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Abstract

Extreme heat events pose a significant threat to population health that is amplified by
climate change. Traditionally, statistical models have been used to model heat-health
relationships, but they do not consider potential interactions between temperature-related
and air pollution predictors. Artificial intelligence (Al) methods, which have gained
popularity for health applications in recent years, can account for these complex and non-
linear interactions, but have been underutilized in modellin¢ i at-ielated health impacts.
In this paper, six machine and deep learning models we e cunsidered to model the heat-
mortality relationship in Montreal (Canada) and ~oi.nared to three statistical models
commonly used in the field. Decision Tree (DT} Randoin Forest (RF), Gradient Boosting
Machines (GBM), Single- and Multi-Lave: Perceptron (SLP and MLP), Long Short-
Term Memory (LSTM), Generalized Ln. ‘ar and Additive models (GLM and GAM), and
Distributed Lag Non-Linear M~u~l (DLNM) were employed. Heat exposure was
characterized by air temperat' re, .<lative humidity and wind speed, while air pollution
was also included in the \~ouzls using five pollutants. The results confirmed that air
temperature at lags of up .0 3 days was the most important variable for the heat-mortality
relationship in all mor.els. NO, concentration and relative humidity (at lags 1 to 3 days)
were also particularly important. Ensemble tree-based methods (GBM and RF)
outperformed other approaches to model daily mortality during summer months based on
three performance criteria. However, a partial validation during two recent major
heatwaves highlighted that non-linear statistical models (GAM and DLNM) and simpler
decision tree may more closely reproduce the spike of mortality observed during such

events. Hence, both machine learning and statistical models are relevant for modelling
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heat-health relationships depending on the end user goal. Such extensive comparative

analysis should be extended to other health outcomes and regions.

Keywords : mortality, temperature, humidity, air pollution, machine learning, deep

learning.

1. Introduction

In its latest report (IPCC, 2021), the Intergovernmental Pane' cn Climate Change (IPCC)
reaffirmed that climate change increases the frequency, . tensity, length and spatial
extent of many weather events such as extreme hel: (Casati et al., 2013; Jeong et al.,
2016; Meehl & Tebaldi, 2004). Extreme heat eve.,ts pose a significant threat to
population health because of their impact ¢* bou mortality (Basu, 2009; Basu & Samet,
2002; Gosling et al., 2009; Xu et al., 2%16) and morbidity (Li et al., 2015; Ye et al.,

2012), as well as important econoric ¢ ~nsequences (Wondmagegn et al., 2019).

The heat-health relationshib .~ commonly studied using an over-dispersed Poisson
regression statistical mcdel Gosling et al., 2009). Non-linear approaches using either
splines (e.g., Doy, €l al., 2008; Ishigami et al., 2008) or Generalized Additive Models
(GAM) (e.g., Bayenun et al., 2010; S. Lin et al., 2012; Pascal et al., 2013) are usually
preferred to linear ones i.e., Generalized Linear Models (GLM) (e.g., Basu et al., 2012;
Schwartz et al., 2004). To describe both the lag structure and the non-linear effect of the
exposure, the Distributed Lag Non-Linear Model (DLNM) was proposed (Armstrong,
2006; Gasparrini et al., 2010) and became very popular in the last decade (e.g.,
Gasparrini et al., 2015, 2017; Pascal et al., 2018, 2021; Vicedo-Cabrera et al., 2018,

2021).



The exposure to heat is characterized by a temperature variable at various lags, mainly
the daily mean temperature (Son et al., 2019). Minimum or maximum temperature, as
well as composite temperature indices (e.g., Humidex, Heat Index, Apparent
Temperature, Wet Bulb Globe Temperature, etc.) can also be used (Barnett et al., 2010;
Kovats & Hajat, 2008; Tong & Kan, 2011; Vaneckova et al., 2011; Zhang et al., 2014). It
is still unclear if air pollution changes the heat-health relationship or not (Huang et al.,
2011; Son et al., 2019). While some heat-health studies do not r.><lude air pollution (e.g.,
Barnett et al., 2010; Doyon et al., 2008), others include it £y = their sensitivity analyses
(e.g., Gasparrini et al., 2015). Because their levels are cenerally elevated during extreme
heat events, air pollutants should be considered whe.. studying the health effects of heat

(Huang et al., 2011; Kovats & Hajat, 2008).

In the studies cited above, the temperai.ve-related predictors and, when considered, air
pollution variables, were always 1" e *aa separately. Indeed, no interactions were included
between these variables becat e o: the difficulty of easily considering them in statistical
models traditionally used. i~ contrast, machine and deep learning models, a branch of
artificial intelligence Al) can easily take these interactions into account. However, these
models were only selrom used for modelling heat-health relationships (e.g., Y.-C. Lin et
al., 2021; Masselot et al., 2021; Nishimura et al., 2021; Ogata et al., 2021; J. Park & Kim,
2018; M. Park et al., 2020; Y. Wang et al., 2019). In most applications, a single model
was considered e.g., Random Forest (Y. Wang et al., 2019; Zhang et al., 2014) or Multi-
Layer Perceptron (Khatri & Tamil, 2017). Only a few studies have so far compared more
than two approaches (Marien et al., 2022; Nishimura et al., 2021; Ogata et al., 2021; M.

Park et al., 2020; Qiu et al., 2020). No studies have yet compared the results of machine
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and deep learning models with the widely used DLNM. Finally, recurrent neural
networks such as the Long Short-Term Memory (LSTM) have only been seldom used

(Y.-C. Lin etal., 2021; Nishimura et al., 2021).

