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Abstract 

Stressor-response (SR) functions quantify ecological responses to natural environmental 

variation or anthropogenic stressors.  They are also core drivers of cumulative effects (CE) 

models, which are increasingly recognized as essential management tools to grapple with the 

diffuse footprint of human impacts. Here, we provide a process framework for the 

identification, development, and integration of SR functions into CE models, and highlight their 

consequential properties, behaviour, criteria for selecting appropriate stressors and responses, 

and general approaches for deriving them. Management objectives (and causal effect 

pathways) will determine the ultimate stressor and target response variables of interest (i.e., 

individual growth/survival, population size, community structure, ecosystem processes), but 

data availability will constrain whether proxies need to be used for the target stressor or 

response variables. Available data and confidence in underlying mechanisms will determine 
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whether empirical or mechanistic (theoretical) SR functions are optimal. Uncertainty in 

underlying SR functions is often the primary source of error in CE modelling, and monitoring 

outcomes through adaptive management to iteratively refine parameterization of SR functions 

is a key element of model application. Dealing with stressor interactions is an additional 

challenge, and in the absence of known or suspected interaction mechanisms, controlling main 

effects should remain the primary focus. Indicators of suspected interaction presence (i.e., 

much larger or smaller responses to stressor reduction than expected during monitoring) 

should be confirmed through adaptive management cycles or targeted stressor manipulations. 

Where possible, management decisions should selectively take advantage of interactions to 

strategically mitigate stressor impacts (i.e., by using antagonisms to suppress stressor impacts, 

and by using synergisms to efficiently reduce them).   

Keywords: stressor-response functions, adaptive management, multiple stressors, cumulative 

effects, process framework, decision-making 
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1. Introduction  

As we continue to witness the Anthropocene unfold with its multiple and varied impacts on 

the Earth ecosystem, there is an urgency to better understand the short- and long-term 

implications of multiple stressors on ecosystem sustainability. Here, a stressor is defined as any 

physical, chemical, or biotic factor that has the capacity to affect another response variable in a 

linear or non-linear way, be it positive or negative in direction (Pirotta et al. 2022 and 

references therein). Assessing the combined effects of multiple stressors requires thoughtfully 

constructed cumulative effects (CE) models that are typically part of an adaptive management 

framework designed to reduce uncertainty in management interventions  (Holling et al. 1978; 

Duinker et al. 2013; Rist et al. 2013; MacPherson et al. 2023).  Simple CE assessments rank 

habitat impacts using spatial overlay and summation of multiple stressor scores (Halpern and 

Fujita, 2013), but this simple approach tends to be of limited value for exploring alternate 

management scenarios.  More advanced CE modelling usually combine explicit relationships 

between stressors and a biological response variable, which we refer to as stressor-response 

(SR) functions (Larned and Schallenberg, 2019). This term is synonymous with stressor-effect 

functions, dose-response curves, physiological performance curves, and suitability curves; the 

abundance of similar terms demonstrates the ubiquity of SR functions across research 

disciplines in ecology, physiology, toxicology and environmental science. SR functions are a 

fundamental component of any predictive study, yet their central role in ecological modelling 

tends to be underappreciated (Rosenfeld et al. 2022). In a timely review, Pirotta et al. (2022) 

highlighted a data- vs. process-driven continuum as a key driver differentiating SR functions. 
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We built on their framework by identifying additional key attributes of SR functions including 

spatial and biological scale of application, theoretical considerations, and interaction types, 

followed by a pragmatic consideration of how to derive and apply them in data-rich and data-

deficient contexts.  

The intent of this review and synthesis is to guide the reader through the various stages of a 

CE process model centered around SR functions, from management objectives and causal effect 

pathways to SR function attributes and the continuous cycle of model testing and learning that 

defines adaptive management. We hope that this will enable readers to more thoughtfully 

derive and integrate SR functions into management questions, objectives, and decisions; all of 

which are integral to credible CE modelling and successful adaptive management plans 

(MacPherson et al. 2023). Understanding the role and impact of stressor interactions has also 

emerged as a priority concern in multi-stressor management (Birk et al., 2020; Lade et al., 

2020); we turn a pragmatic eye towards interactions with the goal of providing guidance on 

how to deal with interactions under uncertainty, particularly in common data-deficient 

contexts. 

2. Process model for the role of stressor-response functions in CE modelling 

The process model can be divided into three sequential steps (Fig. 1; see also MacPherson et al. 

2023). The first focuses on the identification of target (priority) stressor and response variables, 

which will ultimately be driven by management objectives (i.e., the species, population, or 

ecosystem of concern and associated environmental stressors). The second step involves 

developing the optimal function for modelling the effects of the stressor(s) on the target 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



5 
 
 

ecological response. The last step includes the adaptive loop of stressor simulation (e.g., CE) 

scenarios for management planning, implementation of management interventions, and 

monitoring of outcomes to generate data that can be used to either validate or better 

parameterize SR functions. We elaborate on these steps below. 

2.1 STEP 1. Management objectives, priorities, and choosing response and stressor variable(s) 

The ultimate objective for natural resource managers is to ensure the sustainability of natural 

resources under environmental and societal changes (Dearing et al., 2014; Mangel et al., 1996; 

Rockström et al., 2009). More specifically, natural resource management agencies develop 

specific management targets and objectives for the priority ecosystem components under their 

jurisdiction. These become the focal response variables in both CE modelling and SR 

relationships. The choice of response variable is consequential for both management and the 

development of SR functions, and ultimately needs to be grounded in carefully considered 

management objectives (Schuwirth et al., 2019). Similarly, the corresponding stressors that 

drive change in the chosen response variables must also be based on clear management 

objectives and local knowledge, including the known dominant stressors and the subset that 

are actually subject to practical management intervention. These choices will then establish the 

basis for developing the SR functions that are foundational to all CE assessments.  

