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RÉSUMÉ 

Un déclin des populations de poissons a été observé ces dernières années, en partie dû à la 

présence de barrières hydrauliques le long des voies migratoires - tels que des barrages, des 

ponceaux et des ponts de route - qui fragmentent l’habitat disponible. Cette recherche utilise la 

dynamique des fluides computationnelle (CFD) afin de soutenir la conception de saillies profilées. 

Ces saillies, installées dans des ponceaux, génèrent des zones de vitesse réduite (RVZ) et 

permettent aux poissons de se reposer lors de leurs tentatives de franchissement des barrières 

hydrauliques, tout en minimisant les pertes de charge dans l’infrastructure. Plus précisément, le 

modèle de Smagorinsky a été utilisé pour modéliser les champs de vitesses 3D autour de saillies 

de différentes formes et tailles, et ce pour deux conditions hydrauliques. Les modélisations ont 

été validées à l’aide de vitesses mesurées avec un vélocimètre acoustique à effet Doppler et de 

vidéos de la forme et taille des RVZ générées par les saillies. Les résultats indiquent que les 

conditions hydrauliques impactent la largeur de la RVZ, mais pas sa hauteur ni sa longueur. La 

condition la plus turbulente est généralement associée à une RVZ plus large pour une même 

hauteur de saillie. Cette augmentation de la largeur pourrait potentiellement être causée par 

l’utilisation d’une grille computationnelle légèrement plus grossière pour cette seconde condition 

hydraulique. La hauteur de la RVZ est directement liée à la hauteur de la saillie, et la longueur de 

la RVZ est prédite à la fois par le niveau de submersion des saillies et par le rapport de la largeur 

de la saillie sur sa hauteur. Le modèle de Smagorinsky fournit des résultats conservateurs : les 

vitesses dans la RVZ tendent à être légèrement sous-estimées, alors qu’elles sont surestimées 

dans la couche de cisaillement et dans la région de libre circulation. Comparé à une modélisation 

1D ou 2D, le modèle Smagorinsky permet une reproduction apparemment réaliste des tourbillons 

générés en aval des saillies, bien qu'à un coût en temps de calculs élevé. Les résultats confirment 

la pertinence d’utiliser le modèle Smagorinsky pour soutenir la conception de systèmes visant à 

faciliter le passage des poissons vers l’amont d’une structure hydraulique.  

 

Mots-clés : Modélisation hybride ; migration et déplacement ; poisson ; sillage ; dynamique des 

fluides computationnelle ; Smagorinsky 
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ABSTRACT 

A significant decline in fish populations has been observed in recent years, partly attributable to 

the presence of hydraulic barriers along migration paths – such as dams, culverts and road 

bridges – which fragment the habitat available to fish. This research uses computational fluid 

dynamics (CFD) to support the design of streamlined spoiler baffles. These spoiler baffles, 

installed in culverts, generate reduced velocity zones (RVZ) which allow fish to rest during their 

attempts to cross hydraulic barriers, while minimizing head loss within the infrastructure. More 

precisely, the Smagorinsky model was used to model the 3D velocity fields around spoiler baffles 

of different shapes and sizes, under two hydraulic conditions. The models were validated using 

velocities measured with a velocimeter and videos of the shape and size of the RVZs generated 

by the spoiler baffles. The results indicate that hydraulic conditions have an impact on the width 

of the RVZ, but not on its height or length. The most turbulent condition was generally associated 

with a larger RVZ for spoiler baffles of a given height, which might be attributable to the use of a 

slightly coarser computational mesh for this hydraulic condition. The height of the RVZ was 

directly linked to the height of the spoiler baffle, and the length of the RVZ is predicted by both 

the submersion level of the spoiler baffle and the ratio of the width of the spoiler baffle to its height. 

The Smagorinsky model provides conservative results; Velocities within the RVZ tend to be 

slightly underestimated, while they are overestimated in the shear layer and in the free-flow 

region. Compared to 1D or 2D modeling, the Smagorinsky model allows an apparently realistic 

reproduction of the vortices generated downstream of the spoiler baffles, although at a high 

computational cost. The results confirm the relevance of using the Smagorinsky model to support 

the design of systems aimed at facilitating the passage of fish upstream hydraulic structures. 

 

 

Keywords : Hybrid modelling; Fish Migration; Wake; Computational Fluid Dynamic; Smagorinsky 
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SOMMAIRE RÉCAPITULATIF 

Un déclin des populations de poissons de divers espèces a été observé ces dernières années, 

en partie dû à la présence de barrières hydrauliques le long des rivières, poussant une partie de 

la recherche vers la conception de systèmes visant à faciliter le passage des poissons à travers 

ces barrières. Cependant, la conception de ces systèmes est coûteuse et des problèmes peuvent 

survenir en raison des limites technologiques et physiques rencontrés, et des lacunes dans les 

données découlant de ces limites.  

L'objectif principal de ce projet de recherche est de soutenir la conception de saillies par 

l’utilisation de la dynamique des fluides computationnelle (CFD). Ces saillies visent la création 

d’abris hydrauliques pour les poissons lors de leur passage vers l’amont de ponceaux en leur 

fournissant des zones de vitesses réduites (RVZ) pour se reposer. La CFD est utilisée pour 

modéliser les RVZ générées en aval des saillies, et ainsi diversifier l’éventail des données 

disponibles pour la conception de ces saillies à un moindre coût. Les objectifs spécifiques de 

cette recherche sont :  

1. D’identifier la meilleure approche de modélisation CFD pour reproduire la séparation du 

courant autour des saillies, ainsi que les structures de turbulence générées ;  

2. De valider cette approche par l’utilisation des mesures de vitesses d’écoulement 3D 

enregistrées autour des saillies de différentes formes et tailles lors d’une expérimentation 

physique en laboratoire ; et  

3. D’analyser les impacts des caractéristiques physiques des saillies et d’un changement 

aux conditions hydrauliques sur les RVZ, ainsi que sur les structures turbulentes 

générées en aval des saillies.  

Les travaux s’appuient sur les hypothèses suivantes : 

i. Le modèle de Smagorinsky peut modéliser avec précision les schémas de turbulence 

complexes associés à la séparation de l’'écoulement résultant d'un objet s'opposant au 

courant. 

ii. Les caractéristiques des RVZ varieront selon :  

o La forme des saillies ;  

o Le niveau de submersion des saillies ; et 

o Les conditions hydrauliques environnantes.  
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Dans le cadre de l’expérimentation physique, 18 saillies de formes et tailles différentes ont 

été testées sous deux conditions hydrauliques dont les vitesses moyennes de courant étaient de 

0,27 m/s et 0,36 m/s respectivement. Les saillies ont été positionnées au centre d’un canal de 

0,31 mètres de largeur, 0,30 mètres de hauteur et 6,3 mètres de longueur. Les données 

disponibles pour la validation des modèles CFD incluent : (1) les vitesses aux alentours des 

saillies et dans leur sillage, captées à l’aide d’un vélocimètre acoustique à effet Doppler ; (2) les 

hauteurs d’eau dans le canal, mesurées manuellement à tous les 68 centimètres ; et (3) des 

vidéos des tourbillons dans le sillage de l’objet capturée par une injection de colorant dans la 

RVZ.  

Les travaux de modélisation CFD ont été effectués dans le logiciel libre OpenFOAM. Le 

modèle Smagorinsky, couplé de la fonction d’amortissement de Van Driest, a été utilisé pour 

reproduire les conditions testées en laboratoire. Le modèle Smagorinsky est un modèle de 

simulations des grandes structures turbulentes (« Large Eddy Simulation » en anglais). Il a été 

possible de confirmer que ce modèle est simple d’utilisation et qu’il permet une bonne 

reproduction des tourbillons générés lors de la séparation d’un courant menant à l’apparition de 

pressions négatives en aval d’un objet. L’algorithme PimpleFoam, sous sa forme piso, un solveur 

monophasé, a été utilisé pour résoudre les systèmes d’équations du modèle.  

Les résultats obtenus sont conformes à la littérature. Ils montrent que le modèle 

Smagorinsky tend à sous-estimer les vitesses dans le sillage de la saillie, et ce malgré l’utilisation 

de la fonction d’amortissement de Van Driest. Une surestimation générale des vitesses en dehors 

de la RVZ a également été observée. Considérant que le modèle serait utilisé pour la conception 

de systèmes visant à faciliter le mouvement et la migration des poissons au travers de barrières 

hydrauliques, la pertinence d'utiliser le modèle Smagorinsky est confirmée. En effet, dans un tel 

contexte, la surestimation des vitesses d'écoulement libre et la sous-estimation des vitesses dans 

la RVZ constituent des résultats conservateurs. Si les vitesses modélisées sont sous le seuil 

supporté par les poissons, alors les poissons devraient pouvoir transiter dans le système réel.  

L'analyse des données des simulations montre que les conditions hydrauliques 

environnantes n’exercent un effet significatif que sur le rapport entre la largeur de la RVZ et la 

largeur de la saillie. En effet, la condition hydraulique la plus turbulente est associée à une RVZ 

plus large pour une même saillie. Cette augmentation de la largeur en fonction de la turbulence 

pourrait également être due à l’utilisation d’un maillage légèrement plus grossier pour la deuxième 

condition hydraulique. Dans tous les cas, la forme générale de la RVZ est un miroir de la forme 

de la saillie et les caractéristiques des RVZ varient en fonction de la forme des saillies et de leur 
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niveau de submersion. Le rapport de la largeur de la saillie sur sa hauteur (SB.W/SB.H) et son 

niveau de submersion (W.D/SB.H) se sont révélés être de bons prédicteurs de la longueur de la 

RVZ créée par une saillie précise, suivant le modèle subséquent, dans lequel RVZ.L/SB.H est le 

ratio de la longueur de la RVZ sur la hauteur de la saillie : 

𝑅𝑉𝑍.𝐿

𝑆𝐵.𝐻
= 0.6574

𝑆𝐵.𝑊

𝑆𝐵.𝐻
+ 0.1410

𝑊.𝐷

𝑆𝐵.𝐻
+ 0.4596  [

𝑆𝐵.𝑊

𝑆𝐵.𝐻
∈ [0.5, 2.0]

𝑊.𝐷

𝑆𝐵.𝐻
∈ [3.7, 7.6]

 

Valider la longueur de la RVZ modélisée s'est avéré difficile. La RVZ modélisée semble 

être plus longue que la RVZ physique générée par les saillies lors des expérimentations en 

laboratoire. Une limite substantielle aux travaux actuels réside dans l'impossibilité de mesurer 

précisément la longueur de la RVZ physique. Il est recommandé qu’une règle soit installée sous 

le canal lors d’expérimentations physiques futures pour mesurer la longueur approximative des 

RVZ physiques et ainsi offrir plus de données pour la validation des modèles CFD.  

Une autre limite se situe dans la lourdeur des résultats de chaque simulation. La taille d'un 

sillage primaire est fortement dépendante du temps. Par conséquent, la longueur de la RVZ 

devrait être calculée comme une longueur moyenne sur des résultats enregistrés à un pas de 

temps suffisamment petit pour visualiser les oscillations du sillage primaire. L’enregistrement des 

résultats CFD nécessite cependant une quantité extrême de mémoire d’ordinateur et étant donné 

la grande quantité de scénarios modélisés dans le cadre des présents travaux, il n'a pas été 

possible d’analyser l'évolution de la RVZ dans le temps.  

Dans un contexte d’utilisation des RVZ par les poissons, les saillies modélisées ont 

conduit à des longueurs de RVZ jugées comparables. C’est-à-dire qu’il existe un chevauchement 

important dans la longueur du corps des poissons qui pourraient potentiellement utiliser les 

saillies comme abris sans être confus (longueur  3 à 4,5 centimètres). Une saillie beaucoup plus 

petite serait nécessaire pour permettre le passage de poissons d'une longueur inférieure à 

3 centimètres sans créer de confusion.  

Outre la longueur de la RVZ, les principales caractéristiques à considérer pour la 

conception finale concernent plutôt la stabilité de la RVZ générée, à savoir son niveau de 

fragmentation et le type d'arrangement des tourbillons observés. Ces caractéristiques auront 

vraisemblablement un impact significatif sur les poissons et sur leur capacité à utiliser la RVZ 

générée. Trois types d'arrangements des tourbillons ont été observés, soit : 
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Type A. (6%) Une petite chaîne de tourbillons est identifiée le long de la paroi aval de la saillie, 

sur toute son aire. Cette chaîne évolue en tourbillons-anneaux toroïdaux observés 

dans la partie inférieure de la RVZ. Dans un des cas, les tourbillons-anneaux 

semblent être constitués d’une paire d'anneaux mères et filles; l’anneau-mère forme 

l’anneau-fille qui est rejetée périodiquement en aval de la saillie. Dans d'autres cas, 

un ou deux anneaux sont observés qui donnent lieu à une chaîne de tourbillons 

transitant le long du volume de la RVZ et évoluant de manière aléatoire sur tous les 

plans. La RVZ est fermée par des tourbillons hélicoïdaux, généralement deux, mais 

parfois plus. 

Type B. (33%) Une petite chaîne de tourbillons est identifiée le long de la face aval de la saillie. 

Au lieu de tourbillons-anneaux toroïdaux, la RVZ est dominée par des tourbillons en 

forme d’arc. Dans un des cas (H20W30 sous la condition hydraulique #2), deux 

tourbillons-arc contrarotatifs sont reliés et forment un seul grand tourbillon-arc, 

indiquant une certaine stabilité. La RVZ est fermée par des tourbillons hélicoïdaux. 

Type C. (61%) Cet arrangement montre une RVZ plutôt désorganisée, sans anneaux 

toroïdaux, ni tourbillons-arc. Une chaîne de tourbillons évoluant aléatoirement sur 

tous les plans est observée, depuis la face aval de la saillie jusqu'à l'extrémité de la 

RVZ, qui est fermée par des tourbillons hélicoïdaux. La caractéristique principale de 

ce type est la présence d'un vortex principal, apparemment stable et tournant dans le 

plan YZ.  

Malgré son apparence désorganisée, la présence d'un vortex principal, apparemment stable et 

tournant dans le plan YZ, indique que le type C pourrait en fait être le plus stable de tous les 

arrangements observés et le plus facilement utilisable par les poissons. Dans le cadre des 

présents travaux, il est cependant impossible de lier le comportement des poissons aux 

tourbillons modélisés.  

Cette maîtrise a été utile pour définir le niveau de précision du modèle Smagorinsky et 

certaines mises en garde lors de son utilisation pour la conception de système de saillies profilées 

visant à supporter les poissons dans leurs franchissements de barrières hydrauliques. Une 

prochaine étape pertinente serait de modéliser le système de deux saillies qui a été physiquement 

testé en laboratoire avec des poissons pour mieux comprendre si et comment les tourbillons dans 

la RVZ impactent le comportement des poissons autour des saillies, et même si les données 

modélisées correspondent aux comportements observés chez les poissons. Cet effort 

supplémentaire éclairerait une hypothèse soulevée lors des présents travaux, soit que la 
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génération de trains de vortex de Kármán de tailles variées serait préférable à la création de RVZ 

stables avec un sillage secondaire chaotique. 