In addition, the calibration of machine and deep learning models in above studies can be
questioned. Models have been mostly calibrated on small datasets of <5 years (e.g.,
Khatri & Tamil, 2017; Ogata et al., 2021; Park et al., 2020; Q’u et al., 2020; Wang et al.,
2019) or 5-10 years of data (e.g., Kassomenos et al., 2011; '.in ~t al., 2021; Nishimura et
al., 2021; Zhang et al., 2014). Furthermore, a recent revicw o " machine learning in public
health reported that most studies failed to report then hyperparameters (Morgenstern et
al., 2020). In some studies cited above, no hypz ndarameters optimization is performed at
all (e.g.,, Zhang et al., 2014). Hence . 'bjective or unjustified choices of those
hyperparameters can be expected, leadiny, to a suboptimal fit of these models. Finally, air
pollution was absent from most hza. heulth studies using machine and deep learning that
primarily focused on tempera* ire-i 2lated variables (e.g., Mora et al., 2017; Nishimura et

al., 2021; Ogata et al., 2021, Pack et al., 2020; Y. Wang et al., 2019; Zhang et al., 2014).

By allowing potenti.! cuinplex interactions between temperature-related variables and air
pollution, machine and deep learning can lead to better performance for modelling the
heat-health relationship. In this study, six machine and deep learning models such as tree-
based methods, feedforward and recurrent neural networks were compared to statistical
models commonly used in the field. A transparent calibration procedure (i.e.,
hyperparameters optimization) with a long-enough training dataset and an adequate
selection of heat-related predictors including air pollution was used for the fitting of the

models.



The paper is organized as follows. Section 2 contains the material and methods. The
results are presented in section 3. Section 4 discusses the obtained results while Section 5

concludes this paper.

2. Material and Methods

This project received ethics approval from the Human Research Ethics Committee of the

National Institute of Scientific Research (CER-22-693).

2.1. Data sources

The case study for analyzing the heat-health relatic.shiy with machine and deep learning
focussed on the Census Metropolitan Area (Civ A) of Montreal (Figure 1). The CMA of
Montreal had a population of around 4 51 il~n inhabitants in 2021, which corresponds
to approximately half the populetion o1 the province of Quebec, Canada (Statistics

Canada, 2022).

The studied health outcomea v.as the all-cause mortality. Mortality data from 1981 to 2019
(prior to the COVID-".5 na.demic) in the CMA of Montreal was provided by the Institut
national de santé pchlique du Québec (INSPQ). Seasonal and long-term trends in
mortality time series were removed prior to modelling using a natural cubic spline of day
of the year with 5 degrees of freedom for the seasonal trend, a linear function of year for
the long-term trend and indicators for weekdays and holidays (Zhang et al., 2012; 2014).
Other mortality trends were also tested (e.g., Gasparrini et al., 2010, 2015), but were not
selected for further analyses as they did not differ significantly. The adjusted seasonal

and long-term trends were then subtracted from the crude daily mortality to obtain the



response variable of interest for the models, namely the daily mortality deviation, i.e.
the over- and under-mortality relative to the expected seasonal and long-term value

(Zhang et al., 2012, 2014).

[ Montreal CMA
@® Weather stations
A Air pollution stations

Saint-Jérome

%

F.gu ~ 1: Weather and air pollution stations within the

Census Metropolitan Area (CMA) of Montreal.

Weather and air pollution data were provided by Environment and Climate Change
Canada (ECCC) and the National Air Pollution Surveillance (NAPS) program,
respectively. Hourly data from weather and air pollution stations within Montreal CMA
(Figure 1) were aggregated to mean daily values for the variables of interest.
Temperature-related variables included air temperature, relative humidity and wind

speed. These three variables are the ones commonly used to define composite
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temperature indices such as humidex or apparent temperature (e.g., Barnett et al., 2010;
Vaneckova et al., 2011). For air pollution, the two most studied variables in heat-
mortality relationships were used (Son et al., 2019), namely ozone (O3) and particulate
matter of 2.5 microns or less in diameter (PM,s) as PMjo was not available. Other air
pollutants more broadly used in weather-health studies such as nitrogen dioxide (NO,),
sulfur dioxide (SO2) and carbon monoxide (CO) were also considered (e.g., Basu et al.,

2012; Goldberg et al., 2011; Lavigne et al., 2014; X. Wang et ar., 2014).

Daily temperature-related and air pollution data at vario.'s st itions were combined using
a spatial mean to obtain a single time series for eacl. va-iaole for the entire studied region
as done previously (e.g., Chiu et al., 2021; M2sselot et al., 2018). Because the lagged
effect of temperature/air pollution variables on health is important (Son et al., 2019), lags
up to 7 days for all predictors were con.'dered, with the following aggregates: value at
lag 0, mean of values at lags 1 t~ .> days and mean of values at lags 4 to 7 days. The
period May 1% to September 30" was studied for the heat-mortality relationship. The
overlapping period betwee,> n.ortality, weather and air pollution data was 1998-2019
(Table 1). This led tc 33t 5 observations for that 22-year period. As PM, s was the only
variable missing for tr.e 1981-1997 period (for which all other variables were available),
another dataset, referred to as “supplementary dataset”, consisting of years 1981-2019,
but without PM, 5 variable, was also created (Table S1). This supplementary dataset had

39 years of data for a total of 5967 observations.



Table 1: Overview of the data for modelling the heat-mortality relationship in Montreal CMA (1998-

2019, May-September). All data are daily values.

Min Q10 Q25 Median Mean Q75 Q90 Max  Source

Mortality variables
Crude mortality 37.00 56.00 61.00 68.00 68.37 75.00 81.00 135.00  INSPQ
Mortality deviation -29.32 -12.07 -7.01 -1.06 -0.77 5.23 10.75 65.66 INSPQ

Predictors variables

Air temperature (°C) 3.21 11.79 15.24 18.64 18.13 Z2 i 23.54 28.97 ECCC
Relative humidity (%) 30.88 54,78 63.44 71.16 70.45 784 85.64 97.35 ECCC
Wind speed (km/h) 3.23 6.45 8.01 10.33 10.7¢ 12.97 15.76 29.70 ECCC
03 concentration (ppb) 3.77 13.97 18.11 23.76 2z :3 _29.52 35.48 68.58 NAPS
NO; concentration (ppb) 1.37 4.84 6.42 9.05 ‘10; 12.64 16.76 39.52 NAPS
SO, concentration (ppb) 0.00 0.26 0.57 s N 1.63 233 3.69 9.87 NAPS
CO concentration (ppm) 0.09 0.17 0.20 b__ 0.28 0.33 0.41 0.83 NAPS
PM 5 3 concentration ., 3.47 5.15 ) 7.66 9.08 11.51 16.25 59.08 NAPS
(ng/m*)

The datasets were split into tw< dict:nct periods following the hold-out method for time
series using 70% of the firsu rears of data for the calibration (training) of the models and
the remaining 30% f=. f1.c validation (test) of the models. The training datasets had
respectively the year. 1998-2013 and 1981-2009 for the main (with all predictors) and
the supplementary (without PM,s predictor) datasets. The validation sets consisted of

years 2014-2019 and 2009-2019 for the main and supplementary datasets, respectively.

