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Abstract  84 

Statistical methods to estimate wind resources at unsampled locations in a region can serve as an initial 85 

step to identify locations that warrant further investigation. There has been an ongoing effort to develop 86 

approaches for mapping the parameters of the wind speed distribution with statistical methods. This 87 

approach enables a comprehensive understanding of the wind resource variability across the entire 88 

region by considering the full wind speed distribution rather than focusing solely on mean values. The 89 

present study proposes a non-parametric approach to map the wind speed distribution. The method's 90 

main advantage is that it avoids constraining the region to a single distribution family and is thus more 91 

flexible than existing methods. In the proposed approach, a number of wind speed quantiles are first 92 

mapped in the region using machine learning techniques. Afterwards, the wind speed distribution is 93 

estimated by fitting an asymmetric kernel estimator to the estimated wind speed quantiles at unsampled 94 

locations. The new approach was compared to the standard statistical method based on mapping the 95 

regional wind speed distribution parameters. The results indicate that the non-parametric approach 96 

leads in the best scenario to a 9% and 6% drop in the Kolmogorov-Smirnov statistic on average during 97 

cross-validation and validation, respectively. The Birnbaum-Saunders and the Log-Normal kernels gave a 98 

better fit to the estimated wind speed quantiles than the Weibull kernel. The proposed approach is 99 

recommended in regions with high wind regime variability. 100 

Keywords: Asymmetric kernel estimator, Non-parametric, Quantile, Wind speed distribution, wind 101 

variability, ungauged location, regional estimation.   102 

 103 
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1. Introduction  106 

Wind energy has the potential to become a crucial source of power worldwide [1]. In 2021, worldwide 107 

wind energy installed capacity reached 837 GW, with an estimated offset of over 1.2 billion tons of CO2 108 

[2]. However, more effort is needed to raise the contribution of wind energy in the world energy mix to 109 

achieve a more sustainable and low-carbon future [3].  110 

One of the initial stages of building a wind farm involves finding a suitable location with sufficient wind 111 

resources to generate electricity. This objective typically involves conducting an in-depth assessment of 112 

the wind regime, which requires a long-term dataset of wind speed measurements. However, this data is 113 

often only available at irregular points in space rather than at the location of interest for wind energy 114 

production. It may not be feasible to install a monitoring station to gather sufficient data during the 115 

preliminary site selection due to time and financial constraints. Using methods that can estimate wind 116 

resources at unsampled locations is more suitable. Although these methods may not be as accurate as a 117 

monitoring station, they can help identify potential sites that warrant further investigation. 118 

Numerous WS estimation studies have been conducted at unsampled locations, as detailed in the review 119 

by Houndekindo and Ouarda [4]. These studies typically estimate an aggregated WS value [5, 6], such as 120 

the mean and occasionally the WS distribution, via mapping the parameters of a theoretical probability 121 

distribution function. Both approaches have some downsides. First, using the mean WS for wind 122 

resource assessment may underestimate the long-term resource depending on the frequency 123 

distribution's shape [7]. Second, when estimating the WS distribution at unsampled locations, authors 124 

typically select a unique family of distributions with different parameters for the entire region (the 125 

regional distribution (RD)). For example, Veronesi, et al. [8] mapped WS distribution in the UK using 126 

random forests and assumed that the Weibull distribution (W) was adequate across the study region. 127 

Although the W is the most commonly used distribution for WS modelling, some studies have found that 128 

other types of distributions may provide a better fit depending on the wind regime at a location. For 129 
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instance, the three-parameter W distribution (an additional location parameter) is better suited for calm 130 

wind regimes [9]. Tsvetkova and Ouarda [10] reported that the heavy-tailed Halphen distribution family 131 

provided a better fit than the two-parameter W distribution in all 125 WS stations considered in Eastern 132 

Canada.  133 

In another study, Jung [11] mapped WS distribution parameters in Southwest Germany. First, the author 134 

evaluated the goodness of fit (GOF) of 67 theoretical distributions to select the RD. Then, a gradient-135 

boosting model was employed to map the parameters of the selected distribution. Similarly, Laib and 136 

Kanevski [12] conducted a study in Switzerland for extreme WS. The authors used the quantiles plot to 137 

evaluate the GOF of three theoretical distributions and select a RD. Then, with a machine learning 138 

model, they mapped the parameters of the RD. This approach can be tedious, requiring the testing of 139 

multiple distributions, and there is no guarantee that the selected distribution would be adequate at the 140 

unsampled locations of interest. Previous studies evaluated the goodness of fit of different theoretical 141 

distributions for WS modelling in a given region [13-18] and found that no single distribution family 142 

provided the best fit at all locations in the region. Thus, using a single family of distributions may not be 143 

appropriate for characterizing the WS distribution in an entire region.  144 

This work proposes a new approach for WS distribution mapping that does not constrain the region to a 145 

single distribution family (i.e.: a regional distribution). The proposed approach consists of estimating 146 

several WS quantiles (WSQ) at a location of interest. Then, a distribution function can be fitted to the 147 

estimated WS quantiles using the Least Square Estimation (LSE) method.  148 

It can be tedious to test several distributions with the LSE method. Indeed, in most cases, the LSE 149 

method does not have an analytical solution. Thus, optimization algorithms may be required with an 150 

initial guess of the parameters, which can lead to suboptimal solutions. To address this issue, it is 151 

proposed to fit a kernel estimator of cumulative distribution function (KCDF) to the estimated WSQ. 152 
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Kernel estimators are, in general, rather flexible and do not require prior knowledge of the family of 153 

distributions of the data. The literature shows a growing interest in kernel estimators for WS distribution 154 

modelling [19]. In most of these studies, symmetric kernels (ex: gaussian) were used to estimate the 155 

probability distribution function. WS values are non-negative, while symmetric kernels have unbounded 156 

support leading to probability leakage below zero [20]. This is a well-known problem called the boundary 157 

effect, and several solutions have been proposed [21]. In this study, one of these solutions based on 158 

asymmetric kernel estimators [22] is adopted and introduced for WS distribution modelling. According to 159 

Hirukawa [22], asymmetric kernels are weight functions with support on the unit interval [0, 1] or the 160 

positive half-line. The effectiveness of the proposed approach was assessed by comparing it to another 161 

method based on mapping the W parameters in the study region.  162 

The paper's novelty can be summarized as follows: First, a methodology to map WS distribution is 163 

proposed based on mapping WSQ. Quantiles are relatively easy to estimate from time series, while 164 

selecting an adequate RD can be tedious, requiring the fitting and evaluation of multiple distributions. 165 

Secondly, to the author's knowledge, this is the first study employing asymmetric kernels to model WS 166 

distribution. By combining the mapping of WSQ and asymmetric kernels, a fully non-parametric 167 

approach for WS distribution mapping is proposed in this study. The main advantage of the non-168 

parametric approach is that it does not require specifying a unique distribution family to the region of 169 

interest. This allows to effectively combine all the available data in the region to build a more robust 170 

model in case the region does not have a homogenous wind regime which can be described by a single 171 

family of distribution functions. 172 

The current paper is structured as follows. Section 2 illustrates the methodology of the proposed 173 

approach with the evaluation procedure. The study area and the dataset are presented in section 3. The 174 

results obtained are shown in section 4. In sections 5 and 6, the discussion of the findings and the 175 

conclusion are given, respectively.    176 
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2. Methodology  177 

