
1. Introduction
According to the Clausius–Clapeyron (CC) relationship, the water holding capacity of the atmosphere will 
increase at a rate of around 7%/°C under warming conditions, hereafter called the CC scaling rate (Trenberth 
et al., 2003). Extreme rainfall events are therefore expected to follow this rate in a future climate, assuming that: 
(a) they are mainly conditioned by the available precipitable water in the atmosphere; (b) the relative humid-
ity remains almost constant, and (c) no significant change in the atmospheric circulation patterns will occur 
(Lenderink & Meijgaard, 2008). However, different studies (using observational datasets and models) have shown 
various responses of extreme rainfall to temperature changes. These responses range from monotonous increas-
ing trends (below, around, and over the CC scaling) to decreasing trends, or even monotonous increasing trends 
with a plateau or followed by a decreasing trend at higher temperatures (Berg et al., 2009; Drobinski et al., 2016; 
Hardwick Jones et al., 2010; Lenderink & Meijgaard, 2008; Lenderink et al., 2011; Maeda et al., 2012; Mishra 
et al., 2012; Panthou et al., 2014; Utsumi et al., 2011; Westra et al., 2014).

Reported scaling larger than the CC rate (hereafter called super CC scaling) has been the subject of numerous 
papers. Lenderink and Meijgaard (2009), Lenderink and Meijgaard (2010) argued that the super CC scaling was 
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associated with some basic physical process of convective events (latent heat release increases with temperature 
increments intensifying the updrafts on convective clouds). According to another hypothesis proposed by Haerter 
and Berg (2009), super CC can be explained by the transition from a scaling dominated by large-scale events at 
lower temperatures to one dominated by convective rainfall at higher temperatures and is related to a shift from 
more dominant large-scale to more convective rainfalls. Therefore they proposed that the coexistence of both 
precipitation types can explain the super CC.

Berg and Haerter (2013) investigated the scaling of large-scale and convective rainfalls independently (obtained 
from synoptic weather types or synoptic codes) by using observations in Germany. They showed that super CC 
scaling is observed for some temperature ranges for both rainfall types and total rainfall (convective + large-scale). 
These authors also found that the observed super CC scaling for total rainfall results from changes in the dominant 
processes involved in rainfall generation as temperature increases, supporting the hypothesis of the statistical 
mixture of rainfall types proposed by Haerter and Berg  (2009). Molnar et  al.  (2015), based on observations 
records in Switzerland, found higher scaling rates for convective events (between 8% and 9%/°C) than for strat-
iform ones (between 6% and 7%/°C) but smaller than those obtained when both rainfall types were considered 
(between 11% and 13%/°C). These results highlight the strong influence of rainfall types on scaling and how the 
coexistence of stratiform and convective components can explain the departure from CC scaling as proposed by 
Haerter and Berg (2009).

Park and Min (2017) found that the fraction of convective rainfall plays an essential role in shaping the scaling 
relationship over South Korea. These authors observed that the transition from CC to super CC scaling occurs 
when the fraction of convective events reaches a value close to 0.2 (similar to the one reported in Germany by 
Berg et al., 2013). Classification of precipitation into convective or stratiform categories was based on observa-
tions of dominant cloud type. These authors also found that convective rainfall was more sensitive to variations 
in temperature than stratiform events (twice the CC scaling for convective events compared to values close to 
the CC scaling for temperature above 12°C for stratiform events). Their results support the hypothesis that both, 
statistical effect or statistical mixture of rainfall types (Haerter & Berg, 2009) and physical process (Lenderink 
& Meijgaard, 2009, 2010) contribute to super CC for the studied region. Ivancic and Shaw (2016) found that 
the statistical effects were the main driver of the observed super CC in most cases over the northeastern U.S. In 
some sites, super CC was related to physical processes, and in a small number of sites, to the coexistence of both 
mechanisms.

