similarly, many population-level SR functions are developed—either
empirically or mechanistically (e.g., as individual-based models)—to link individual performance
to population-level effects (Ayllon et al., 2019). At the communi.y .>vel, however, mechanistic
SR functions are particularly challenging, as the response de,»enc s not only on the population
performance of individual species along the stressor gr.adie 1t, but also on interactions among
multiple species (Turschwell et al., 2022). Similarl*, 1 iechanistic ecosystem-scale SR functions
may be subject to complex interactions bet.ve 2n >necies or functional groups (Turschwell et al.,
2022). In contrast to mechanistic SR fuctions, developing empirical SR functions across all
levels of the biological hierarchy is like'y 1u be relatively straightforward, but will vary in

difficulty depending on the line=r o1 non-linear complexity of model fit to empirical data.

2.2.3 Standardizing data jo, suessor-response functions

Quantitative synthesis cf nultiple studies is a powerful way of building generic SR functions
(Poorter et al. 2010; Rosenfeld and Lee 2022). Unlike conventional meta-analysis, the objective
is not merely to document effect sizes and significance of a treatment, but rather to generate
an empirical function that can be directly applied to prediction and management. Standardizing
(normalizing) data from disparate studies may be an essential step in this process, particularly if

the range of response and stressor values vary across studies. Various methods are available for
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standardizing data, including dividing observations by the standard deviation (i.e., converting all
response variables to units of SD; Smith 2000; Schielzeth 2010), or standardizing by the
maximum value in each study, which re-scales all data between a range of 0-1 regardless of the
original response variable or its units (Rosenfeld and Lee 2022; Wilding and Poff 2008). Poorter
et al. (2010) provide a detailed overview of a third standardizing approach where the extracted
data is normalized by dividing each observation by a shared reference value within the range of
all datasets. It should also be noted that standardized data mav nc* fullow a normal

distribution and transformation may be necessary for unbia:. ed s :atistical inference.

2.2.4 Spatial scale (dimension)

Spatial scale refers to the geographical area of i.ite.~~c. Crudely defined, local scale refers to a
relatively small area like a single lake or riv. v site, where the subject is one or two populations
or species, or a single community or ez~sy_*tem; regional scale might include multiple localities,
usually with similar climatic or binzeco raphic characteristics (e.g., all lakes or rivers within the
Great Lakes region or tempera.~ lakes of North America); and global scale refers to multiple
regions across the world. The appropriate scale for developing an SR function is study- and
guestion-dependent, ar.2 classifying “domains” of spatial scale has challenged researchers for
decades (Wiens, 1989). The challenge lies in understanding when ecological mechanisms do not
hold across multiple scales, and thus choosing the correct spatial scale for modelling stressors

and implementing management plans (Wiens, 1989).

Scale discontinuities or limitations in SR functions may arise due to local adaptation or other

interacting stressors (see Interactions section below). For example, Meier et al. (2014) found
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that the expression of genes related to immune and stress response differed among three
Brown Trout (Salmo trutta) populations that experienced different temperature regimes in the
wild; this local adaptation would limit the transferability of their SR relationships across sites
and scales, particularly if similar local adaptation has taken place elsewhere. Whether or not a
SR function spans multiple scales (i.e., can be generalized across a species’ range) will likely
depend on the specific stressor and the scope for local adaptation. Correctly identifying the
appropriate domain of the stressor and response variables is a ri1u "al step in CE modelling.
Extrapolation of SR functions beyond the scale at which they wei e created requires
transparency in assumptions and careful consideratior of 1. e potential for bias (MacPherson et

al. 2020).

While spatial discontinuities in underls .ng necnanism may constrain SR function application
to particular scales, scale mismatches be*ween stressor and response may have far-reaching
management implications. For exa:. 0l ., management interventions to mitigate local effects of
climate change on at-risk pop’ila:ions may require addressing proximate factors (e.g., riparian
planting to cool and shad : s.reams) rather than ultimate causation, because global warming is

a global governance issue “eyond the jurisdiction of regional wildlife management agencies.

2.2.5 Temporal scale

Thinking about temporal scale in the context of SR functions and CE modelling can be a
daunting task; the physiological and stage-specific processes of all organisms (e.g., growth,
reproduction, metabolism) operate on different temporal scales, as do the stressors acting on

them (Jackson et al. 2021). To simplify the overwhelming complexities associated with temporal
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effects, recent stressor reviews categorize SR functions in terms of their trajectory type (e.g.,
pulse, constant, ramp, step; uni- or multivariable; stationary or non-stationary), modifying
characteristics (e.g., duration, frequency), and pattern (e.g., presence of thresholds or time
lags); all of which can vary across a single event, multiple events, or trajectories (Ryo et al.,
2019). Such organisation can be helpful when thinking about the temporal scale of individual
stressor relationships and the optimal frequency, duration, and lag time of observation to
detect an effect. Understanding the characteristic generation or tu.mover time of a response
(defined here as the time it takes to return to equilibrium fo 'ow: g a perturbation) is essential.
Failure to do so may result in temporal mismatches betwecn stressor and response
measurements with the potential to distort SR fur.ci'ons, or in extreme cases, a failure to detect
them entirely. For example, a stressor like * 21, ve.ature can be defined in terms of maximum
observed temperature, duration abovc a fixea threshold, maximum weekly average
temperature, or cumulative degree aa''s rarkinson et al. 2016; Chezik et al. 2014), all of which
differ in their duration of meas’.ren.>nt and their suitability for characterizing different
responses (Clusella-Trullas ev ~2l. 2021). To avoid getting lost in the overwhelming complexities
of temporal consideratius, it is important to have clearly defined stressor and response
metrics that i) are grounded in clearly defined management objectives (Fig. 1, steps 2-3), and ii)
integrate across the appropriate time scale based on a clear understanding of biology and