This study proposes a new approach for mapping WS distribution using regional information without 178 

constraining the region to a single distribution family. First, various WSQ are estimated at sampled 179 

locations in the region. Then, machine learning and WS covariates are used to map the quantiles, 180 

allowing the estimation of these WSQ at any unsampled location in the region. Finally, parametric, and 181 

non-parametric approaches are implemented to recover the WS distribution at unsampled locations 182 

from estimated quantiles. The proposed approach will be referred to as Quantile-based WS probability 183 

distribution Mapping (QWSM) in the next sections. The QWSM approach will be compared to another 184 

approach based on directly mapping the W parameters [8]. This method will be referred to as the W 185 

parameters mapping (WPM) in the next sections. A flowchart of the methodology is available in Figure 1. 186 

 187 

 188 

Figure 1: Methodology of the comparative analysis of WS probability distribution mapping approaches  189 
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2.1. Quantile-based WS probability distribution mapping  190 

At the sampled locations in the region, WSQ at some fixed percentile points can be estimated from the 191 

sorted values of the hourly time series with the following general formula [23]: 192 

𝑊𝑊(𝑃𝑃) = (1 −  𝛾𝛾)𝑋𝑋(𝑗𝑗) + 𝛾𝛾𝑋𝑋(𝑗𝑗+1)                                                                                                                              (1) 193 

Where 𝑃𝑃 is the percentile point of interest, 𝑋𝑋(𝑗𝑗) and 𝑋𝑋(𝑗𝑗+1) are j-th order statistics. 𝛾𝛾 is a weight (0 ≤194 

𝛾𝛾 ≤ 1) that is function of 𝑗𝑗 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑃𝑃𝑃𝑃 + 𝑚𝑚), 𝑚𝑚 =  𝛼𝛼 + 𝑃𝑃(1 −  𝛼𝛼 −  𝛽𝛽) and 𝑔𝑔 = 𝑃𝑃𝑃𝑃 + 𝑚𝑚− 𝑗𝑗. In case it 195 

is desired to obtain 𝑊𝑊(𝑃𝑃) as a continuous function of 𝑃𝑃, then 𝛾𝛾 = 𝑔𝑔 and selecting 𝛾𝛾 reduces to selecting 196 

𝛼𝛼,𝛽𝛽. Typical values of 𝛼𝛼,𝛽𝛽 are available in [23]. In this study, 𝛼𝛼,𝛽𝛽 were both set to 1/3 given quantiles 197 

that are approximately median-unbiased regardless of the WS true probability distribution [24]. Using 198 

equation 1, WSQ associated with the following 13 percentile points were estimated at the sampled 199 

locations: 5.0% (P1), 12.5% (P2), 20.0% (P3), 27.5% (P4), 35.0% (P5), 42.5% (P6), 50.0% (P7), 57.5.0% (P8), 200 

65.0% (P9), 72.5% (P10), 80.0% (P11), 87.5% (P12), and 95.0% (P13). Table 6 in Appendix I gives an 201 

overview of the distribution of the estimated WSQ.  202 

These percentile points were chosen to cover the WS cumulative distribution functions (CDF) evenly, 203 

ensuring a representative estimation of the WSQ at various points along the distribution. In previous 204 

studies employing a similar modelling approach, varying numbers of percentile points have been 205 

modelled to estimate the probability distribution of a target variable. For instance, to forecast power 206 

load probability distribution, [25] modelled 20 percentiles evenly spaced between 1% and 96%. In 207 

another study, to map wind speed shear distribution, [26] estimated 11 percentiles evenly spaced 208 

between 1% and 99%. Additionally, to regionalize river temperature at ungauged locations, [27] 209 

estimated 17 percentiles non-evenly spaced between 0.05% and 99.95%. This diversity in the number of 210 

percentile point selections highlights a lack of consensus in the literature regarding the optimal number 211 
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to ensure a comprehensive target distribution coverage. Nevertheless, it is worth noting that the number 212 

of percentiles selected in the current study falls within the range of those used in previous research.  213 

A regression function was constructed between the observed WSQ and WS covariates. Two regression 214 

models were compared, the multilinear regression (LR) and the Gradient boosting trees [GBT: 28] model. 215 

Feature selection (FS) was performed using the minimum redundancy maximum relevance (MRMR) 216 

method [29] to reduce the complexity of the models and improve their performance. A comparative 217 

study of FS methods was carried out by Houndekindo and Ouarda [30]. They found that MRMR was 218 

among the most effective FS methods for WSQ estimation. Houndekindo and Ouarda [30] used MRMR 219 

with simple linear regression. However, the approach can be adapted to non-linear models such as tree-220 

based gradient boosting. The FS method (MRMR) and the GBT model are presented in more detail in the 221 

following subsections.  222 

2.1.1. MRMR approach for covariate selection  223 

MRMR is a filter-based FS approach with the benefit of considering both the covariates' relevancy and 224 

redundancy during selection. Filter-based FS methods are computationally efficient algorithms and are 225 

agnostic to the regression model [31]. The MRMR algorithm uses an iterative approach to select the 226 

covariate (𝑋𝑋𝑖𝑖) at each step with the best trade-off between its relevancy to the response variable (𝑌𝑌) and 227 

its redundancy relative to selected features from previous iterations. At the first step of the algorithm, 228 

the most relevant covariate is selected based on a measure of relevancy (𝑅𝑅𝑅𝑅𝑓𝑓(𝑋𝑋𝑖𝑖,𝑌𝑌)).  229 

Let 𝑅𝑅𝑅𝑅𝑅𝑅(𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗) be a measure of the dependency between the covariates 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑗𝑗 and let 𝑆𝑆 be the set 230 

of covariates selected during previous iterations. After the first step of the algorithm, 𝑆𝑆 contains only the 231 

most relevant covariate (max 
𝑋𝑋𝑖𝑖

[𝑅𝑅𝑅𝑅𝑓𝑓(𝑋𝑋𝑖𝑖,𝑌𝑌)]) and the objective criterion at each subsequent iteration of 232 

the MRMR algorithm can be formulated in two ways: 233 
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max 
𝑋𝑋𝑖𝑖∉𝑆𝑆

�𝑅𝑅𝑅𝑅𝑓𝑓(𝑋𝑋𝑖𝑖 ,𝑌𝑌) 𝑅𝑅𝑅𝑅𝑅𝑅(𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗)⁄ �                                                                                                                                 (2) 234 

Or  235 

max 
𝑋𝑋𝑖𝑖∉𝑆𝑆

�𝑅𝑅𝑅𝑅𝑓𝑓(𝑋𝑋𝑖𝑖 ,𝑌𝑌) −  𝑅𝑅𝑅𝑅𝑅𝑅(𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗)�                                                                                                                             (3) 236 