2.2. Tree-based methods

Tree-based methods, also called classification and regression trees, come from both

statistical and machine learning fields (James et al., 2013). A single tree is called a



Decision Tree (DT) because of its reversed tree shape (Quinlan, 1986). DT is easy to
interpret and explain, but often lack prediction accuracy (James et al., 2013). Hence,
ensemble methods that consist of several trees have been proposed. Random Forest (RF)
is a model in which a forest of fully grown trees is built using bootstrapped datasets of
observations as well as a subset of predictors for each node in the underlying DTs
(Breiman, 2001). Gradient Boosting Machines (GBM) are also based on DT but differ
from RF in their construction (Friedman, 2001). Trees with ¢ ver leaves (e.g., 1 to 5)
called weak learners are grown using a sequential fittinp me.r2d instead of bigger trees
built in parallel in RF. The next tree in GBM is fitteu 2n the residual of the last tree(s)
given a shrinkage parameter 1 also called learniny (ate. As in RF, GBM also uses
bootstrapped datasets as well as a subset of \“e 7.vailable predictors for the underlying

trees.

DT, RF and GBM were fitted to ru. ‘el Jaily mortality deviation as a function of (lagged)
temperature-related and air pc luticn variables. In DT, a fully grown tree was first fitted.
Then, a pruning procedure .'as applied to decrease the generalization error (James et al.,
2013). The optimal amou 1t of pruning (i.e., the number of leaves) was found using a 5-
fold cross-validation ra the training set. Because we had no past evidence on the optimal
tuning of RF and GBM in the context of heat-health relationships, an extensive grid
search procedure was performed. This method allowed us to test various combinations of
hyperparameters and draw conclusions for further analysis, even though it can be less
efficient than other hyperparameter optimalization methods such as random sampling
(Bergstra & Bengio, 2012). DT, RF and GBM were fitted using tree, randomForest

(Liaw & Wiener, 2002) and gbm (Greenwell et al., 2019) packages in R.
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The unique hyperparameter for DT was tree depth. The hyperparameters for RF included
the number of trees (500, 1000, 2500 and 5000) and the fraction of predictors considered
at each tree split (square root of the number of predictors, 1/4, 1/3, 1/2, 3/4, and all
predictors). The hyperparameters for GBM were learning rate (0.001, 0.01, and 0.1), tree
depth (1, 3 and 5), number of trees (1000, 2500 and 5000) and the fraction of predictors
at each split (1/3, 1/2 and 3/4). The hyperparameters grid search was performed using a
5-fold cross-validation on the training dataset to minimize c'it-of-sample root mean

square error (RMSE) (Chapter 5 in Goodfellow et al., 201}

To explain RF and GBM models, which are built using 11arge amount of DT (up to 5000
in our case), feature importance (FI) metrics w2re computed. Fl is a standard method in
machine learning to know which variablas cantribute the more to the prediction success
(Chapters 15 and 16 in Hastie et al., 200.\. For RF, two FI metrics were computed using
1) node purity, based on the mec™ wecrease in mean square error (MSE) for each
predictor in all underlying tre-s, a..d 2) permutation, based on the increase in out-of-bag
prediction error when one preuictor is randomly shuffled. For GBM, FI was computed
from the decrease ir. ML E for each predictor (i.e., node purity). All FI metrics were

scaled to a maximum . alue of 1 to allow comparison between different models/metrics.

2.3. Neural networks

Neural networks are machine and deep learning methods inspired by the human brain.
One of the simplest neural networks is the feedforward Single-Layer Perceptron (SLP).
It contains three layers: an input one, a hidden one and an output one. SLP is generalized
into the Multi-Layer Perceptron (MLP) (Chapter 6 in Goodfellow et al., 2016). MLP

11



allows for more than one hidden layer and belongs, in this context, to the family of deep
learning models. SLP and MLP were kept separated in this study for comparison
purposes. While feedforward neural networks consider observations independently,
recurrent neural networks, such as the Long Short-Term Memory (LSTM), transfer
information from one cell to the other and are particularly adapted for sequential data
such as time series (Chapter 10 in Goodfellow et al., 2016). LSTM extends classical
recurrent networks by including a memory function and correca.a the vanishing gradient

problem (Hochreiter & Schmidhuber, 1997).

As for RF and GBM, no past evidence was founu a.out the optimal tuning of neural
networks in the specific context of heat-health relationships. Hence, an extensive grid
search was performed. For SLP and MvL®?. hyperparameters included learning rate
(0.0001, 0.001 and 0.01), activation funtion (Rectified Linear activation Unit (ReLU),
hyperbolic tangent (tanh) and log’su ) and scaling function for the predictors (“std” with
mean and standard deviaticy, obust” with median and interquartile range, and
“minmax” with values scaic1 1vom 0 to 1). For SLP, the optimal number of neurons (5,
10, 20, 30 and 40) w.'s a1 0 included in the grid search. For MLP, the number of hidden
layers and neurons we. e both included simultaneously in the grid search with six possible
combinations : 1) two (hidden) layers of 15 and 10 neurons, 2) two layers of 30 and 20
neurons, 3) three layers of 20, 15 and 10 neurons, 4) three layers of 40, 30 and 20
neurons, 5) four layers of 20, 20, 15 and 10 neurons and, 6) four layers of 40, 30, 20 and
20 neurons. Optimal hyperparameters were found by a 5-fold cross-validation on the
training set to minimize out-of-sample RMSE. SLP and MLP were fitted using scikit-

learn in Python (Pedregosa et al., 2011).
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For LSTM, the hyperparameters tuning included the learning rate (0.0001, 0.001 and
0.01), the activation function (ReLU and tanh), the addition of a dropout layer of 20% to
avoid overfitting, the number of epochs (up to 10 000, with early stopping at 500, 1000,
2500 and 5000 epochs) and the number of cells/layers with five combinations : 1) one
layer of 5 cells, 2) 10 cells, 3) 15 cells, 4) two layers of 10 and 5 cells and 5) 15 and 10
cells. Optimal hyperparameters were found to minimize the RMSE on a validation
dataset that consisted of 30% of the last years of the training u~taset. LSTM was fitted

using keras in Python (Gulli & Pal, 2017).