La principale lacune du modèle de Smagorinsky est son coût de calcul élevé. Un maillage 

très fin est nécessaire pour assurer la convergence du modèle, à savoir le maintien d'une valeur 

y+ de 10 selon la littérature consultée. Ce coût de calcul élevé est ce qui a conduit à l'utilisation 

du solveur PimpleFoam qui, par sa nature monophasée, ne permet pas de modéliser la surface 

libre du système, mais permet de réduire considérablement le temps de simulation par rapport 

au solveur biphasé InterFoam. Cette décision entraîne une certaine perte d'informations, car les 

tourbillons créés par l'interface air-eau ne sont pas modélisés. Il est également possible que cette 

décision contribue à la surestimation des vitesses d’écoulement libre et à la sous-estimation des 

vitesses dans le sillage de l’objet. De façon générale, les données indiquent que l'utilisation de 

PimpleFoam permet une reproduction de la forme de la RVZ et de la turbulence générée dans la 

région inférieure du canal et dans le sillage de la saillie où transitent les poissons. L'utilisation 

d'un modèle simplifié monophasé s’est donc révélée appropriée pour un système dominé par des 

tourbillons générés par la présence d’un objet opposant le courant.  

Étant donné l’importance des temps de calculs liés à l’utilisation d’un modèle de type LES, 

une piste de solution à évaluer serait de modéliser à nouveau l'une des 18 saillies déjà 

modélisées en utilisant un modèle hybride RANS-LES, tel que le modèle de simulation de 

tourbillons détachée retardée améliorée (« Improved Delayed Detached Eddy Simulation » en 

anglais). Dans le cas où ce modèle hybride fournirait des résultats similaires à ceux du modèle 

de Smagorinsky, il pourrait s'avérer utile pour diminuer considérablement le coût des calcul, 

améliorant la pertinence de l'utilisation de la modélisation CFD pour soutenir l'effort de conception 

des saillies.  

Ce mémoire de maîtrise est, à notre connaissance, le premier à analyser de façon aussi 

détaillée la pertinence d’utiliser le modèle de Smagorinsky dans un contexte de soutien à la 

conception de systèmes visant un support aux franchissements des barrières hydrauliques par 

les poissons. Bien qu'il reste encore beaucoup à faire pour confirmer davantage la pertinence de 

ce modèle, ce mémoire présente des informations utiles sur l'avenir de la modélisation hybride. 
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1 INTRODUCTION 

 Context 

Fish are a key part of the aquatic food web and while emphasis tends to be put on particular fish 

species relevant to human-economics and uses, specifically marine fishes, inland and migratory 

fish are equally important in preserving nutrient flux within ecological systems and conserving 

native biological diversity, as well as being a food source for billions of people worldwide (Lynch 

et al., 2016). A significant decline of migratory freshwater fish populations has been observed in 

recent years with anthropogenic disturbances identified as a primary vector of this deterioration 

(Scott-Gatty et al., 2020). Schlosser (1991) also contended that the focus of researches is too 

often limited to small spatial and short temporal scales, thus not capturing the problems faced by 

managers, which extend to larger spatial and longer temporal scales.  

Fish movements within a system of rivers and streams play a significant role in the 

regulation of fish populations, as they are necessary to ensure various key elements and 

processes, such as habitat complementation and supplementation; colonization and 

recolonization; habitat connectivity; access to refugia; and migration (Fausch et al., 2002). 

Radinger and Wolter (2014) quantified the components of fish dispersal within freshwater fish 

communities and found that the median movement distance of the stationary component, linked 

to the concept of home range, was 36.4 meters; the mobile component, which is hypothesized as 

being responsible for the individuals exchange between populations, was calculated at 

361.7 meters. The creation of anthropogenic barriers (physical, hydraulic, chemical, thermal) 

hinders the movements of fish across their habitats (Silva et al., 2017), fragmenting them, which 

leads to—among other effects—reduced population sizes and increased genetic drift (Torterotot 

et al., 2014).  

Dams are often the first structure to come to mind when thinking about fish barriers, as they 

are responsible for significant fish habitat losses worldwide and pose a real threat to many 

freshwater fish species (Liermann et al., 2012). However, bridges and culverts are also 

challenging for fish migration and much more abundant. The sudden decrease in river width 

caused by these structures increases flow velocity and turbulence, often creating a hydraulic 

barrier for fish passage (Watson et al., 2018). The slope of the culverts itself can strongly impact 

fish migration, not only because of the increased velocity, but also because of the additional 

contribution of gravity force in dissipating the power of fish thrust (Wang and Chanson, 2018). 
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The bridges and culverts design guidelines of the “Ministère des Ressources naturelles” 

remind designers that preserving fish habitat continuum must be considered a priority (Cloutier et 

al., 1997); it provides design constraints which aim to ensure fish passage through newly built or 

modified water conveyance structures. As a result, many believe that fish passage is a solved 

problem, an established knowledge. However, an inventory of 126 culverts distributed on four 

major salmon rivers across the province of Quebec showed that only 35% of culverts were 

passable (Gagnon-Poiré, 2017). In southern Labrador, a similar study completed along the newly 

constructed Trans Labrador Highway showed that 53% of the 47 culverts and 4 bridges surveyed 

impeded fish passage; a finding attributed to poor design or poor installation of the infrastructure 

and likely resulting from an inadequate environmental oversight in the field (Gibson et al., 2011).  

Models, such as FishXing, have been developed to support engineers and fish specialists 

in verifying that fish passage is successful when designing culverts by modeling organism 

capabilities against culvert hydraulics across a range of stream discharges (U.S. Department of 

Agriculture, 2006). Mahlum et al. (2014) showed that common barrier assessment models tend 

to be conservative, while Castro-Santos (2006) warns of their inaccuracy due to the inclusion of 

unrealistic assumptions, such as fish swimming voluntarily to physiological fatigue, a behavior 

rarely observed in the wild. The standardization of fish passage evaluation is, at present, lacking, 

and systems aiming to facilitate fish passage based on fish swimming speeds and mean water 

velocity alone are often inadequate (Silva et al., 2017).  

Accurately predicting the movement of fish through culverts is a challenge because - 

amongst other limitations - of an incomplete knowledge of fish physiology and behaviour, as well 

as an incapacity to thoroughly reproduce hydraulic conditions found in nature within a laboratory 

setting that uses steady flow conditions (Castro-Santos, 2005, Liao, 2007, Mahlum et al., 2014). 

Castro-Santos (2006) proposed an improved empirical model, based on survivorship, which 

predicts the proportion of the population that successfully reaches a given distance, while 

considering the variability of swimming capabilities within a population of fish. This model 

improves the prediction of fish capacity to traverse hydraulic barriers, but places more burden on 

managers, as it requires explicit assumptions about the speed at which a fish can actually swim, 

a variable often unknown by designers (Castro-Santos, 2006). Wang and Chanson (2018) also 

pointed at the importance of quantifying the power and energy expended by a moving fish to 

accurately predict the success of fish passage, and to improve current knowledge on fish-

turbulence interplay.  
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Generally, fish have been observed to prefer a path of least resistance when migrating 

upstream currents (Keefer et al., 2011, McElroy et al., 2012, Lindberg et al., 2016, Wang and 

Chanson, 2018), a behavior also observed during physical experimentations within culverts 

(Richmond et al., 2007, Constantin, 2017, Goerig et al., 2017). Goerig et al. (2017) found that fish 

passage success was higher in corrugated culverts than smooth culverts; small fish were 

observed to use the corrugations for sheltering from high flow velocities. Richmond et al. (2007) 

further noted that spiral corrugations induce secondary flows which cause asymmetries in both 

the velocity and turbulence distributions, leading to the appearance of reduced velocity zones 

(RVZ) along the wall that fish use to facilitate their upstream passage.  

Various research projects have therefore attempted to facilitate fish passage within culverts 

by recommending various designs to reduce flow velocity and provide shelter for fish. However, 

the disconnect between fish specialists and designers too often results in those designed systems 

seldom being used in the field on account of the recommendations leading to impractical and 

hydraulically inefficient culvert structures, which have been observed to lose up to 50% of their 

discharge capacity (Duguay and Lacey, 2015, Leng and Chanson, 2020). In Nova Scotia, 

Fisheries and Oceans Canada (2015) published guidelines for the design of fish passage within 

culverts, seemingly transforming the culverts into fishways by recommending the installation of 

perpendicular notched baffles, which leads to major head loss and oversized culverts design. 

More recently, Cabonce et al. (2017) were able to reduce the head loss significantly by using flat 

triangular corner baffles; they observed a maximum increase in the water depth of 26% for the 

larger baffles, and of approximately 8% for the smaller baffles. However, the use of flat baffles 

generally result in debris clogging and increased culvert maintenance costs (Watson et al., 2018), 

as well as seemingly confusing smaller fish during their ascent (Cabonce et al., 2018).  

 Problem Statement 

When designing systems which aim to facilitate fish passage through culverts, issues can arise 

from technological limitations and resulting data gaps. Fishes respond to complex hydraulic 

characteristics in a variety of manners, and systems designed for a specific fish specie might not 

work as well for another (Keefer et al., 2011). Physical experiments are costly and thus, it is 

impractical to evaluate the impacts of a designed system on flow resistance and fish passage 

over numerous hydraulic conditions and using various species of fish. This makes it difficult to 

thoroughly understand how and why fish would use the designed system, and to predict how the 

system will influence the overall discharge capacity of the culvert.  
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Recently, Computational Fluid Dynamics (CFD) modeling has shown promises in more 

accurately defining turbulence and rest zones available to fish within conveyance structures. It 

has been used as a complement to physical modelling (Leng and Chanson, 2020) to help (1) 

reduce operational costs by identifying potential issues and scenarios worth modeling physically; 

and (2) fill the data gap generated by technological constraints and limitations. It could therefore 

prove a useful tool in designing fish friendly systems aiming to facilitate fish passage through 

culverts without impeding flow.  

CFD allows resolution of the Navier-Stokes equations, which mathematically express both 

the conservation of momentum and of mass in Newtonian fluids, while also accounting for fluid 

viscosity, making them a useful tool in modeling incompressible fluid flow. While the nonlinearity 

of these equations makes them difficult to solve, it enables the modeling of turbulence. In CFD, 

solving of the Navier-Stokes equations in 3D can be achieved one of three ways, specifically via 

the use of (1) Direct Numerical Simulation (DNS); (2) Reynolds-Averaged Navier-Stokes 

equations (RANS); or (3) Large Eddy simulation (LES). DNS require an enormous amount of 

computing power, rendering them inconvenient for complex geometries and larger systems; 

RANS and LES are more viable options, as they make use of turbulence closure models allowing 

for coarser computational grids resulting in a significant decrease in the required computational 

power (Fröhlich and Rodi, 2002).  

As isotropic models, RANS have been shown to be inefficient when studying turbulent 

phenomena around obstacles; RANS completely neglect history effects, only allowing for the 

modelling of mean-velocity and pressures fields, averaging turbulent structures and 

underpredicting vortex shedding (Alfonsi, 2009). Unsteady RANS (URANS), while allowing the 

modelling of the oscillation of velocities in the wake region and the estimation of the turbulent 

kinetic energy, do not allow proper modelling of horseshoe vortices and are consistently less 

accurate than LES for the modelling of turbulent structures (Ducrocq et al., 2017). To enable the 

analysis of the turbulent structures generated by an object, LES models, which are 

computationally expensive, are selected.    

Open-Source Field Operation and Manipulation (OpenFOAM) C++ libraries is a framework 

used to develop application executables that has been shown to provide as accurate results as 

proprietary software such as FLOW-3D (Duguay et al., 2017). OpenFOAM offers over 250 pre-

built applications, including solvers and utilities which enable solving of complex fluid dynamics 

problems (OpenFOAM Foundation, 2020). Ten LES turbulence closure models are available for 

turbulence modeling in incompressible fluids. The Smagorinsky model used on a fine mesh has 
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been shown to provide accurate and realistic results when modeling flow turbulence (Chorda et 

al., 2019)). However, validation of the CFD model remains essential, as there is no guarantee 

that a model that worked for a specific scenario will perform as well under different conditions 

(Leng and Chanson, 2020). It is crucial that the turbulence closure model be properly calibrated 

using observations from physical experimentation. 

 Research Objectives 

Building on past experiments, researchers at the Institut national de la recherche scientifique are 

currently working on developing a new system to improve the success of fish passage within 

culverts, particularly smooth culverts. It is hypothesized that the use of profiled spoiler baffles of 

relatively small sizes, as opposed to flat baffles, would create RVZs for fish to rest while offering 

little resistance to flow. Because the size, shape and spatial concentration of these spoiler baffles 

should be optimized according to the physiological characteristics of the target fish, it is important 

to first define what the characteristics of the RVZs generated by the spoiler baffles are. However, 

making measurements in an experimental channel to obtain this information would be long and 

costly. The main objective of this master’s thesis is therefore to assist in the design of a profiled 

spoiler baffle by using CFD modelling. The specific objectives are: 

1. To identify the best CFD approach to model the flow around a spoiler baffle; 

2. To validate this CFD approach by using 3D flow velocities measured using an ADV 

velocimeter around spoiler baffles of various sizes and shapes as part of an experimental 

channel experiment; 

3. To analyse the impacts of the physical characteristics of the spoiler baffle and of the 

hydraulic conditions on the average and turbulent structures generated by the presence 

of the spoiler baffle.  

The current work is based on the following hypothesis: 

i. The Smagorinsky model can accurately model complex turbulence patterns associated 

to the flow separation resulting from an object opposing the current.  

ii. The characteristics of the RVZ will vary following: 

a. The shape and size of the spoiler baffles; 

b. The level of submergence of the spoiler baffles; and 

c. The level of turbulence, indicated by the Reynolds number.  

 





 

 

2 LITERATURE REVIEW 

 What is Turbulence? 

Turbulence refers to the chaotic changes in flow velocity and pressure observed within a moving 

fluid, leading to the creation of unsteady vortices, or eddies, of various dimensions (Childress, 

2009). Eddies and vortices are similar, as they both describe the swirling motion of a fluid, but 

vortices are generally considered having a more stable nature. The often apparently random 

nature of turbulence has made it difficult to comprehend and while the developed models are 

useful, they do not always represent the complexities of nature (Fan and Tsuchiya, 1990).  

Cotel and Webb (2015) classify the formation of turbulent structures within water in two 

general categories: (1) wave-dominated, in which deformations at the air-water interface create 

vertical velocities; and (2) eddy-dominated, 

in which eddies are created at shear zones 

within submerged areas. The turbulence 

generated by the presence of an obstacle 

opposing the current is part of this second 

category. 

Most proposed designs to facilitate 

fish passage through culverts make use of 

obstacles opposing the current, leading to 

the generation of a wake i.e., a region of 

flow disturbances downstream of an 

obstacle. The wake has been historically 

divided into two main regions (Fan and 

Tsuchiya, 1990) :  

(1) the near-wake, or primary wake; 

(2) the far-wake, or secondary wake.  

Both regions are outlined in Figure 2.1.  

 

Figure 2.1 : Identification of the near-wake and far-wake 
regions 

Simulation: H20W20_01 



8 

2.1.1 The Near-Wake 

The near-wake, also called recirculation region, or formation region when there is evidence of 

vortex shedding, is located closest to the obstacle. It is characterized by high vorticity and 

associated with vortex formation and growth. Its size and flow patterns depend strongly on the 

shape of the body that creates it, the level of submergence and the surrounding hydraulic 

conditions, such as the Froude and Reynold numbers (Mignot and Riviere, 2010).  