underlying causation, as described below.

First, system (organism to ecosystem) response time must be understood. A system may have

an immediate or delayed response to a stressor, and a short or prolonged response duration,
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and thus the timing and duration of the measurement period is consequential. A
misunderstanding of when and for how long a variable responds to a stressor, or the relevant
duration of the stressor, will impact the shape of the SR function. For example, Hewitt and
Norkko (2007) studied the effect of suspended sediment exposure (the stressor) on marine
bivalve feeding rate (response). They found that increasing the duration of exposure to
suspended sediment changed the shape of the feeding rate response from unimodal to a
negative linear relationship. Although sample timing and durati~,n . ~ay not always impact the
validity of SR functions (and thus the CE model; Bell et al. 2G13), t remains important to re-
evaluate the shape of each stressor response function s now information becomes available
(Pirotta et al., 2022). It is also important to evalua’e “he independence of consecutive stressor
events; SR functions will need to account fc. <1 1 teraction between stressor order (timing) and
impact if response times shorten with ~onsecutive events, or if thresholds for response decline
with consecutive perturbations (Fig. 27, J aickson et al. 2021; Ryo et al. 2019). For example,
sensitivity of salmonids to high tem, erature events may increase over the summer low-flow
period, lowering the tempera*ur2 threshold where they seek thermal refuges by as much as 3°C

(O’Sullivan et al., 2023).

Second, temporal mismatches between the data used to create SR functions and the duration
of a simulation trajectory may inflate model error. It has been shown that estimates of
minimum viable population size to avoid extinction increase with the length of the time series
used to derive them, suggesting that empirical SR functions based on shorter data sets may

underestimate true potential outcomes (Ludwig, 1999; Reed et al., 2003). Such temporal
15



mismatches could lead to systematic biases in CE model projections, which generally predict
across temporal scales that greatly exceed the length of the data used to generate their
constituent SR functions. Ultimately, if SR functions are calibrated using short-term studies—
due to feasibility— model predictions and associated management interventions may have
unexpected long-term outcomes. The potential for biases in SR functions due to short duration
data sets needs to be carefully considered, particularly for processes that are sensitive to rare

stochastic events (Ludwig, 1999).

Third, temporal complexities intensify at higher levels ¢* bivlogical organization. With multiple
taxa to consider at community and ecosystem scz'es, ome stressors (e.g., drought) will impact
an entire generation of short-lived speciec put only a fraction of the lifespan of longer-lived
species (Jackson et al. 2021; Fig. S1). Jac. <on et al. (2021) suggest—in the case of size-
structured aquatic ecosystems—e-.'mc.*'ng the distribution of generation times within a
community to decide on an apo ~oriate timescale for measuring a community’s response to
multiple stressor events. aicrnatively, an analysis of empirical data may help identify the

intrinsic scale that best m. ximizes the explained variation in response.

2.2.6 Stressor Interactions

Multi-stressor interactions have received considerable attention in the recent ecological
literature (Duncan and Kefford, 2021; Schafer and Piggott, 2018). The issues most relevant to

practical stressor management are i) whether interactions are present for the stressors under
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consideration; ii) whether they are consequential from a management perspective; and iii) how
to accurately represent them in SR functions. Interactions are ultimately defined by a lack of
independence between two or more stressors, but there is a confusing diversity of interaction
types and impacts that are often difficult to discriminate among. Interactions are often
classified based on the magnitude of their effect on the response (i.e., slope) relative to an
additive model with no interactions. Synergy occurs when combined stressor effects are greater
than expected relative to their independent effects, and antago i1s. 1 represents muted
combined stressor impacts relative to their additive indeper.1en effects (lower slope; Fig. 3a).
Antagonisms that are sufficiently strong can lead to rexers.'s, for instance, where the
magnitude of impact or slope switches from nega*iv-. to positive. However, this pattern is
further complicated when the intercept (nc.).'st “he slope) of the SR function is also altered
under interactions because it can resu'* in the interaction transitioning from antagonisms to

synergies or vice versa over different rnj;es of stressor magnitude (Fig. 3b).