FI for neural networks (SLP, MLP and LSTM) we e 'l computed using a permutation-
based metric. The mean decrease in RMSE wh2" a previctor was randomly shuffled was
computed for each predictor and repeated 2.9 times. The more the RMSE decreased, the
more the predictor was important to the 1.'adel. FI was computed on both the training and

test datasets and scaled to a maxir.u ™ value of 1.

2.4. Statistical models

Machine and deep lexrni 9 methods were compared to three statistical models also used
in the field: Generali: ed Linear Model (GLM), Generalized Additive Model (GAM)
and Distributed Lag Non-Linear Model (DLNM). GLM considers linear relations
between a transformation of the response variable and predictors, while allowing for non-
gaussian residuals (Nelder & Wedderburn, 1972). GAM extends GLM with smooth non-
linear transformations of the predictors, while keeping the property of additivity of each
individual effect (Hastie & Tibshirani, 2017). DLNM describes the exposure-response
relationship with a non-linear cross-basis function of lags and exposure variable

13



(Armstrong, 2006; Gasparrini et al., 2010). In DLNM, a cross-basis function of mean
temperature up to 7 days was considered with the same settings as in Gasparrini et al.
(2010). Other predictors were also included as non-linear effects as in GAM. All
predictors in the statistical models were considered independently (i.e., without
interactions), as our goal was to compare models that easily account for potential
interactions (machine and deep learning) with models that generally do not (statistical).
The statistical models were fitted in R using packages mgcv (\v2od, 2015) for GLM and
GAM and dinm (Gasparrini, 2011) for DLNM. To compzr= ! metrics of machine/deep
learning models with results of statistical models, r: for statistical models was also
quantified by the increase of the residual sum of sgiia. = when one predictor was removed

from the model.
2.5. Models’ evaluation

Models’ performance was assesseC using the test dataset (i.e., 30% of observations that
were removed before hypervara neters selection and models fitting). Three performance
metrics were computed: >oeificient of determination (R?), mean absolute error (MAE)
and root mean squa ~ &.or (RMSE). A high value of R? is preferred while low values of
MAE and RMSE are desired. Note that because R? is computed for out-of-sample (test)
predictions, its value can be lower than 0, meaning that the model performed worse than
a non-informative model (i.e., a model containing only an intercept). In addition to
classical performance metrics, a partial validation was also performed. Predictions were
compared visually to the observed mortality for the last 10 years, during which two major
heatwaves occurred in the CMA of Montreal in 2010 (Bustinza et al., 2013) and 2018

(Lebel et al., 2019). This validation was added to see how the models performed during
14



extreme heat events of interest lasting several days. Hence, daily observations and
predictions were converted to weekly values, which also reduced the noise in the data for
this visual assessment. Performance of the models was assessed for models fitted on the
main dataset (22 years of data with all predictors), as well for models fitted on the

supplementary dataset (39 years of data, without PM, ).

3. Results

The results are only presented for the main dataset (1998-01¢, with all predictors) in
sections 3.1, 3.2 and 3.3. Then, models’ comparison ¢1d p<formance are shown for the

models fitted on both datasets (main and supplemen.rv) in sections 3.4 and 3.5.

3.1. Tree-based methods

For DT, the optimal tree depth wos founu to be 5 in cross-validation (Figure S1). The
resulting pruned DT used only tirze predictors: mean temperature at lag 0, mean NO,
concentration at lags 1-3 da'/s ond mean temperature at lags 1-3 days (Figure 2). Higher
temperature and higher MO, concentration were both associated with increased summer
mortality. For exz..»ni. tomperature above 22°C (at lag 0) and 26.9°C (mean of values at

lags 1 to 3 days) were found as breakpoints in the heat-mortality relationship (Figure 2).

For RF, the grid search of hyperparameters led to an optimal RF using 5000 trees and the
square root of the number of predictors for each tree split (Figure S2). Interestingly, all
combinations of hyperparameters for RF led to very close out-of-sample RMSE values of
8.74-8.78 (Figure S2). The two Feature Importance (FI) metrics for RF, based on node

purity and permutation, showed that mean temperature, mean temperature at lags 1-3
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days and NO, concentration at lags 1-3 days were the top 3 predictors (Figure 3a). The
fourth most important predictor was either SO, or PM, 5 concentration (at lags 1-3 days),

depending on the FI metric examined.

T_MEAN 5 22.0521
|

NO2_MEAN_1_3<10.8127 T_MEAN_1] 3 <26.925

-2.80 -0.44

NO2_MEAN_]_3<13.0228

36.00

Figure 2: Resulti. p.*ine 4 Decision Tree (DT). The figure shows all predictors’ splits (e.g., mean
temperature <22.05°C, t~, of the figure) as well as the predicted daily mortality deviation at each terminal
node (e.g., daily mortality deviation = -2.80 when mean temperature is <22.05 and mean NO, at lags 1-3

days is <10.81, bottom left of the figure).