The separation of rainfall types into stratiform and convective-dominated REs is therefore important to study 
the temperature-precipitation relationship, especially when super CC scaling is observed. Many methods have 
been proposed to differentiate rainfall types such as those using synoptic weather types (or synoptic codes) (Berg 
& Haerter, 2013), weather conditions and/or cloud observations (Berg et al., 2013; Chernokulsky et al., 2019; 
Park & Min, 2017; Rulfová & Kyselý, 2013; Ye et al., 2017), lightning occurrence (Gaál et al., 2014; Ivancic & 
Shaw, 2016; Molnar et al., 2015), event intensity and duration (Hand et al., 2004; Hatsuzuka et al., 2021; Loriaux 
et al., 2013; Panthou et al., 2014), radar observations (Llasat et al., 2005; Penide et al., 2013; Rigo & Llasat, 2004), 
rainfall observations (using the distribution of rainfall amount as a function of the rainfall rate) (Martinkova & 
Hanel, 2016; Ruiz-Leo et al., 2013; Tremblay, 2005), based on simulations from regional climate models (RCM) 
(Fischer et al., 2015; Kyselý et al., 2016), or even using manual classifications (Kunkel et al., 2012).

The Large Ensemble (50 members) of regional climate simulations from the fifth version of the Canadian Regional 
Climate Model (CRCM5-LE) was considered for the present study (Leduc et al., 2019; Martynov et al., 2013; 
Šeparović et al., 2013). Pérez Bello et al. (2021) (hereafter PB21), using the CRCM5-LE simulations, estimated 
the TPSRs at different time scales and intensities for historical and future climate with surface air temperature 
(SAT) or surface dew point temperature (SDPT) as a covariate. Fixed-interval (e.g., 1 hr or 24 hr) annual maxi-
mum (AM) values were analyzed. These authors found a super CC scaling in the southern part of the North-
eastern North American (NNA) domain when SDPT was considered. However, the hydrological impact of the 
related REs depends on their characteristics, such as the peak value, the duration and total rainfall generated by 
the RE (Gaál et al., 2014). Using only the AM value to assess the potential hydrological consequences of rainfall 
implies that a significant part of this event is not considered. Furthermore, AM values with the same intensities 
could be related to different REs and hydrological responses. This paper extends the previous work carried out by 
PB21 and studies the Temperature-precipitation scaling rates (TPSR) from a large ensemble of RCM simulations 
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through an event-based analysis. It shows that event-based analysis provides a unique perspective on scaling, 
allowing storm types to be separated.

A duration-based classification of the extreme REs simulated by the CRCM5-LE was realized. This classification 
is used to separate rainfall types and addresses the three following questions:

1.  Does the 1-hr maximum intensity of REs scale at the same rate as the total rainfall depth of the event in which 
it is embedded?

2.  What is the impact of rainfall duration on the temperature-precipitation scaling rate (TPSR)?
3.  Is super CC observed in REs of different durations?

2. Data Sets and Methods
2.1. CRCM5-LE

The CRCM5-LE dynamically downscaled the 50-member Canadian Earth System Model version 2 (Arora 
et al., 2011)—Large Ensemble (CanESM2-LE) (Fyfe et al., 2017; Sigmond et al., 2018). CanESM2-LE uses 
observed greenhouse, aerosols and land-use emissions up to 2005 and the radiative forcing scenario RCP8.5 
(Representative Concentration Pathways) (Riahi et al., 2011; van Vuuren et al., 2011) from 2006 to 2099. This 
ensemble covers the NNA region with a spatial resolution of 0.11° (around 12 km) over the 1950–2099 period. 
The period from 1950 to 1955 was discarded as a spin-up period. The CRCM5-LE uses the deep convection 
parameterization from Kain and Fritsch (1990), the shallow convection based on the Kuo (Kuo, 1965) transient 
scheme (Bélair et al., 2005) and the large-scale precipitation is diagnosed by the Sundqvist (1978), Sundqvist 
et al. (1989) condensation scheme. Further details about the CRCM5-LE can be found in Leduc et al. (2019).

Three simulated variables from the CRCM5-LE were used: (a) 3-hr SAT, (b) 3-hr surface relative humidity, 
(c) 1-hr precipitation. Three-hour SAT series and 3-hr surface relative humidity were used to estimate the 3-hr 
SDPT using the equation proposed by Alduchov and Eskridge (1996), Lawrence (2005) (see PB21 Supporting 
Information S1). Average seasonal (May–September) SDPTs were estimated from the corresponding 3-hr series.