Although this simple classificatiu.” of interactions based on the magnitude of biological
outcomes is useful, it does 1.7t 1esolve the broad diversity of underlying mechanisms which can
lead to synergy, additivity or antagonism (De Laender, 2018; Turschwell et al., 2022). This
diversity of mechanism is best understood by first considering differences in underlying
causation typology among interactions (i.e., the processes driving the interaction), their
associated diagnostics, and differences in their biological consequences. The typology of
interaction causation described below is intended to complement the well-established typology

of magnitude and direction described above (i.e., synergies, antagonisms, and additivity).
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2.2.6.1 Underlying causation types.

Causation type can be identified based on four broad categories of underlying process

(mechanism) that generates the interaction. These include:

i)  Altered biophysical process. In this case the biophysical mechanism underlying one
stressor is altered by a second stressor, changing the biological response to a given
magnitude (dose) of the first stressor. This is the most commor. .'\nderstanding of an
interaction, but not necessarily the most common causatic= 1. =.actice. One example is the
joint effect of nutrient enrichment (eutrophication) ana ~anopy cover (shading) on dissolved
oxygen in stream ecosystems. Increased nutrients c~us~ increased algal and microbial
respiration, which depletes night-time dissol'/eu ~.ygen, but only in unshaded streams,
because light limitation under a closed coropy inhibits algal biomass accrual and associated
respiration (Fig. 4a). This results in 7!3ss.~ non-additivity of canopy and nutrient effects on
dissolved oxygen (i.e., differen<es \.> slopes between low and high nutrient treatments; Fig.
4a). Note that in this classic «3sc of a statistical interaction, the stressors involved may be

completely uncorrelat ~d (i e., independent in magnitude; Fig. 4c).

ii) Correlation of stressor magnitudes. With this underlying mechanism, a second stressor
does not alter the biological response to a given level of a first stressor, rather the second
stressor directly alters the magnitude of the first stressor, resulting in an altered biological
response along a single SR function (Fig. 4b). Often two stressors will co-vary because of a

shared association with an underlying driver of both stressors (e.g., Lade et al. 2020); for
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example, saturation levels of dissolved oxygen decrease with water temperature, purely as a
consequence of thermally mediated physical gas exchange processes. Extending the riparian
canopy example, a lack of canopy cover would be associated with disproportionately lower
dissolved oxygen than a forested (shaded) treatment, but this is caused by higher
temperatures in unshaded streams (i.e., a negative correlation between shading and
temperature; Fig. 4d) rather than any functional effect of shading on the dissolved oxygen-

temperature relationship (Fig. 4c), which remains unchanged.

iii) Correlation of individual vulnerability to multip/e st >ssors. The “null model” for stressor
interactions represents the expected pattern o’ s, ;essor outcome when interactions are
absent (i.e., a null hypothesis of no interwc.on, Schafer and Piggott (2018) and earlier
researchers (e.g., Folt et al. 1999) ic ~ntifieu how the distribution of individual vulnerabilities
to multiple stressors may affect the shape of the null model, which represents the inferred
baseline additive condition v:ithe 't interaction. The three most basic null models are simple
addition, multiplicative. ar.¥ dominance, each associated with different individual responses

to stressors (Fig. 5; se > Scnafer and Piggott 2018 for additional null models).

Simple addition represents the classic ANOVA situation with no interaction, where the
combined outcome is the additive effect of independent stressors (Fig. 5a). Computationally,
stressor impacts on individuals can be thought of as acting in sequence (Schafer and Piggott
2018; Orr et al. 2020; see mortality equations in Fig. 5). And if the stressor impact is

mortality, full additivity is only possible if individual vulnerabilities to the different stressors
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are strongly negatively correlated (Fig. 5a; i.e., individuals killed by stressor A would not be
killed by stressor B). The multiplicative model occurs if individual stressor sensitivities are
uncorrelated (Fig. 5b) because some individuals will in principle be killed by both stressors
simultaneously, lowering the combined mortality rate relative to the simple additive model
(Fig. 5b). Lastly, the dominance model occurs when vulnerability of individuals to both
stressors is positively correlated; this implies that all individuals that would have died from
the more moderate stressor would have also died from the rios™ virulent stressor, so that
the maximum stressor impact will be set by the stronger f th 2 two stressors (Schafer and
Piggott 2018; Fig. 5c). According to Schafer and Piggott \2018) each of these models, as
described above and as illustrated in Fig. 5, rep.e ent null models with no interactions
included, and differ only in the correlatic i ~f 1. dividual stressor vulnerabilities among
individuals. However, the multiplicc*ive anu dominance null models can be considered
antagonistic relative to the simple a J01dion model because in both cases the effects of
combined stressors are less *1an *he simple addition model (Fig. 5, right hand panels), even
without interactions (Dev . nc Koops, 2021). (Note that the ecological stressor pair chosen
for illustration of don.*nance in Fig. 5—starvation and disease risk—may not be entirely

independent).

It is important to note that the inferences above and illustrated in Fig. 5 apply best to
mortality impacts (Schafer and Piggott, 2018). For example, if stressor impacts are sub-lethal
(e.g., reduced growth) then combined stressor effects on individuals will not be redundant in

the dominant model as they are for mortality, i.e., growth of vulnerable individuals could be
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simultaneously reduced by both stressors, resulting in a multiplicative stressor impact rather

than a dominance one.