Several measures of relevancy and redundancy can be applied. In this study the following formulations 237 

of the MRMR objective criterion were compared: 238 

𝑀𝑀𝑅𝑅𝑀𝑀𝑅𝑅 − 𝑃𝑃𝑃𝑃: max 
𝑋𝑋𝑖𝑖∉𝑆𝑆

�𝐹𝐹(𝑋𝑋𝑖𝑖,𝑌𝑌) �1
𝑆𝑆
∑ 𝜌𝜌(𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗)𝑋𝑋𝑗𝑗∈𝑆𝑆 �� �                                                                                             (4) 239 

and 240 

𝑀𝑀𝑅𝑅𝑀𝑀𝑅𝑅 −𝑀𝑀𝑀𝑀: max 
𝑋𝑋𝑖𝑖∉𝑆𝑆

�𝑀𝑀(𝑋𝑋𝑖𝑖 ,𝑌𝑌) �1
𝑆𝑆
∑ 𝑀𝑀(𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗)𝑋𝑋𝑗𝑗∈𝑆𝑆 �� �                                                                                              (5)                  241 

Where 𝐹𝐹(𝑋𝑋𝑖𝑖 ,𝑌𝑌) is the F-statistic used to measure the relevancy, 𝜌𝜌(𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗)  is the Pearson correlation 242 

coefficient (PC)  used to measure redundancy, 𝑀𝑀(𝑋𝑋𝑖𝑖 ,𝑌𝑌)  is the mutual information (MI) used to measure 243 

relevancy and 𝑀𝑀(𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗)  is the MI used to measure redundancy. The MI between two random variables X 244 

and Y can be defined as follows: 245 

𝑀𝑀(𝑋𝑋,𝑌𝑌) =  ∬𝑝𝑝(𝑋𝑋,𝑌𝑌) log(𝑝𝑝(𝑋𝑋,𝑌𝑌) 𝑝𝑝(𝑋𝑋)𝑝𝑝(𝑌𝑌)⁄ )  𝑅𝑅𝑑𝑑𝑅𝑅𝑑𝑑                                                                                                            246 

(6) 247 

The Python package scikit-learn [32] was used to calculate the MI between the variables. 248 

2.1.2. Regression models  249 

The LR model was implemented and used as a benchmark for the GBT model. Tree-based regression 250 

models such as GBT perform better than deep learning models on tabular data and often outperform 251 

other regression models [33]. The GBT algorithm works by fitting sequentially decision trees to the 252 

residuals from previous iterations. Contrary to the LR model, the GBT model can learn nonlinear 253 
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relationships between the covariates and the response variable and is robust against non-informative 254 

covariates [34]. The GBT model is a popular regression model that has been successfully applied in 255 

studies for short-term wind power prediction [35], wind resource mapping [26], the selection of solar 256 

power plant location [36] and short-term prediction of solar irradiance [37].  257 

The eXtreme Gradient Boosting package [XGB: 38] is a popular machine-learning library that implements 258 

the GBT algorithm efficiently. Several regularization strategies are available in XGB to improve the model 259 

performance and reduce computational time. To find adequate values for the parameters of XGB, a 260 

random search with 1000 iterations was implemented. Grid search and random search are popular 261 

algorithms used for hyperparameter tuning [39]. Grid search is a brute force algorithm that 262 

systematically tries all possible combinations of hyperparameter values within specified ranges. The 263 

algorithm can find the optimal hyperparameter values within the defined search space at the cost of 264 

increased computational resources and time. On the other hand, random search is a more efficient 265 

algorithm that does not guarantee the optimal solution but can find good hyperparameters [40]. Table 1 266 

presents the hyperparameters of the XGB model that were tuned in the study.  267 

Table 1: Hyperparameters of the XGB model  268 

Hyperparameters used during training   Search space  

(Min, Max, Step) 

Learning rate (Boosting learning rate)  (0.01, 0.1, 0.01) 

Minimum loss reduction (gamma) (0.0, 1.0, 0.1) 

Maximum depth of the trees (max_depth) (3, 10, 1) 

Ratio of predictor to use during training 

(colsample_bytree) 

(0.1, 0.7, 0.1) 

Subsample ratio of the training data (subsample) (0.1, 0.5, 0.1) 
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Number of trees (n_estimators)  (20, 300, 10) 

 269 

2.1.3. Recovery of the WS distribution from WSQ 270 

With estimated WSQ available at any non-sampled location, it is possible to fit different theoretical 271 

distribution functions using the LSE method. The LSE method is widely used for fitting WS probability 272 

distributions [41]. In their study, Jung and Schindler [26] applied the LSE method to recover the 273 

probability distribution of wind shear exponent from estimated quantiles of the same variable. LSE 274 

involves minimizing the sum of the square error (SSE) between the empirical cumulative probability 275 

(ECDF) and the theoretical CDF to determine the best-fitting parameters of the theoretical distribution 276 

function. Let 𝑊𝑊𝚤𝚤� be the predicted WSQ and 𝐹𝐹�(𝑊𝑊𝑖𝑖)) their associated CDF, the SSE can be written as 277 

follows:   278 

𝑆𝑆𝑆𝑆𝑆𝑆 =  ∑ �𝐹𝐹�(𝑊𝑊𝑖𝑖) − 𝐹𝐹(𝑊𝑊𝚤𝚤�;  𝜃𝜃�)�213
𝑖𝑖=1                                                                                                                           (7) 279 

Where: 𝐹𝐹(𝑊𝑊𝚤𝚤�;  𝜃𝜃�) corresponds to the cumulative probability function of 𝑊𝑊𝚤𝚤� with estimated parameter 𝜃𝜃�. 280 

The W, Log-Normal (LN), Rayleigh (R) and Generalized Gamma (GG) distribution were fitted to the 281 

estimated WSQ.  282 

Additionally, it is proposed to recover the WS distribution at unsampled locations using asymmetric 283 

KCDF. The asymmetric kernels method represents one of the solutions to the boundary effects that 284 

appear when using symmetric kernels with bounded random variables (ex.: WS values are bounded on 285 

[0, ꚙ]). By combining WSQ mapping and asymmetric kernel fitting, this study proposes a fully non-286 

parametric method for wind speed distribution mapping. Traditional parametric methods might 287 

introduce bias if the selected RD does not align with the data. The non-parametric approach can adapt to 288 

various WS distribution patterns without being restricted by specific parametric assumptions. This 289 

flexibility is necessary for a region with complex and diverse wind behaviors. In addition, combining the 290 
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WSQ mapping and asymmetric kernel fitting avoids the tedious process of testing and evaluating 291 

different probability distribution functions to model WS. 292 

The general expression for the asymmetric KCDF is given by [21]: 293 

𝐹𝐹�(𝑤𝑤) =  1 𝑃𝑃⁄ ∑ 𝐾𝐾�𝑤𝑤,𝑏𝑏(𝑊𝑊𝑖𝑖)𝑛𝑛
𝑖𝑖=1 ,                                                                                                                                         294 