2.2. Rainfall Events

Rainfall events (RE) are defined by specifying a minimum dry period or minimum inter-event time (MIT) 
before and after each event and a threshold above which the period (e.g., hour, day) is considered as “wet.” 
Dunkerley (2008) reported the different MIT values, ranging from 3 min to 24 hr, used in various applications and 
contexts. Most recent studies related to the temperature-precipitation relationship, considered for instance MIT 
values of 6 min (Visser et al., 2020), 1 hr (Gao et al., 2018; Wasko et al., 2018), 2 hr (Gaál et al., 2014; Molnar 
et al., 2015), 3 hr (Hatsuzuka et al., 2021; Visser et al., 2021; Wasko et al., 2015), 5 hr (Wasko & Sharma, 2014), 
and 6 hr (Panthou et al., 2014). Sensitivity analysis carried out by Panthou et al. (2014) showed no significant 
impact of MIT and threshold on the TPSRs results. Similar conclusions were obtained by Hatsuzuka et al. (2021), 
who considered different MIT values.

REs associated with 1-hr AMs rainfall over the May to September period were considered (hereafter called 1-hr 
AM RE). REs were selected by first identifying the 1-hr AM and then the RE in which each 1-hr AM is embed-
ded. A 3-hr MIT (Hatsuzuka et al., 2021) along with a 0.1 mm threshold (Dunkerley, 2015; Svoboda et al., 2017) 
to separate “dry” and “wet” hours were used. A 3-hr MIT was selected to avoid large intra-event intermittencies 
and preserve the extreme RE character (e.g., storm duration) (Gaál et al., 2014). Figure 1 shows examples of REs 
for a given year. Two characteristics of the 1-hr AM RE were analyzed: event duration and total rainfall depth.

1-hr AM REs were classified into short- (<5 hr) (SDE), mid- (from 5 to 10 hr) (MDE) and long- (>10 hr) (LDE) 
duration events based on the categories proposed by Hatsuzuka et al. (2021). It is assumed that SDE can be asso-
ciated with dominant convective rainfall, LDE with dominant synoptic-scale storms, and MDE combines both 
storm types. However, it is also possible to find convective systems embedded in LDE (Hatsuzuka et al., 2021). 
RE duration is used as a proxy of rainfall types.
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2.3. Scaling Estimation Method

Quantile regression (QR) (Koenker,  2005; Koenker & Bassett,  1978) was applied to estimate the TPSRs, as 
proposed by Wasko and Sharma  (2014) and the R package “quantreg” (Koenker et  al.,  2022) was used. QR 
links conditional quantiles of the response variable distribution to specific predictor variables, while in standard 
linear regression, the conditional response of the mean value is estimated. QR was preferred since it is more 
flexible in representing the extreme precipitation response for different intensity levels (Li, Zwiers, Zhang, Chen, 
et al., 2019). The QR was applied using the following equation (Ali et al., 2018; Wasko et al., 2015):

log𝑃𝑃 = 𝛽𝛽
(𝑞𝑞)

0
+ 𝛽𝛽

(𝑞𝑞)

1
𝑇𝑇 (1)

where q is the percentile (e.g., 50th or 99th), P corresponds to the 1-hr AM or total rainfall depth, T to the aver-
age seasonal (Zhang et al., 2017) (May–September) SDPT, 𝐴𝐴 𝐴𝐴

(𝑞𝑞)

0
 and 𝐴𝐴 𝐴𝐴

(𝑞𝑞)

1
 are the parameters of the QR. SPDT 

was considered in this study, as more robust estimates of TPSR can be obtained compared to when using SAT 
(Pérez Bello et al., 2021). The TPSR for a given percentile q was calculated differently depending if duration was 
considered or not. When duration was not considered (NC for No Covariate), the TPSR for AMs and total rainfall 
depth used the exponential transformation of the regression coefficient 𝐴𝐴 𝐴𝐴

(𝑞𝑞)

1
 (Wasko et al., 2015):

����(�) = 100
(

exp �(�)
1 − 1

)

 (2)

When duration (D) (from 1 to 36 hr) was considered as a covariate in the scaling estimation, the following expres-
sions were used (Wasko et al., 2015):

log𝑃𝑃 = 𝛽𝛽
(𝑞𝑞)

0
+ 𝛽𝛽

(𝑞𝑞)