Understanding the mechanism underlying different null models may be useful for
predicting the type of interaction outcome (e.g., additive, synergistic, antagonistic) from any
unique pair of stressors under consideration, particularly when empirical data for
interactions are lacking. For instance, individuals that are weal starving, or have depressed
immune systems will share vulnerability to mortality from m 'ltip e stressors like disease,
parasites, and stress, leading to an expectation of domiaar.z2z as the null stressor model. In
contrast, stressors that generate mortality that is rai.4ora, stochastic, or unrelated to
organism performance would be expected to ¢ v :r: te independently and follow a
multiplicative null model. In both cases coribined stressor impacts could reasonably be

expected to be less than the additive ~ull model (Fig. 5).

Note that none of the nul' mo!'als in Fig. 5 generate synergistic effects relative to the
simple additive null model {22y and Koops, 2021). Synergies generally arise when one
stressor alters the act.'al n echanistic pathway of a second stressor to make it more severe,
and are therefore mc - idiosyncratic and do not necessarily fit well into the general
pathways identified in Fig. 5. While antagonisms can also arise from stressor-specific
pathway alterations, the nature of correlations of individual vulnerability in generating
antagonisms may be generalizable in ecology and favour antagonisms over synergisms. This
inference is supported by recent meta-analyses (see Tekin et al. 2020 and refs therein; Lopez

et al. 2022) that identify antagonisms and additivity as the most common interactions.
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However, this interpretation is sensitive to the choice of simple addition as the reference
null model, since simple addition may generate higher mortality rates than other null models

even in the absence of interaction (Dey and Koops 2021; Fig. 5).

iv) Statistical or analytic artefacts. This category of causation includes statistical design and
power issues (Catford et al., 2022). For instance, data collection over a narrow range of low
and high stressor values may cause a continuous bell-shaped r.nn-linear performance curve
to appear linear with opposite slopes (i.e., implying a hidden inte action) when sampled over
truncated or non-overlapping stressor ranges (Catford <t a.. 2022; Rosenfeld et al. 2022).

Disjunct segments of sigmoidal functions can also be mi<caken for spurious interactions.

2.2.6.2 Diagnostics of interaction presence.

Often it is unknown whether interactions are nresent or likely to be severe. Carefully screening
the results of monitoring or stressor nz.i.~gzement interventions can be used to qualitatively or
statistically identify whether int~re-tions are present. Non-independence of stressors in the
form of correlations among ~tre:_or magnitudes, or correlations in the vulnerability of
individuals, provide z s.0..Z .eason for managers to anticipate correlative interactions. For
linear relationships, a classic statistical interaction (i.e., non-additivity represented by a change
in slope; Fig. 6 is the most robust evidence of a mechanistic stressor interaction. However, this
picture becomes complicated for interactions among non-linear stressors. Additivity between

non-linear stressors may generate patterns that look similar to interactions between linear

stressors, and the ability to discriminate between these patterns may be limited if variance is
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high (i.e., true non-linear functions with real slope changes may appear linear over their full

range if error variation is high).

It is important to note that the diagnostics for interaction are not universal and may be in
conflict (Duncan and Kefford, 2021). For instance, independence of stressor impacts is implied
by classic additivity models where factorial designs result in parallel slopes (Figs. 4 and 5).
However, for models that consider the role of individual variatior. in stressor vulnerability, the
simple additivity model assumes a negative correlation betwee." ser sitivity of individuals to the
paired stressors (Fig. 5a), indicating a lack of independenc« in z*.essor sensitivities at the
individual level. Similarly, while the null models illustrav>d ia Fig. 5 do not include interactions,
the multiplicative and dominance models are ant.'eon stic in outcome relative to the simple
addition model, and stressors outcomes ¢ 1 ins.ividuals in the simple addition and dominance

models lack independence even though “he models are null models without interaction.

2.2.6.3 Putting interactions into persp.octive for applied management

While the nuances of multi--tressor interactions are fascinating, they may be irrelevant for
many practical ecologi | «wlications, particularly in many data deficient contexts that often
confront natural resource managers. Unlike toxicological stressors which lend themselves to
multi-factorial laboratory experiments, generating meaningful data to estimate population- or
ecosystem-level impacts of multiple ecological stressors is very challenging (Rullens et al.,
2022). In practical terms, understanding interactions is only worthwhile when it allows better

prediction of stressor impacts and the safe operating space for stressor magnitudes (Fig. 7), or if
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it meaningfully improves regulatory decisions to control stressor levels (e.g., harvest rates,

effluent releases, habitat restoration, mitigation procedures).