2.1.1 Causal Effect Pathways and Stressor Chains  

While choice of the appropriate stressor may be obvious, in complex multi-stressor contexts 

the best driver to establish an SR function may be more cryptic, particularly if causation is 

ambiguous or key stressors are difficult to measure or manipulate (Geary et al., 2019). These 
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cases warrant identifying causal effect pathways (stressor chains; Fig. 2) that clearly describe 

the sequence of stressors that influence the response variable (Yuan et al. 2010; also referred 

to as “successive” interactions; Jackson et al. 2016). The pathway starts with the ultimate 

stressor—the overarching cause—and ends with the proximate stressor that is the direct driver 

of the terminal response (Fig. 2). Distinguishing between ultimate and proximate stressors is 

important for interpreting the results of a CE model and determining appropriate management 

interventions (Tyack et al., 2022). Developing an SR function linking the ultimate stressor and 

terminal response will necessarily integrate across the intervening stressor links (making it a 

composite SR function; Fig. 2), potentially obscuring intermediate causative mechanisms. These 

composite SR functions may represent very useful and empirically accurate links between 

ultimate causation and terminal responses in a stressor chain. However, treating the 

intervening stressor links as a black box can mask underlying mechanisms that may be 

informative for management decisions. For example—as illustrated in Fig. 2—landuse is an 

ultimate stressor that can cause a pathway of effects from nutrients to primary production to 

dissolved oxygen concentration (hypoxia). Hypoxia can then impact response variables like 

growth, survival, and fecundity (proximate responses) that are linked to population density (the 

ultimate response). Developing causal effect pathway diagrams is a useful practice at this initial 

stage because it will inform the suite of candidate variables available, and how they relate to 

one another (Plowright et al., 2008; Yuan et al., 2010). Once the causal effect pathways are 

established, the researcher can identify which response and stressor variables are easily 

measured or have available data, which can be effectively altered through management 

interventions, and which align best with management objectives.  
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2.2 STEP 2. Developing stressor response functions: Key attributes and considerations 

2.2.1 Empirical versus mechanistic stressor-response functions  

SR functions can be empirical relationships based on observational data collected across 

stressor gradients (e.g. Poff et al. 2010; Rosenfeld 2017; Larned and Schallenberg 2019), or 

mechanistic models based on established theory (ideally parameterized to local conditions), or 

some combination of both (Schuwirth et al. 2019; Connolly et al. 2017; see Pirotta et al. 2022 

for deeper consideration of the empirical-theoretical continuum). Empirical SR functions are 

developed using empirical data from field studies (e.g., variation in animal abundance in 

habitats with different stressor levels; Rullens et al. 2022) or controlled factorial experiments 

that manipulate stressor levels (e.g., Piggott et al. 2012). Any type of linear or non-linear 

function can be fit to these data to generate the desired SR function (Larned and Schallenberg, 

2019). The advantage of using data collected across stressor gradients in the field is that the 

relationship will be realistic and calibrated to the actual observed conditions in nature, 

increasing confidence in predictions; the disadvantage is that the data are correlative, and 

therefore stressor causation is inferred and may be confounded by other uncontrolled 

variables. Empirical SR functions derived from controlled experiments are more definitive in 

terms of stressor causation, but if performed in the lab their predictions may be less readily 

transferable to realistic field situations (Rullens et al., 2022).  

Whether empirical or mechanistic approaches are optimal for any given stressor-response 

combination will depend on the availability of empirical data (or the difficulty obtaining it) vs. 

the maturity of appropriate theory to apply a mechanistic model in any particular sub-discipline 
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of ecology. Data-rich situations will allow for developing empirical SR functions (e.g., Yuan et al. 

2010), while data poor circumstances will increase reliance on mechanistic functions, assuming 

that appropriate theory is available. In either case, researchers need to be explicit about how 

their SR function was derived. Some stressor impact pathways are empirically well described 

(e.g., effects of fine sediment on survival of salmonid eggs; Jensen et al. 2009) or may not lend 

themselves to mechanistic analysis. Other stressors (e.g., density-dependence) may have well-

established theoretical models that can be reasonably applied with minimal data collection. 

Given the onerous nature of developing CE models that account for multiple stressors, some 

pragmatic combination of the two approaches will often be used (MacPherson et al. 2020).  

Although there are proponents of both empirical and mechanistic approaches (e.g., Peters 

1986; Railsback 2016), they are in fact highly complementary and can be used in combination to 

iteratively refine SR functions in a continuous cycle of data acquisition and model validation 

(Marquet et al., 2014; Pirotta et al., 2022; Schuwirth et al., 2019), as long as the sources of 

uncertainty in both classes of SR function are clearly recognized. Empirical data are essential for 

validating predictions from mechanistic models, or to calibrate (parameterize) them to regional 

conditions. However, confounding factors should be controlled using statistical methods (e.g., 

covariates in regression; Yuan et al. 2010;  Feld et al. 2016) and inference of causation from 

empirical SR functions should be based on strong mechanistic underpinnings of existing 

ecological knowledge (Poff and Zimmerman, 2010). Further, extrapolating empirical 

relationships beyond their data range or to other regions with different stressor contexts may 

be problematic. In contrast, process-based mechanistic models are usually better at predicting 
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outcomes in unmeasured stressor ranges—particularly for non-linear relationships—but need 

to be parameterized using real data. Mechanistic models are often a simplification of a more 

complicated process, and often borrow parameters from different species or systems that can 

introduce considerable uncertainty in their predictions (Trudel et al. 2004). A clear 

understanding of model assumptions and limitations is essential to account for uncertainty (see 

the Uncertainty section below). 

Developing SR functions is least challenging for data-rich species; the greatest challenge is the 

transition from narrative descriptions of stressor impacts to quantitative SR functions for 

severely data-deficient species or populations, a common scenario in fish and wildlife 

management, particularly for Species at Risk. However, tools are available to bridge the gap 

between narrative descriptions of stressor impacts and quantitative SR functions, and 

accelerate the transition from qualitative to quantitative modelling. For example, in a data-

limited scenario, SR functions can be developed in workshops using expert opinion (MacMillan 

and Marshall, 2006). Here, experts must first determine the direction of the relationship (i.e., a 

positive vs. negative slope in the stressor-response space, informed by the endpoints of the 

relationship at the extremes of the stressor gradient), and then determine the functional shape 

of the relationship(e.g., linear, sigmoidal, asymptotic) by adding intermediate points to the 

curve (MacPherson et al. 2020; French et al. 2021). These semi-quantitative models can then 

serve as both starting points for quantitative modelling and management, and hypotheses that 

can be tested and refined through ongoing data collection and cycles of adaptive management 

(Fig. 1; Plowright et al. 2008; Downing, Van Meter, and Woolnough 2010; Pirotta et al. 2022). 
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 2.2.2 Biological hierarchy/organization 

Biological hierarchy refers to the level of biological organisation of the response variable of 

interest, ranging from individual, to population, species, community, or whole ecosystems. 

Overall, it is a question of resolution and the answer depends on the researcher and their 

objectives: is it sufficient to use one SR function to describe a group of species (e.g. coldwater 

thermal guild, Hasnain et al. 2013; or size classes, Giacomini et al. 2016), or should multiple SR 

functions be used to describe the differences between species? A clear understanding of 

response variable location in the biological hierarchy is a pre-requisite for developing SR 

functions. CE models in ecology often focus on the population (i.e., local scale of a single 

species), but evaluating stressor impacts on community structure (multiple species within a 

taxonomic group) or ecosystem function (e.g., trophic level production) are also key goals of 

many CE assessments.  SR functions can be developed with data explicit to any level within the 

biological hierarchy, and mechanistic theory can be used to scale functions up from one level to 

another (e.g., from the individual to the population; Schäfer and Piggott 2018; Pirotta et al. 