1
𝑇𝑇 + 𝛽𝛽

(𝑞𝑞)

2
log𝐷𝐷 + 𝛽𝛽

(𝑞𝑞)

3
𝑇𝑇 log𝐷𝐷 (3)

����(�)
� = 100

[

exp
(

�(�)
1 + � (�)

3 log�
)

− 1
]

 (4)

Two 75-year periods were considered: (a) 1956–2030 (historical) and (b) 2025–2099 (future). The 1-hr AM (May 
to September) series were extracted from hourly rainfall series, and corresponding REs were identified. Annual 
maximums were then classified according to the corresponding RE duration (SDE, MDE or LDE) and the event 
total rainfall depth estimated.

As in PB21, a 3 × 3 grid-point pooling strategy was adopted (each grid point was examined by pooling all nine 
grid points within this configuration) to improve the sampling (Li, Zwiers, Zhang, & Li, 2019). No significant 
differences in temperature and precipitation distributions were observed at this spatial scale, as opposed to situ-
ations where pooling over large regions is considered, resulting in super CC artifact (Visser et al., 2021). The 
TPSRs were estimated by applying QR to the sample obtained after pooling the AM rainfall series from the 
50-member ensemble. This approach differs from the one used in PB21, where the scaling was estimated for 
each CRCM5-LE member and averaged over the 50-member ensemble. Pooling AM series from the 50-member 
ensemble was preferred to the one of PB21 because the proportion of events of different durations changes 
across the domain (see Figure S1 in Supporting Information S1), with smaller numbers of SDE in the northern 

Figure 1. Diagram showing the partition of an hourly precipitation series into rainfall events for a given year. The threshold 
considered to define a “wet” hour is set to 0.1 mm, and the minimum dry duration between events is set to 3 hr. The 1-hr AM 
and the corresponding RE (event #2) are shown.
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regions. Pooling increased the sample size and enabled a better estimation of 
QR parameters. Furthermore, estimation of the TPSR in PB21 was based on 
a Generalized Extreme Value distribution with temperature-dependent loca-
tion and scale parameters (Zhang et al., 2017).

3. Results and Discussion
3.1. Duration of Rainfall Events Associated to 1-hr Annual Maxima

RE duration was considered as it is expected that shorter REs are more domi-
nantly convective and that this convective character will be more pronounced 
as temperature increases. The consequence is that 1-hr AM embedded in a 
short RE will likely be more and more dominantly convective as temperature 
increases.

Figure  2 presents the longitudinal distributions of the mean values of RE 
duration associated with 1-hr AM over the two periods. As can be seen, 
the mean RE duration decreases moving southward. It can be related to the 
overall shift of 1-hr AM RE from dominantly stratiform RE in the north to 
dominantly convective RE in the south. Mean RE duration slightly decreases 
in the future period over the whole domain as well as the dispersion of the 
distribution, meaning that 1-hr AM will be associated with shorter and more 
predominantly convective RE in future climate, a result already reported by, 
for example, Westra et al. (2014), Panthou et al. (2014), Fowler et al. (2021), 
Wasko et al. (2021).

The percentages of RE belonging to the SDE, MDE, and LDE were also 
estimated (Figure S1 in Supporting Information  S1). It clearly shows that 
moving southward, the percentage of 1-hr AM embedded in LDE decreases 
while the percentages of those embedded in SDE and MDE increase for both 
periods. It should be noted, however, that even in the southernmost region, 
significant percentages of 1-hr AM, ranging from 25% to 50%, can be embed-
ded in LDE or MDE over both periods. The fraction of SDE (LDE) increases 
(decreases) for southern regions in a future climate, suggesting an intensifi-
cation of dominantly-convective events. In contrast, the percentages of MDE 
events remain similar for both periods.

To check if more extreme 1-hr AM are embedded in shorter RE, distributions like those of Figure  2 were 
constructed for RE associated with 1-hr AM above given percentiles. Results show that as 1-hr AM becomes 
more extreme (higher percentiles), mean durations of corresponding RE decrease over both periods (Figure S2 in 
Supporting Information S1). Therefore more extreme 1-hr AM are embedded in shorter and more predominantly 
convective RE over all latitudes and for both periods.