The recirculation wake region constitutes a RVZ for fish; it is characterized by a sudden 

decrease in flow velocity with higher turbulence (Sadeque et al., 2009). However, its shape and 

the complexities of the flow patterns within it vary significantly depending on the surrounding 

hydraulic conditions. Fan and Tsuchiya (1990) classified various wake configurations based on 

their level of turbulence; from a steady, laminar wake with a closed, well-defined and stable 

recirculation region to an unsteady, turbulent wake with an open and more chaotic formation 

region. In all cases, a vortical motion should exist.  

Fan and Tsuchiya (1990) also states that experiences have shown that the near-wake could 

be further divided into two main regions, namely (1) a confined turbulent wake region, with a 

somewhat more stable nature and which boundary is marked by a cut-off stream crossing the 

central axis of the near-wake from one side of the free shear layer to the other; and (2) a shedding 

vortical wake region, responsible for the shedding of the vortices, with a size that varies over time, 

often following a sawtooth function (Figure 2.2).  

Various studies have been conducted to better understand what factors impact the nature 

of flow within the RVZs. Darghani (1989) showed that the level of turbulence of the fluid impacted 

the number of vortices created within the recirculation wake region, with the number of vortices 

increasing with higher Reynold numbers. The shape and size of the obstacle also play a 

significant role in characterizing the near-wake region, its size and complexities of the flow 

patterns found within it (Darghani, 1989, Shamloo et al., 2001). Finally, the relative submergence 

of the obstacle was also found to impact the RVZ, with its size decreasing with water depth 

(Mirauda et al., 2007) until a critical point where it does not form (Sadeque et al., 2009).  
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Figure 2.2 : Identification of the shedding vortical wake region and confined turbulent wake regions. Limits 
are established by cut-off stream lines (black). Velocities are in meters per second.  

2.1.2 The Far-Wake 

The far-wake includes the rest of the obstacle wake. It can be further divided into two regions : 

(1) the characteristics decay region depend on the geometry of the obstacle and it is where mixing 

effects cause turbulent diffusion; and (2) the asymptomatic decay region is where the flow tends 

to return to its undisturbed state, while still containing small scale turbulence (Sforza and Mons, 

1969, Chen and Jirka, 1995). Only the asymptomatic decay region is visible on Figure 2.1.  

In certain conditions, within turbulent flow, a Kármán vortex street can form, which is 

characterized by alternating low-pressure vortices that move downstream from an obstacle, as 

they are being shed periodically from the formation region. The timing of each release of vortices 

is approximately constant as long as the Reynold numbers remained unchanged; and the far-

wake can be characterized as a sequence of distorted vortex loops arranged along a random yet 

symmetrical plane (Rosenhead, 1953).  

Simulation: H20W20_01 
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2.1.3 Wake of Three-Dimensional Objects 

For three-dimensional objects, the dual-wake concept is harder to apply, as the wake 

configurations observed vary significantly depending on the level of turbulence and nature of the 

object. Fan and Tsuchiya (1990) presents five categories of wake structure for three-dimensional 

objects, varying with the surrounding level of flow turbulence: 

1. A steady wake with a negligible circulation region; 

2. Steady wake with a well-developed circulation region followed by a laminar streamwise tail; 

3. Unsteady wake with large-scale vortical structures consisting of a regular succession of 

vortex filaments, with the most plausible configuration being a non-axisymmetric vortex ring 

as a primary wake, followed by a series of the horseshoe vortex loops;  

4. Unsteady wake with a high degree of turbulence, characterized by a progressive wave 

motion with a rotating flow separation region; and 

5. A highly turbulent wake consisting of a pair of streamwise line vortices trailing from a horse-

shoe shaped vortex ring fragment attached do the object.  

The vortex structures observed within those categories vary considerably depending on the 

specific properties of the body opposing the current and the surrounding medium.  

2.1.4 Quantifying Free Flow Turbulence 

The flow regime provides insights as to how the air-water interface will vary when flow is impeded 

by an obstacle. The Froude number (Fr), defined in Equation 2.1, is a dimensionless value that 

quantifies gravity influence on fluid motion. In the current case, it is used to assess if the flow 

within the system is supercritical i.e., fast and rapid (Fr>1); subcritical i.e., slow and tranquil (Fr<1); 

or critical (Fr=1).  

Fr =
𝑉

√𝑔𝐻𝑑

 

Equation 2.1 : Froude 

Where V is the mean water velocity within the system in m/s, Hd is the hydraulic depth in m and 

g is the gravitational constant in m/s2. The Froude number can also be used for other applications 

by replacing Hd by a characteristic length variable and using local flow velocity. For example, to 

evaluate the drag or resistance of an object in water, the hydraulic depth would be replaced by 

the length of the object at the water line. In the current work, because of the level of submergence 
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of the spoiler baffles, the Froude evaluation was restrained to a characterization of the flow within 

the open canal.   

The Reynolds number (Re), defined in Equation 2.2, is a dimensionless number which 

provides insights on the level of turbulence within a fluid. Depending on its value, the flow can be 

qualified as laminar, transitional or turbulent; the limits vary significantly depending on the location 

of the flow e.g., the limit of turbulence within a pipe is considerably higher that for an open-

channel.  

Re =
𝑉𝐿

𝜈
 

Equation 2.2 : Reynold number 

Where L is the chosen reference length in m and 𝜈 is the fluid kinematic viscosity in m2/s. The 

Reynold number can be used to define the level of turbulence in multiple dimensions. If the 

hydraulic radius of the canal is used as the reference length, then the calculated Reynold number 

characterizes the overall level of turbulence of the flow within the canal. For low water depths, the 

influence of the bottom of the canal can be significant; using a reference length equal to the water 

depth can provide insights on the importance of vertical turbulence. If the spoiler baffle width is 

used, it will define the level of turbulence in the vicinity of the spoiler baffle. For CFD, the Reynold 

number has a direct impact on the computational grid, as the level of turbulence of a fluid impacts 

the formation of the near-wall boundary layer.  

 Impact of Turbulence on Fish 

While flow turbulence is being heavily studied from a hydraulic perspective, much remains to be 

studied on the biological side, especially since there are contradictions between researchers 

studying the responses of fishes to turbulence and flow velocity, with fish behavioral variability 

between individuals and species having considerable impacts on results (Castro-Santos, 2005, 

Enders and Boisclair, 2016, Duguay et al., 2018).  

In a physical experiment involving the use of flat triangular baffles to facilitate fish passage 

upstream a canal, Cabonce et al. (2018) observed that fish benefited from the presence of RVZs, 

but did not use them in the same manner depending on their size, with small fish seemingly 

disoriented by the presence of negative flow velocities downstream of the triangular baffles and 

preferring to rest upstream of them. On his end, Liao et al. (2003) observed that rainbow trout 

preferred holding station one to two body lengths downstream of a cylinder and away from the 

low-pressure suction regions, or RVZs. Turbulence has been shown to increase the cost of 
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locomotion for fish, but while highly chaotic turbulence seems to repel fish, steady and predictable 

turbulent structures can be exploited by certain swimming fish to aid in their upstream migration 

(Enders et al., 2003, Liao, 2007).  

2.2.1 Eddy Size 

Studies have shown that eddies can have both negative and positive impacts on fish depending 

on their size relative to fish body length, with most problems appearing for a relative size of 

approximately 1 (Cotel and Webb, 2015). Lindberg et al. (2016) further found that fish swimming 

performance diminished significantly when the eddy diameter exceeds approximately two-thirds 

of the fish body length, although this ratio varies across species and individuals. Thus, Cotel and 

Webb (2015) proposed that the ratio of eddy size to fish size be used as a standard parameter in 

determining thresholds for the fish’s posture and trajectory within a system.  

2.2.2 Eddy Momentum 

The impacts the presence of eddies have on fish movement and migration have been studied by 

Taguchi and Liao (2011), who showed that while low average velocity contributed to a lower 

oxygen consumption by fish, this consumption was further decreased when fish were able to 

exploit vortices shed periodically within the wake of an object. Rainbow trout swimming in a vortex 

street were observed to beneficiate energetically from the presence of vortices in reduced velocity 

zones, more so when the turbulence was of the appropriate intensity, orientation and scale i.e., 

when they are able to slalom between vortices by adapting their body movement instead of 

swimming through the vortices (Liao et al., 2003). This adaptation of their swimming capabilities 

is termed Kármán gaiting, a specific form of swim performed by fish and that can be described by 

undulatory movements of the body of the fish superimposed with lateral translation and rotational 

motion, that generates body lift (Akanyey and Liao, 2013).  

Cotel and Webb (2015) proposed the ratio between momentum of the eddy and the 

momentum of the fish also be used as a standard parameter. The momentum of the eddy can be 

estimated by calculating its circulation (Γ), which is a measure of rotation of a fluid (Childress, 

2009) and is obtained by integrating vorticity (𝜔) over the surface (S) of an eddy (Equation 2.3).  

Γ = ∬ 𝜔 ∙ 𝑑𝑆
𝑆

 

Equation 2.3 : Circulation 
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Whenever a fluid is rotating, vorticity is present. As per Childress (2009), the vorticity field 𝜔⃗⃗  is 

used to describe the spinning motion of a continuum near a chosen point; it is the curl of the flow 

velocity (𝑢⃗ ) of a fluid as defined in Equation 2.4.  

𝜔⃗⃗ = ∇ × 𝑢⃗  

Equation 2.4 : Vorticity field 

Where ∇ is the del operator and represent the curl of the velocity vector field. OpenFoam can 

calculate vorticity for the user. Alternatively, within a closed recirculation zone, when the main 

vortex velocity is constant, the vorticity can be taken as twice the mean angular velocity vector of 

the water particles relative to the center of the eddy, oriented according to the right-hand rule 

(Shamloo et al., 2001).  

 Modelling Turbulence 

In a three-dimensional turbulent flow, energy cascades from large scales to small scales via both 

strain self-amplification and vorticity stretching (Johnson, 2020). Motions of all scales affect one-

another. Direct numerical simulations (DNS) give highly accurate results in modelling turbulence 

because they solve all motions sizes within a turbulent flow, large and small. However, very fine 

calculation meshes are required. Because of their massive computational needs, they are only 

suitable for very low Reynold numbers, making them impractical for everyday applications. Large 

eddy simulation (LES) was born from a need to solve turbulent flows at a lower computational 

cost.  

LES enables the resolution of the large-scales motion of the flow, and modelling of the fine 

ones, thus rendering possible the use of a somewhat coarser mesh compared to DNS. Large-

scale motions to be resolved are distinguished by applying a filter to the Navier-Stokes equations. 

The Navier-Stokes equations form the basis of any simulations which aim the modelling of 

turbulence. They express both the conservation of momentum and of mass, while accounting for 

the viscosity of the fluid, as shown in Equation 2.5, Equation 2.6 and Equation 2.7 for an 

incompressible fluid such as water (Fröhlich and Rodi, 2002).  

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0 

Equation 2.5 : Continuity 
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𝜕𝑢𝑖

𝜕𝑡
+

𝜕(𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
+

𝜕𝛱

𝜕𝑥𝑖
=

𝜕(𝑣 2𝑆𝑖𝑗)

𝜕𝑥𝑗
 

Equation 2.6: Navier-Stokes 

𝑆𝑖𝑗 =
1

2
(
𝜕𝑢𝑗

𝜕𝑥𝑖
+

𝜕𝑢𝑖

𝜕𝑥𝑗
) 

Equation 2.7 : Strain rate tensor 

Where Sij is the strain rate tensor, 𝛱 = 𝑝/𝜌 and 𝑣 is the kinematic viscosity in m2/s.  

The filtering process can be implicit i.e., via discretization schemes; or explicit i.e., where 

the size of the filter is user-defined and serves to decrease the influence of the truncation error 

inherent to implicit filtering by reducing or removing smaller scales (Gullbrand, 2001). OpenFOAM 

uses a Schumann-type approach, within which calculations start from a finite volume mesh 

(Castano et al., 2019). For each cell, the Navier-Stokes equations are discretized, which result 

into the splitting of large and small-scale motions. While this approach facilitates the use of 

inhomogeneous and anisotropic grid, it implies a close tie-in between scale separation, 

discretization and the subgrid-scale (SGS) model, making it difficult to assess the contributions of 

each stage to the overall error (Fröhlich and Rodi, 2002).  

2.3.1 The Solvers 

LES is a time-dependant model and transient solvers must be used. Steady-state solvers reach 

a specific solution in a given number of iterations, while transient solvers calculate a complete 

solution for every timesteps, enabling the capture of the dynamic formation of eddies and vortices 

associated with turbulence. In OpenFOAM, transient solvers that can be used in modelling 

turbulence include: 

• interFoam, a multi-phase standard solver that enables modeling of free surface flow 

using the volume of fluid method; 

• pisoFoam, a one-phase solver for incompressible flow; 

• pimpleFoam, a one-phase large time-step transient solver for incompressible flow. It 

merges the PISO and SIMPLE algorithms; the latter being used for steady-state 

incompressible flow with turbulence.  

The main difference between pisoFoam and pimpleFoam resides in the number of inner and outer 

iterations that those solvers can complete when solving the matrices of equations of a model. 

Within pimpleFoam, it is possible to set a specific number of inner correctors which define how 
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many times the pressure will be corrected within one iteration; while outer correctors define how 

many times the system of equations will be solved before the solver is forced to move onto the 

next timestep. Thus, pimpleFoam provides more stability at an increased time-step size, but to a 

higher computational cost. To make pimpleFoam act like pisoFoam, the outer corrector can simply 

be set at a value of one.    

The pisoFoam algorithm is the one that is mostly used for LES studies, including 

pimpleFoam operated in PISO mode. Castano et al. (2019) have shown that with the PISO 

algorithm, errors on pressure tend to accumulate in time for very low Courant numbers, thus 

making pisoFoam more dissipative in nature. However, the numerical dissipation of this algorithm 

does not seem to overwhelm the effect of the SGS model and is therefore still considered a 

reasonably good algorithm of LES studies.  

2.3.2 Discretization 

In OpenFOAM, discretization schemes must be chosen for various variables to allow solving of 

the equations of the system for each point within the computational grid. In implicit filtering, the 

smallest resolved scales are significantly affected by the chosen schemes, which impact the 

contribution of the SGS model (Fröhlich and Rodi, 2002). Edoh and Gallagher (2018) showed that 

high-order discretization schemes helped decrease those numerical errors.  

2.3.3 The Smagorinsky Model 

While many SGS models are made available within OpenFOAM, this thesis focuses on the 

Smagorinsky model, well liked for its simplicity. The Smagorinsky model can be used classically 

or dynamically. In the latter, the Smagorinsky coefficient is defined locally in time and space, thus 

requiring extra computational strength. Using the Runge-Kutta algorithm, Mallik et al. (2020) 

showed that the classical Smagorinsky model performed better than the Dynamic Smagorinsky 

model for turbulent channel flow simulations.  

With the classical Smagorinsky model, the Reynolds stress tensor (𝜏𝑖𝑗) is considered 

proportional to the filtered strain rate tensor (𝑆𝑖̅𝑗), and the eddy viscosity (vs) is defined as: 

𝑣𝑠 = (𝐶𝑠∆)2|𝑆𝑖̅𝑗| 

Equation 2.8 : Eddy viscosity 
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The Smagorinsky constant (Cs) is usually varied between 0.1 and 0.2; larger values can give 

smoother spatial structures of turbulence but in the extreme, they lead to large-scale decay (Zou 

et al., 2006).  