2022). However, extrapolating responses across levels in a biological hierarchy should be done 

with care and transparency in underlying assumptions, as results may not scale as expected 

(Galic et al., 2018) and upscaling errors can propagate across levels.  

SR functions at different levels of biological hierarchy are often qualitatively different (Simmons 

et al., 2021). At the individual level, multiple stressors affect individual performance (growth, 

fecundity, survival) in ways that can be directly measured using fairly standard ecophysiological 

or field ecology methods (Selong et al., 2001; Vander Vorste et al., 2020). Such methods allow 
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empirical SR functions to be developed to predict individual performance (e.g., effects of 

hypoxia on fish growth; Rosenfeld and Lee 2022); however, many biophysical models instead 

allow for the development of mechanistic SR functions of individual performance (e.g., drift-

foraging bioenergetic models predicting temperature and velocity effects on salmonid growth; 

Naman et al. 2020). Similarly, many population-level SR functions are developed—either 

empirically or mechanistically (e.g., as individual-based models)—to link individual performance 

to population-level effects (Ayllón et al., 2019). At the community level, however, mechanistic 

SR functions are particularly challenging, as the response depends not only on the population 

performance of individual species along the stressor gradient, but also on interactions among 

multiple species (Turschwell et al., 2022). Similarly, mechanistic ecosystem-scale SR functions 

may be subject to complex interactions between species or functional groups (Turschwell et al., 

2022). In contrast to mechanistic SR functions, developing empirical SR functions across all 

levels of the biological hierarchy is likely to be relatively straightforward, but will vary in 

difficulty depending on the linear or non-linear complexity of model fit to empirical data.  

2.2.3 Standardizing data for stressor-response functions 

Quantitative synthesis of multiple studies is a powerful way of building generic SR functions 

(Poorter et al. 2010; Rosenfeld and Lee 2022). Unlike conventional meta-analysis, the objective 

is not merely to document effect sizes and significance of a treatment, but rather to generate 

an empirical function that can be directly applied to prediction and management. Standardizing 

(normalizing) data from disparate studies may be an essential step in this process, particularly if 

the range of response and stressor values vary across studies. Various methods are available for 
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standardizing data, including dividing observations by the standard deviation (i.e., converting all 

response variables to units of SD; Smith 2000; Schielzeth 2010), or standardizing by the 

maximum value in each study, which re-scales all data between a range of 0-1 regardless of the 

original response variable or its units (Rosenfeld and Lee 2022; Wilding and Poff 2008). Poorter 

et al. (2010) provide a detailed overview of a third standardizing approach where the extracted 

data is normalized by dividing each observation by a shared reference value within the range of 

all datasets.  It should also be noted that standardized data may not follow a normal 

distribution and transformation may be necessary for unbiased statistical inference. 

2.2.4 Spatial scale (dimension) 

Spatial scale refers to the geographical area of interest. Crudely defined, local scale refers to a 

relatively small area like a single lake or river site, where the subject is one or two populations 

or species, or a single community or ecosystem; regional scale might include multiple localities, 

usually with similar climatic or biogeographic characteristics (e.g., all lakes or rivers within the 

Great Lakes region or temperate lakes of North America); and global scale refers to multiple 

regions across the world. The appropriate scale for developing an SR function is study- and 

question-dependent, and classifying “domains” of spatial scale has challenged researchers for 

decades (Wiens, 1989). The challenge lies in understanding when ecological mechanisms do not 

hold across multiple scales, and thus choosing the correct spatial scale for modelling stressors 

and implementing management plans (Wiens, 1989).  

Scale discontinuities or limitations in SR functions may arise due to local adaptation or other 

interacting stressors (see Interactions section below). For example, Meier et al. (2014) found 
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that the expression of genes related to immune and stress response differed among three 

Brown Trout (Salmo trutta) populations that experienced different temperature regimes in the 

wild; this local adaptation would limit the transferability of their SR relationships across sites 

and scales, particularly if similar local adaptation has taken place elsewhere. Whether or not a 

SR function spans multiple scales (i.e., can be generalized across a species’ range) will likely 

depend on the specific stressor and the scope for local adaptation. Correctly identifying the 

appropriate domain of the stressor and response variables is a critical step in CE modelling.  

Extrapolation of SR functions beyond the scale at which they were created requires 

transparency in assumptions and careful consideration of the potential for bias (MacPherson et 

al. 2020).  

While spatial discontinuities in underlying mechanism may constrain SR function application 

to particular scales, scale mismatches between stressor and response may have far-reaching 

management implications. For example, management interventions to mitigate local effects of 

climate change on at-risk populations may require addressing proximate factors (e.g., riparian 

planting to cool and shade streams) rather than ultimate causation, because global warming is 

a global governance issue beyond the jurisdiction of regional wildlife management agencies. 

2.2.5 Temporal scale  

Thinking about temporal scale in the context of SR functions and CE modelling can be a 

daunting task; the physiological and stage-specific processes of all organisms (e.g., growth, 

reproduction, metabolism) operate on different temporal scales, as do the stressors acting on 

them (Jackson et al. 2021). To simplify the overwhelming complexities associated with temporal 
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effects, recent stressor reviews categorize SR functions in terms of their trajectory type (e.g., 

pulse, constant, ramp, step; uni- or multivariable; stationary or non-stationary), modifying 

characteristics (e.g., duration, frequency), and pattern (e.g., presence of thresholds or time 

lags); all of which can vary across a single event, multiple events, or trajectories (Ryo et al., 

2019). Such organisation can be helpful when thinking about the temporal scale of individual 

stressor relationships and the optimal frequency, duration, and lag time of observation to 

detect an effect. Understanding the characteristic generation or turnover time of a response 

(defined here as the time it takes to return to equilibrium following a perturbation) is essential. 

Failure to do so may result in temporal mismatches between stressor and response 

measurements with the potential to distort SR functions, or in extreme cases, a failure to detect 

them entirely. For example, a stressor like temperature can be defined in terms of maximum 

observed temperature, duration above a fixed threshold, maximum weekly average 

temperature, or cumulative degree days (Parkinson et al. 2016; Chezik et al. 2014), all of which 

differ in their duration of measurement and their suitability for characterizing different 

responses (Clusella-Trullas et al., 2021). To avoid getting lost in the overwhelming complexities 

of temporal considerations, it is important to have clearly defined stressor and response 

metrics that i) are grounded in clearly defined management objectives (Fig. 1, steps 2-3), and ii) 

integrate across the appropriate time scale based on a clear understanding of biology and 

underlying causation, as described below. 