3.2. TPSRs Without Event Duration Covariate

The TPSR was first estimated for the RE maximum intensity, which corresponds to the 1-hr AM, and then for the 
total rainfall depth of the corresponding RE. TPSR values were computed for both periods, over the entire domain 
without considering event duration as covariate (Equations 1 and 2).

Figure 3 shows the maps for the 1-hr AM TPSR and the difference with the total rainfall depth TPSR values (1-hr 
AM scaling minus total rainfall depth scaling) for the 50th and 99th percentiles and both periods. TPSR values 
for the 50th percentile of the 1-hr AM are mainly larger than the CC scaling and reach 14%/°C in the southern 
regions over both periods, which is consistent with the corresponding results reported by PB21. Results for the 
99th percentile 1-hr AM TPSRs values are entirely different, with values globally close to the CC scaling and a 
much noisier spatial distribution.

Figure 2. Longitudinal distribution of the land grid-point mean duration 
(hours) of RE associated with 1-hr AM for 1956–2030 (in blue) and 
2025–2099 period (in red). Bold lines correspond to the median of the 
distribution and shaded areas to the 5%–95% percentile intervals. Latitude bins 
are overlapping over 0.5° and are 1° wide.
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Figure 3 also shows that, for the 50th percentile and both periods, 1-hr AM scaling values are larger than those 
of the total rainfall depth of the associated RE over most of the domain, especially in the northeastern regions. 
These differences range from −0.2%/° to 5.4%/°C over the domain, with an average value of 1.9%/°C. The situ-
ation is very different for the 99th percentile, where, despite a noisier global pattern, northern regions display 
larger TPSR values for 1-hr AM and southern regions larger TPSR for total rainfall depth of the associated RE. 
No apparent differences between the 1-hr AM TPSR and corresponding TPSR of the RE are observed between 
the future (2025–2099) and historical (1956–2030) periods.

These results provide insights on how the 1-hr AMs scale compared to the total rainfall depth of the RE in which 
they are embedded. For the 50th percentile 1-hr AM, peak values are more sensitive to temperature changes than 
the event total rainfall depth leading to an intensification of the 1-hr peak value, resulting in more peaked RE 
as  temperature increases. The situation is different for the 99th percentile 1-hr AM where northern and southern 
parts of the domain display contrasting results because RE 1-hr peak values are more sensitive to temperature 
increases in the northern part than for the 50th percentile 1-hr AM. In contrast, in many parts of the southern 
region, both for historical and future periods, RE peak values are less sensitive to temperature changes than the 
total rainfall depth of the associated RE (see Figure S3 in Supporting Information S1). It suggests a more signif-
icant “intensification” of the whole RE than its 1-hr peak values. This shows that the scaling depends on event 
characteristics (e.g., RE event duration, the maximum intensity and the total rainfall depth) and the importance of 
including these in the temperature-precipitation scaling analysis.

3.3. TPSRs Considering Event Duration as Covariate

RE duration was then considered as a covariate when estimating TPSR (Equations 3 and 4). Figure 4 shows the 
median values of the longitudinal distribution of the TPSR land grid-box values for the 1-hr AM as a function 
of latitude and RE durations for both periods. Median TPSR values for the 50th percentiles range from 5%/° 

Figure 3. Maps of the 1-hr AM TPSR (columns 1 and 2) and maps of the differences between the 1-hr AM and total rainfall depth scaling (1-hr AM scaling minus 
total rainfall depth scaling; columns 3 and 4) over the 1956–2030 (columns 1 and 3) and 2025–2099 (columns 2 and 4) periods for the 50th percentile (first row) and the 
99th percentile (second row).
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to 7%/°C) in region above 51° of latitude, and from 7%/° to 9%/°C for the central region (top row of Figure 4). 
Regions south of the 43° of latitude display a super CC scaling, with the largest values close to 14%/°C observed 
for short duration REs. Duration seems to have a relatively small impact on the TPSR values for the central and 

Figure 4. Median of the longitudinal distribution of TPSR land grid-box values at given latitudes for the 50th percentile (top row) and 99th percentile (bottom row) of 
the 1-hr AM as a function of RE duration. Vertical gray lines delineate the SDE, MDE, and LDE duration categories. The historical period (1956–2030) is displayed on 
the left column and the future period (2025–2099) on the right column. The corresponding median TPSR when duration is not used as a covariate (NC) is shown in the 
column on the right side of each graph. Latitude bins are overlapping over 0.5° and are 1° wide.
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northern regions. In contrast, a significant decrease in TPSR values for the southern region is observed as dura-
tion increases. This feature will be even more pronounced in the future. It shows that the 50th percentile 1-hr AM 
TPSR strongly depends on related RE duration.