In OpenFOAM, the default Cs value is approximately 0.168. Because of the way the 

Smagorinsky model is implemented in OpenFOAM, the value of Cs is difficult to adjust (fumiya, 

2016). It varies following the value of two model constants set in the source code, namely Ck, 

which has a value of 0.094, and 𝐶𝜖, which has a value of 1.048. In OpenFOAM, for an 

incompressible fluid and assuming an equilibrium between the subgrid scale energy production 

and its dissipation, the subgrid scale viscosity (𝑣𝑠𝑔𝑠) is defined as: 

𝑣𝑠𝑔𝑠 = 𝐶𝑘∆√
𝐶𝑘∆

2|𝐷̅|2

𝐶𝜖
 

Equation 2.9 : Subgrid scale viscosity 

 

Where 𝐷̅ is the resolved-scale strain rate tensor. The subgrid length scale (∆) can be calculated 

different ways.  

Used on a fine mesh, the Smagorinsky model can provide accurate and realistic results 

when modeling flow turbulence (Chorda et al., 2019) and can accurately predict the U-shape of 

the mean streamwise velocity in the case of a separated flow (Feng et al., 2021). However, the 

Smagorinsky model tends to overestimate flow dissipation, leading to a significantly lower velocity 

near walls (Pakzad, 2017), as well as in the wake area of an object (Feng et al., 2021). Use of a 

wall damping function such as Van Driest, coupled with a very fine mesh, can compensate for 

this over-dissipation effect (Pakzad, 2017). The Van Driest damping function (D) is defined in 

Equation 2.10, and its associated length scale in Equation 2.11.   

𝐷 = 1 − 𝑒
(−

𝑦+

𝐴+)
 

Equation 2.10: Van Driest damping function  

∆= min (
𝑘 ∙ 𝑦

𝐶𝐷
𝐷, ∆𝑔) 

Equation 2.11: Subgrid length scale 

In Equation 2.11, ∆𝑔 is a geometric-based delta function, such a cube-root volume; and CD can 

be calibrated but has a starting value of 0.158. For a smooth wall, Van Driest (1956) recommends 

a value of 27 for A+ and a value of 0.4 for k, which are both user-specified. While y is the distance 
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from the wall, the y+ value is a non-dimensional distance used to describe how fine a 

computational mesh is; it is a normalized distance. For best results with the Smagorinsky model 

coupled with the Van Driest damping function, the first cell centre near the wall should be 

maintained below y+=1 if at all possible, and y+ kept under 10 for the overall mesh (Cintolesi and 

Mémin, 2020). 

2.3.4 Mesh Sizing 

For a wall-resolved LES, the y+ value is kept under 1 in the near wall-region. However, since this 

leads to substantive computational needs, the near-wall region can also be wall-modeled via the 

use of wall functions. Each function requires a specific range of y+ values. Following the 

methodology of Van Driest (1956), the y+ value can be estimated by: 

𝒚+ =
𝒚 ∙ 𝒖∗

𝒗
 

Equation 2.12 : Normalized distance from wall 

Where y is the span of the mesh cells normal to the wall in m; and 𝑢∗ is the friction velocity in m/s 

calculated from: 

𝒖∗ = √
𝝉𝒘

𝝆
 

Equation 2.13 : Friction velocity 

In Equation 2.13, ρ is the density of the fluid in kg/m3 and the wall shear stress (𝜏𝑤), in Pa, is 

obtained from: 

𝝉𝒘 = 𝑪𝒇 ∙
𝟏

𝟐
𝝆𝑽𝟐 

Equation 2.14 : Wall shear stress 

Where Cf is a friction coefficient which, for a Reynold number under 109, varies following: 

𝑪𝒇 = [𝟐𝒍𝒐𝒈
𝟏𝟎

(𝑹𝒆𝒇) − 𝟎. 𝟔𝟓]
−𝟐.𝟑

 

Equation 2.15 : Coefficient of friction 

The friction Reynold number (Ref) is calculated by using the length of the canal as the reference 

length in Equation 2.2.  

While the computational needs of LES are reduced compared to DNS, they are still quite 

massive, rendering the wall-resolved strategy difficult to apply for high Reynold numbers and  

large meshes. Nicoud et al. (2001) showed that accurate modeling of the mean velocity profile in 

the near-wall region can also be ensured by forcing the outer LES towards the desired solution 

by setting a specific wall stress boundary condition as control. While efficient for Reynold numbers 
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varying between 640 and 20,000, the suboptimal control strategy is hard to apply since wall stress 

cannot be predicted. Therefore, wall-modeled LES are most commonly used for higher Reynold 

numbers.  

The use of wall functions assume that an equilibrium layer exists into which the wall-stress 

is constant. This assumption does not hold in the case of a separated flow, when the mean 

velocity is three-dimensional (Piomelli, 2008). A fine enough mesh should be used around the 

object to make this specific area wall-resolved. Additionally, the computational grid should be the 

most equispaced possible (Fröhlich and Rodi, 2002). 

 



 

 

3 METHODOLOGY 

 Details of Physical Experimentation 

The CFD models were calibrated using measurements obtained from the physical 

experimentation of Alexandre Pirolley (INRS) which had, for main objective, the evaluation of the 

response of fish to profiled spoiler baffles when facing challenging hydraulic conditions (Pirolley, 

2021).  

The experimentation was completed in an acrylic canal with a length of 6.3 meters, a width 

of 0.31 meters and a height of 0.3 meters. Two reservoirs, connected by an acrylonitrile butadiene 

styrene pipe with a diameter of 101.6 mm, were attached to the canal: one to its upstream end, 

and the other to its downstream end. A diffuser was installed at the inlet to mitigate the turbulence 

generated by the reservoir overflow. About 3,000 liters of water was poured into this closed 

system, until a water depth of 16 centimeters was reached within the canal, installed horizontally. 

Flow velocity was controlled via a five inches MEGGA PCF-4L pump. In order to keep the fish in 

the vicinity of the spoiler baffles, two steel grates, with openings of 5.5 mm by 5.5 mm, were 

installed at a respective distance of 2.23 m and 4.53 m from the upstream end of the canal. The 

final testing area measured 0.713 m2 (Figure 3.1).  

 

Figure 3.1 Picture of the canal used during the physical experimentation  

(credit: Alexandre Pirolley) 
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The profiled spoiler baffles tested were drawn in the opensource software FreeCAD before being 

printed in 3D. Both the height (H) and the width (W) of the spoiler baffles were varied between 

20 mm, 30 mm and 40 mm, for a total of 9 spoiler baffles. A schematic of the general shape of 

the spoiler baffles is presented in Figure 3.2. The chosen shape aimed to graciously separate 

flow, keeping the turbulence generated on the upstream side of the spoiler baffle to a minimum, 

in accordance with the current work’s objective of creating a stable reduced velocity zone (RVZ) 

downstream of the spoiler baffle while minimizing head loss through the canal.  

 

Figure 3.2 : Schematic of the side and front views of the spoiler baffles 

In order to reduce the complexity of the flow within the canal and facilitate the analysis of the 

impacts of the spoiler baffle itself on flow, only one spoiler baffle was installed within the canal, 

with its middle line aligned with the middle of the canal. The distance between the downstream 

face of the spoiler baffles and the upstream steel grate was maintained at 1.19 meters to ensure 

consistency and facilitate the installation of the spoiler baffles. All measurements and 

observations were completed under two hydraulic conditions (Table 3.1). A list of all the 

simulations completed is presented in Table 3.2.  

Table 3.1 : Hydraulic conditions tested during the physical experimentation 

Hydraulic Conditions #1 #2 

Flow Rate 0.0127 m3/s 0.0163 m3/s 

Average Flow Velocity 0.268 m/s 0.356 m/s 

Average Water Depth 0.152 m 0.148 m 

Reynold Number 15,800 16,900 

Froude Number 0.31 0.35 
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Table 3.2 : List of simulations 

Name of 

Simulation 
Description of Simulation 

Canal_01 No spoiler baffle installed, hydraulic condition #1 

h20w20_01 Spoiler baffle with a height of 20 mm and a width of 20 mm installed, hydraulic condition #1 

h20w20_02 Spoiler baffle with a height of 20 mm and a width of 20 mm installed, hydraulic condition #2 

h20w30_01 Spoiler baffle with a height of 20 mm and a width of 30 mm installed, hydraulic condition #1 

h20w30_02 Spoiler baffle with a height of 20 mm and a width of 30 mm installed, hydraulic condition #2 

h20w40_01 Spoiler baffle with a height of 20 mm and a width of 40 mm installed, hydraulic condition #1 

h20w40_02 Spoiler baffle with a height of 20 mm and a width of 40 mm installed, hydraulic condition #2 

h30w20_01 Spoiler baffle with a height of 30 mm and a width of 20 mm installed, hydraulic condition #1 

h30w20_02 Spoiler baffle with a height of 30 mm and a width of 20 mm installed, hydraulic condition #2 

h30w30_01 Spoiler baffle with a height of 30 mm and a width of 30 mm installed, hydraulic condition #1 

h30w30_02 Spoiler baffle with a height of 30 mm and a width of 30 mm installed, hydraulic condition #2 

h30w40_01 Spoiler baffle with a height of 30 mm and a width of 40 mm installed, hydraulic condition #1 

h30w40_2 Spoiler baffle with a height of 30 mm and a width of 40 mm installed, hydraulic condition #2 

h40w20_01 Spoiler baffle with a height of 40 mm and a width of 20 mm installed, hydraulic condition #1 

h40w20_02 Spoiler baffle with a height of 40 mm and a width of 20 mm installed, hydraulic condition #2 

h40w30_01 Spoiler baffle with a height of 40 mm and a width of 30 mm installed, hydraulic condition #1 

h40w30_02 Spoiler baffle with a height of 40 mm and a width of 30 mm installed, hydraulic condition #2 

h40w40_01 Spoiler baffle with a height of 40 mm and a width of 40 mm installed, hydraulic condition #1 

h40w40_02 Spoiler baffle with a height of 40 mm and a width of 40 mm installed, hydraulic condition #2 

3.1.1 Data Available for the Calibration and Validation of the CFD Models 

Data available for the calibration and validation of the CFD models include:  

1. Water depths | A ruler was used to manually measure water depths every 68 cm along 

the length of the canal. 

2. Videos | Ink was injected downstream of the spoiler baffle via a dropper and filmed to 

assess the behavior of the RVZ and gauge its size. 
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3. Instantaneous velocities | Water velocities were recorded at a frequency of 25 Hz over 

180 seconds using an acoustic doppler velocimeter (ADV). Velocity was recorded twice 

within the water column, namely at z = 7.5 mm and at z = 1H from the bottom of the 

canal. The location of the velocity measurements along the length of the canal varied 

following the height of the spoiler baffles. Toward the upstream end of the canal, starting 

from the downstream face of the spoiler baffle (y = 0), measurements were taken at -1H, 

-2H, -4H, -8H and -13H; toward the downstream end of the canal, they were taken at 

1.5H, 2H, 2.5H, 3H, 5H, 10H and 20H. One extra measurement was taken for all spoiler 

baffles 30 mm from their downstream face. A total of six lines of measurements were 

taken, located at three different locations along the width of the canal. The location of 

those lines varied following the width of the spoiler baffle installed: two lines were taken 

for the middle of the canal (x = 0), and the others were taken at a distance of W/2 and 

3W/2 from the middle of the canal. Velocities within the canal without any spoiler baffle 

installed were also recorded, resulting in a total of 20 datasets available for the validation 

of the CFD models, constituted of eleven water levels and of maximum 78 velocity points.  

 Details of the CFD Modelling Work 

3.2.1 Mesh Building 

LES are computationally intensive because very fine computational grids are required to ensure 

reliable results and convergence of the model. The meshes were built in two steps. First, 

equidistant calculation grids having the required dimension were built using the OpenFOAM 

function blockMesh. Then, the shape of the spoiler baffle was cut into the modelled canal using 

the function snappyHexMesh and the FreeCAD 3D models previously created by Alexandre 

Pirolley.  

Because of computational constraints, the minimal size of the grid, in all direction, was 

maintained at 0.001 meters, resulting in a y+ value of 10 for hydraulic condition #1 and a y+ value 

of approximatively 13 for hydraulic condition #2. In order to decrease the memory requirement 

and the time of calculation for all simulations, the size of the meshes was varied following the 

height of the spoiler baffle, as follows:  

• A distance of 3.5H was maintained between the inlet of the model and the beginning of 

the profiled slope of the spoiler baffle; 
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• A distance of 20H was maintained between the downstream face of the spoiler baffle 

and the outlet of the model.  

The characteristics of the meshes used for each scenario are summarized in Table 3.3.  

Table 3.3 : Characteristics of the meshes developed for all simulations 

Parameter HC #1 HC #2 

Height of Mesh 0.152 m 0.148 m 

Width of Mesh 0.31 m 0.31 m 

Length of Mesh 

Spoiler baffle with a height of 2 cm 0.53 m 0.53 m 

Spoiler baffle with a height of 3 cm 0.795 m 0.795 m 

Spoiler baffle with a height of 4 cm 1.06 m 1.06 m 

Grid Size 0.001 m 0.001 m 

y+ value 10 13 

The mesh created for the spoiler baffle h20w20 is presented in Figure 3.3 as an example. The 

length of the canal extends from upstream to downstream following the Y-axis, with the origin 

located at the downstream face of the spoiler baffle. The width of the canal extends parallel to the 

X-axis, with the origin aligned with the middle of the spoiler baffle. The height is in the Z-axis 

direction with the origin located at the bottom of the canal.  

 

Figure 3.3 : Example of computational grid  
(example taken from h20w20_01) 

origin 
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3.2.2 Calculations Setup 

The constant folder of each case is where the calculation models are setup, namely using the 

fvOptions, momentumTransport and transportProperties files. The Smagorinsky model was 

chosen within the momentumTransport file, coupled with the Van Driest damping function.  

The recommended values for a smooth wall were set for kappa and Aplus, namely 0.4 and 

27 respectively (Van Driest, 1956). The Cdelta variable was kept at its standard value of 0.158. 

The transport model used for the LES is Newtonian, with the water kinematic viscosity set at 

1.31 x 10 – 6 m2/s. The momentum source of the model is calculated using the meanVelocityForce 

approach instead of the gravity constant for the proper modelling of the use of a pump. The 

chosen discretization scheme for time is backward, a second order approach. Gauss linear was 

set for both the gradient and divergence schemes. Gauss linear corrected was set for the 

Laplacian scheme and interpolation is done linearly. Finally, the corrected surface-normal 

gradient scheme is used.  

The algorithm used to solve the LES is the monophase pimpleFoam algorithm, used in its 

piso mode i.e., the outer correctors number is set to 1 and the number of correctors is set to 2. A 

relaxation factor of 0.4 was used to facilitate convergence of the model. For pressure, the GAMG 

solver is used; and for velocity, the smoothSolver is used. Based on the water velocity and final 

size of the cell of the mesh, a timestep of 0.001 seconds was used to ensure the maximum 

Courant number would be maintained under a value of 1.  