First, system (organism to ecosystem) response time must be understood. A system may have 

an immediate or delayed response to a stressor, and a short or prolonged response duration, 
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and thus the timing and duration of the measurement period is consequential. A 

misunderstanding of when and for how long a variable responds to a stressor, or the relevant 

duration of the stressor, will impact the shape of the SR function. For example, Hewitt and 

Norkko (2007) studied the effect of suspended sediment exposure (the stressor) on marine 

bivalve feeding rate (response). They found that increasing the duration of exposure to 

suspended sediment changed the shape of the feeding rate response from unimodal to a 

negative linear relationship. Although sample timing and duration may not always impact the 

validity of SR functions (and thus the CE model; Bell et al. 2003), it remains important to re-

evaluate the shape of each stressor response function as new information becomes available 

(Pirotta et al., 2022). It is also important to evaluate the independence of consecutive stressor 

events; SR functions will need to account for an interaction between stressor order (timing) and 

impact if response times shorten with consecutive events, or if thresholds for response decline 

with consecutive perturbations (Fig. S1; Jackson et al. 2021; Ryo et al. 2019). For example, 

sensitivity of salmonids to high temperature events may increase over the summer low-flow 

period, lowering the temperature threshold where they seek thermal refuges by as much as 3°C 

(O’Sullivan et al., 2023). 

 

Second, temporal mismatches between the data used to create SR functions and the duration 

of a simulation trajectory may inflate model error. It has been shown that estimates of 

minimum viable population size to avoid extinction increase with the length of the time series 

used to derive them, suggesting that empirical SR functions based on shorter data sets may 

underestimate true potential outcomes (Ludwig, 1999; Reed et al., 2003). Such temporal 
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mismatches could lead to systematic biases in CE model projections, which generally predict 

across temporal scales that greatly exceed the length of the data used to generate their 

constituent SR functions. Ultimately, if SR functions are calibrated using short-term studies—

due to feasibility— model predictions and associated management interventions may have 

unexpected long-term outcomes. The potential for biases in SR functions due to short duration 

data sets needs to be carefully considered, particularly for processes that are sensitive to rare 

stochastic events (Ludwig, 1999). 

 

Third, temporal complexities intensify at higher levels of biological organization. With multiple 

taxa to consider at community and ecosystem scales, some stressors (e.g., drought) will impact 

an entire generation of short-lived species but only a fraction of the lifespan of longer-lived 

species (Jackson et al. 2021; Fig. S1). Jackson et al. (2021) suggest—in the case of size-

structured aquatic ecosystems—estimating the distribution of generation times within a 

community to decide on an appropriate timescale for measuring a community’s response to 

multiple stressor events. Alternatively, an analysis of empirical data may help identify the 

intrinsic scale that best maximizes the explained variation in response. 

 

2.2.6 Stressor Interactions  

Multi-stressor interactions have received considerable attention in the recent ecological 

literature (Duncan and Kefford, 2021; Schäfer and Piggott, 2018). The issues most relevant to 

practical stressor management are i) whether interactions are present for the stressors under 
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consideration; ii) whether they are consequential from a management perspective; and iii) how 

to accurately represent them in SR functions. Interactions are ultimately defined by a lack of 

independence between two or more stressors, but there is a confusing diversity of interaction 

types and impacts that are often difficult to discriminate among. Interactions are often 

classified based on the magnitude of their effect on the response (i.e., slope) relative to an 

additive model with no interactions. Synergy occurs when combined stressor effects are greater 

than expected relative to their independent effects, and antagonism represents muted 

combined stressor impacts relative to their additive independent effects (lower slope; Fig. 3a). 

Antagonisms that are sufficiently strong can lead to reversals, for instance, where the 

magnitude of impact or slope switches from negative to positive. However, this pattern is 

further complicated when the intercept (not just the slope) of the SR function is also altered 

under interactions because it can result in the interaction transitioning from antagonisms to 

synergies or vice versa over different ranges of stressor magnitude (Fig. 3b). 

Although this simple classification of interactions based on the magnitude of biological 

outcomes is useful, it does not resolve the broad diversity of underlying mechanisms which can 

lead to synergy, additivity, or antagonism (De Laender, 2018; Turschwell et al., 2022). This 

diversity of mechanism is best understood by first considering differences in underlying 

causation typology among interactions (i.e., the processes driving the interaction), their 

associated diagnostics, and differences in their biological consequences. The typology of 

interaction causation described below is intended to complement the well-established typology 

of magnitude and direction described above (i.e., synergies, antagonisms, and additivity). 
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2.2.6.1 Underlying causation types. 

Causation type can be identified based on four broad categories of underlying process 

(mechanism) that generates the interaction. These include:  

i) Altered biophysical process. In this case the biophysical mechanism underlying one 

stressor is altered by a second stressor, changing the biological response to a given 

magnitude (dose) of the first stressor. This is the most common understanding of an 

interaction, but not necessarily the most common causation in practice. One example is the 

joint effect of nutrient enrichment (eutrophication) and canopy cover (shading) on dissolved 

oxygen in stream ecosystems. Increased nutrients cause increased algal and microbial 

respiration, which depletes night-time dissolved oxygen, but only in unshaded streams, 

because light limitation under a closed canopy inhibits algal biomass accrual and associated 

respiration (Fig. 4a). This results in classic non-additivity of canopy and nutrient effects on 

dissolved oxygen (i.e., differences in slopes between low and high nutrient treatments; Fig. 

4a). Note that in this classic case of a statistical interaction, the stressors involved may be 

completely uncorrelated (i.e., independent in magnitude; Fig. 4c). 

 

ii) Correlation of stressor magnitudes. With this underlying mechanism, a second stressor 

does not alter the biological response to a given level of a first stressor, rather the second 

stressor directly alters the magnitude of the first stressor, resulting in an altered biological 

response along a single SR function (Fig. 4b). Often two stressors will co-vary because of a 

shared association with an underlying driver of both stressors (e.g., Lade et al. 2020); for 
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example, saturation levels of dissolved oxygen decrease with water temperature, purely as a 

consequence of thermally mediated physical gas exchange processes. Extending the riparian 

canopy example, a lack of canopy cover would be associated with disproportionately lower 

dissolved oxygen than a forested (shaded) treatment, but this is caused by higher 

temperatures in unshaded streams (i.e., a negative correlation between shading and 

temperature; Fig. 4d) rather than any functional effect of shading on the dissolved oxygen-

temperature relationship (Fig. 4c), which remains unchanged.  