Corresponding TPSR values for the 99th percentiles are displayed in Figure 4 (bottom row). Median TPSR values 
are close to the CC scaling for almost all durations and land grid-boxes in central and northern regions. TPSRs 
in southern regions are slightly above the CC scaling and lightly decrease with duration, which is very different 
from what has been observed for the 50th percentile. Similar results are obtained for both periods.

Super CC scaling, more specifically close to 2 × CC scaling, is observed in the southern part of the domain for the 
50th percentiles 1-hr AM embedded in short duration RE. Such a feature is not observed in the 99th percentile. 
An analysis of the corresponding results for 1-hr AM percentiles between 50th and 99th percentiles was made 
(see Figure S4 in Supporting Information S1). It confirms a progressive change from larger TPSR values and 
strong dependence on event duration for the 50th percentiles to smaller TPSR values and weak dependence on 
event duration as more extreme 1-hr AM are considered.

Temperature sensitivity is, therefore, larger for less extreme 1-hr AM embedded in short duration RE, reaching 
up to 2 × CC scaling in some regions (see Figure 3). How to interpret these results? First, if the 1-hr AM is more 
extreme (higher percentiles), it is likely associated with a more convective dominant RE no matter the duration 
of the associated RE. In that case, it can be expected that the temperature dependence will closely match the CC 
scaling as observed for the 99th percentile 1-hr AM in the southern part of the domain. However, less extreme 
1-hr AM (e.g., 50th percentile) can be embedded in less dominant convective RE. In that case, the convective 
character of the 1-hr AM and the associated RE will likely increase with temperature for short-duration REs 
resulting in super CC scaling (shorter RE becomes more convective-dominant as temperature increases). It is 
observed in the southern part of the domain, as the percentages of 1-hr AM associated with SDE increases to 
a value close to 20% when super CC is observed (see Figure S1 in Supporting Information S1). Transitions to 
super CC scaling were reported for a fraction of convective precipitation around 20% by Berg et  al.  (2013), 
Park & Min (2017). Although a fraction of 20% of 1-hr AM embedded in SDE does not mean a 20% fraction of 
convective precipitation, it is interesting to note that in both cases, some threshold value related to the convective 
character of the RE (here, the duration) is needed to trigger a transition to super CC.

Figure 4 also shows the longitudinal median TPSR values when event duration is not considered (right-hand side 
columns of each panel). In the southern region where TPSR changes with RE duration, TPSR values are close 
to the observed scaling for the MDE and significantly larger than the CC-scaling since most of the 1-hr AMs are 
associated with MDE (see Figure S1 in Supporting Information S1). These results show that the TPSR of the 1-hr 
AM for the most extreme events, like those corresponding to the 99th percentile, are less affected by the duration 
of the events in which they are embedded. The TPSR values are, therefore, closer to the CC-scaling.

Similar patterns are observed for the TPSR of corresponding total rainfall depth (Figure S5 in Supporting Infor-
mation S1). Super CC scaling is observed in the southern region for the 50th percentile with a strong dependence 
on duration. A transition to super CC scaling is also observed at around 43° of latitude moving southward for 
both the 50th and 99th percentiles. Furthermore, the scaling when no covariate is included reflects the most likely 
precipitation events group (MDE in this case; see Figure S1 in Supporting Information S1).

Figure 5 shows the differences between TPSRs for 1-hr AM and for corresponding total rainfall depth values 
(1-hr AM scaling minus total rainfall depth scaling). Differences are mostly positive (1-hr AM scaling is higher 
than the total rainfall depth scaling) for the 50th percentile over all the domain and lightly increase as duration 
increases with values slightly above 2%/°C for the longest storm duration. For the 99th percentile 1-hr AM, 
Figure 5 (bottom panel) reveals very contrasting patterns for the north and south regions. Northern regions are 
characterized by higher 1-hr AM TPSR values, while southern regions (below 45° of latitude) display larger total 
rainfall depth TPSR values with for both regions slight increases as duration increases.