Stressors that are harmful (e.g., sediment inputs to streams, eutrophication and associated
hypoxia) are generally regulated out of concern for their main effects irrespective of any
interactions. If interactions are present and substantive, then modifying stressor management
to account for interactions may be warranted. On the other hand, if interactions are relatively
small or within the range of detection error, then they will not 1 near ingfully affect management
decisions, which can therefore default to managing main =rfe *< (Fig. 7). Synergies are
exceptional in that they may require control of stressor_ at .ow levels that might not otherwise
warrant management for their main effects alone: *ne se are the potential ecological surprises
of greatest concern (Jackson et al., 2016; ! ade et a1., 2020), and have therefore received the
greatest attention, leading to a publication bias in terms of their frequency relative to
antagonisms (Coté et al., 2016; Tel:» e: «l., 2020). In data deficient situations where
interactions are uncertain, stress~r mechanisms can be used to anticipate the null model and
potential interaction types \« g., Fig. 5); cycles of monitoring and adaptive management can
then be used to identify g eater- (synergism) or lesser-than-expected (antagonism) effects of
stressor reduction to refine understanding of both interaction effects and management
responses (Fig. 7). Thoughtful stressor management should ideally focus on exploiting
interactions to mitigate stressor impacts and avoid tipping points (Gladstone-Gallagher et al.,
2019; Larned and Schallenberg, 2019; Scholes and Kruger, 2011). Just as the goal of

understanding non-linear main effects is to identify thresholds so that they can be avoided,
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correctly identifying interactions should also allow identification of stressor ranges with rapid

slope change.

Generally, managing interactions can be treated as an extension of managing main effects.
Unless interactions are overwhelmingly strong, managing them usually requires a change in
degree rather than a change in approach. The suite of available management activities to
mitigate stressors should be similar irrespective of interactions, a though the identity of the
priority stressor may change. For instance, capitalizing on antagnis n between riparian shading
and eutrophication means that a short-term focus on stre: ms.-: reforestation to reduce light
may be the priority for reducing eutrophication and hyp ~xi., especially where nutrient inputs
are difficult to control. While at face value the ge.'e.al zation to exploit interactions in
management is insightful, most natural re.our -e managers have been aware of and using
antagonistic effects like riparian restora. on for decades, even if they have not labelled them as

such.

Inevitably, the appropriate inve~tn.ent of time and resources for assessing presence or strength
of interactions will dener 4 or their likely consequences. Arguably, the most pervasive
ecological interaction gl-Lally is between species identity and stressor effects (e.g., how species
identity affects temperature or salinity tolerance); this interaction is at the core of comparative
physiology and community ecology (Thompson et al. 2018) as well as most climate change
modelling. Differences in stressor tolerances among taxa may be hugely consequential for CE
modelling, since it drives differences in safe operating spaces and the appropriateness of

sharing SR functions among data-deficient species, a pervasive practice in ecological modelling
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(Trudel et al. 2004). Beyond species identity interactions, the diversity of potential interactions
is unlimited; without a priori reason to expect specific interaction combinations, natural
resource managers and biologists are best served by managing main effects, while being alert

to anomalies that could signal cryptic interactions.

2.2.7 Uncertainty

The terms variability, stochasticity, and uncertainty are often usec .nterchangeably but their
meanings differ (Tumeo, 1994). Variability represents deviati~= L zome quantity around the
mean while stochasticity is variability caused by random fi.~tuations, with both contributing to
uncertainty. Put simply, uncertainty is the notion of do-ub. about a quantity (Tumeo, 1994).
Since there is always some doubt about the rel=cic. <!iip between a stressor and response,
there is uncertainty in all SR functions. SR 1. rctions are models created to simplify complex
relationships for the purpose of predirting "ypothetical outcomes and the lack of complete

knowledge—due to data deficiency o. the simplification process—begets uncertainty.

There are many frameworke for ..onceptualizing uncertainty, each with their own descriptions
and classifications (Rzg™n o* al. 2002; Shea et al. 2002; Walker et al. 2003; Gissi et al. 2017
Stelzenmiiller et al. 2020; Rullens et al. 2022). Among these, a well-cited study by Walker et al.
(2003) presents a categorical matrix to visualise uncertainty in three key dimensions. We
modified their original axis labels (location, level, and nature of uncertainty; Walker et al. 2003)
to i) component of uncertainty; ii) magnitude of uncertainty; and iii) source of uncertainty, to
make them more explicitly intuitive. The five components of uncertainty include context (e.g.,

issues, questions, outcomes of interest), model structure (e.g., density dependent vs. density
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independent, discrete versus continuous), input data, and parameters (which to include?), all of
which independently contribute to emergent uncertainty. Magnitude of uncertainty represents
a spectrum ranging from determinism (complete knowledge) to total ignorance (the unknown
unknown, i.e., completely data deficient species). Source of uncertainty represents a
reducibility spectrum, and refers to whether uncertainty is epistemic or inherent; epistemic
uncertainty is reducible by increasing knowledge, whereas inherent uncertainty is irreducible,
because improving our understanding of the variability of the svste m ur natural phenomena is
unattainable (i.e., further knowledge acquisition will not rea i1ce incertainty). Other studies
may categorise uncertainty differently (Tumeo 1994; Ri:gai et al. 2002; Shea et al. 2002; Lande
et al. 2003; McGowan et al. 2011) but Walker et 2'. ~ {(2003) breakdown is comprehensive, and
the uncertainty matrix provides a useful tor.: .\ holp prioritise uncertainty reduction based on
data acquisition and reducibility (Gissi ~t al., 2517; Rullens et al., 2022; Stelzenmdiller et al.,

2020).