 

iii) Correlation of individual vulnerability to multiple stressors. The “null model” for stressor 

interactions represents the expected pattern of stressor outcome when interactions are 

absent (i.e., a null hypothesis of no interaction). Schäfer and Piggott (2018) and earlier 

researchers (e.g., Folt et al. 1999) identified how the distribution of individual vulnerabilities 

to multiple stressors may affect the shape of the null model, which represents the inferred 

baseline additive condition without interaction. The three most basic null models are simple 

addition, multiplicative, and dominance, each associated with different individual responses 

to stressors (Fig. 5; see Schäfer and Piggott 2018 for additional null models). 

 Simple addition represents the classic ANOVA situation with no interaction, where the 

combined outcome is the additive effect of independent stressors (Fig. 5a). Computationally, 

stressor impacts on individuals can be thought of as acting in sequence (Schäfer and Piggott 

2018; Orr et al. 2020; see mortality equations in Fig. 5). And if the stressor impact is 

mortality, full additivity is only possible if individual vulnerabilities to the different stressors 
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are strongly negatively correlated (Fig. 5a; i.e., individuals killed by stressor A would not be 

killed by stressor B). The multiplicative model occurs if individual stressor sensitivities are 

uncorrelated (Fig. 5b) because some individuals will in principle be killed by both stressors 

simultaneously, lowering the combined mortality rate relative to the simple additive model 

(Fig. 5b). Lastly, the dominance model occurs when vulnerability of individuals to both 

stressors is positively correlated; this implies that all individuals that would have died from 

the more moderate stressor would have also died from the most virulent stressor, so that 

the maximum stressor impact will be set by the stronger of the two stressors (Schäfer and 

Piggott 2018; Fig. 5c). According to Schäfer and Piggott (2018) each of these models, as 

described above and as illustrated in Fig. 5, represent null models with no interactions 

included, and differ only in the correlation of individual stressor vulnerabilities among 

individuals. However, the multiplicative and dominance null models can be considered 

antagonistic relative to the simple addition model because in both cases the effects of 

combined stressors are less than the simple addition model (Fig. 5, right hand panels), even 

without interactions (Dey and Koops, 2021). (Note that the ecological stressor pair chosen 

for illustration of dominance in Fig. 5—starvation and disease risk—may not be entirely 

independent).  

It is important to note that the inferences above and illustrated in Fig. 5 apply best to 

mortality impacts (Schäfer and Piggott, 2018). For example, if stressor impacts are sub-lethal 

(e.g., reduced growth) then combined stressor effects on individuals will not be redundant in 

the dominant model as they are for mortality, i.e., growth of vulnerable individuals could be 
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simultaneously reduced by both stressors, resulting in a multiplicative stressor impact rather 

than a dominance one.  

Understanding the mechanism underlying different null models may be useful for 

predicting the type of interaction outcome (e.g., additive, synergistic, antagonistic) from any 

unique pair of stressors under consideration, particularly when empirical data for 

interactions are lacking. For instance, individuals that are weak, starving, or have depressed 

immune systems will share vulnerability to mortality from multiple stressors like disease, 

parasites, and stress, leading to an expectation of dominance as the null stressor model. In 

contrast, stressors that generate mortality that is random, stochastic, or unrelated to 

organism performance would be expected to operate independently and follow a 

multiplicative null model. In both cases, combined stressor impacts could reasonably be 

expected to be less than the additive null model (Fig. 5). 

Note that none of the null models in Fig. 5 generate synergistic effects relative to the 

simple additive null model (Dey and Koops, 2021). Synergies generally arise when one 

stressor alters the actual mechanistic pathway of a second stressor to make it more severe, 

and are therefore more idiosyncratic and do not necessarily fit well into the general 

pathways identified in Fig. 5. While antagonisms can also arise from stressor-specific 

pathway alterations, the nature of correlations of individual vulnerability in generating 

antagonisms may be generalizable in ecology and favour antagonisms over synergisms. This 

inference is supported by recent meta-analyses (see Tekin et al. 2020 and refs therein; Lopez 

et al. 2022) that identify antagonisms and additivity as the most common interactions.  
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However, this interpretation is sensitive to the choice of simple addition as the reference 

null model, since simple addition may generate higher mortality rates than other null models 

even in the absence of interaction (Dey and Koops 2021; Fig. 5). 

iv) Statistical or analytic artefacts. This category of causation includes statistical design and 

power issues (Catford et al., 2022). For instance, data collection over a narrow range of low 

and high stressor values may cause a continuous bell-shaped non-linear performance curve 

to appear linear with opposite slopes (i.e., implying a hidden interaction) when sampled over 

truncated or non-overlapping stressor ranges (Catford et al. 2022; Rosenfeld et al. 2022). 

Disjunct segments of sigmoidal functions can also be mistaken for spurious interactions.  

2.2.6.2 Diagnostics of interaction presence.  

Often it is unknown whether interactions are present or likely to be severe. Carefully screening 

the results of monitoring or stressor management interventions can be used to qualitatively or 

statistically identify whether interactions are present. Non-independence of stressors in the 

form of correlations among stressor magnitudes, or correlations in the vulnerability of 

individuals, provide a strong reason for managers to anticipate correlative interactions. For 

linear relationships, a classic statistical interaction (i.e., non-additivity represented by a change 

in slope; Fig. 6 is the most robust evidence of a mechanistic stressor interaction. However, this 

picture becomes complicated for interactions among non-linear stressors. Additivity between 

non-linear stressors may generate patterns that look similar to interactions between linear 

stressors, and the ability to discriminate between these patterns may be limited if variance is 
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high (i.e., true non-linear functions with real slope changes may appear linear over their full 

range if error variation is high). 

It is important to note that the diagnostics for interaction are not universal and may be in 

conflict (Duncan and Kefford, 2021). For instance, independence of stressor impacts is implied 

by classic additivity models where factorial designs result in parallel slopes (Figs. 4 and 5). 

However, for models that consider the role of individual variation in stressor vulnerability, the 

simple additivity model assumes a negative correlation between sensitivity of individuals to the 

paired stressors (Fig. 5a), indicating a lack of independence in stressor sensitivities at the 

individual level. Similarly, while the null models illustrated in Fig. 5 do not include interactions, 

the multiplicative and dominance models are antagonistic in outcome relative to the simple 

addition model, and stressors outcomes on individuals in the simple addition and dominance 

models lack independence even though the models are null models without interaction. 