Finally, hyperparameters for GBM were also found using the grid search method. The
best GBM had a tree depth of 5, 2500 trees, 1/3 of the predictors used at each split and a
learning rate of 0.001 (Figure S3). FI showed that the three most important variables were

mean temperature, mean temperature at lags 1-3 days and NO; concentration at lags 1-3

16



days (Figure 3b). These most important predictors were the same as in RF, but much
further away from the others compared to RF. In GBM, the fourth most important

predictor was relative humidity at lags 1-3 days.

a) RF
Node purity Permutation
Mean temp. (lag 1-3) Mean temp. (lag 1-3)
NO, (lag 1-3) 1 NO; (lag 1-3)
PM,.5 (lag 1-3) S0, (lag 1-3)
Rel. humidity (lag 1-3) CO concentration
PM,.; concentration Rel. humidity (lag 1-3)
0, (lag 1-3) Mean temp. (lag 4-7) -
|
0, concentration | S0, (lag4-7)
S0, (lag 1-3) PM,.s (lag. ™
S0, concentration CC gy 3) »‘
T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
b) GBM

Mean temp. (lag 1-3)
NO, (lag 1-3)

Rel. humidity (lag 1-3)
PM,.5 (lag 1-3)

05 (lag4-7)

Wind speed (lag 1-3)

Mean temp. (lag 4-7)

S0, concentratior ]

PM,.; concentratio,
) T T T T
" 00 0.25 0.50 0.75 1.00

Scaled importance

Figure 3: Feature imp rtance (FI) metrics for a) Random Forest (RF) and b) Gradient Booting

Machine (GBM). Only the 10 most important predictors are shown for each model.

3.2. Neural networks

For SLP, all models performed better when the “minmax” scaling function was applied to
the predictors, compared to the two other methods tested i.e., standard and robust
(Figure S4). The SLP with the smallest number of neurons (5) was selected as the best

model, using ReLU as an activation function and trained with a learning rate of 0.001
17



(Figure S4). The FI metrics showed that only one variable seemed to contribute to the
predictive power: mean temperature at lag O day (Figure 4a). Other important variables,
such as relative humidity (at lags 1-3 days) and NO, (at lags 1-3 days), had much lower
importance in the model. This can be explained by the fact that the optimal SLP found by
cross-validation had only 5 neurons, limiting the amount of information that could be

learned in that model.

a) SLP
Training Test
Mean temperature Mean temperatt. < -\~ A
Rel. humidity (lag 1-3) NO, (lag. " :r
NO, (lag 1-3) Mean temp, (12 1-3,
NO, (lag4-7) Rel. humidit (lag.
PM,.; (lag 1-3) Meanter. (lag4-7
S0, (lag4-7) S0,, 47,
Wind speed (lag 1-3) PM (lag ™
Rel. humidity (lag 4-7) 1.0, (lag 4-T)
Wind speed (lag 4-7) °M,.5 (lag 1-3)
Mean temp. (lag 4-7) " elati 2 humidity
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Figure 4: Feature importance (FI) metrics for a) Single-Layer Perceptron (SLP), b) Multi-Layer
Perceptron (MLP) and c¢) Long Short-Term Memory (LSTM). FI metrics are computed for both the

training (left) and test (right) datasets. Only the 10 most important predictors are shown for each model.
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Like SLP, MLP also performed better when the predictors were scaled using the
“minmax” scaler (Figure S5). When two or more hidden layers were considered in MLP,
a relatively bigger neural network than SLP was found to be the best by the grid search
method. This optimal MLP consisted of three hidden layers with 40 neurons in the first
one, 30 in the second one and 20 in the third one. The activation function was logistic and
the learning rate was 0.01 (Figure S5). FI metrics showed that, again, mean temperature
at lag 0 day was the most important variable (Figure 4b). Recults for the other most
important predictors differ depending on whether FI was r2'cu!zed on the training or test
dataset. Among the most important variables in MLP, 1.9, and SO, (at lags 4-7 days), O3
concentration (at lag O day) and mean temperature (.* lags 1-3 days) were found to be

relevant contributors.

For the LSTM recurrent neural network, *he best model was found among 450 potential
candidates (i.e., all combinations i ‘eswed hyperparameters). This LSTM consisted of 15
cells in the first hidden layer ond .9 cells in the second one and was trained with 10 000
epochs, a ReLU activatio, fuaction, a learning rate of 0.0001 and no dropout layer
(Figure S6). FI metri s fc- LSTM showed that mean temperature (at lag 0 day) was the
most important vari2'yle, followed by mean temperature (at lags 1-3 days) for both
metrics (Figure 4c). The third most important predictor was either relative humidity (at
lags 1-3 days) or SO, concentration (at lags 47 days) depending on the training or test

dataset.
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3.3. Statistical models

Top five most important regression coefficients from GLM, GAM and DLNM were
extracted and ranked in order of feature importance from left to right (Figure S7). For
GLM, the results showed that mean temperature (at lag O day) was the most significant
variable with a positive association with mortality deviation (Figure S7a). Relative
humidity (at lags 1-3 days) was the second most important predictor and had a negative
relation to mortality deviation. The third and fourth variables w. e wind speed (at lags 1
3 days) and mean temperature (at lags 1-3 days). For GA J, the two most important
predictors were mean temperature at lagsO and 1-? days (Figure S7b). These two
temperature variables exhibited the classizal U/y shape of temperature-health
relationships, which could not be obtaineu by the FI metrics of tree-based or neural
networks models. The third and fourth n.>st important predictors were SO, concentration
(at lags 4-7 days), that had a necau ‘e association with mortality, and NO, (at lags 1-3
days), that had a positive one For DLNM, the bidimensional cross-basis function of air
temperature and lags show.1 a strong positive relationship at lag 0, as well as at lags 1
and 2 days, specific lly for high temperature values (Figure S7c). This function that
describes the whole @emperature-lags-mortality relationship was the most important
predictor in the model. The second and third most important predictors were NO, (at lags
1-3 days) and SO, (at lags 4-7 days) that had similar effects than the ones noted above

for GAM.
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3.4. Models’ comparison

When models using the main dataset were compared in terms of Fl, all models agreed
that mean temperature (at lag 0 day) was the most important variable to explain mortality
deviation (Table 2). In the second rank, mean temperature (at lags 1-3 days) was the
most important predictor for all tree-based methods (DT, RF and GBM), LSTM and
GAM. Most models also identified NO, has a key variab'e for modelling mortality
deviation during summer months, especially at lags 1 to 3 da,s (for most models) and
lags 4 to 7 days (for MLP). Relative humidity also appea-ed 11 the second, third or fourth
rank for four models (RF, GBM, SLP and GLM) anu in the fifth rank for two models
(LSTM and GAM). Wind speed was rarely ir *he top 5 of the most important features
except in GLM and DLNM. Air pollutarts ~ther than NO,, such as SO,, PM; 5 and Os,

sometimes appeared in the third to fifth rc.ak of most important predictors.