This last result suggests that in southern regions, where the convective character of the whole RE is more 
pronounced, increasing temperature reinforces the convective character of the whole RE. It follows that the TPSR 
of the RE is larger than the corresponding value for 1-hr AM, and super CC scaling is observed for the total rain-
fall depth (see Figure S5 in Supporting Information S1). It is not the case for the northern regions where  1-hr AM 
are more likely embedded in less-dominantly convective MDE and LDE (see Figure S1 in Supporting Informa-
tion S1). Therefore the 1-hr RE peak encompasses the dominant convective part of the RE and is more sensitive 
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Figure 5. Median of the distribution of TPSR difference (1-hr AM scaling minus total rainfall depth scaling) for the 50th percentile (top panel) and 99th percentile 
(bottom panel) (for each latitude bin) as a function of event duration. Vertical gray lines delineate the three categories used; SDE, MDE, and LDE. Historical (future) 
period in the left (right). On the right side of each period is included the corresponding median TPSR without including the storm duration as a covariate (NC). Latitude 
bins are overlapping over 0.5° and are 1° wide.
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to temperature changes than the whole RE, except for the more-dominantly convective SDE where RE TPSRs are 
larger than the corresponding 1-hr AM.

4. Conclusions
Temperature-precipitation scaling rates were estimated for both 1-hr AM (May to September), and total rainfall 
depth of corresponding REs in which these AM are embedded. A MIT of 3 hr and a 0.1 mm threshold for wet 
hours were considered. RE duration was used as a proxy to assess the convective character of the RE, assuming 
that a shorter RE is more likely convective. Simulations from the 50-member Canadian Regional Climate Model 
Large Ensemble (CRCM5-LE) over Northeastern North America for the 1950–2099 period were used. Two 
sub-periods, 1956–2030 and 2025–2099 were defined. TPSRs were estimated using QR.

Results showed that the mean latitudinal RE duration associated with 1-hr AM decreases moving southward. It 
suggests that 1-hr AMs are associated with dominantly stratiform REs in the north and more dominantly convec-
tive REs in the south. Also, mean RE duration globally decreases in the future period over the whole domain, 
suggesting that 1-hr AM will be embedded in shorter REs in a future climate. This study confirms previously 
reported results that more extreme 1-hr AM should be expected in a future climate and that they will be associ-
ated with presumably more dominantly convective RE (see e.g., Fowler et al., 2021; Wasko et al., 2021; Westra 
et al., 2014).

TPSR estimates for the 50th and 99th percentiles of the 1-hr AM distributions and corresponding RE were esti-
mated and compared. Differences in the scaling (1-hr AM scaling minus total rainfall depth scaling) showed posi-
tive values for the entire domain for moderate events and increased when storm duration increased. It suggests 
the intensification of events generating more rainfall with a more dominant contribution from its 1-h peak value 
for those events. Comparison of TPSR values for 1-hr AM and total rainfall depth of associated RE also revealed 
distinctive features between northern and southern regions for the 99th percentile. Thus 1-hr AM TPSR values 
are larger than the TPSR values for the total rainfall depth north of the 45° of latitude, while the opposite situa-
tion is observed south of this latitude. Therefore for the southern regions, since the convective character of the 
RE is more pronounced, increasing temperature increases the convective character of the whole RE resulting in 
larger TPSR values for the total rainfall depth of the RE. In northern regions, where 1-hr AM is embedded in 
less-dominantly convective RE, 1-hr AM is more sensitive to temperature changes than the whole RE resulting 
in  larger 1-hr AM TPSR than the total rainfall depth of the associated RE.

Storm duration plays a crucial role in the estimated TPSR since it determines the more or less convective char-
acter of the RE in which 1-hr AMs are embedded. TPSRs estimated without using storm duration as a covariate 
will be representative of the dominant precipitation event duration (MDE in this case).