(8) 295 

Where: 296 

𝑏𝑏 > 0 is the bandwidth and 𝐾𝐾�(∙) is the CDF of an asymmetric kernel function. In this work, the 297 

Birnbaum-Saunders (BS), the Log-Normal (LN) and W asymmetric kernel functions were tested [21, 42]:  298 

 𝐹𝐹�𝐵𝐵𝑆𝑆(𝑤𝑤) =  1 𝑃𝑃⁄ ∑ 𝐾𝐾�𝐵𝐵𝑆𝑆�𝑊𝑊𝑖𝑖;  𝑤𝑤,√𝑏𝑏�,𝑛𝑛
𝑖𝑖=1                      (9) 299 

𝐹𝐹�𝐿𝐿𝐿𝐿(𝑤𝑤) =  1 𝑃𝑃⁄ ∑ 𝐾𝐾�𝐿𝐿𝐿𝐿(𝑊𝑊𝑖𝑖; log𝑤𝑤 ,√𝑏𝑏)𝑛𝑛
𝑖𝑖=1 ,                    (10) 300 

𝐹𝐹�𝑊𝑊𝐵𝐵(𝑤𝑤) =  1 𝑃𝑃⁄ ∑ 𝐾𝐾�𝑊𝑊𝐵𝐵(𝑊𝑊𝑖𝑖;  𝑤𝑤/Γ(1 + 𝑏𝑏), 1/𝑏𝑏)𝑛𝑛
𝑖𝑖=1 ,                 (11) 301 

Where:  302 

 𝐾𝐾�𝐵𝐵𝑆𝑆(𝑑𝑑;  𝛽𝛽,𝛼𝛼) = 1 −  Φ���𝑑𝑑 𝛽𝛽⁄ − �𝛽𝛽 𝑑𝑑⁄ � 𝛼𝛼⁄ �, 𝛽𝛽,𝛼𝛼 > 0,                              303 

(12) 304 

𝐾𝐾�𝐿𝐿𝐿𝐿(𝑑𝑑; 𝜇𝜇,𝜎𝜎) =  1 −  Φ((log 𝑑𝑑 − 𝜇𝜇) 𝛼𝛼⁄ ), 𝜇𝜇,𝜎𝜎 > 0,                   305 

(13) 306 

𝐾𝐾�𝑊𝑊𝐵𝐵(𝑑𝑑;𝛼𝛼,𝛽𝛽) = exp(−(𝑑𝑑 𝛽𝛽⁄ )𝛼𝛼),   𝛼𝛼,𝛽𝛽 > 0,                  (14) 307 

Φ(∙) is the CDF of the standard normal distribution and Γ(∙) is the gamma function.  308 

The optimal bandwidths can be selected by minimizing the Mean Integrated Square Error (MISE) 309 

𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 =  ∫ 𝑀𝑀𝑆𝑆𝑆𝑆 �𝐹𝐹�(𝑤𝑤)�∞
0  𝑅𝑅𝑤𝑤                                                                                                                                (15) 310 
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Where: 311 

𝑀𝑀𝑆𝑆𝑆𝑆 �𝐹𝐹�(𝑤𝑤)� = 𝑆𝑆 ��𝐹𝐹�(𝑤𝑤)−  𝐹𝐹(𝑤𝑤)�
2
�                                                                                                                (16) 312 

Mombeni, et al. [21] derived the asymptotical optimal bandwidth of 𝐾𝐾�𝐵𝐵𝑆𝑆 and 𝐾𝐾�𝑊𝑊𝐵𝐵 with respect to the 313 

MISE: 314 

𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜𝐵𝐵𝑆𝑆 ≈  �∫ 𝑑𝑑𝑓𝑓(𝑑𝑑)𝑅𝑅𝑑𝑑∞
0 �

2 3⁄
�𝜋𝜋

1
2 ∫ �𝑑𝑑𝑓𝑓(𝑑𝑑) + 𝑑𝑑2𝑓𝑓′(𝑑𝑑)�2𝑅𝑅𝑑𝑑∞

0 �
−2 3⁄

𝑃𝑃−2 3⁄  ,                                                                    315 

(17) 316 

𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜𝑊𝑊𝐵𝐵 ≈ �36 ln 2 ∫ 𝑑𝑑𝑓𝑓(𝑑𝑑)𝑅𝑅𝑑𝑑∞
0 �

1
3 �𝜋𝜋4 ∫ �𝑑𝑑2𝑓𝑓′(𝑑𝑑)�2𝑅𝑅𝑑𝑑∞

0 �
−13 𝑃𝑃−

1
3 ,                                                                       (18) 317 

Lafaye de Micheaux and Ouimet [42] proposed the following asymptotical optimal bandwidth with 318 

respect to the MISE for 𝐾𝐾�𝐿𝐿𝐿𝐿:  319 

𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜𝐿𝐿𝐿𝐿 ≈  � 1
√𝜋𝜋
∫ 𝑑𝑑∞
0 𝑓𝑓(𝑑𝑑)𝑅𝑅𝑑𝑑�

2
3 �4∫ 𝑥𝑥2

4
�𝑓𝑓(𝑑𝑑) + 𝑑𝑑𝑓𝑓′(𝑑𝑑)�2𝑅𝑅𝑑𝑑∞

0 �
−23 𝑃𝑃−

2
3 ,                                                               (19) 320 

The optimal bandwidth with respect to the MISE was selected under the assumption that the W with 321 

parameters estimated using the predicted WSQ and the LSE method was the target distribution. The 322 

reason for employing the W distribution in the paper is two-fold: First, it is the parametric probability 323 

distribution function most commonly used to model WS; Secondly, it is convenient because its CDF can 324 

be linearized with respect to its parameters and the WSQ. As a result, finding the best-fitting parameters 325 

with the LSE method is equivalent to solving a linear equation and does not require an optimization 326 

algorithm.  327 

2.2. Weibull parameter mapping  328 

In previous studies, to estimate the WS probability distribution at unsampled locations, machine learning 329 

models were used to map the parameters of a RD. The approach selects a single distribution family for 330 
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the entire region. Then, the distribution function parameters are fitted at the sampled locations, and a 331 

regression model is built between the parameters and WS covariates. Jung [11] selected the Wakeby 332 

distribution as the RD in southwest Germany based on two goodness of fit measures: Kolmogorov-333 

Smirnov statistic and the coefficient of determination. For a review of criteria used for the identification 334 

of adequate WS distributions the reader is referred to Ouarda, et al. [43]. Veronesi, et al. [8] selected the 335 