3.2.3 Boundary Conditions 

The Smagorinsky model does not require any added parameters; boundary conditions needed to 

run the simulations are for the standard parameters, namely the velocity, the pressure and the 

wall closure models, and are set within the 0 folder of each case.  

For the velocity, the noSlip condition was used for the spoiler baffle and for all walls of the 

canal, while the slip condition was used on the top face of the system to mimic an air-water 

interface. For the inlet of the model, the turbulentInlet condition was used with a uniform fluctuation 

scale of 0.1 to reproduce the diffuser installed at the upstream of the canal. At the outlet, the 

inletOutlet condition was used, which forces the water out of the model, acting like the 

zeroGradient condition, but negating any backward flow.  



25 

In LES, a pressure gradient only serves to set where the water enters the computational 

grid and where it exits. Therefore, the zeroGradient condition was used at all boundaries except 

at the outlet, where a fixedValue condition of 0 was used.  

For the wall closure models, the boundary condition nutUSpaldingWallFunction was used 

for the walls of the canal and for the spoiler baffle, which provides a constraint on the turbulent 

viscosity based on the flow velocity, and works well for a wide range of y+ value. For the 

atmosphere, the zeroGradient condition was applied. The inlet and outlet conditions were set to 

be calculated by OpenFoam.  

3.2.4 Hardware 

All simulations were run on Carcajou003, one of the supercomputers available through the Institut 

national de la recherche scientifique. Carcajou003 was given 20 physical cores and 100 GB of 

RAM, necessary to successfully run all simulations. Despite the strength of this hardware, some 

cases took as long as 5 days for completion.  

 CFD Model Calibration 

Calibration of the CFD model was done simultaneously with its development. The model was ran 

numerous times using various builds and comparing results with the recorded velocity datasets 

for all points. Initially, the calibration process pointed to a tendency of the model to provide much 

faster velocities in the near-wall boundary layer than what was recorded. The near-wall turbulence 

closure models were varied, but adding the Van Driest damping function to the Smagorinsky 

model is ultimately what allowed for a better reproduction of all velocities. A sensitivity analysis 

was also completed by modifying various coefficients that did not result in significant changes in 

the modelled velocities. This overall stability of the model was attributed to the use of a very fine 

mesh (Fröhlich and Rodi, 2002). The remaining lack of accuracy was considered inherent to the 

Smagorinsky model and inability to modify its coefficients in OpenFOAM.  

 Data Analysis and Post-Processing 

3.4.1 Videos of Physical Model 

All videos of the physical model were thoroughly analyzed to better understand how the size of 

the RVZ evolved over time. Images of the videos were extracted and processed in the free 

software IMAGEJ to measure the length of the RVZ. This analysis is founded on the premise that 
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it is possible to measure the length of the RVZ on the images, as long as the measure is made 

within the same plane as the measure of the known length of the spoiler baffle, used to calibrate 

the ratio of pixels to length in millimetres. However, because of perspective distortion, this 

methodology suffers strong limitations and uncertainties, and can only be used to provide a rough 

estimate of the physical length of the RVZ and its overall behaviors.  

 Figure 3.4 presents the image used to measure the RVZ generated by the spoiler baffle 

with a height of 40 mm and a width of 20 mm. To minimize the uncertainties for this analysis and 

quantify the variance of the results, the length of the spoiler baffle (yellow line on Figure 3.4), used 

to calibrate the ratio of pixels to length of the video image, was measured three times for each 

image. The video was observed carefully to identify how the RVZ behaved and extract an image 

where it was particularly visible. Two measurements were then taken i.e., one for what was 

understood as being the shortest possible length for the RVZ (blue line on Figure 3.4), and another 

for the longest visible length on the image (green line on Figure 3.4). This enabled the calculation 

of the average RVZ length and an estimate of the variance of the measurements.  

 

Figure 3.4 : Image processing methodology used to estimate the length of the RVZ generated by the spoiler 
baffle h40w40_01 during the physical modelling work. The yellow line is the calibration line; the blue line is 

the shortest estimated length; and the green line is the longest estimated length of the RVZ. 

3.4.2 Recorded Velocities 

Velocities within the canal were recorded in all directions (x-axis, y-axis, z-axis), but only velocities 

in the direction of the current were considered for the current work, as velocities in the x- and z-

axis were mostly null. Velocities recorded by the ADV and used as part of this thesis have been 
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post-processed using version 2.031 of the WinADV32 software. Communication error removal 

was performed by filtering the raw data ensuring a signal to noise ratio (SNR) under 5 dB and an 

average correlation of values (COR) under 70%; suspicious values that did not correspond to 

natural fluctuations in the flow, but rather to the reverberation of the signal on the walls of the 

channel were eliminated using the phase-space thresholding method (Pirolley, 2023). The 

recorded instantaneous velocities vary considerably over time, with an example provided in Figure 

3.5, which presents the recorded velocity magnitude for the canal_01 setting.  

 

Figure 3.5 Instantaneous velocities recorded during the physical experimentation - no spoiler baffle | HC#1.  
The position of the recorder, per the computational mesh coordinates, is at (x= 0, y = 2, z = 0.75) cm.  

Simulation results from LES consist in a snapshot in time of the flow velocity within the canal. 

Because turbulence is also being modeled, the velocity at one specific point will change from one 

moment to the next. Compared to RANS, LES does not provide average velocities, but 

instantaneous ones. In order to obtain average velocities from a LES, the function object 

fieldAverage can be used in OpenFOAM. Within the scope of the current work, to save on 

computing power, the minimum, average and maximum recorded filtered velocities were 

calculated and directly compared to the modelled instantaneous velocities of the CFD models at 

time t = 14 seconds. 

This methodology is based on the hypothesis that obtaining modelled instantaneous 

velocities within the minimum and maximum recorded velocities would be indicative of the model 

Canal_01 
x = 0cm; y=2 cm; z= 0.75 cm 
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reproducing the conditions within the canal, albeit a bias might be present. It is also hypothesized 

that from one simulation to the next, an accurate model should provide instantaneous velocities 

varying from one side to the other of the recorded average velocity; the contrary i.e., all 

simulations giving modelled velocities either above or under the recorded average, would be 

indicative of a bias or model tendency to either overestimate or underestimate velocities. The 

recorded average velocity was subtracted from the modelled instantaneous velocity, and data 

was analysed to identify any possible tendency in the model; the closer the medians and averages 

are to a value of 0, the more accurate the model would be. While it is acknowledged that this 

methodology constitutes a limit to the precision of our validation process, it is not believed that 

the conclusions and modelling decisions would have differed if average velocities had been used 

during the validation process instead; this methodology still allows for the identification of the 

model’s biases.  

3.4.3 CFD Results 

All CFD simulations results were analyzed in ParaView, an open-source, multi-platform data 

analysis and visualization application which comes hardcoded within OpenFoam.  

3.4.3.1 Measurements of the Wake and RVZ Generated by the Spoiler Baffles 

The height, width and length of the wakes and of the RVZs generated by the spoiler baffles were 

measured following the subsequent guidelines (Figure 3.6).  

• The wake of the object refers to the region of flow showing high disturbances both in 

velocity and directions. To facilitate measurements of the wake, a clear limit was set at 

v = 0.21 m/s for hydraulic condition #1, and at v = 0.25 m/s for hydraulic condition #2, 

both defined as a bright yellow line in ParaView; 

• The RVZ is defined as the region of the wake, fragmented or not, with a flow velocity 

under 0.10 m/s for hydraulic condition #1, and under 0.12 m/s for hydraulic condition #2, 

both defined as a bright cyan line in ParaView;  

• The length of the wake and RVZ are averaged using 6 measurements taken over two 

elevations, namely z = 7.5 mm and z = 2H/3, and over three locations along the width of 

the spoiler baffle, namely x = 0 mm, x = -W/4 and x = W/4.  

• The height and width of the wake and RVZ are averaged using all measurements, which 

are taken every 2 cm from the downstream face of the spoiler baffle over the measured 

lengths.  
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Figure 3.6 : Measurements of the spoiler baffle’s wake length (purple) and width (green), and of its RVZ 
length (orange) and width (pink), in Paraview. Example taken from simulation h20w20_01, at z = 7.5 mm. 
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The limit of the RVZ was defined by analysing the stream lines forming downstream of the spoiler 

baffles and ensuring the capture of circulating flow patterns that are characteristics to the wake 

of an object (Fan and Tsuchiya, 1990). For many spoiler baffles, vortex shedding was observed 

that led to the creation of reduced velocity pockets downstream of the object. Those pockets had 

higher velocities than the identified RVZ, yet did not match the average velocity of the canal and 

were therefore considered part of the object wake. Thus, a second limit was deemed necessary 

i.e., the wake limit.  

The limits for the RVZ and wake respectively correspond to 27% and 57% of the maximum 

recorded velocity within the canal for both hydraulic conditions. Using a percentage of the 

maximum recorded velocity value allows a better analysis of how the RVZ and wake regions for 

a same object will evolve under different hydraulic conditions, as the comparison considers the 

velocity gradient and energy within the system, which affect the average flow velocity within a 

closed recirculation region.  

3.4.3.2 Measurement of the Confined Turbulent Wake Region 

Following the literature review, it was hypothesized that the confined turbulent wake region 

(Figure 2.2) could be construed as the RVZ; it seemed like a particularly interesting characteristic 

to evaluate. Only the length of the confined turbulent wake region was measured, as its width and 

height are defined by the same limits than when using flow velocities. In order to identify the cut-

off stream outlining the confined turbulent wake region, the StreamTracer tool of Paraview, which 

uses seed points within the modelled vector field to allow the visualisation of stream lines, was 

set at a depth of 7.5 mm and extended across the width of the spoiler baffle to allow a proper 

visualization of the stream lines. The confined turbulent wake region length was then measured 

from the spoiler baffle downstream face up to the first line crossing the region from one side of 

the shear-layer to the other, with a visual aid provided in Figure 3.7.   
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Figure 3.7 : Example of the measurement of the confined turbulent wake region using the StreamTracer tool 
of Paraview, on simulations results from h40w40_01, at z = 7.5 mm 

3.4.3.3 Definition of the Fragmentation Level of the Modelled RVZ 

A fragmentation level was attributed to the RVZ. This level refers to the presence of higher velocity 

zones within the RVZ. A low level of fragmentation indicates a uniform, low speed RVZ while a 

strong level indicates frequent regions of higher velocities contained within the envelop of the 

RVZ. This definition is highly qualitative and based on the judgment of the observer, yet it should 

still provide some useful information on how the level of turbulence of the RVZ generated by a 

spoiler baffle varies following the characteristics of the spoiler baffles.  

3.4.3.4 Analysis of the Vortices Generated Within the RVZ 

The vortices generated within the RVZ were analysed using the StreamTracer tool of Paraview 

to better understand the nature of the RVZ created. The StreamTracer tool can be moved around 

the vector field to get a thorough comprehension of the vortices modelled within a system at a 

precise moment of a simulation. Observations were systematically noted to identify patterns 

between simulations.  





 

 

4 RESULTS 

Results of the CFD modeling work are presented in three sections. First, the CFD models were 

validated to ensure the obtained variability and accuracy were within an acceptable range, and to 

identify possible causes of discrepancies. Second, the sizes of the wake and of the RVZ are 

presented, with the assessment focussing on the effects of the size and geometry of the spoiler 

baffles, and surrounding hydraulic conditions (HC), on the results. Finally, details are given on the 

identified vortices observed within the RVZ and on how fish could potentially respond to the RVZ. 

 Validation of the CFD Models 

Part of the validation process requires comparing the instantaneous velocities modelled by the 

LES to the recorded velocities, while the other part aims to compare the length, width and height 

of the modelled RVZs to the length, width and height of the observed RVZs.  

4.1.1 Recorded Against Modelled Velocities 

All figures comparing the minimum, average and maximum recorded filtered velocities to the 

modelled instantaneous velocities are annexed to this manuscript (Appendix 1). Analysing those 

figures showed that generally, the instantaneous velocities modelled by the Smagorinsky model 

are within the range of the recorded velocities; and that less variability is observed within the 

modeled instantaneous velocities than within the recorded instantaneous velocities. Most velocity 

points outside the range of the recorded velocities are under the minimum recorded velocity, 

indicating that the model seems to overestimate the width of the RVZ. Finally, the meshes having 

a y+ value of 13 (HC#2) were not associated to any loss of accuracy compared to the meshes 

having a y+ value of 10 (HC#1).  

Boxplots of the difference between the recorded and modeled velocities were plotted for 

each location where flow velocities were recorded and are provided in Figure 4.1, Figure 4.2, 

Figure 4.3 and Figure 4.4. Because hydraulic conditions were not shown to impact anything other 

than the width of the RVZ (section 4.2.1), all simulations were lumped together for the calculations 

of the boxplots. Generally, the differences between the modelled and recorded velocities are 

symmetrically distributed, as indicated by the mean and median values being close to each other. 

A higher variability is observed in the shear layers, in proximity of the spoiler baffles. A model 

trend can be inferred for boxplots having a median value consistently above or under zero, with 
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positive values indicating an overestimation of the recorded velocities, while negative values 

indicate an underestimation. 

 

Figure 4.1 : Difference between modelled and recorded velocities for various locations upstream of the 
spoiler baffles 

 

Figure 4.2 : Difference between modelled and recorded velocities for various locations downstream of the 
spoiler baffles, in the middle of the Canal (x=0) 
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Figure 4.3 : Difference between modelled and recorded velocities for various locations downstream of the 
spoiler baffles, at the extremity of the spoiler Baffles (x=W/2) 

 

Figure 4.4 : Difference between modelled and recorded velocities for various location downstream of the 
spoiler baffles, near the spoiler baffles (x=3W/2) 
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Further analysis of the figures shows that the model tends to overestimate free-flow velocities and 

to underestimate velocities within the RVZ and wake region. It is also possible to note, using 

charts provided in Appendix 1, that these overestimations are more significant for smaller spoiler 

baffles. For spoiler baffles with a height of 40 mm, velocities are generally closer to the recorded 

average velocity than they are for spoiler baffles with a height of 20 mm and 30 mm; for which 

more underestimations are observed.  

 Most outliers observed in Figure 4.2, Figure 4.3 and Figure 4.4 relate to the modelling of 

the RVZ and spoiler baffler’s wake. The Smagorinsky model seems to overestimate slightly the 

width and height of the RVZ. It however seems to underestimate the length of the RVZ, with 

velocities recorded in Figure 4.2 at location y3z0075 being consistently lower than every other 

point within the RVZ, and grossly overestimated by the model. Another explanation for outliers 

lies in the methodology for positioning the ADV. There could have been small variations in the 

exact placement of the device, leading to velocities being recorded in a slightly different position; 

when close to the RVZ location, a slight difference in positioning will lead to significantly different 

records.  

One location showed an impressive amount of variation, namely x0.5Wy2Hz0075 located 

upstream of the spoiler baffle. For the spoiler baffles with a height of 20 mm specifically, the 

recorded dataset shows a sudden decrease in velocity upstream of the spoiler baffle under both 

HCs. This sudden decrease in velocity is less significant as the width of the spoiler baffle 

increases, is not observed for spoiler baffles with a height of 30 mm and 40 mm and was not 

modelled by the Smagorinsky model.   