Table 2: Five most important predic ors in all considered models. Lags (in days) are indicated in
parentheses (no indication means 'ag ™. Temperature variables are in light orange, NO, in blue and relative

humidity in yellow.

ar, bl #1 Variable #2 Variable #3 Variable #4 Variable #5
Tree- DT Mean t~~ perature ~ Mean temp. (1-3) NO,, (1-3)
based
me- RF Mean temperature Mean temp. (1-3) NO, (1-3) Rel. hum. (1-3) SO, (1-3)
thods
GBM Mean temperature Mean temp. (1-3) NO, (1-3) Rel. hum. (1-3) PM,.5 (1-3)
Netural SLP Mean temperature NO,, (1-3) Rel. hum. (1-3) NO,, (4-7) S0, (4-7)
net-
works MLP Mean temperature NO, (4-7) 03 concentration Mean temp. (1-3) NO, (1-3)
LSTM  Mean temperature ~ Mean temp. (1-3) NO, (1-3) PM,.5 (1-3) Rel. hum. (1-3)
f.tatlis_ GLM Mean temperature Rel. hum. (1-3) Wind speed (1-3) Mean temp. (1-3) NO, (1-3)
ica
models GAM Mean temperature ~ Mean temp. (1-3) SO, (4-7) NO, (1-3) Rel. hum. (1-3)
DLNM Mean temp. CB NO, (1-3) S0, (4-7) 05 (4-7) Wind speed (1-3)
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When FI were extracted for models fitted on the supplementary dataset (that is, the
dataset of 39 years of data, but without PM, ), the main conclusions as noted above still
held (Table S2). Mean temperature was again the most importance variable in all models.
Mean temperature (at lags 1-3 days) was the second most important predictor for 7 out of
9 models. NO, (at lags 1-3 days) was consistently the second or third most important
predictor, followed closely by relative humidity (at lags 1-3 days). For the other most
important variables, the results differed slightly than what wao obtained above on the
main dataset. For example, SO, never appeared in the five moct important predictor while
wind speed and Os concentration came up more ofwn. kFinally, mean temperature at
lags 4 to 7 days appeared in fifth position for 3 moac's (GBM, MLP and LSTM), which

was not seen when models were trained on the ~1ai1 dataset.
3.5. Models’ performance

The ability of the models to nrecic. daily mortality deviation (i.e., over- and under-
mortality when long-term &"'d scasonal trends were first removed) on the out-of-sample
test set was compared (Sicdre 5, Table S3a). R* did not reach 5% for all models
considered and was ~ve.: negative for some models. These results demonstrated that the
studied environmental factors such as temperature-related variables and air pollution only
explained a little proportion of the variation in daily mortality. Based on RMSE, MAE
and R?, GBM was the most performing model, closely followed by RF in second rank,
especially for the MAE criteria. Then, DT, GAM and DLNM performed equally to model
mortality deviation. Only a little performance difference was noted between GAM and
DLNM, even though DLNM was given the complete temperature values over the last 7

days, while GAM only used aggregated values of the predictors at lags 0, 1-3, and 47
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days. For neural networks (SLP, MLP and LSTM), all models performed poorly to model
mortality deviation during summer months compared to a non-informative model (i.e., R?

values close to 0). Finally, GLM had the worst overall results on this dataset.

a) RMSE b) MAE c) R?
DT DT DT
RF RF RF
GBM GBM Gt
ﬂ SLP SLP SLP
§ MLP MLP MLP
= LSTM LSTM LSTM
GLM GLM GLM
GAM GAM GAM -
DLNM DLNM DLNM
I T T T T T T T B T T T T T T
85 8.7 8.9 9.1 9.3 7 7.1 72 "3 7.4 -0.02 0 0.02 004 0.6
RMSE MAE R?

Figure 5 : Performance of all models on the test s. (2014-2019) given by a) Root Mean Square Error
(RMSE), b) Mean Absolute Error (MAE) .. ¢) Coefficient of determination (R?). Low values of
RMSE and MAE are desired, while high vai.~s are of R? are preferred. The best performance metrics are in

dark blue, wt 1le the worst are in light blue.

When performance of moc'als fitted using the supplementary dataset was compared, main
conclusions held, but st e differences were also noted (Figure S8, Table S3b). First,
both GBM and RF w=2re again the two best approaches to model mortality deviation.
Overall, the performance metrics were better than when fitted on a smaller number of
years (best out-of-sample R? values of 6.5%), but such comparison should be made with
caution given that the test set was not the same (2014-2019 for the main dataset and
2009-2019 for the supplementary dataset). Both MLP and SLP obtained better results
compared to when fitted with fewer data, especially MLP, which could mean that the

greater size of the dataset helped the MLP to be better calibrated. Overall, LSTM and DT
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were the worst models. As highlighted above, GAM outperformed DLNM again. For this

dataset, GLM had better performance metrics than GAM and DLNM.

As a final partial validation of the models, weekly mortality predictions for the 2010-
2019 period were compared to the observed values, especially for the 2010 and 2018
heatwaves (Figure 6). For the 2010 heatwave, 6 models predicted with great accuracy the
over-mortality during this extreme heat event, namely DT, RF, MLP, LSTM, GAM and
DLNM. However, since this heatwave was part of the trainirg uataset, no conclusion can
be drawn about the performance of the models. For the 2118 heatwave, which was in the
out-of-sample test set, only 3 out of the 9 mocels currectly predicted the peak of
mortality, namely DT, GAM and DLNM. Th2ta models are relatively simpler models
than RF, GBM or neural networks. Durina 1,.2re modest heatwaves (e.g., 2011 and 2013),
the peak was over-estimated in 2011, bu- well predicted in 2013, for most models. For
non-heatwave years (e.g., 2019), ai> weekly mortality deviation was generally not well

predicted using only temperat: re-r.!ated and air pollution variables.