W as the RD in the UK due to its widespread use in modelling WS, and convenience as it requires only 336 

two parameters to characterize the WS probability distribution. The W was also adopted as the RD in this 337 

study to evaluate the QWSM approach. The W parameters were estimated with the LSE method and the 338 

best-fitting parameters were mapped in the region using the WS covariates described in section 3 and 339 

the LR and XGB regression models described in section 2.1.2. The MRMR algorithm was also applied to 340 

identify the best set of covariates to include in the regression models.  341 

2.3. Model validation  342 

To evaluate the QWSM and the WPM, holdout and 5-fold cross-validation were implemented with the 343 

available samples. During the holdout procedure, parts of the samples were withheld (the validation set) 344 

before model training and parameter tuning and used to evaluate the final model generalization 345 

performance. During 5-fold cross-validation, the training samples were divided into five approximately 346 

equal subsets. Then, the holdout method was implemented five times by considering each subset as the 347 

validation set and training the model on the remaining subsets.  348 

The following metrics were calculated based on the observed (𝑑𝑑𝑖𝑖) and estimated (𝑑𝑑�𝑖𝑖) values:  349 

𝑅𝑅2 = 1 −  ∑ (𝑑𝑑𝑖𝑖 − 𝑑𝑑�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 ∑ (𝑑𝑑𝑖𝑖 − 𝑑𝑑�)2𝑛𝑛

𝑖𝑖=1⁄                                                                                            (20)                                                                                                     350 

𝑅𝑅𝑀𝑀𝑆𝑆𝑆𝑆 =  �1 𝑃𝑃⁄ ∑ (𝑑𝑑𝑖𝑖 − 𝑑𝑑�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1                                                                                                                      (21)       351 

𝑀𝑀𝑀𝑀𝑆𝑆 =  1 𝑃𝑃⁄ ∑ |𝑑𝑑𝑖𝑖 − 𝑑𝑑�𝑖𝑖|𝑛𝑛
𝑖𝑖=1                                                                                                                                         (22) 352 

 353 
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The evaluation of the GOF of the estimated WS probability distribution was based on the percentage 354 

probability plot [PP plot: 44]. The PP plot compares the ECDF to the estimated CDF. During cross-355 

validation and validation, the R², the RMSE and the MAE defined in equations 20, 21 and 22, respectively, 356 

were used to evaluate the degree of association between the ECDF and the CDF. Horst [45] noted that 357 

the PP plot has strong discriminatory power in high-density regions of the distribution (i.e.: the middle of 358 

a distribution), where the CDF changes more rapidly with the WS values compared to low-density 359 

regions (i.e.: the tails). Regions of the probability distribution with high density are the most crucial for 360 

wind energy production. Also, in their reviews on WS distribution selection, Jung and Schindler [9] 361 

observed that the most widely used GOF metrics were based on the PP plot. 362 

The Kolmogorov–Smirnov statistic (D) is an alternative measure that was used to compare the ECDF and 363 

the CDF:   364 

𝐷𝐷 = max |𝐹𝐹𝑛𝑛(𝑊𝑊𝑖𝑖) −𝐹𝐹�(𝑊𝑊𝑖𝑖)|                                                                                                                                    365 

(23) 366 

Where 𝐹𝐹𝑛𝑛(𝑊𝑊𝑖𝑖) is the ECDF and 𝐹𝐹�(𝑊𝑊𝑖𝑖) is the estimated CDF.  367 

The ECDF was calculated with the Weibull plotting position [46] giving unbiased non-exceedance 368 

probabilities regardless of the underlying distribution of the data [47]: 369 

𝐹𝐹𝑛𝑛(𝑊𝑊𝑖𝑖)  = 𝑖𝑖 (𝑃𝑃 + 1)⁄                                                                                                                                                (24) 370 

Where 𝑖𝑖 = 1, … ,𝑃𝑃 is the rank of the WS values after sorting them in ascending order. 371 

3. Study area and dataset  372 

The study was conducted on data from the whole Canada representing a total area of 9,984,670 square 373 

kilometers. Hourly WS data from 207 meteorological stations located throughout the country were used 374 

for the research. From Environment and Climate Change Canada (ECCC) historical climate database, 375 
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stations with at least 20 years of recent WS record were selected. Additional filtering was performed to 376 

eliminate all stations with more than ten years of record having two months of missing data. Figure 2 377 

illustrates the geographical location of the 207 stations that were selected after filtering. From the 378 

available stations, 155 (white triangles in figure 2) were used for FS, model training and cross-validation 379 

and the remaining stations (black dots in figure 2) were used to validate the final model as explained in 380 

section 2.3. 381 

 382 

Figure 2: Spatial distribution of the training and validation stations used in this study.  383 

The following four types of covariates were used with the regression models to either estimate the WSQ 384 

or the W parameters: topographic, climatic, geographic, and surface roughness length. The 385 

topographical covariates were created using the WhiteboxTools [48] and a 30m resolution global DEM 386 
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[49]. Seasonal and annual trends of mean temperature data were acquired from the Canadian gridded 387 

temperature and precipitation anomalies (CANGRD) dataset (available at https://climate-388 

change.canada.ca/climate-data/#/historical-gridded-data). Surface roughness length was extracted from 389 

a 2015 Canada land use map [50] resampled at different spatial resolutions using majority resampling 390 

(i.e.: most popular value in a defined radius). A surface roughness length was associated with each land 391 

use type based on a lookup table proposed by Wiernga [51]. Table 7 in Appendix II provides more details 392 

about the covariates.  393 

4. Results 394 

4.1. Performance of regression models  395 

The LR and the XGB models were fitted with covariates selected using MRMR-PC and MRMR-MI. The 396 

results of comparing the different combinations of regression models and FS methods are presented in 397 

Tables 3 and 4 for QWSM and the WPM, respectively. Figure 3 details the average R² for estimating the 398 

13 WSQ and the two W parameters (shape and scale). The comparisons using cross-validation and 399 

validation lead to very similar results, indicating, in general, that XGB with MRMR-PC outperforms the 400 

other combinations of regression models and FS methods. Indeed, XGB gave better results than LR in 401 

most cases, and MRMR-PC was more effective than MRMR-MI for FS in the study. In the few cases where 402 

LR outperformed XGB, the performance difference was marginal and inconsistent during cross-validation 403 

and validation (see, for instance, P8 in Figures 3a and 3b). Tables 3 and 4 indicate that the improved 404 

performance of XGB with MRMR-PC is consistent across all metrics. Hereon, only the results obtained 405 

with estimations from the top-performing FS and regression model (MRMR-PC + XGB) will be presented.  406 

Figure 4 displays the spatial distribution of the RMSE (WSQ) scaled by the actual WS median for the 407 

validation set. This representation allows for comprehensive visualization of the accuracy and variability 408 

of the model's predictions across different locations. Scaling the RMSE with the actual median provides a 409 

https://climate-change.canada.ca/climate-data/#/historical-gridded-data
https://climate-change.canada.ca/climate-data/#/historical-gridded-data
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relative measure of error that can be compared and interpreted meaningfully. The spatial distribution of 410 

the scaled RMSE revealed that the model exhibited acceptable performances in estimating the WSQ in 411 

regions with sparse training samples highlighting its generalization capability. 412 