4.1.2 Modelling of Flow Separation 

For all models, fragments of a Ω-shaped vortex ring can be observed close to the floor of the 

canal. Their impact is more significant for wider spoiler baffles and seem especially important for 

H40W40, as shown in Figure 4.5.  
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Figure 4.5 : Evidence of a Ω-shaped vortex ring fragment attached to the body of the spoiler baffle;  
Simulation h40w40_01 | z = 3 mm 

4.1.3 Physical Against Modelled Length of RVZs and Confined Turbulent Wake Region 

Using recorded videos of the ink experiment, a rough estimate of the length of the RVZ was 

measured (Figure 4.6). The differences between the height and width of the recorded and 

modelled RVZs was not deemed significant enough to warrant extensive comparisons, as they 

are directly linked to the height and width of the spoiler baffle.  

The average length of the physical RVZ measured from the videos is between 0.7 and 2.2 

times the height of the spoiler baffle; while the average length of the modelled RVZ varies between 

1.1 and 2.9 times the height of the spoiler baffle. The confined turbulent wake region is, on 

average, 10% shorter than the modelled RVZs measured based on flow velocities, with a length 

varying between 1.1 and 2.8 times the height of the spoiler baffle. Definite conclusions cannot be 

drawn from the comparison between the physical and modelled RVZs due to the nature of the 

measures from the recorded videos, which suffers significant limitations. However, it is possible 

to note that the same pattern of behavior is detected from one spoiler baffle to the other i.e., an 
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increase in the length of the RVZ following an increase in the width of the spoiler baffle. This 

pattern seems more marked for the physical RVZ than it is for the modelled RVZ and confined 

turbulent wake region.  

The strong variation observed for physical RVZs of the wider spoiler baffles with a height of 

30 mm and 40 mm is attributable to the more turbulent nature of the RVZs, which rendered their 

boundaries harder to locate. A similar challenge was faced when measuring the length of the 

confined turbulent wake region, for which more room is left to biases and judgment, as finding the 

precise location of the cut-off stream confining the turbulent wake region strongly depends on the 

placement of the stream tracer too and the nature of the RVZ itself i.e., more turbulent RVZs might 

not have a clearly defined confined turbulent wake region.  

 

Figure 4.6 : Comparison of the measured lengths of the physical RVZs, of the modelled RVZs and of the 
confined turbulent wake region 

 Dimensions of the Wake and of the RVZ 

Following the procedure listed in section 3.4.3, both the wake (W) and RVZ regions were sized in 

height (H), width (W) and length (L) under both hydraulic conditions (HC) tested. The level of 

fragmentation of the RVZs was also evaluated and all figures used for this qualitative assessment 

can be found in Appendix II. Results and observations are presented in Table 4.1.  
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Table 4.1 Measurements of the wake and RVZ regions in millimetres;  
The level of fragmentation of the RVZ is color-coded as follows: green-low, yellow-moderate, red-strong. 

Spoiler 

baffle 
HC RVZ.L RVZ.H RVZ.W W.L W.H W.W 

H20W20 
#01 48 17 13 80 16 17 

#02 38 14 14 54 16 13 

H20W30 
#01 54 14 17 72 18 22 

#02 52 15 18 72 18 18 

H20W40 
#01 58 14 24 81 16 26 

#02 50 14 23 81 17 28 

H30W20 
#01 47 20 12 63 21 18 

#02 49 24 13 73 22 19 

H30W30 
#01 55 20 18 74 26 25 

#02 50 22 18 70 27 25 

H30W40 
#01 64 23 22 113 25 32 

#02 63 22 29 109 25 36 

H40W20 
#01 56 26 11 85 29 18 

#02 44 27 14 60 29 20 

H40W30 
#01 60 29 18 128 33 24 

#02 63 28 23 134 32 28 

H40W40 
#01 69 27 29 140 31 40 

#02 67 28 29 102 33 38 

 

Various ratios were calculated from the measurements to render the variables unitless and 

facilitate further analysis of the data, with results presented in Table 4.2. 
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Table 4.2 Ratios calculated from the length, height and width of the RVZ and wake 

Spoiler 

baffle 
HC 

W.W

SB.W
 

W.H

SB.H
 

W.L

SB. H
 

RVZ.W

W.W
 

RVZ. H

W.H
 

RVZ. L

W. L
 

RVZ.W

SB.W
 

RVZ. H

SB. H
 

RVZ. L

SB. H
 

h20w20 
#01 0.85 0.81 3.99 0.78 1.04 0.60 0.66 0.84 2.40 

#02 0.63 0.82 2.71 1.13 0.83 0.71 0.71 0.68 1.92 

h20w30 
#01 0.74 0.88 3.61 0.79 0.79 0.75 0.58 0.69 2.70 

#02 0.61 0.88 3.58 1.00 0.83 0.72 0.61 0.73 2.59 

h20w40 
#01 0.65 0.80 4.07 0.92 0.86 0.71 0.60 0.69 2.88 

#02 0.71 0.83 4.03 0.82 0.85 0.62 0.58 0.70 2.49 

h30w20 
#01 0.92 0.71 2.08 0.65 0.92 0.75 0.60 0.66 1.57 

#02 0.93 0.74 2.44 0.72 1.06 0.67 0.67 0.79 1.63 

h30w30 
#01 0.83 0.86 2.46 0.72 0.78 0.74 0.60 0.67 1.82 

#02 0.83 0.91 2.33 0.74 0.82 0.71 0.62 0.74 1.66 

h30w40 
#01 0.79 0.84 3.78 0.69 0.90 0.56 0.55 0.76 2.13 

#02 0.90 0.83 3.62 0.81 0.90 0.58 0.73 0.75 2.11 

h40w20 
#01 0.91 0.73 2.13 0.62 0.90 0.66 0.56 0.66 1.40 

#02 0.99 0.72 1.49 0.70 0.96 0.75 0.69 0.69 1.11 

h40w30 
#01 0.81 0.83 3.20 0.72 0.87 0.47 0.59 0.72 1.49 

#02 0.92 0.80 3.34 0.83 0.88 0.47 0.77 0.71 1.58 

h40w40 
#01 1.00 0.77 3.49 0.73 0.89 0.49 0.73 0.68 1.71 

#02 0.94 0.82 2.55 0.77 0.87 0.66 0.72 0.71 1.68 

4.2.1 Impacts of Hydraulic Conditions 

The t-test of Student, which the null hypothesis (H0) states that “the means are not statistically 

different”, was applied to all calculated ratios presented in Table 4.2, with results presented in 

Table 4.3. The only variable seemingly impacted by a change in the surrounding hydraulic 

condition is the width of the RVZ, which generally increases from HC#1 to HC#2, with the only 
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exception being H20W40. No other trend could be observed to predict the height and width of the 

RVZ other than they being directly related to the height and width of the spoiler baffle respectively.  

Table 4.3 Average and standard deviation calculated for all ratios under the two hydraulic conditions tested, 
and results of Student’s t-test with H0 – The means are not statistically different 

Ratio 
Average 

HC#1 

Average 

HC#2 

Average 

All Simulations 
Results of t-test 

W.W

SB.W
 0.83 ± 0.10 0.83 ± 0.14 0.83 ± 0.12 

p-value = 0.9328 

H0 accepted 

W.H

SB.H
 0.80 ± 0.06 0.82 ± 0.06 0.81 ± 0.06 

p-value = 0.6507 

H0 accepted 

W.L

SB.H
 3.20 ± 0.78 2.90 ± 0.80 3.05 ± 0.78 

p-value = 0.4308 

H0 accepted 

RVZ.W

SB.W
 0.61 ± 0.05 0.68 ± 0.06 0.64 ± 0.07 

p-value = 0.0214 

H0 rejected 

RVZ.H

SB.H
 0.71 ± 0.06 0.72 ± 0.03 0.71 ± 0.05 

p-value = 0.5789 

H0 accepted 

RVZ. L

SB.H
 2.01 ± 0.54 1.86 ± 0.03 1.94 ± 0.50 

p-value = 0.5441 

H0 accepted 

RVZ.W

W.W
 0.73 ± 0.09 0.84 ± 0.14 0.79 ± 0.13 

p-value = 0.093 

H0 accepted 

RVZ.H

W.H
 0.88 ± 0.08 0.89 ± 0.08 0.89 ± 0.08 

p-value = 0.9023 

H0 accepted 

RVZ. L

W. L
 0.64 ± 0.11 0.65 ± 0.09 0.65 ± 0.10 

p-value = 0.7089 

H0 accepted 

4.2.2 Length of the RVZ 

As shown in Table 4.3, the ratio of length of the RVZ to the height of the spoiler baffle 

(RVZ.L/SB.H) varies significantly between simulations, namely from 1.1 to 2.9, with an average 

of 2.01 for HC#1 and of 1.86 for HC #2, with no statistical difference between both sets. Further 

analysis showed a trend in the data. RVZ.L/SB.H can be predicted by two variables, namely by 
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the ratio of the spoiler baffle’s width to its height (SB.W/SB.H) and by the submergence level of 

the spoiler baffle defined as the ratio of the water depth to the height of the spoiler baffle 

(W.D/SP.H), as shown in Figure 4.7.  

Increasing the width of the spoiler baffle generally results in an increase of the RVZ length, 

with the only exception being the spoiler baffle with a height of 20 mm under HC #2. This 

discrepancy can however be explained by where the measurements for the RVZ sizing fell 

following the methodology outlined in section 3.4.3.1. It could be argued that the RVZ generated 

by h20w40_02 is also lengthier than h20w30_02. 

 

Figure 4.7 Ratio of the length of the RVZ to the height of the spoiler baffle as a function of the ratio of the 
width of the spoiler baffle to the height of the spoiler baffle and of the submergence level under hydraulic 

condition #1 (dashed line) and #2 (solid line) 

A multivariant model was developed, given in Equation 4.1 and presented graphically in Figure 

4.8. Applying the test of Student, which H0 states that “the variable is statistically null”, showed 

that both variables are statistically significant, with a p-value of 6.9x10-5 obtained for SB.W/SB.H 

and of 7.0x10-4 for the submergence level (W.D/SB.H). The model is based on the hypothesis 
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that changes in flow velocity and turbulence level between HC #1 and HC#2 are inferred by the 

submergence level.  

𝑅𝑉𝑍.𝐿

𝑆𝐵.𝐻
= 0.6574

𝑆𝐵.𝑊

𝑆𝐵.𝐻
+ 0.1410

𝑊.𝐷

𝑆𝐵.𝐻
+ 0.4596  [

𝑆𝐵.𝑊

𝑆𝐵.𝐻
∈ [0.5, 2.0]

𝑊.𝐷

𝑆𝐵.𝐻
∈ [3.7, 7.6]

 

Equation 4.1 Model to predict the ratio of the length of the RVZ to the height of the spoiler baffle 

 

 

Figure 4.8 : 3D presentation of the prediction model for RVZ.L/SB.H from SB.W/SB.H and from the 
submergence level (R2

a = 0.9052)  

4.2.3 Fragmentation Level of the RVZ 

The fragmentation level of the RVZs increases with the width and height of the spoiler baffles i.e., 

a higher volume of higher velocities envelopes is modeled within the RVZs for bigger spoiler 

baffles. The average speed within those envelopes goes well above the chosen velocity boundary 
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for the RVZs for HC#1 (10 cm/s) and HC#2 (0.125 cm/s). The highest modeled velocity within an 

envelope is 30 cm/s, obtained for h40w40_02. 

The pattern identified on the recorded velocities differs. On the recorded velocity data, 

shown on Figure 4.9, the maximum recorded flow velocity, at a same point within the RVZ 

(x = 0 m; y = 0.03 m; z = 0.0075 m), decreases as the ratio of spoiler baffle width to its height 

(SB.W/SB.H) increases. The only increase in the maximum recorded velocity is observed for 

H20_02. For all spoiler baffles, the minimum flow velocity recorded for this same location is null.  

 

Figure 4.9 Maximum recorded velocity in function of SB.W/SB.H 

4.2.4 Volume of the RVZ 

As shown in Figure 4.10, significant gains are made in the overall volume of the RVZ when 

increasing the width of the spoiler baffle up to SB.W/SB.H = 1. Above SB.W/SB.H = 1, the gain in 

volume is less significant with the extra width. It can also be seen that for SB.W/SB.H > 1, the 

volume of the RVZ tend to increase from HC#1 to HC #2, likely due to the increase in the width 

of the RVZ identified in section 4.2.1.   
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Figure 4.10 Volume of the RVZ as a function of the width of the spoiler baffle for hydraulic condition #1 
(dashed line) and hydraulic condition #2 (solid line) 

 Vortices Within the RVZ 

An analysis of the vortices modelled within the RVZ was conducted to better understand the 

nature of the RVZ generated by the spoiler baffles and the impact of the surrounding hydraulic 

conditions on it, with a summary of observations presented in Table 4.4. Note that a toroidal 

vortex-ring refers to a vortex spinning in the XY plan i.e., parallel to the floor of the canal; a helical 

vortex refers to a vortex spinning in the XZ plan i.e., parallel to the inlet/outlet of the canal; and an 

arch-type vortex refers to a vortex which starts in a plan and spins along a reversed “J” line toward 

another plan. A total of three general arrangements was observed: 

Type A. A small chain of vortices is identified along the downstream face of the spoiler 

baffle. It evolves into a number of small toroidal vortex-rings, observed in the 

bottom section of the RVZ. In one case, the vortex-rings seem to constitute a 

set of mothers and daughters’ rings; in others, only one or two rings are 

observed that give lieu to a chain of vortices transiting along the volume of the 

RVZ and seemingly evolving randomly across all plans. The RVZ is closed by 

helical vortices, usually two, but sometimes more (Figure 4.11).  
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Figure 4.11 : Type A Vortices arrangement, taken from h20w20_01 (top view) 

 

Type B. A small chain of vortices is identified along the downstream face of the spoiler 

baffle. In lieu of toroidal rings, the RVZ is dominated by arch-type vortices. In 

one case, two counter-rotating arc-type vortices are observed, linked together 

and forming one big arch-type vortex. The RVZ is closed by helical vortices 

(Figure 4.12).  

 

Figure 4.12 : Type B Vortices arrangement, taken from h20w30_02 (angled, side view) 

 

 

Helical vortice 

Toroidal vortices 
(daughter-rings) 

Toroidal vortices 
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Type C. Arrangement C shows a highly disorganized RVZ, with no toroidal rings, nor 

arch-type vortices observed in the bottom section of the RVZ. A chain of vortices 

randomly evolving across all plans is observed, from the downstream face of 

the spoiler baffle to the end of the RVZ, which is closed by helical vortices. The 

main feature of this type is the presence of a main vortex, seemingly stable and 

spinning in the YZ plan (Figure 4.13).  

 

Figure 4.13 : Type C Vortices arrangement, taken from h30w30_02 (angled, side view) 

 

The most common arrangement observed is “Type C”, which occurs in 61% of all cases, followed 

by “Type B” (33%) and “Type A” (6%). Note that in all cases, the overall shape of the RVZ mirrors 

the shape of the spoiler baffle.  

In Table 4.4, a special attention was given to the presence or absence of a vortex spinning 

in the YZ plan because this vortex seems more stable in nature and could be construed as the 

main eddy of the RVZ, particularly for Type C.  