24



2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

t

100 4 N
0 “\"Vl\;\’—" A ‘QW"M"" 3‘\\‘;\_-4"\»“*‘&,— A \7‘\; ey WW H W

t

100 4 N
pod A I S et - W NP R, - PR A
0 “‘v'v \RJ St RIS Ay :AV-V A R4 A A W AV A

z
@
Y
%
G
<
G
»
2
3
&
.
g
)

100 - A
0 Tafsg deains "\'/\:Jv\x_""s"

K
5

i
&
o>
5t

<

g
:

100 4

100 - |
0 "-F\I’\'-J\"'“ YA AT -’“V’v“\'\*".“r“tﬂ;\;"ﬂ.w'w AR -M—*%

100 o A
0 TV ot T AR AA T J’\;\» = "\*5\7";,'\:'*" S APTRGIY V] Y v

100 4
|
0 *-‘,;Vb\: 7‘\:/-'\" AT n--:ﬂ,—;r’\a‘i.ﬁ,- Asas AT 5 - -ﬁqm N

Y N/ A i

Weekly mortality deviation
E"‘
<
S
5
&
S+
¥

100 1

0 "w\’: Aomne NfERAPT :“Vro"“-‘-*." - ‘y’c.ﬂ;'*' SASREATY LAy AN

rrErEErrr

i

T T —T T T

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
= g = Ao > c o— & g = Wao >Eg o= a >c—= Y . ; C = A »Ego— Wa >Eo= Wo HE o= Ao >>c o= 8o
o S 3 o = = 3 = S s o o 3 3o = B 4 S 3o = 2 3 o = S 3 o . 3 3o = 2 3 @
=335 324 =352 =3528 =352 4a =3 <% 353X 4 235248 =352 48 =3538 =3524

Date
— Jbserve r edicted (Train) — Predicted (Test)

Figure 6: Weekly mortality deviation preai. tions from all models and observations for the 2010-2019

period.

The same validation was e ‘ormed with models calibrated using the supplementary
dataset (calibration ericrmed from 1991 to 2008), for which both 2010 and 2018
heatwaves were in the ut-of-sample test set (Figure S9). Models that could reproduce the
over-mortality in 2010 also reproduced appropriately the over-mortality in 2018. These
models were the same as noted above for the 2018 heatwave (DT, GAM and DLNM), as

well as two other models, RF and GBM.
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4. Discussion

This study considered various machine, deep and statistical learning approaches to model
the heat-mortality relationship in the metropolitan area of Montreal, Canada. Two
datasets of ~20 and ~40 years of data were considered for the calibration of the models.
These are much longer than datasets used in the recent literature of <10 years to calibrate
such models (e.g., Khatri & Tamil, 2017; Ogata et al., 2021; Park et al., 2020; Qiu et al.,
2020; Wang et al., 2019). The hyperparameters optimizatiui. results were thoroughly
detailed. This contrasts with the existing literature in whivh hyperparameters are not
always indicated (Morgenstern et al., 2020) or optiriz.1e.g., Zhang et al., 2014), which
could lead to a “black box” feeling of the methacology. This new knowledge about the
optimal and transparent tuning of machine ana deep learning models can facilitate the
adoption of these approaches in heat-hc 2lth studies, as well as increase confidence in

these methods by non-expert users.

To emphasize the importanr2 o transparency in machine learning, we made sure that we
could explain all modeis. Inaeed, machine/deep learning models are often called black
boxes because end v~ei are not provided with information about the contribution of each
predictor (Wiemken & Kelley, 2019). Feature Importance (FI) metrics were computed
and revealed interesting information in addition to reaffirming established knowledge.
The two most important predictors to model daily summer mortality were mean air
temperature values at lags 0 and 1 to 3 days, while temperature at lags 4 to 7 days was
less important in all models. These results are consistent with the literature and confirmed
the relevance of short-term lagged mean temperature to model mortality (Son et al.,

2019). Indeed, mean temperature was found to be a good compromise between various
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temperature indices for the heat-mortality relationship in comparative studies conducted
in the United States (Barnett et al., 2010) and Australia (Vaneckova et al., 2011). NO; at
lags 1-3 days was overall the third most important variable. This finding is interesting
given that NO; is less often included in heat-mortality studies that focused more on other
air pollutants such as Oz or PM (Basu, 2009; Son et al., 2019), although it is a known
driver of mortality (Y. Wang et al., 2019). The fourth most important predictor was
relative humidity at lags 1-3 days. This was expected given the additional effect of
humidity on mortality during hot days (Gosling et al., 2022\, ..ithough relative humidity
is the most commonly used humidity variable in wecther-health studies and has been
useful in our study for modelling summer mortalitv ¢sing machine and deep learning, it
may not be the optimal variable to be corsi’zred (Davis et al., 2016). All the above
findings were also confirmed when *1e raodels were calibrated on the supplementary

dataset.

When the ability of the mod-Is 1. predict out-of-sample daily mortality deviation was
compared using performance inetrics (i.e., RMSE, MAE and R?), ensemble tree-based
methods (GBM and RF exceeded the performance of traditional statistical models
(GLM, GAM and PN'_NM) and neural networks (SLP, MLP and LSTM). Non-linear
statistical models (GAM and DLNM) performed better than neural networks (SLP, MLP
and LSTM) when fitted on the 22-year dataset, but MLP had better performance (close to
the one of RF) when fitted on the 39-year dataset. This means that a larger dataset size
can lead to better performance for more complex models such as neural networks. That
said, LSTM performed poorly with both datasets. This could be due to the higher number

of parameters to be estimated compared to the other models. Results of GLM and DT
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were highly dependent on the dataset (i.e., main or supplementary), so no clear
conclusion could be drawn for either model. The best models (GBM and RF) had out-of-
sample R? values of 3-4% for the main dataset and 6-7% for the supplementary dataset.
Such results are not surprising given that R? (or explained deviance) below 10% are

reported for in-sample predictions in weather-health studies (Table 07 in Chiu, 2017).