Table 3: Average performance metrics for the estimation of WSQ 413 

Validation Methods Regression 
model 

MRMR MAE R² RMSE 

   km/h  km/h 

Cross-validation  LR MI 3.59 0.23 4.90 
Cross-validation  LR PC 3.40 0.26 6.11 
Cross-validation  XGB MI 3.24 0.42 4.30 
Cross-validation  XGB PC 3.08 0.47 4.07 
Validation LR MI 3.64 0.36 4.48 
Validation LR PC 3.24 0.46 4.19 
Validation XGB MI 3.30 0.46 4.22 
Validation XGB PC 3.00 0.57 3.74 

 414 

Table 4: Average performance metrics for the estimation of the W parameters 415 

Validation Methods Regression 
model 

MRMR MAE R² RMSE 

      
Cross-validation  LR MI 1.88 0.27 2.47 
Cross-validation  LR PC 2.02 - 4.79 
Cross-validation  XGB MI 1.83 0.45 2.27 
Cross-validation  XGB PC 1.61 0.48 2.12 
Validation LR MI 2.07 0.32 2.42 
Validation LR PC 1.76 0.37 2.27 
Validation XGB MI 1.75 0.42 2.16 
Validation XGB PC 1.58 0.48 1.97 

 416 

 417 

 418 

 419 
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 420 

Figure 3: Performance of LR and XGB for the estimation of the WSQ (a and b) and the W parameters (c 421 
and d) during cross-validation (a and c) and validation (b and d). Note: Negative values of R² were set to 422 
zero 423 
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 424 

Figure 4: Spatial distribution of the scaled RMSE (WSQ) of the validation set  425 

 426 

4.2. Wind speed distribution mapping  427 

This section presents the results of the comparative analysis between the QWSM and WPM. Table 5 428 

shows the mean values of the GOF metrics. In general, it is observed that the QWSM gave a better fit 429 

than WPM for the considered metrics. Also, QWSM/W gave better fit than WPM. According to the R², 430 

RMSE and MAE criteria, QWSM/W and QWSM/GG were the best-performing methods, and their 431 

performances are very similar to QWSM/KCDF/BS and QWSM/KCDF/LN. However, during cross-432 

validation and validation, the Kolmogorov-Smirnov statistic (D) seemed to favor QWSM/KCDF/LN and 433 

QWSM/KCDF/BS. The distribution of the GOF measures was represented using boxplots in Figure 4. The 434 

most noticeable difference in the distribution of the GOF measures was observed with D when 435 

comparing the different approaches. The methods based on QWSM/KCDF/LN and QWSM/KCDF/BS 436 

resulted in smaller D values and less variability in the same GOF measure compared to other approaches.  437 
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Furthermore, the different methods were evaluated by comparing the observed and estimated WSQ 438 

across ten equidistant percentiles ranging from 0.1 to 0.9. The outcome of this analysis (Figure 6) 439 

indicated that the QWSM methods often outperformed the WPM for the considered WSQ. Methods 440 

based on QWSM with the asymmetric kernels tend to give comparable performances to the parametric 441 

methods in the middle of the distribution (ex.: 0.4, 0.5, 0.6 percentiles). While in the tails (ex.: 442 

percentiles 0.1, 0.9) the parametric methods showcased a better performance than the non-parametric 443 

methods.  444 

 445 

Table 5: Mean value of the GOF measures  446 

Distribution Validation 
Methods 

D MAE R² RMSE 

QWSM/GG Cross-validation 0.137 0.039 0.938 0.058 
QWSM/GG Validation 0.147 0.041* 0.922* 0.062* 
QWSM/KCDF/BS Cross-validation 0.131 0.043 0.938 0.059 
QWSM/KCDF/BS Validation 0.143* 0.045 0.920 0.063 
QWSM/KCDF/LN Cross-validation 0.131 0.044 0.937 0.059 
QWSM/KCDF/LN Validation 0.143* 0.045 0.920 0.063 
QWSM/KCDF/W Cross-validation 0.137 0.046 0.932 0.061 
QWSM/KCDF/W Validation 0.150 0.046 0.911 0.064 
QWSM/LN Cross-validation 0.165 0.042 0.93 0.064 
QWSM/LN Validation 0.165 0.043 0.913 0.065 
QWSM/R Cross-validation 0.157 0.042 0.926 0.065 
QWSM/R Validation 0.168 0.044 0.908 0.069 
QWSM/W Cross-validation 0.136 0.039 0.939 0.058 
QWSM/W Validation 0.147 0.041* 0.921 0.062* 
WPM Cross-validation 0.144 0.042 0.93 0.062 
WPM Validation 0.152 0.043 0.910 0.065 
Note: The best-performing methods are indicated in bold for the cross-validation 
and marked with * for the validation.  

 447 

Table 5 448 
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   449 
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Figure 5: GOF of estimated WS probability distribution. Note: Negative values of R² were set to zero 450 

 451 

 452 

Figure 6: Performance metrics for observed WSQ and estimated WSQ using QWSM and WPM (validation 453 
set) 454 

In Figure 7, the P-P plot, the CDF, and the probability density function (PDF) plot of 3 validation samples 455 

are presented for illustration purposes. These plots offer a comprehensive visual analysis of the actual 456 

and estimated WS distribution agreement. Recall that QWSM/W was selected as the target distribution 457 

to estimate the optimal bandwidth for all KCDF. However, it is observed that the kernel PDFs exhibited 458 

more flexibility than QWSM/W. The W kernel demonstrated more flexibility than the BS and LN kernels, 459 

while both gave an almost identical PDF.  460 

 461 

 462 

 463 
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 464 

 465 

Figure 7:  PP plot, CDF plot and PDF plot of estimated wind speed probability distributions 466 

 467 

5. Discussion  468 

The comparison of the regression models indicates that the non-linear model (XGB) outperformed the 469 

linear model (LR) for the estimation of WSQ and the W parameters. The superior performance of the 470 

XGB model suggests that there are non-linear associations and interactions between the covariates and 471 

the WS response variables (WSQ and W parameters). The XGB model can effectively capture these non-472 

linear relationships, leading to more accurate and precise estimates than the linear model. There is 473 

potential for further improvement in the performance of the XGB model by conducting a more 474 

comprehensive hyperparameter tuning. A random search was employed for the XGB hyperparameter 475 
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tuning and proved sufficient to demonstrate the superiority of the XGB model over the LR model. 476 

However, a more extensive hyperparameter tuning process, such as grid search or Bayesian optimization 477 

[52], could be conducted to thoroughly search for the optimal combination of hyperparameters that 478 

maximizes the model's performance. 479 

The study also found that MRMR-PC was more effective for FS than MRMR-MI. MI can assess linear and 480 

nonlinear dependencies between variables, and it was initially expected that combining MRMR-MI with 481 

XGB would outperform the combination of MRMR-PC with XGB. However, similar results were observed 482 

by Ren, et al. [53] in the field of hydrology. The authors discovered that a FS method based on the partial 483 