Understanding and minimizing u. certainty when creating SR functions requires i) identifying
the components of uncer.ai. ty, ii) categorizing them by source and magnitude; and iii)
minimizing epistemic (rea icible) uncertainty while accounting for inherent (irreducible)
uncertainty (Fig. 8). Adaptive management allows this to be an iterative process. Uncertainty is
particularly problematic when there is little information about a species, and expert opinion
becomes a good starting point during the early stages of SR function development. The
following recommendations may aid the reader in moving beyond the early stages of data

deficiency.
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i) Regan et al. (2002) recommended using conventional statistical techniques (e.g.,
confidence intervals, upper and lower bounds) and probability distributions to represent
uncertainty, or in the case of systematic errors, recognizing and removing potential biases.
For empirical SR functions, this can be as simple as including 95% confidence intervals
around predictions; for expert-based SR functions, upper and lower bounds can be
established based on the most extreme of plausible functions. More advanced non-linear
modelling approaches (e.g, Generalized Additive Mixed Modr.is, Yastie and Tibshirani 1986)
also generate confidence intervals around model predicti \ns, and methods are available for
creating confidence intervals around optima and rar.ge \\mits of non-linear functions (e.g.,
Ashcroft et al. 2016). Transparency is key in de~m g with uncertainty (Schuwirth et al., 2019),
and confidence in the SR function and ur.uc rly.~g assumptions needs to be carefully
documented, ideally in an open-accss data base (Rosenfeld et al. 2022; MacPherson et al.

2020).

ii) Milner-Gulland and $1.~3 (2017) suggest power analyses to understand the benefits of
increasing sampling e *ort to reduce uncertainty and to assess the cost of error, which are
often asymmetric. For example, in the context of recovery planning for Species at Risk, the
cost (in terms of extinction) of incorrectly identifying a population decline (type | error) is
much lower than failing to identify a population decline (type 2 error; Milner-Gulland and
Shea 2017), which can be catastrophic. Strategic consideration of uncertainty for individual
SR functions may identify particular ranges that will disproportionally benefit from reducing

uncertainty (e.g., by collecting data). For instance, there is often high confidence in stressor
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impacts at very high and very low stressor levels (i.e., negligible vs. catastrophic); in this case,
resolving uncertainty at intermediate stressor levels becomes the priority (i.e., determine
the shape of the SR function), particularly when thresholds are suspected. In contrast, the

opposite may be true for linear functions if data at high a low stressor levels is sparse.

iii) McGowan et al. (2011) recommended sensitivity analyses, which allow researchers to
assess sensitivity of model outcomes to uncertainty in differeat ~arameters. This is most
relevant to mechanistic SR functions with multiple param ~ter:, or in CE models with SR

functions of different uncertainty.

One recurring problem for data deficient applicat o'1s >f complex models is that multiplicative
error rapidly inflates uncertainty so that c/.nfir.ence intervals on predictions overlap with zero.
This does not mean that quantitative prciction should be abandoned; rather it provides a

graphic reminder of the scale of syz:=n i~ uncertainty, and the need to reduce it by increasing

confidence in underlying SR fi'ncions or other sources of error.

3. Adaptive managemen*

The CE modelling approach presented here fits into an adaptive management framework, a
paradigm created to navigate an uncertain future through a constant cycle of evolving goals,
models, predictions, interventions, and outcomes (Lindenmayer and Likens, 2009). Plowright et
al. (2008) cleverly argue that this approach uses triangulation—analogous to land surveying—
where multiple methodologies (e.g., theoretical, lab, and field studies) are used to refine the

most effective strategies for maintaining complex systems. In this way, the manager can make
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adjustments based on learned information from previous iterations of the cycle or
complimentary methodologies supported by multiple lines of evidence (Plowright et al., 2008;
Shea et al., 2002). Therefore, rather than reacting only when issues arise (i.e., “putting out
fires”), adaptive management attempts to predict and prevent unwanted or unexpected
outcomes (Boyd et al., 2015; Fuerth, 2011; Shea et al., 2002). An unexpected outcome tells us
that we might have misinterpreted the underlying mechanism(s), while an expected outcome
tells us that our assumptions were likely valid, and a switch fror. e, nected to unexpected
outcomes (or vice versa) may be a warning that the environinen is changing and/or that the
system’s components (i.e., stressors and responses) mizht He interacting in novel, unexplored
ways (Coté et al. 2016). All of this information is ¢'1u al for assessing the long-term success of

management interventions.