2.2.6.3 Putting interactions into perspective for applied management 

While the nuances of multi-stressor interactions are fascinating, they may be irrelevant for 

many practical ecological applications, particularly in many data deficient contexts that often 

confront natural resource managers. Unlike toxicological stressors which lend themselves to 

multi-factorial laboratory experiments, generating meaningful data to estimate population- or 

ecosystem-level impacts of multiple ecological stressors is very challenging (Rullens et al., 

2022). In practical terms, understanding interactions is only worthwhile when it allows better 

prediction of stressor impacts and the safe operating space for stressor magnitudes (Fig. 7), or if 
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it meaningfully improves regulatory decisions to control stressor levels (e.g., harvest rates, 

effluent releases, habitat restoration, mitigation procedures).  

Stressors that are harmful (e.g., sediment inputs to streams, eutrophication and associated 

hypoxia) are generally regulated out of concern for their main effects irrespective of any 

interactions. If interactions are present and substantive, then modifying stressor management 

to account for interactions may be warranted. On the other hand, if interactions are relatively 

small or within the range of detection error, then they will not meaningfully affect management 

decisions, which can therefore default to managing main effects (Fig. 7). Synergies are 

exceptional in that they may require control of stressors at low levels that might not otherwise 

warrant management for their main effects alone; these are the potential ecological surprises 

of greatest concern (Jackson et al., 2016; Lade et al., 2020), and have therefore received the 

greatest attention, leading to a publication bias in terms of their frequency relative to 

antagonisms (Côté et al., 2016; Tekin et al., 2020). In data deficient situations where 

interactions are uncertain, stressor mechanisms can be used to anticipate the null model and 

potential interaction types (e.g., Fig. 5); cycles of monitoring and adaptive management can 

then be used to identify greater- (synergism) or lesser-than-expected (antagonism) effects of 

stressor reduction to refine understanding of both interaction effects and management 

responses (Fig. 7). Thoughtful stressor management should ideally focus on exploiting 

interactions to mitigate stressor impacts and avoid tipping points (Gladstone-Gallagher et al., 

2019; Larned and Schallenberg, 2019; Scholes and Kruger, 2011). Just as the goal of 

understanding non-linear main effects is to identify thresholds so that they can be avoided, 
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correctly identifying interactions should also allow identification of stressor ranges with rapid 

slope change.  

Generally, managing interactions can be treated as an extension of managing main effects. 

Unless interactions are overwhelmingly strong, managing them usually requires a change in 

degree rather than a change in approach. The suite of available management activities to 

mitigate stressors should be similar irrespective of interactions, although the identity of the 

priority stressor may change. For instance, capitalizing on antagonism between riparian shading 

and eutrophication means that a short-term focus on streamside reforestation to reduce light 

may be the priority for reducing eutrophication and hypoxia, especially where nutrient inputs 

are difficult to control. While at face value the generalization to exploit interactions in 

management is insightful, most natural resource managers have been aware of and using 

antagonistic effects like riparian restoration for decades, even if they have not labelled them as 

such.  

Inevitably, the appropriate investment of time and resources for assessing presence or strength 

of interactions will depend on their likely consequences. Arguably, the most pervasive 

ecological interaction globally is between species identity and stressor effects (e.g., how species 

identity affects temperature or salinity tolerance); this interaction is at the core of comparative 

physiology and community ecology (Thompson et al. 2018) as well as most climate change 

modelling. Differences in stressor tolerances among taxa may be hugely consequential for CE 

modelling, since it drives differences in safe operating spaces and the appropriateness of 

sharing SR functions among data-deficient species, a pervasive practice in ecological modelling 
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(Trudel et al. 2004). Beyond species identity interactions, the diversity of potential interactions 

is unlimited; without a priori reason to expect specific interaction combinations, natural 

resource managers and biologists are best served by managing main effects, while being alert 

to anomalies that could signal cryptic interactions.  

2.2.7 Uncertainty 

The terms variability, stochasticity, and uncertainty are often used interchangeably but their 

meanings differ (Tumeo, 1994). Variability represents deviation of some quantity around the 

mean while stochasticity is variability caused by random fluctuations, with both contributing to 

uncertainty. Put simply, uncertainty is the notion of doubt about a quantity (Tumeo, 1994). 

Since there is always some doubt about the relationship between a stressor and response, 

there is uncertainty in all SR functions. SR functions are models created to simplify complex 

relationships for the purpose of predicting hypothetical outcomes and the lack of complete 

knowledge—due to data deficiency or the simplification process—begets uncertainty.  

There are many frameworks for conceptualizing uncertainty, each with their own descriptions 

and classifications (Regan et al. 2002; Shea et al. 2002; Walker et al. 2003; Gissi et al. 2017; 

Stelzenmüller et al. 2020; Rullens et al. 2022). Among these, a well-cited study by Walker et al. 

(2003) presents a categorical matrix to visualise uncertainty in three key dimensions. We 

modified their original axis labels (location, level, and nature of uncertainty; Walker et al. 2003) 

to i) component of uncertainty; ii) magnitude of uncertainty; and iii) source of uncertainty, to 

make them more explicitly intuitive.  The five components of uncertainty include context (e.g., 

issues, questions, outcomes of interest), model structure (e.g., density dependent vs. density 
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independent, discrete versus continuous), input data, and parameters (which to include?), all of 

which independently contribute to emergent uncertainty. Magnitude of uncertainty represents 

a spectrum ranging from determinism (complete knowledge) to total ignorance (the unknown 

unknown, i.e., completely data deficient species). Source of uncertainty represents a 

reducibility spectrum, and refers to whether uncertainty is epistemic or inherent; epistemic 

uncertainty is reducible by increasing knowledge, whereas inherent uncertainty is irreducible, 

because improving our understanding of the variability of the system or natural phenomena is 

unattainable (i.e., further knowledge acquisition will not reduce uncertainty). Other studies 

may categorise uncertainty differently (Tumeo 1994; Regan et al. 2002; Shea et al. 2002; Lande 

et al. 2003; McGowan et al. 2011) but Walker et al.'s (2003) breakdown is comprehensive, and 

the uncertainty matrix provides a useful tool to help prioritise uncertainty reduction based on 

data acquisition and reducibility (Gissi et al., 2017; Rullens et al., 2022; Stelzenmüller et al., 

2020). 

Understanding and minimizing uncertainty when creating SR functions requires i) identifying 

the components of uncertainty; ii) categorizing them by source and magnitude; and iii) 

minimizing epistemic (reducible) uncertainty while accounting for inherent (irreducible) 

uncertainty (Fig. 8). Adaptive management allows this to be an iterative process. Uncertainty is 

particularly problematic when there is little information about a species, and expert opinion 

becomes a good starting point during the early stages of SR function development. The 

following recommendations may aid the reader in moving beyond the early stages of data 

deficiency.  
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i) Regan et al. (2002) recommended using conventional statistical techniques (e.g., 

confidence intervals, upper and lower bounds) and probability distributions to represent 

uncertainty, or in the case of systematic errors, recognizing and removing potential biases. 