As an additional validation, performance of the models during two major heatwaves (i.e.,
2010 and 2018) was visually evaluated. Five models (DT, CAN' DLNM, RF and GBM)
correctly reproduced the excess mortality during out-of-<amp e heatwaves when fitted on
the 39-year period, but only three (DT, GAM, DLNwm, ‘vnen fitted on the shorter period.
Interestingly, models that correctly modelled =~ak moitality during heatwave were not
necessarily the same as the ones having hat..r performance metrics. This could be due in
part to the J- or U- shaped relationships “etween temperature and mortality (Gosling et
al., 2009), which were correctly i1,>de.led by non-linear statistical models (GAM and
DLNM). These results raise the question of the type of validation that should be
performed depending on the end user’s objective: to predict daily mortality deviations or
to reproduce mortality 2aks during extreme heat events. In the latter case, partial
validation might b= more informative for the final model choice than classical

performance metrics (e.g., RMSE, MAE, R?).

To our knowledge, this is the first study to compare such a large variety of approaches to
model heat-health relationships, from more easily explainable models to more complex
ones. While simpler models can straightforwardly give an indication of the sign of the
relationship (GLM, GAM, DLNM) or on potential interactions (DT), more advanced

models that allow for complex interactions between predictors may perform better (e.g.,
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GBM and RF). We considered 9 modelling approaches, whereas the few other
comparative studies in the literature were limited to 3-5 models (e.g., Marien et al., 2022;
Nishimura et al., 2021; Ogata et al., 2021; Park et al., 2020; Qiu et al., 2020). Also, it is
one of the first applications of the LSTM in the field (e.g., Lin et al., 2021; Nishimura et

al., 2021) and a first comparison of the DLNM with machine and deep learning models.

The few other comparative studies found in the literature differ significantly from ours in
terms of the studied health outcome, the considered predict.rs >nu the models used. For
example, Marien et al. (2022) used DT, RF, GBM, MLF ana Ridge Regression to model
the annual myocardial infarctions and found that m.® and Ridge Regression slightly
outperform tree-based methods. Nishimura et 2! (202.) modelled the daily number of
heat-related-illness using non-linear repress’an equations, LSTM and RF. Both LSTM
and non-linear regression equations ou.nerformed RF. Ogata et al. (2021) compared
GLM, GAM, RF and GBM to preun * heatstroke and found that GAM was the best model
for out-of-sample prediction~ N Park et al. (2020) found that RF was the most
performing approach compored to GLM, DT and Support Vector Machine (SVM) to
model weekly morbility due to heatwave. Qiu et al. (2020) modelled days with high
hospital admissions f~.r cardiovascular disease and found that RF and GBM performed
better than SVM, GLM and DT. These divergent results highlight the need for more
comparative studies that consider various modelling approaches and study different

health variables (e.g., all-cause mortality in our case).

The main strengths of the study should be highlighted. First, it considered a wide variety
of modelling techniques, from statistical models to tree-based methods, to feedforward

and recurrent neural networks, thus allowing for complex interactions between
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temperature-related and air pollution predictors to be considered. Second, the calibration
of the models (i.e., hyperparameters optimization) was transparent and used two long
datasets of ~20 and ~40 years of data. Third, FI metrics were extracted and compared for
all considered models. They allowed explaining machine and deep learning models and
finding the most relevant predictors for heat-health relationships modelling. Finally, two
evaluations of models’ predictions were performed using three performance metrics and a

partial validation based on recent heatwaves.

Some limitations of the study must also be noted. First, only one case study was
presented, i.e., the all-cause mortality in the Montrear metropolitan area. Hence, results
cannot be directly applied to other regions ~t heaich impacts (e.g., cause-specific
mortality or morbidity). Second, all medei. considered the same predictors i.e., mean
daily values of temperature-related and a.” pollution variables at fixed lags 0, 1-3 and 4—
7 days. No other lags (except for ‘e "oe/ature in DLNM), aggregation (e.g., minimum or
maximum), nor temperature met.cs (e.g., Humidex, Heat Index) were tested. Third,
relative humidity was usea 1 «ll models considered, but it may not be the best indicator
of humidity for heat- 1eali" studies. Fourth, FI metrics were computed using either node
purity or permutation nat are only two of the many methods to explain machine learning
models. Finally, even though 9 models were considered, other modelling approaches

could have been explored.

5. Conclusion

Mean temperature at lags up to 3 days, as well as NO, concentration and relative
humidity (both at lags 1-3 days) were the most important predictors for modelling
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summer mortality in Montreal, Canada, based on temperature-related and air pollution
variables. Ensemble tree-based methods (GBM and RF) outperformed decision tree,
statistical models and neural networks based on three performance metrics. However, a
partial validation during recent heatwaves showed that these models may underestimate
the mortality spike during these events if they are not calibrated with enough data.
Therefore, we conclude that both machine/deep learning and statistical models are
relevant for modelling heat-health relationships depending on & . ~vriad of factors : size of
the dataset, available computing time and resource, informz2tic 0 be derived (e.g., shape
of the relationship), end user goal with the fitted moa.' etc. In the context of increased
extreme heat events due to climate change, thcze new results can support the
implementation or improvement of heat adaL* tirn measures (e.g., early alert system).
Hence, it is suggested that such in-deg h cumparison of various modelling approaches be

extended to other health indicators, p.2dictors and regions.
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Highlights :

e Heat-health relationship modelled with 9 machine/deep/statistical learning models
e Interactions considered between temperature-related and air pollution variables
e Air temperature, NO, and relative humidity were the most important predictors
o Ensemble tree-based models outperformed neural networks and statistical models

o Non-linear statistical models may better represent peak mortality during heatwaves
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