4. Concluding remarks

In this review, we provide pra«ma:ic guidance on developing SR functions. The outcome of
management decisions and tra.'e-uffs in complex socio-ecological systems are neither intuitive
nor obvious, and unstruc ‘ure: | decisions based on qualitative impressions can be severely
biased (Kahneman, 2012}, Scientists and managers need to accelerate the transition from
gualitative decision-making to a process that is more explicitly informed by quantitative
relationships with transparent uncertainty (Hodgson et al. 2019). SR functions are central to
this transition; as discrete components embedded in higher order models (e.g., cumulative
effects or PVA), they provide a durable foundation for structured decision-making in natural

resource management.
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As a final recommendation, we ask the researcher to keep the big picture in mind and not
get lost in the weeds. It is important to remember that with limited data availability, developing
and implementing SR functions for use in a CE modelling framework is a continuous cycle of
manipulation and validation (Castafeda et al., 2021). This process takes time. Therefore, if
available data and expert opinion suggests that particular stressors or interactions are not
important to a specific question or system, this inference should he documented, and energy

and resources directed to more pressing concerns.
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Figure 1. Process model for stressor-response functions embedded within the Cumulative
Effects (CE) modelling framework. Step 1 is identifying priority management objectives,
stressors, and responses, and the appropriate stressors, responses, and their surrogates to

model. Step 2 is developing the appropriate stressor-response (SR) functions based on a suite of
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considerations, including data and mechanistic theory availability, understanding of causation,
and the suite of stressor attributes under consideration. The third step is the simulation
process for the chosen management intervention scenarios, associated monitoring of
outcomes, and the adaptive management feedback loop where monitoring data is used to
adaptively modify management priorities, as well as to re-assess, refine, and re-calibrate the

stressor-response functions (after Pirotta et al. 2022).
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production. a) Stressor-response (SR) chain linking landuse (the ultimate stressor) and fish
production (the terminal response) through a chain of discrete SR functions with hypoxia as the
proximate stressor. Note that nutrients, primary production, and hypoxia act as both response
and stressor variables linking the chain of functions. Higher-level composite SR functions will
integrate (and may obscure) the causative links in the chain but may be empirically accurate.
Also note that while photosynthesis generates daytime dissolved oxygen (DO), excessive
primary production is often associated with low DO at night wh.n , *spiration predominates, as
illustrated here. b) Addition of a second SR chain where lanc -use alters riparian forest cover
and ultimately temperature as a second proximate stresso,  Note that riparian cover type
(open canopy with no shade vs. forested riparian *.vi. 1 full shade) generates an interaction with
the first stressor chain (broken green arrow’;, . the-e full riparian shading reduces light and
primary production, partially mitigatin: hypox.a associated with eutrophication. Note that this
manifests as an interaction (different SR 1unctions) for the intermediate and composite
stressor-response functions, bur no. for the proximate ones (temperature and dissolved oxygen
(DO)/hypoxia) because riparicn <hading constrains the range of the proximate stressor value

but does not alter the si.~oe of the proximate SR function.
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Figure 3. lllustration of additive, synergistic, .na ~ntagonistic interactions between two
stressors A (a continuous variable repr=senteu by the X axis) and B (represented by two stressor
levels, low B and high B). Solid blue | n 25, epresent the classic additive model with no
interaction, characterized by pa.alic! lines, indicating that stressor A and B operate
independently of one anothe- 7Tnhe short-dashed red line indicates a synergy, where the effects
of stressor A and the higy" 1cvel of stressor B result in stronger effects (in this case a steeper
slope) than expected based on the individual effects of A or high B. The long-dashed orange
line indicates an antagonism, where the effects of stressor A and high B are less than expected
under additivity (lower slope). The green dotted line represents a very strong antagonism know
as a reversal, because the direction of the effect (slope) is reversed relative to the expectation
under additivity with no interaction. Note that (a) illustrates a change in slope under

interaction with no change in intercept and (b) illustrates an interaction scenario with a change
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in intercept as well as slope. This complicates the pattern of interaction, with interaction type
becoming dependent on the range of stressor A. For example, the synergy illustrated by the

short-dashed red line transitions to an antagonism to the left of the threshold indicated by T.

52



Statistical Correlative

Interaction Interaction
a) b)
£
O F O Ofesl.
ore (s, &g
()] Sted (ShadedJ O bad@OQ
E| ~~o_ S
- o) """«..‘* ._:--..‘
E (i p@q C‘au ~ g Ope,? :’.:iﬂ\"‘-.
§ (1/75-/260'00 y‘u“ c ((!nsb&(jnopy S~
2 909 2 @d) N\
Oligotrophic Eutrophic
Nutrients Temperatu e
c) d)
Forested Forested
100 100
e _o L I e ¢
L ®
—_ o [ ] —| @ -
EBQ‘ 007, %50  © as& .'......
o - .....O'.. o o 90 090
% g [ ] .. 000 g ¢ % v | Y o 0%000 44
Sg| &30 ¢ Co *S 00 o
® 208 (Y X
o0 ™ o0
0 o0 o s 0| e o °*
Open . Toe.
Nutrients Temperature