The presence or absence of a stable Kármán vortex street was not linked to any specific 

arrangement but rather seems to depend on the width of the spoiler baffle and surrounding 

hydraulic conditions. The smaller spoiler baffle’s width of 20 mm is the only one associated with 

the generation of a stable Kármán vortex street. More turbulent hydraulic conditions seem to 

diffuse the Kármán vortex street, reducing its length. Note that the only spoiler baffle which wake 

touches the walls of the canal is H40W40; the proximity of the walls of the canal is therefore not 

what is keeping the formation of a stable Kármán vortex street for wider spoiler baffles.   

Main vortice (YZ plan)  

Toroidal vortice  

Helical vortice  
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Table 4.4 Summary of vortices and their arrangement observed within the RVZ for each simulation  
(angles are estimated) 

Name HC Type 
Length of 

Kármán vortex 

street 

Middle point of  

main YZ vortex 
Comments 

H20W20 

#1 A 215 mm - 
Two pairs of mother-daughter toroidal 

vortex rings  

#2 B 170 mm 
y = 10 mm;  

z = 10 mm 

Two counter-rotating arch-type vortices, 

one evolving toward the YZ plan 

H20W30 

#1 B - 
y = 18.5 mm;  

z = 14 mm 

Two counter-rotating arch-type vortices, 

one evolving toward the YZ plan 

#2 B - 
y = 10 mm;  

z = 14 mm 

Two counter-rotating arch-type vortices, 

both linked together in the YZ plan 

H20W40 

#1 C - 
y = 9 mm;  

z = 14 mm 

YZ vortex is angled (10° from x-axis), 

on right side of RVZ 

#2 C - 
y = 29 mm;  

z = 13 mm 

YZ vortex is parallel to x-axis, on right 

side of RVZ 

H30W20 

#1 C 155 mm 
y = 19 mm 

z = 23.5 mm 

Pair of toroidal rings evolving into a 

chain of vortices. 

#2 C - 
y = 16 mm;  

z = 17 mm 

YZ vortex is parallel to x-axis, on right 

side of RVZ 

H30W30 

#1 C - 
y = 20 mm; 

z = 18 mm 

YZ vortex is angled (15° from x-axis), 

across the width of RVZ 

#2 C - 
y = 20 mm;  

z = 18 mm 

YZ vortex is parallel to x-axis, across 

the width of RVZ 

H30W40 

#1 C - 
y = 13 mm;  

z = 13 mm 

YZ vortex is parallel to x-axis, toward 

the middle of RVZ 

#2 B - 
y = 26 mm;  

z = 21 mm 

Two counter-rotating arch-type vortices, 

one evolving toward the YZ plan 

H40W20 

#1 C 120 mm 
y = 16 mm;  

z = 25 mm 

YZ vortex is angled (45° from x-axis), 

toward the middle of RVZ 

#2 C 100 mm 
y = 11 mm;  

z = 17 mm 

YZ vortex is angled (20° from x-axis), 

toward the middle of RVZ 

H40W30 

#1 C - 
y = 15 mm;  

z = 27 mm 

YZ vortex parallel to x-axis, toward the 

middle of RVZ 

#2 C - 
y = 21 mm;  

z = 28 mm 

YZ vortex is angled (30° from x-axis), 

toward the middle of RVZ 

H40W40 

#1 B - 
y = 20 mm;  

z = 30 mm 

One arch-type vortex evolving toward 

the YZ plan followed by helical vortices 

#2 B - 
y = 19 mm;  

z = 24 mm 

One arch-type vortex evolving toward 

the YZ plan followed by helical vortices 
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 Predicted Body Length of Fish Able to Use the RVZ  

The ratio provided by Lindberg et al. (2016) i.e., a RVZ exceeding two-third of the fish body length, 

was used to calculate minimum body length of fish that would theoretically be able to use the RVZ 

generated by the designed spoiler baffles without confusion. Observations from Cotel and Webb 

(2015), whom stated that problems appeared when eddy diameter was the same as the fish body 

length, were also used for those calculations, with results presented in Table 4.5.  

Table 4.5 Minimum fish length able to use the RVZ created by the spoiler baffles 

Simulation HC 
Minimum Fish Length (cm) 

(cm) (Lindberg et al., 2016) (Cotel and Webb, 2015)  

H20W20 
#01 3.2 4.8 

#02 2.6 3.8 

H20W30 
#01 3.6 5.4 

#02 3.5 5.2 

H20W40 
#01 3.8 5.8 

#02 3.3 5.0 

H30W20 
#01 3.1 4.7 

#02 3.3 4.9 

H30W30 
#01 3.6 5.5 

#02 3.3 5.0 

H30W40 
#01 4.3 6.4 

#02 4.2 6.3 

H40W20 
#01 3.7 5.6 

#02 3.0 4.4 

H40W30 
#01 4.0 6.0 

#02 4.2 6.3 

H40W40 
#01 4.6 6.9 

#02 4.5 6.7 

The most conservative results, namely those obtained using a ratio of two-thirds the fish body 

length, were charted in Figure 4.14. While a slight increase in the minimum fish length is observed 

from H20 to H40, there is a strong overlap between the data. Considering the precision of results, 

it seems spoiler baffles with a height of 30 mm and a varying width can achieve the same level of 

sheltering than spoiler baffles with a height of 20 mm and 40 mm.  
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Figure 4.14 : Minimum fish length able to use the RVZ created by the spoiler baffles in function of the spoiler 
baffle height 

 



 

 

5 DISCUSSION 

CFD modelling holds great potential in supporting fish specialists in the design of systems aiming 

to facilitate fish movements and migration upstream of strong currents. The completion of the 

current work showed CFD modelling takes a considerable amount of time to learn, particularly if 

using OpenFOAM. OpenFOAM does not have a user-friendly interface like other commercial CFD 

software, such as Flow-3D or Ansys. However, its use was found incredibly useful in truly 

understanding the calculations and programs running in the background of CFD modelling work. 

For research particularly, its open-source operating system proved an incredible asset in avoiding 

the black-box phenomenon. When just starting in CFD modelling, the Smagorinsky model has 

the net advantage, over other models, to be simple of use. It runs smoothly, and can model the 

complex flow patterns associated with an object opposing the current. Its simplicity, as well as 

evidences from other researchers that this model could accurately reproduce turbulence (Chorda 

et al., 2019) is what made it the go-to model for the current research work.  

 The Smagorinsky Model 

Generally, the Smagorinsky model both underestimated velocities within the RVZ, and 

overestimated free-flow velocities. Due to the absence of velocity measurements closer to the 

center depth of the canal, it is impossible to know how the model behaves in this region and 

above. Considering the available data and simulations results, modelled velocities in this region 

would however be expected to be above observed velocities.  

 Fröhlich and Rodi (2002) pointed out that an infinite amount of velocity field is compatible 

with one mean velocity and Pakzad (2017) observed the Smagorinsky model tends to 

underestimate velocities in the near-wall region. Because of the use of the solver pimpleFoam, 

the average flow velocity within the canal is set and will remain constant over the simulation; 

therefore, lower modeled near-wall velocities will automatically lead to an overcompensation of 

velocities elsewhere in the canal. In the context of fish performance, the overestimation of the 

free-flow velocities and underestimation of the velocities within the RVZ could be considered 

conservative assumptions. It is therefore concluded that the Smagorinsky model can be use to 

support the design of spoiler baffles.  

An interesting observation is that the overestimation of the velocities decreases 

significantly for bigger spoiler baffles, particularly those with a height of 40 mm. Those spoiler 

baffles are both higher and lengthier than the others; they use up more volume, and the flow 
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separation starts closer to the inlet of the canal than for other spoiler baffles. This leads to a slight 

acceleration of the water velocity surrounding them, as the pump system maintains the same flow 

rate within the canal. It also leads to more significant “low-velocity trailing” on both sides of the 

RVZ.  

It is proposed here that this slight increase in the velocity differential between the walls 

and the middle of the canal, without allowing the model to adjust its water-depth, forces an 

increase in the rate at which the near-wall velocities rise, rendering the overall results more 

accurate. It is therefore hypothesized that the accuracy of the Smagorinsky model, when modeled 

using a one-phase solver, might improve for conditions with higher degree of flow separation and 

level of turbulence, such as would be expected for a system of multiple spoiler baffles installed 

within a culvert or canal. On the other end, it also indicates that the use of a one-phase solver 

instead of a two-phases solver, which would allow modelling of the water-air interface, might lead 

to a reduction in the ability of the model to accurately reproduce recorded velocities.  

5.1.1 Limitations of the Smagorinsky Model 

The practicability of use of the Smagorinsky model for academic purpose was confirmed, but the 

usefulness of this model within the private sector is questionable. As a Large-Eddy Simulation 

(LES) model, the Smagorinsky model requires considerable computing power to run, and the 

memory space required to record the results can seem extreme, as accurate results will require 

the use of very fine meshes. Simply put, it requires the use of a supercomputer, which many 

consulting firms don’t have.  

Additionally, when using the Smagorinsky model within OpenFOAM, the user cannot easily 

calibrate the coefficients used in the Van Driest Damping function. This is a major limit when 

working on obtaining more accurate results. While the user could hypothetically code his own 

version of the Van Driest Damping function to allow calibration of those coefficients, this defeats 

the purpose of using the Smagorinsky model, which is mostly recommended for its simplicity of 

use.  

5.1.2 Alternatives to the Smagorinsky model 

CFD modelling is a somewhat new technology undergoing rapid evolution and many new 

numerical strategies were developped to link the Wall-Resolved and Wall-Modeled LES 

approaches, resulting in increased model accuracy while maintaining practical computational 

demand (De Vanna et al., 2021). Detached Eddy Simulations (DES) and Improved Delayed 
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Detached Eddy Simulations (IDDES) are hybrid RANS/LES models. They explicitely switch from 

RANS to LES depending on the local size of the mesh and the turbulent length scale (Gritskevich 

et al., 2013) via the use of the Spalart-Allamaras eddy viscosity model. The Spalart-Allmaras 

model is commonly used within RANS, but by modifying the length scale in the destruction term 

of the equation, the eddy viscosity near the wall can cross over to a LES (Nicoud et al., 2001).  

The main challenge with those models is that convergence is harder to achieve, as it 

requires precise and carefully crafted computational grids. Piomelli (2008) notes that DES and 

IDDES are most effective in modelling turbulence in area of instability, as is observed in the 

context of flow separation. Their use could potentially decrease the computational cost 

significantly, with possibly no loss of accuracy.  

 Sizing of the Wake of the Spoiler Baffles 

The wake of an object is commonly defined as the layer over which the flow reverts back to the 

background velocity. While the “wake length” was measured, the actual wake generated by the 

spoiler baffles all extend, in length, to the end of the computational mesh. Using the chosen limits 

allowed the measure of the length of the wake immediately behind the object without including its 

tail. Thus, the wake, as defined by the protocol of section 3.4.2, is in actuality a measure of the 

primary wake, including its shear layers, while the measure of the RVZ does not include the shear 

layers.  

It could be argued that the wake extends over the chosen limits, both in height and width. 

However, using the exact same easily recognizable limits decreased the risk of confirmation bias 

in areas where the actual limit was less clear, while still allowing the detection of signals and 

patterns. The actual loss in the measurement of width and height of the wake remains under 

2 mm approximately.  

 Characteristics of the RVZs 

Considering the frame of the current master’s thesis, and with the data available, the analysis was 

constrained to an overview of the near-wake, up to the presence/absence of a Kármán vortex 

street downstream of the spoiler baffles. The near-wake, or primary wake of the spoiler baffle is 

what was identified as the RVZ, a region where the fish could potentially rest during upstream 

movements and migration.  
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It is believed that the Smagorinsky model mostly replicates what was observed on videos, 

and current observations seem to agree with literature. Based on the work from Fan and Tsuchiya 

(1990), the wakes generated by the spoiler baffles correspond to the category of arrangement #5 

for three-dimensional objects (section 2.1.3), namely a pair of streamwise line vortices trailing 

from a horse-shoe (Ω)-shaped vortex ring fragment attached to the body.  

5.3.1 Arrangement of Vortices Within the RVZ 

The generation of turbulent structures within the wake of an object is a complex phenomenon. 

Here, an attempt is made to better understand the configuration of vortices within the RVZs of the 

spoiler baffles by further dividing the RVZ into three regions, previously identified by researchers.  

The configuration of vortices contained within the first region of the RVZ, closest to the 

spoiler baffle, is the same for all spoiler baffles and can be described as a small chain of vortices 

evolving randomly across all plans. This region is equivalent to what Coppus (1977) refers to as 

a “quiet zone directly behind the rear surface of an object”. This quiet zone has been shown to 

hold up to 10% of the total volume of a RVZ, which is consistent with what was observed through 

all simulations.  

The second region of the RVZ constitutes the confined turbulent wake region and the 

configuration of vortices within it changes across simulations. The observed configurations vary 

between (Type A) toroidal rings evolving within the bottom part of the RVZ, interpreted as pairs 

of mother-daughter vortex rings; (Type B) arch-type vortices, starting within the XY plan and 

moving toward the YZ plan and XZ plan; and (Type C) a chain of vortices evolving across all 

plans, with one main and seemingly stable vortex spinning in the YZ plan.  

While no trend could be captured from the current analysis, based on literature review, this 

change in configuration is likely tied to (1) the changing ratio of the spoiler baffle height to the 

spoiler baffle width; (2) the proximity of the walls of the canal for bigger spoiler baffles; and (3) the 

submergence level of the spoiler baffles. The configuration would also be expected to evolve over 

time, as the vortices connect and disconnect from one another. This region is understood as being 

where the buildup of vorticity and energy takes place.  

The third region of the RVZ seems to play an important role in the shedding of vortices, 

which happens for all types and was attributed to the presence of helical vortices closing the 

RVZs, most often present to the count of two. A parallel can be drawn between this third region 

and the shedding vortical wake region (Fan and Tsuchiya, 1990).  
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5.3.1.1 How Vortices Within a RVZ Might Impact Fish 

While it was impossible, within the current scope, to match the analysis of vortices with the 

behavior of fish around the spoiler baffles, it is strongly believed that not all RVZ are created 

equal. It is expected that fish would respond differently to a RVZ depending on the nature of the 

vortices created within it. Based on the information collected, some hypotheses were developed 

that could be further tested by modelling at least one of the systems of spoiler baffles that was 

physically tested with fish within the canal over a period of time. This work could provide useful 

insights for the design of the spoiler baffles. 

It is expected that Type A would be associated to fish positioning themselves further 

downstream of the RVZ, more precisely within the Kármán vortex street generated with this type. 

In actuality, any time a Kármán vortex street is present, fish would likely prefer positioning 

themselves within it, as they are capable of Kármán gaiting, an ability to adapt their swimming 

behavior to a vortex street, which lower the cost of swimming in free-flow condition by 

approximately half (Liao and Akanyey, 2017). If this behavior is verified, it could be worth 

considering designing spoiler baffles that lead to the creation of Kármán vortex streets under 

various hydraulic conditions by prioritizing spoiler baffles with a smaller ratio of spoiler baffle width 

to spoiler baffle height.  

Type B might result in more fish confusion, as the arch-type vortices are assumed to be 

characterized by less stability and a stronger tendency to move around the RVZ, as they connect 

and disconnect from one another.  

For Type C, the behavior of the fish would depend in the location of the main vortex 

spinning in the YZ plan. For example, if it is angled, such as was observed for various spoiler 

baffles, a fish would likely position itself at an angle too, adapting to the main vortex location in a 

way to save energy and decrease confusion.  