Super CC scaling (>7%/°C), reaching values close to 2  ×  CC (for SDE) scaling in the southern part of the 
domain, was observed for both periods for the 50th percentile 1-hr AM. Strong dependence of estimated TPSR 
with RE duration was also observed for the 50th percentile 1-hr AM over southern regions. This dependence on 
RE duration progressively disappeared as more extreme 1-hr AMs were considered. Incidentally, TPSR for the 
99th percentile 1-hr AM depends weakly on RE duration with values slightly above the CC scaling. The already 
extreme and convective nature of the 99th percentile 1-hr AM and associated RE, even at lower temperatures, 
may explain this result. The strong dependence of 50th percentile 1-hr AM to RE duration was related to the 
increasing convective character of the RE and the embedded 1-hr AM as temperature increases. It can be assimi-
lated to a shift from a more large-scale type RE to a more convective RE as temperature increases.

The transition to super CC moving southward occurs when the percentage of 1-hr AM associated with SDE 
(<5 hr) increases to reach a value close to 20%. It is interesting to note that other studies also reported a tran-
sition to super CC when the fraction of convective precipitation reaches some threshold. For instance (Park & 
Min, 2017), reports a transition from CC to super CC scaling when the fraction of convective events reaches a 
value close to 0.2 (a similar result was obtained in Germany by Berg et al. (2013).

The Large Ensemble (CRCM5-LE) considered in this study, as was mentioned in Section 2, is a parameterized 
convection model (PCM). The fact that this RCM does not explicitly resolve convective processes must be kept 
in mind when interpreting these results. Such representation was indeed related to some inaccuracies in the simu-
lated diurnal cycle of precipitation during summer months (Ban et al., 2015), as well as underestimation of dry 
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days and bias in the simulated frequency of light REs (Kendon et al., 2012). Convection-permitting models (CPM, 
spatial resolution ≤4 km) in which deep convection is explicitly resolved have been developed over recent years 
(Kendon et al., 2012; Prein et al., 2015). These models overcome many of the limitations of PCMs mentioned 
above (Ban et al., 2015). However, CPM's high temporal and spatial resolutions translate into high computational 
costs. In this context, regional PCMs can provide many simulations (large ensembles) over extended periods 
(Fosser et al., 2017) enabling robust estimates of TPSRs (Li, Zwiers, Zhang, & Li, 2019).

Fowler et al. (2021) listed the different processes associated to deep convection that could enhance the intensifi-
cation of sub-daily rainfall extremes and lead to super CC scaling. They conclude that CPMs project higher inten-
sification of sub-daily extreme rainfall than PCM. Although these processes are not explicitly resolved in a PCM, 
our results suggest that, even when CPM is used to assess the TPSR of extreme rainfall, it is essential to consider 
the associated RE. Such an event-based approach provides a more comprehensive framework to disentangle the 
contribution to super CC resulting from a shift from stratiform to convective rainfall (see Figure 3 of Fowler 
et al., 2021) to the one resulting from an intensification of the convection itself.

Comparing the TPSR values from 1-hr peak RE and total rainfall depth of the related RE may also have major 
hydrological impacts, especially in urban areas and for flash floods. Results support the conclusion that for the 
southern part of the domain where convective REs are dominant, the TPSR of total rainfall depth RE associated 
with the most extreme 1-hr AM will be higher than the corresponding 1-hr peak value. Therefore the “intensi-
fication” of the whole RE will be larger than its 1-hr peak value with TPSR values close to 10%/°C no matter 
the duration of the related RE. It may lead to considerable increases in total event rainfall associated to 1-hr 
AM and increasing flood risks. This result may also have important consequences as AM intensities, through 
Intensity-Duration-Frequency (IDF) curves, are usually used to design many hydraulic infrastructures (Mailhot 
& Duchesne, 2010). Various approaches and values have been proposed to update IDF curves to consider the 
possible impacts of climate change on extreme rainfall (see Martel et al. (2021) for an overview). Accounting of 
CC by upgrading IDF values assumed implicitly that REs would intensify similarly to the AMs in which they are 
embedded. Actual results show that this will not be the case for most extreme rainfall; therefore, such increases 
in AM could underestimate the RE's corresponding impact.

Data Availability Statement
The CRCM5-LE data set from the Climex project (ClimEx, 2019; Leduc et al., 2019) was used in the creation of 
this manuscript.
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