Pearson correlation outperformed FS methods based on MI (including MRMR-MI) when applied with 484 

linear and nonlinear regression models for monthly streamflow forecasting. The study attributed these 485 

results to the possibility that the relationship between the covariates and the target variable in their 486 

models exhibited more linearity than nonlinearity. Similar conclusions may be formulated in this study, 487 

suggesting that the gain in performance achieved using the XGB could also be attributed to other 488 

characteristics of the models, such as its robustness against redundant features and collinearity within 489 

the features set. Despite these findings, it is still recommended to evaluate different FS methods. 490 

Different scenarios or datasets may yield different results.  491 

It is well known that wind speed and other climatic variables like humidity, pressure, and temperature 492 

are interconnected. The main challenge in using climatic variables for estimating wind speed at 493 

unsampled locations is that those variables should also be unavailable. Gridded climate data can be used 494 

as an alternative source of climatic covariates. This study only used gridded climate data of long-term 495 

temperature trends as climatic covariates. Investigating the applicability of other gridded climate data as 496 

covariates for WS distribution mapping in future studies is recommended. 497 
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Veronesi, et al. [8] reviewed the performance of physical and statistical methods for wind resources 498 

assessment. They found that most studies applying statistical methods reported an RMSE of around 1 499 

m/s on their validation set when considering the central tendency of the wind speed distribution (ex.: 500 

mean). In the current study, the average RMSE for estimating the median wind speed obtained was 3.28 501 

km/h (0.87 m/s), and the average MAE was 2.62 km/h (0.69 m/s). These results seem to agree with 502 

previous studies. However, as was pointed out by Veronesi, et al. [8], results from different studies are 503 

generally difficult to compare as different datasets, regions and techniques were covered in these 504 

studies.    505 

In general, based on the evaluation of the GOF, QWSM demonstrated a better fit compared to WPM. 506 

This result may be explained by the fact that the estimation of the WS distribution from WSQ may be less 507 

sensitive to mapping error compared to WPM. For instance, in the case of the WPM, minor errors in 508 

mapping the W parameter could have disproportionate effects on the overall resulting shape of the wind 509 

speed distribution. In contrast, with the QWSM, the implications of mapping errors are less severe, as 510 

inaccuracies in wind speed quantile mapping seemed to have a smaller impact on the overall 511 

distribution's shape. Consequently, the QWSM approach exhibits enhanced robustness against errors in 512 

mapping, rendering it a more dependable framework for wind speed distribution mapping. 513 

The non-parametric approach with the BS and LN KCDF gave slightly better results than the parametric 514 

approach when considering the Kolmogorov-Smirnov statistic. The non-parametric method does not 515 

require fixing a regional distribution and can adequately recover the WS distribution from the estimated 516 

quantiles. Parametric methods require fitting the data to a specific probability distribution family, which 517 

may introduce bias if the assumed distribution does not align with the underlying distribution. Another 518 

potential source of bias common to both methods (i.e.: QWSM, WPM) is related to the regression 519 

models used to estimate either the WSQ or the RD parameters. It should be noted that the bulk of the 520 

bias of the QWSM + KCDF method arises from the regression model used to map the WSQ in the region. 521 
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Thus, the non-parametric approach can reduce potential biases by minimizing the assumptions. The 522 

proposed approach becomes particularly interesting in regions where the wind regime exhibits 523 

significant variations, and no single distribution family is suitable for all locations within the region. With 524 

their constraints, parametric methods may struggle to capture the diversity of complex patterns that can 525 

be present in such regions. In contrast, with its flexibility, the non-parametric approach can be more 526 

appropriate and should yield more accurate results. Alternatively, it is possible to segregate the regions 527 

into sub-regions and select a different RD for each sub-region. However, this would reduce the number 528 

of samples used to learn the relationship between the covariates and the RD parameters, potentially 529 

leading to a loss in performance. For WS values located in the distribution's tails (for instance, extreme 530 

values), opting for the QWSM method with parametric distribution functions would be more suitable. 531 

This recommendation is based on the finding that these parametric approaches exhibited superior 532 

performance compared to non-parametric approaches in this case. 533 

Mapping the WSQ in this study involved extracting the quantiles from the time series and then using a 534 

regression model that estimates the conditional mean of the quantiles given the covariates. An 535 

alternative approach could be directly estimating the conditional quantiles using a quantile regression 536 

[54-57] model incorporating the covariates. Quantile regression is a statistical technique that allows 537 

estimating specific quantiles of the response variable rather than focusing solely on the conditional 538 

mean.  539 

The main drawback of the QWSM approach is that the number of independent variables (quantiles) that 540 

need to be mapped to recover the WS distribution would often be superior to the number of the RD 541 

parameters that require mapping in the WPM approach. Fitting these individual regression models can 542 

become time-consuming and resource intensive. However, some quantile regression models can 543 

simultaneously estimate multiple quantiles [57, 58], providing a more efficient approach compared to 544 

building separate regression models for each quantile. Also, when estimating multiple quantiles 545 
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simultaneously, additional constraints can be formulated to enforce monotonicity [59] and avoid the 546 

issue of quantile crossing that arises when estimating the quantiles independently. It is worth 547 

mentioning that a gradient-boosting model [60] was recently proposed to simultaneously estimate the 548 

parameters of a probability distribution conditioned on some covariates. This model could be used to 549 

estimate the parameters of a RD simultaneously rather than building an independent model for each 550 

parameter.   551 

Modern wind turbine hub heights vary between 80m and 100m, while wind speed data are 552 

conventionally collected at 10m at meteorological stations. As a result, a technique for extrapolating 553 

wind speed data to hub height becomes necessary (ex.: the power law). Such techniques can extend the 554 

method proposed in this study to map wind speed distribution at hub height. Nevertheless, it is worth 555 

noting that such extrapolation introduces a notable increment in the uncertainty of the outcomes.   556 

Jung and Schindler [26] proposed a technique for mapping wind shear distribution, allowing the wind 557 

speed distribution to be mapped at any standard hub height. Jung and Schindler [26] selected the Dagum 558 

family distribution to represent the wind shear distribution. In future research, the non-parametric 559 

approach proposed in this study could be adapted to map wind shear distribution without prior 560 

assumptions about its distribution. Also, future studies can explore the possibility of extending the 561 

proposed approach to other types of climatic variables, such as temperature and solar irradiation.  562 

The approach proposed in this study can provide valuable information to estimate wind resources over a 563 

large area during a prospecting phase. Once an area that meets the necessary socio-economic 564 

requirements and showcases sufficient wind potential is identified, alternative methods are available to 565 

evaluate the wind flow at the microscale. An example of such an approach involves conducting wind flow 566 

simulations via Computational Fluid Dynamics (CFD), especially in complex terrain [61]. The 567 

implementation of a CFD model requires the provision of initial wind data, which can be sourced from 568 
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outputs generated by Numerical Weather Prediction [NWP: 62, 63, 64]. NWP models entail considerable 569 

computational costs compared to statistical methodologies proposed herein. A compelling avenue of 570 

research would involve comparing the performance of NWP and statistical models for CFD model input 571 

and developing methods to combine statistical and CFD models to assess microscale wind flow dynamics.  572 