For empirical SR functions, this can be as simple as including 95% confidence intervals 

around predictions; for expert-based SR functions, upper and lower bounds can be 

established based on the most extreme of plausible functions. More advanced non-linear 

modelling approaches (e.g, Generalized Additive Mixed Models; Hastie and Tibshirani 1986) 

also generate confidence intervals around model predictions, and methods are available for 

creating confidence intervals around optima and range limits of non-linear functions (e.g., 

Ashcroft et al. 2016). Transparency is key in dealing with uncertainty (Schuwirth et al., 2019), 

and confidence in the SR function and underlying assumptions needs to be carefully 

documented, ideally in an open-access data base (Rosenfeld et al. 2022; MacPherson et al. 

2020). 

 

ii) Milner-Gulland and Shea (2017) suggest power analyses to understand the benefits of 

increasing sampling effort to reduce uncertainty and to assess the cost of error, which are 

often asymmetric. For example, in the context of recovery planning for Species at Risk, the 

cost (in terms of extinction) of incorrectly identifying a population decline (type I error) is 

much lower than failing to identify a population decline (type 2 error; Milner-Gulland and 

Shea 2017), which can be catastrophic. Strategic consideration of uncertainty for individual 

SR functions may identify particular ranges that will disproportionally benefit from reducing 

uncertainty (e.g., by collecting data). For instance, there is often high confidence in stressor 
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impacts at very high and very low stressor levels (i.e., negligible vs. catastrophic); in this case, 

resolving uncertainty at intermediate stressor levels becomes the priority (i.e., determine 

the shape of the SR function), particularly when thresholds are suspected. In contrast, the 

opposite may be true for linear functions if data at high a low stressor levels is sparse. 

 

iii) McGowan et al. (2011) recommended sensitivity analyses, which allow researchers to 

assess sensitivity of model outcomes to uncertainty in different parameters. This is most 

relevant to mechanistic SR functions with multiple parameters, or in CE models with SR 

functions of different uncertainty.  

One recurring problem for data deficient applications of complex models is that multiplicative 

error rapidly inflates uncertainty so that confidence intervals on predictions overlap with zero. 

This does not mean that quantitative prediction should be abandoned; rather it provides a 

graphic reminder of the scale of systemic uncertainty, and the need to reduce it by increasing 

confidence in underlying SR functions or other sources of error.  

3. Adaptive management 

The CE modelling approach presented here fits into an adaptive management framework, a 

paradigm created to navigate an uncertain future through a constant cycle of evolving goals, 

models, predictions, interventions, and outcomes (Lindenmayer and Likens, 2009). Plowright et 

al. (2008) cleverly argue that this approach uses triangulation—analogous to land surveying—

where multiple methodologies (e.g., theoretical, lab, and field studies) are used to refine the 

most effective strategies for maintaining complex systems. In this way, the manager can make 
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adjustments based on learned information from previous iterations of the cycle or 

complimentary methodologies supported by multiple lines of evidence (Plowright et al., 2008; 

Shea et al., 2002). Therefore, rather than reacting only when issues arise (i.e., “putting out 

fires”), adaptive management attempts to predict and prevent unwanted or unexpected 

outcomes (Boyd et al., 2015; Fuerth, 2011; Shea et al., 2002). An unexpected outcome tells us 

that we might have misinterpreted the underlying mechanism(s), while an expected outcome 

tells us that our assumptions were likely valid, and a switch from expected to unexpected 

outcomes (or vice versa) may be a warning that the environment is changing and/or that the 

system’s components (i.e., stressors and responses) might be interacting in novel, unexplored 

ways (Côté et al. 2016). All of this information is critical for assessing the long-term success of 

management interventions.  

4. Concluding remarks 

In this review, we provide pragmatic guidance on developing SR functions. The outcome of 

management decisions and trade-offs in complex socio-ecological systems are neither intuitive 

nor obvious, and unstructured decisions based on qualitative impressions can be severely 

biased (Kahneman, 2011). Scientists and managers need to accelerate the transition from 

qualitative decision-making to a process that is more explicitly informed by quantitative 

relationships with transparent uncertainty (Hodgson et al. 2019). SR functions are central to 

this transition; as discrete components embedded in higher order models (e.g., cumulative 

effects or PVA), they provide a durable foundation for structured decision-making in natural 

resource management.  
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As a final recommendation, we ask the researcher to keep the big picture in mind and not 

get lost in the weeds. It is important to remember that with limited data availability, developing 

and implementing SR functions for use in a CE modelling framework is a continuous cycle of 

manipulation and validation (Castañeda et al., 2021). This process takes time. Therefore, if 

available data and expert opinion suggests that particular stressors or interactions are not 

important to a specific question or system, this inference should be documented, and energy 

and resources directed to more pressing concerns.  
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Figures 

 

Figure 1.  Process model for stressor-response functions embedded within the Cumulative 

Effects (CE) modelling framework.  Step 1 is identifying priority management objectives, 

stressors, and responses, and the appropriate stressors, responses, and their surrogates to 

model. Step 2 is developing the appropriate stressor-response (SR) functions based on a suite of 
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considerations, including data and mechanistic theory availability, understanding of causation, 

and the suite of stressor attributes under consideration.  The third step is the simulation 

process for the chosen management intervention scenarios, associated monitoring of 

outcomes, and the adaptive management feedback loop where monitoring data is used to 

adaptively modify management priorities, as well as to re-assess, refine, and re-calibrate the 

stressor-response functions (after Pirotta et al. 2022). 
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Figure 2.  Pathways of effect (stressor chain) leading to eutrophication effects on fish 
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production. a) Stressor-response (SR) chain linking landuse (the ultimate stressor) and fish 

production (the terminal response) through a chain of discrete SR functions with hypoxia as the 

proximate stressor.  Note that nutrients, primary production, and hypoxia act as both response 

and stressor variables linking the chain of functions.  Higher-level composite SR functions will 

integrate (and may obscure) the causative links in the chain but may be empirically accurate. 