Figure 4. Statistical vs. correlative ‘nte action. Statistical interactions (a) result from change in one
stressor (e.g., canopy covel or s.\ading) altering the stressor-response function (slope) of a second
stressor without a change in the magnitude of the second stressor (red circles and broken arrow in panel
[a]). In this example increased nutrients results in increased primary production and respiration that
drives down nocturnal dissolved oxygen (DO), but not in shaded streams where light limits primary
production. Note that the stressors canopy cover and nutrients in panel (a) may be uncorrelated
(independent; [c]; black filled circles are individual streams). In contrast, correlative interactions result
from covariance between stressors, rather than one stressor altering the stressor-response function of a

second stressor. For example, increased temperature acts on gas saturation levels to reduce DO in lakes
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and streams; the negative correlation between shading and temperature causes lower DO in open
canopy streams (b). However, unlike in panel (a), the decline in DO in (b) is driven by a change in
stressor magnitude (red circles and broken arrow in panel [d]) associated with lack of shading at open
sites, rather than a change in the stressor-response function (i.e., a second line with a different slope).
Note that the different mechanistic pathways illustrated in panels (a) and (b) are not mutually exclusive

and both may operate simultaneously, complicating their discrimination.
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Figure 5. Effects of corre.~tion between individual vulnerability to different stressors on
combined stressor outcomes (i.e., null model predictions for different stressor vulnerability
correlations). Left panels show hypothetical frequency distributions of sensitivity to the first
stressor for the entire population (blue line) and for individuals with high sensitivity to the first
or second stressors (subsidiary distributions). The second row of panels illustrates the
correlation between each stressor pair, followed by panels illustrating the main and combined

effects of the two stressors on a hypothetical population of 10 individuals. (a) Simple additivity,
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which requires that individuals that are vulnerable to one stressor have low vulnerability to the
second stressor, as illustrated by the non-overlapping sensitivities of individuals with a high risk
of starvation vs. a high risk of predation (i.e., a negative correlation in vulnerabilities),
generating the classic additive interaction. This example assumes that greater time spent
foraging reduces risk of starvation, but increases vulnerability to predation. (b) Multiplicative
null model, which assumes that sensitivity of individuals to stressor mortality is independent
(uncorrelated; for example, individual vulnerability to starvatior vs. stochastic mortality from
floods). Because stressor covariance is zero stressors can ac on :he same individuals, resulting
in lower combined mortality than in A where stressors ire .'nlikely to affect the same
individuals (far right panel). (c) Dominance null m~u..l, where vulnerability of individuals to
both stressors (e.g., disease and starvation® 1> 3ss.'med to be positively correlated. In this case
the maximum mortality rate is set by te mosu severe stressor, and the combined effect of both
stressors is much less than in (a) (simp'e audition). Note that the combined effects of stressors
under the multiplicative and dcinincnce models are antagonistic relative to the simple addition
model, even though as null n.~d:ls interactions are not included (see text for details; figure

details after Schafer anu Piggott (2018).
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Figure 6. Effects of the frequency distribution of individual stressor sensitivities within a

population on shape of the stressor-response (SR) function, assuming that the population
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stressor-response function is an aggregate of individual responses. A linear SR function (b)
implies that the distribution of individual sensitivities to the stressor is uniform (a), i.e., that for
every incremental increase in stressor a constant number of individuals die, or pass growth
threshold etc. A more typical normal or hump-shaped distribution of sensitivities will result in a
sigmoidal population-level stressor-response function (c, d). The classic normal-shaped
performance curve can be thought of as representing two opposite sigmoidal curves for lower
and upper stressor performance thresholds (e, f), e.g., the positive ~frects of temperature on

growth at low temperatures, and negative effects at high tei1pei atures.
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Figure 7. Practical guidance for managing stressor interactions under uncertainty. If there are

59



no known interactions, then management should focus on main effects (i.e., assuming
independence) while monitoring responses to assess the potential for synergies (larger than
expected responses to stressor reduction) or antagonisms (unexpectedly small responses to
stressor reduction). If interactions between candidate stressors are known or anticipated
based on prior knowledge of underlying mechanisms, then the null model and potential for
synergies and antagonisms should be identified and assessed through monitoring and adaptive
management. If interactions are confirmed, then synergies and an:agonisms should be
strategically exploited to differentially reduce stressor impacts w th minimal stressor reduction.
If interactions are well understood, then management .:an lirectly skip to the last stage, i.e.,
the effectiveness of riparian shading in mitigating zu :rophication impacts is well established,
and a monitoring cycle is not required to in’ucte . inarian restoration under eutrophic

conditions.

60



Journal Pre-proof

of uncertainty in the
with the ability

Component of
Uncertainty

Context
Source of

Uncertainty

Inherent

(irreducible)
Model outcome

- — ‘ Epistemic
7 (reducible)
/ /

Determinism ————— ——»  Total Ignorance

Model structure
Input

parameters

Magnituu ~ of
Unc>ra ..ty
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component, magnitude, nd . ource. This matrix can help categorize and thus prioritize
uncertainty to be dealt wi.h (or ignored) in subsequent analyses (i.e., how the uncertainty is

accounted for in the model).
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Cumulative effects (CE) modelling is a priority for conservation and management
Stressor-response (SR) functions are core drivers that modulate the severity of CE
We review how to derive and integrate SR functions into CE models

We expand an existing CE process framework to include SR function attributes
This framework is intended to accelerate the adaptive management process
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