 573 

6. Conclusion  574 

A fully non-parametric approach was developed to map wind speed distribution. The new method was 575 

compared to a more traditional approach based on mapping the parameters of a regional distribution. 576 

The results of the comparative analysis highlighted the superiority of the proposed approach. The main 577 

conclusions of the paper are summarized as follow: 578 

• The non-parametric approach is more practical as it does not require fitting and evaluating 579 

several distribution functions to the available wind speed data. In the proposed method, wind 580 

speed quantiles can be easily extracted from the time series and mapped using suitable 581 

machine-learning techniques. At any location in the study area, the entire wind speed 582 

distribution can be recovered from the estimated wind speed quantile by fitting asymmetric 583 

kernel estimators. The proposed approach is free from any assumption on the wind speed 584 

probability distribution family in the region that can bias the analysis. The non-parametric 585 

approach is recommended for mapping wind speed distribution in regions with a highly variable 586 

wind regime. The analysis indicates that the fully non-parametric approach improved the 587 

Kolmogorov-Smirnov statistic by 9% on average during validation.  588 

• Compared to the regional distribution parameter mapping approach, quantile-based wind speed 589 

distribution mapping can be slower to implement as it requires the estimation of multiple wind 590 

speed quantiles. However, with the advancement in quantile regression models, it is possible to 591 
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build a single regression model to predict multiple quantiles. This type of quantile regression 592 

model should reduce the computational burden associated with the proposed approach.  593 

• The Gradient boosting trees model outperformed the multilinear regression model for mapping 594 

wind speed quantiles and the Weibull parameters. At the same time, feature selection based on 595 

the Pearson correlation coefficient was more effective than the Mutual information. Utilizing the 596 

Gradient Boosting Trees model and feature selection based on the Pearson correlation 597 

coefficient resulted in a 23% improvement in R2 during validation compared to the second-best 598 

model for estimating wind speed quantiles. 599 

• It should be noted that symmetric kernels could also be fitted to the estimated wind speed 600 

quantiles, with some probabilities associated to small negative wind speed values. Using an 601 

asymmetric kernel effectively avoids probability leakage at the boundary of the lower tail of the 602 

wind speed probability distribution.  603 

• The proposed approach is easily portable to regions with sparsely available wind speed 604 

measuring stations. The other data sources used in the study (ex.: DEM and land use map) are 605 

often freely accessible from global datasets covering most regions of the world.  606 
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Appendix  I  Statistics of the estimated wind speed quantiles 615 

Table 6: Statistics of the estimated wind speed quantiles 616 

Percentile Mean 
(km/h) 

Std 
(km/h) 

Min 
(km/h) 

25% 
(km/h) 

50% 
(km/h) 

75% 
(km/h) 

Max 
(km/h) 

5 4.2 1.6 1 3 4 5 9 
12.5 6.4 2.2 2 5 6 7 13 
20 8.2 2.9 3 6 7 9.5 18 
27.5 9.9 3.4 4 7 9 12 20 
35 11.6 4.0 4 9 11 14.5 24 
42.5 13.4 4.4 5 11 13 16.5 28 
50 15.2 4.9 6 12 15 19 31 
57.5 17.1 5.4 6 13 17 20 35 
65 19.4 6.1 7 15 19 23.5 39 
72.5 21.9 6.7 7 17 21 26 44 
80 24.8 7.6 9 19 24 30 51 
87.5 29.0 8.7 11 22.5 28 35 59 
95 36.2 10.9 14 28.5 35 44 74 

 617 

Appendix  II. Wind speed covariates  618 

Table 7: Overview of the WS covariates  619 

Predictor  Description  Spatial scale  
Altitude  Altitude of the location in meter.   
Aspect  Slope orientation in degree.  100m, 500m, 1000m, 

1500m, 2000m 
Deviation from 
mean elevation  

Difference between the grid cell 
elevation and the mean of its 
neighbouring cells normalized by the 
standard deviation.  

100m, 500m, 1000m, 
1500m, 2000m 

Difference from 
cell mean 
elevation  

Difference between the grid cell 
elevation and the mean of its 
neighbouring cells.  

100m, 500m, 1000m, 
1500m, 2000m 

Difference of 
Gaussian  

Difference between two copies of the 
DEM smoothed with two different 
gaussian kernel. Measure land surface 
curvature.  

(100m, 500m), (100m, 
1000m), (500m, 1000m), 
(300m, 500m), (1000m, 
2000m), (1000m, 1500m), 
(100m, 2000m), (500m, 
2000m) 

Distance to coast  The location distance to the coast    
Elevation 
percentile  

Percentile of the grid cell elevation 
relative to the neighbouring cells.  

100m, 500m, 1000m, 
1500m, 2000m 
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Gaussian 
curvature  

Product between the maximal and the 
minimal curvature. Measure of surface 
curvature  [65].  

100m, 500m, 1000m, 
1500m, 2000m 

Geographical 
coordinates 

Geographical coordinates of the 
location.  

 

geomorphologic 
phonotypes 
(geomorphons) 

Landform element classification with 
the geomorphons-based method [66]. 

 

Laplacian of 
Gaussian  

Derivative filter used to highlight 
location of rapid elevation change. 

100m, 500m, 1000m, 
1500m, 2000m 

Maximal 
curvature  

Measure of surface curvature [67]. 100m, 500m, 1000m, 
1500m, 2000m 

Mean curvature  Measure of surface curvature [67]. 100m, 500m, 1000m, 
1500m, 2000m 

minimal 
curvature 

Measure of surface curvature [65]. 100m, 500m, 1000m, 
1500m, 2000m 

Pennock 
landform class 

Landform classification based on the 
slope and curvature of the grid cell [68]. 

 

plan curvature Measure of surface curvature [65]. 100m, 500m, 1000m, 
1500m, 2000m 

Relative 
topographical 
position  

Normalized measure of the grid cell 
elevation relative to its neighbouring 
cells. 

100m, 500m, 1000m, 
1500m, 2000m 

Ruggedness 
index 

A measure of the local terrain 
heterogeneity [66, 69] 

100m, 500m, 1000m, 
1500m, 2000m 

Slope  Slope at the grid cell. 100m, 500m, 1000m, 
1500m, 2000m 

Standard 
deviation of slope 

Measure of surface roughness [70]. 100m, 500m, 1000m, 
1500m, 2000m 

Surface area ratio Measure of the surface roughness [71]. 100m, 500m, 1000m, 
1500m, 2000m 

Surface 
roughness length  

Surface roughness length estimated 
from land use map.  

100m, 500m, 1000m, 
1500m, 2000m 

tangential 
curvature 

Measure of surface curvature [65]. 100m, 500m, 1000m, 
1500m, 2000m 

Total curvature Measure of surface curvature.  100m, 500m, 1000m, 
1500m, 2000m 

Temperature 
trend  

Seasonal and annual trends of mean 
temperature change between 1948-
2018.  

 

 620 

 621 
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