Also note that while photosynthesis generates daytime dissolved oxygen (DO), excessive 

primary production is often associated with low DO at night when respiration predominates, as 

illustrated here. b) Addition of a second SR chain where land-use alters riparian forest cover 

and ultimately temperature as a second proximate stressor.  Note that riparian cover type 

(open canopy with no shade vs. forested riparian with full shade) generates an interaction with 

the first stressor chain (broken green arrow), where full riparian shading reduces light and 

primary production, partially mitigating hypoxia associated with eutrophication.  Note that this 

manifests as an interaction (different SR functions) for the intermediate and composite 

stressor-response functions, but not for the proximate ones (temperature and dissolved oxygen 

(DO)/hypoxia) because riparian shading constrains the range of the proximate stressor value 

but does not alter the shape of the proximate SR function. 
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Figure 3.  Illustration of additive, synergistic, and antagonistic interactions between two 

stressors A (a continuous variable represented by the X axis) and B (represented by two stressor 

levels, low B and high B).  Solid blue lines represent the classic additive model with no 

interaction, characterized by parallel lines, indicating that stressor A and B operate 

independently of one another.  The short-dashed red line indicates a synergy, where the effects 

of stressor A and the high level of stressor B result in stronger effects (in this case a steeper 

slope) than expected based on the individual effects of A or high B.  The long-dashed orange 

line indicates an antagonism, where the effects of stressor A and high B are less than expected 

under additivity (lower slope).  The green dotted line represents a very strong antagonism know 

as a reversal, because the direction of the effect (slope) is reversed relative to the expectation 

under additivity with no interaction.  Note that (a) illustrates a change in slope under 

interaction with no change in intercept and (b) illustrates an interaction scenario with a change 
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in intercept as well as slope. This complicates the pattern of interaction, with interaction type 

becoming dependent on the range of stressor A.  For example, the synergy illustrated by the 

short-dashed red line transitions to an antagonism to the left of the threshold indicated by T.  
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Figure 4. Statistical vs. correlative interaction. Statistical interactions (a) result from change in one 

stressor (e.g., canopy cover or shading) altering the stressor-response function (slope) of a second 

stressor without a change in the magnitude of the second stressor (red circles and broken arrow in panel 

[a]). In this example increased nutrients results in increased primary production and respiration that 

drives down nocturnal dissolved oxygen (DO), but not in shaded streams where light limits primary 

production. Note that the stressors canopy cover and nutrients in panel (a) may be uncorrelated 

(independent; [c]; black filled circles are individual streams). In contrast, correlative interactions result 

from covariance between stressors, rather than one stressor altering the stressor-response function of a 

second stressor. For example, increased temperature acts on gas saturation levels to reduce DO in lakes 
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and streams; the negative correlation between shading and temperature causes lower DO in open 

canopy streams (b). However, unlike in panel (a), the decline in DO in (b) is driven by a change in 

stressor magnitude (red circles and broken arrow in panel [d]) associated with lack of shading at open 

sites, rather than a change in the stressor-response function (i.e., a second line with a different slope). 

Note that the different mechanistic pathways illustrated in panels (a) and (b) are not mutually exclusive 

and both may operate simultaneously, complicating their discrimination. 
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Figure 5. Effects of correlation between individual vulnerability to different stressors on 

combined stressor outcomes (i.e., null model predictions for different stressor vulnerability 

correlations).  Left panels show hypothetical frequency distributions of sensitivity to the first 

stressor for the entire population (blue line) and for individuals with high sensitivity to the first 

or second stressors (subsidiary distributions).  The second row of panels illustrates the 

correlation between each stressor pair, followed by panels illustrating the main and combined 

effects of the two stressors on a hypothetical population of 10 individuals.  (a) Simple additivity, 
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which requires that individuals that are vulnerable to one stressor have low vulnerability to the 

second stressor, as illustrated by the non-overlapping sensitivities of individuals with a high risk 

of starvation vs. a high risk of predation (i.e., a negative correlation in vulnerabilities), 

generating the classic additive interaction. This example assumes that greater time spent 

foraging reduces risk of starvation, but increases vulnerability to predation. (b) Multiplicative 

null model, which assumes that sensitivity of individuals to stressor mortality is independent 

(uncorrelated; for example, individual vulnerability to starvation vs. stochastic mortality from 

floods).  Because stressor covariance is zero stressors can act on the same individuals, resulting 

in lower combined mortality than in A where stressors are unlikely to affect the same 

individuals (far right panel). (c) Dominance null model, where vulnerability of individuals to 

both stressors (e.g., disease and starvation) is assumed to be positively correlated. In this case 

the maximum mortality rate is set by the most severe stressor, and the combined effect of both 

stressors is much less than in (a) (simple addition).  Note that the combined effects of stressors 

under the multiplicative and dominance models are antagonistic relative to the simple addition 

model, even though as null models interactions are not included (see text for details; figure 

details after Schafer and Piggott (2018).  Jo
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Figure 6.  Effects of the frequency distribution of individual stressor sensitivities within a 

population on shape of the stressor-response (SR) function, assuming that the population 
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stressor-response function is an aggregate of individual responses.  A linear SR function (b) 

implies that the distribution of individual sensitivities to the stressor is uniform (a), i.e., that for 

every incremental increase in stressor a constant number of individuals die, or pass growth 

threshold etc. A more typical normal or hump-shaped distribution of sensitivities will result in a 

sigmoidal population-level stressor-response function (c, d).  The classic normal-shaped 

performance curve can be thought of as representing two opposite sigmoidal curves for lower 

and upper stressor performance thresholds (e, f), e.g., the positive effects of temperature on 

growth at low temperatures, and negative effects at high temperatures.  
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Figure 7.  Practical guidance for managing stressor interactions under uncertainty.  If there are 
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no known interactions, then management should focus on main effects (i.e., assuming 

independence) while monitoring responses to assess the potential for synergies (larger than 

expected responses to stressor reduction) or antagonisms (unexpectedly small responses to 

stressor reduction).  If interactions between candidate stressors are known or anticipated 

based on prior knowledge of underlying mechanisms, then the null model and potential for 

synergies and antagonisms should be identified and assessed through monitoring and adaptive 

management.  If interactions are confirmed, then synergies and antagonisms should be 

strategically exploited to differentially reduce stressor impacts with minimal stressor reduction.  

If interactions are well understood, then management can directly skip to the last stage, i.e., 

the effectiveness of riparian shading in mitigating eutrophication impacts is well established, 

and a monitoring cycle is not required to initiate riparian restoration under eutrophic 

conditions. 
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Figure 8. Uncertainty matrix adapted from Walker et al. 2003. The three axes of uncertainty are 

component, magnitude, and source. This matrix can help categorize and thus prioritize 

uncertainty to be dealt with (or ignored) in subsequent analyses (i.e., how the uncertainty is 

accounted for in the model). 
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Highlights 

i. Cumulative effects (CE) modelling is a priority for conservation and management 
ii. Stressor-response (SR) functions are core drivers that modulate the severity of CE 

iii. We review how to derive and integrate SR functions into CE models 
iv. We expand an existing CE process framework to include SR function attributes 
v. This framework is intended to accelerate the adaptive management process  
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