5.3.2 Length of the RVZ 

Analysing measurements of the length of the RVZ revealed that the ratio of the length of the RVZ 

to the height of the spoiler baffle (RVZ.L/SB.H) was strongly influenced by the shape of the spoiler 

baffle i.e., by the ratio of the spoiler baffle width to its height (SB.W/SB.H) and by its submergence 

level. For both variables, an increase is associated with an increase in the length of the RVZ. The 

average ratio RVZ.L/SB.H was calculated at 1.94, with a minimum of 1.11 and a maximum of 

2.88.  
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When measuring the physical wake length, the only data available to validate the CFD 

models were measures taken from videos. Based on current analysis, the Smagorinsky model 

seems to overestimate the length of the physical RVZ. However, because of the perspective of 

the camera lense and highly imprecise nature of the physical measurements, it is deemed 

impossible, within the current scope, to precisely quantify the accuracy of the CFD models in 

reproducing the size of the spoiler baffle’s RVZ.  

What could be observed is that the pattern of behavior, from one spoiler baffle to the other, 

was the same for both the physical and modelled measurements. More precise measures of the 

length of the physical RVZs would have been useful to better validate results from the 

Smagorinsky model. More physical testing for lower values of submergence would also have been 

useful to better define the boundaries of the model developped in Equation 4.1.  

Another limit lies in the intrinsic nature of LES. Data available within the current scope is 

limited to snapshots in time for each spoiler baffle. However, literature states the size of the 

vortical shedding wake region of a RVZs varies significantly over-time following a saw-tooth 

function (Coppus, 1977, Fan and Tsuchiya, 1990). A time-average RVZ size would be therefore 

preferable to more thoroughly define how the primary wake fluctuates, not only from one spoiler 

baffle to the other, but over time.  

Overall, current findings are in agreeance with literature. Mirauda et al. (2007), who 

studied the impact of the submergence level of a tethered sphere on its RVZ, showed that an 

increase in the level of submergence of the object was associated with an increase in the size of 

the object’s RVZ. While Shamloo et al. (2001) found the length of the recirculation region to be 

about twice the diameter of a hemisphere, or four times its height, Fan and Tsuchiya (1990) noted 

that the size of a primary-wake, or RVZ, will vary significantly over time and that it depends heavily 

on the shape of an object.  

5.3.2.1 How the Length of the RVZ Might Impact Fish 

Following what Cotel and Webb (2015) and Lindberg et al. (2016) observed, it is hypothesized 

that fish with a body length under two-third the length of RVZ would likely become confused and 

unable to exploit the spoiler baffles for shelter. In this event, a much smaller spoiler baffle than 

those tested would need to be used for fry fish under 3 cm.  
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5.3.3 Length of the Confined Turbulent Wake Region of a RVZ 

In identifying and characterizing the RVZ and its potential influence on fish, it appeared that the 

confined turbulent wake region, due to its closed and stable nature, could have particular impacts 

on fish migration. The confined turbulent wake region is, in average,10% shorter than the RVZ.  

The method used to identify and measure the confined turbulent wake region was found to 

leave significant room to biases and judgment, as the localization of the cut-off stream is strongly 

influenced by the placement of the stream tracer tool. In particular, the boundary of the confined 

turbulent wake region was found to move over the depth of the spoiler baffles. This movement 

may be because the downstream limit of the RVZ is profiled, matching the shape of the spoiler 

baffle.  

5.3.4 Width and Height of the RVZ 

The height of the RVZs was found to vary following the height of the spoiler baffles. The width of 

the RVZs was found to vary following the width the spoiler baffles, but was also impacted by the 

hydraulic conditions within the canal; The RVZ was wider for hydraulic condition #2 than for 

hydraulic condition #1.  

 This observation seems counter-intuitive, and it is believed that it could have been 

generated by the use of a somewhat coarser mesh under hydraulic condition #2. A y+ value of 

13 was used for hydraulic condition #2, as opposed to a y+ value of 10 for hydraulic condition #1. 

This slight increase in the sizing of the mesh cells, extending on both sides of the RVZ, as 

opposed to just one side when measuring the height of the RVZ, might have contributed to the 

obtention of a statistically different average between the width measured for both conditions.  

5.3.5 Level of Fragmentation of the RVZ 

Results showed that for spoiler baffles with a same height, increasing the width of the spoiler 

baffles lead to more important level of fragmentation within the RVZ i.e., to a higher volume of 

velocity envelopes containing higher flow velocity. The recorded data show that increasing the 

spoiler baffle width is generally associated to a decrease in the maximum recorded flow velocity 

for a same point (x = 0; y = 0.03; z = 0.0075) mm.  

Considering the law of energy conservation, if the hydraulic conditions within the canal are 

maintained, and for a specific average speed within a RVZ, the occurrence of larger regions of 
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higher flow velocity within the RVZ would hereby lead to a decrease in the maximum speed 

occurring within the region.  

While this observation might result from the features of the spoiler baffles (SB.W/SB.H), it 

might also result from an intensified the wall-effect, as the extremities of the wider spoiler baffles 

are closer to the walls of the canal. Fan and Tsuchiya (1990) states that the wall effect was 

associated to a delay in vortex shedding. It is therefore believed that this delay would be 

associated to an increased capacity of the RVZ to absorb more energy before vorticity is shed 

downstream, hence the appearance of regions characterized by higher flow velocity.  

5.3.5.1 How the Level of Fragmentation Might Impact Fish 

Considering higher levels of fragmentation are likely the result of an increased capacity of the 

RVZ to absorb more energy before vorticity is being shed downstream, it is possible that an 

increased width might lead to a higher risk of fish being expulsed from the RVZ during vortex 

shedding. Fish might be able to withstand vorticity shedding associated to a smaller degree of 

energy, but less so when the energy buildup is more significant.  

 



 

 

6 CONCLUSION 

The work of the current thesis confirmed that the Smagorinsky model can reproduce complex 

turbulence patterns associated to the flow separation resulting from an object opposing the 

current.  

However, the model tends to underestimate near-wall velocities, as well as velocities within 

the wake of the spoiler baffle, likely leading to an overestimation of the free-flow velocities. In the 

context of fish passage, velocities are particularly important in predicting fish behaviors and their 

capacity to migrate upstream a hydraulic structure, as it is directly linked to the time to exhaustion 

of fish (Lindberg et al., 2016, Wang and Chanson, 2018). The vortices and vortex-shedding 

phenomenon also hold great value when evaluating fish passage, as fish have been shown to 

adapt their swimming performance to the vortices in their path to reduce the energy cost of 

migration (Liao and Akanyey, 2017). The relevance of using the Smagorinsky model results as 

inputs for the design of the spoiler baffles was confirmed, as the overestimation of the free-flow 

velocities and underestimation of the velocities within the RVZ, in the context of fish passage, are 

conservative; if the velocities modelled are within the threshold supported by fish, then fish should 

be able to transit within the real system.  

In terms of predicting the characteristics of the RVZ, analysis of the data showed it varies 

following the shape of the spoiler baffles and their level of submergence. Both the ratio of the 

width of the spoiler baffle to its height, and its submergence level were found to be good predictors 

for the length of the RVZ that a spoiler baffle creates. The surrounding hydraulic conditions, 

however, only statistically impacted the ratio of the width of the RVZ to the width of the spoiler 

baffle, with more turbulence associated to a wider RVZ for a same spoiler baffle. This statistical 

difference is however believed to be caused by the use of a higher y+ value for hydraulic condition 

#2 than for hydraulic condition #2. Note that in all cases, the shape of the RVZ mirrors the shape 

of the spoiler baffle.  

Validating the length of the modelled RVZ proved challenging. It is intuited that the modelled 

wake is lengthier than the physical wake generated by the spoiler baffles, but a substantial limit 

of the current work laid in the impossibility to precisely measure the physical length of the RVZ. It 

is recommended that future similar physical experimentations include the presence of a ruler 

underneath the canal to note approximate measurements of the RVZ and better validate CFD 

modelling work.  
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Additionally, because of the heaviness of each simulation results, analysing how the RVZ 

evolves through time was not possible. However, the size of a primary wake is strongly time-

dependent. Therefore, the length of the RVZ should be calculated as a time-averaged length. 

This could be achieved by cutting the mesh to the minimum length that would enable the capture 

of the RVZ and by running the model over a period of time, saving results to a small enough time-

step to visualise the oscillations of the primary wake.  

If current results are to be taken into account for design considerations, note that, in the 

end, the spoiler baffles tested lead to comparable RVZ lengths. A much smaller spoiler baffle 

would be needed to allow fish with a body length under 3 centimeters to use the RVZ to rest. For 

the spoiler baffles modelled, there is a significant overlap in the body length of fish that could 

potentially use the spoiler baffles as shelters without becoming confused (3 to 4.5 centimeters). 

Other than the length of the RVZ, the main features to consider for final design relate to the 

stability of the RVZ generated, namely the type of arrangement of vortices within it and its level 

of fragmentation. Those features will likely have a significant impact on fish and on their capacity 

to remain within the RVZ generated.  

Three types of arrangements of vortices were observed, with Type C observed for more 

than half the simulations. Type C is a seemingly highly disorganized RVZ that could be described 

as a chain of vortices randomly evolving across all plans. However, the presence of one main 

vortex, seemingly stable and spinning in the YZ plan, indicates Type C might actually be the most 

stable of all observed arrangements.    

Within the scope of the current thesis, it was impossible to link fish behavior to the modelled 

vortices. This master thesis was useful in defining the level of accuracy and caveats of the 

Smagorinsky model, and a logical next step would be to model the system of two spoiler baffles 

that was physically tested with fish to better understand if and how the vortices within the RVZ 

impact the behavior of fish around the spoiler baffles. This extra effort could also shed light on 

one hypothesis that aroused within the current work, namely that generating Kármán vortex 

streets within the canal might be preferable to the creation of stable RVZ with chaotic far wake.  

For future modelling work, also note the main caveat of the Smagorinsky model is its high 

computational cost. A very fine mesh is required to ensure convergence of the model, namely the 

maintenance of a y+ value under 10. In the current work, a value of 13 did not result in significant 

loss of accuracy, indicating that for very simple models, the y+ value could likely be increased to 

save on computational cost. Even then, for what can be considered a very simple model, and 

despite the use of 20 physical cores, the time of simulation was significant.  
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This high computational cost is also what lead to the use of the pimpleFoam solver, which 

due to its one-phase nature, did not allow modelling of the free-surface of the system, but 

permitted to cut the simulation time considerably compared to using the interFoam solver. While 

this decision resulted in some loss of information, as the eddies created by the water-interface 

could not be modelled, data shows the use of pimpleFoam still permitted appropriate reproduction 

of flow velocities within the lower region of the canal and within the wake of the spoiler baffle, 

where the fish transit. The use of a simplified one-phase model is therefore considered an 

appropriate way to model eddy-dominated flows. In the case of wave-dominated systems, 

interFoam should be used.  

One recommendation, however, would be to model one of the 18 spoiler baffles modelled 

again, this time using the IDDES model. In the event this second model provides similar results 

than the Smagorinsky model, it could prove useful in decreasing significantly the computational 

strength required for simulations, further improving the relevance of using CFD modelling in 

supporting the design effort of the spoiler baffles. Note that the IDDES model is also a one-phase 

model.  

The current thesis is the only one, to our knowledge, to look this deeply into the use of the 

Smagorinsky model in the context of design. While the Smagorinsky model was previously used 

to model systems for fish passage, a thorough analysis of how it compared with observations and 

its main issues was not available in the context of fish. While there is still more to be done to 

further confirm this extensive modelling work, this work provided some useful insights in the future 

of hybrid modelling.  
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8 APPENDIX I 

In order to facilitate the comprehension of the figures contained within this appendix, the x-axis 

labels have been taken out. Each point along the x-axis refers to a location of measurement, 

going from upstream of the canal toward its downstream end.  

 

Figure 8.1 : Validation of simulation H20W20_01; the difference is observed just upstream of the spoiler 
baffle and is attributed to the possible inexact placement of the ADV 

 

Figure 8.2 : Validation of simulation H20W30_01; the difference is observed just upstream of the spoiler 
baffle and is attributed to the possible inexact placement of the ADV 
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Figure 8.3 : Validation of simulation H20W40_01; the different reading is within the modelled shear layer of 
the wake 

 

Figure 8.4 : Validation of simulation H30W20_01; the different reading is within the modelled shear layer of 
the wake 



69 

 

Figure 8.5 : Validation of simulation H30W30_01; the different reading is within the modelled wake 

 

Figure 8.6 : Validation of simulation H30W40_01; the different readings are within the modelled wake 



70 

 

Figure 8.7 : Validation of simulation H40W20_01 

 

Figure 8.8 : Validation of simulation H40W30_01 
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Figure 8.9 : Validation of simulation H40W40_01; the different readings are within the modelled RVZ 

 

Figure 8.10 : Validation of simulation H20W20_02; the difference is observed just upstream of the spoiler 
baffle and is attributed to the possible inexact placement of the ADV 
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Figure 8.11 : Validation of simulation H20W30_02; the difference observed just upstream of the spoiler baffle 
is attributed to the possible inexact placement of the ADV, the other difference is within the modelled wake 

 

 

Figure 8.12 : Validation of simulation H20W40_02; the difference observed just upstream of the spoiler baffle 
is attributed to the possible inexact placement of the ADV 
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Figure 8.13 : Validation of simulation H30W20_02 

 

Figure 8.14 : Validation of simulation H30W30_02 
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Figure 8.15 : Validation of simulation H30W40_02; the different readings are within the modelled wake 

 

Figure 8.16 : Validation of simulation H40W20_02 
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Figure 8.17 : Validation of simulation H40W30_02; the different data is within the modelled RVZ 

 

Figure 8.18 : Validation of simulation H40W40_02; different data is within the modelled wake 
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9 APPENDIX II 

 

Figure 9.1 : Side view of RVZ (x = 0) generated for (A) h20w20_01 | Low level of fragmentation; (B) h20w30_01 
| Low level of fragmentation; and (C) h20w40_01 | Moderate level of fragmentation 
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Figure 9.2 : Side view of RVZ (x = 0) generated for (A) h20w20_02 | Low level of fragmentation; (B) h20w30_02 
| Moderate level of fragmentation; and (C) h20w40_02 | Moderate level of fragmentation 
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Figure 9.3 : Side view of RVZ (x = 0) generated for (A) h30w20_01 | Moderate level of fragmentation; (B) 
h30w30_01 | Moderate level of fragmentation; and (C) h30w40_01 | High level of fragmentation 
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Figure 9.4 : Side view of RVZ (x = 0) generated for (A) h30w20_02 | Low level of fragmentation; (B) h30w30_02 
| Moderate level of fragmentation; and (C) h30w40_02 | High level of fragmentation 
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Figure 9.5 : Side view of RVZ (x = 0) generated for (A) h40w20_01 | Low level of fragmentation; (B) h40w30_01 
| Moderate level of fragmentation; and (C) h40w40_01 | High level of fragmentation 
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Figure 9.6 : Side view of RVZ (x = 0) generated for (A) h40w20_02 | Moderate level of fragmentation; (B) 
h40w30_02 | Moderate level of fragmentation; and (C) h40w40_02 | High level of fragmentation 


