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ABSTRACT In this announcement, we present the set of putative terpene synthase
(TS) gene fragments detected in a subseafloor sediment sample collected off Shimokita
Peninsula, Japan. This data set contains sequences with 72 to 100% identity to TS from
actinobacteria and cyanobacteria.

Terpenoids (TRPs) are the largest class of specialized metabolites (1), and many of
these compounds are known to act as signals in microbial interactions (2, 3).
Subseafloor sediments represent an environment with unique microbiological com-

munities and metabolic activities (4). However, the knowledge of TRPs in the subsea-
floor environment remains limited. Here, we announce the detection of sequences
with high similarity to terpene synthase (TS) genes of common bacterial TRPs, geosmin
and 2-methylisoborneol (2-MIB) (3), in environmental DNA isolated from deep-sea sub-
seafloor sediment.

The sediment sample was collected during the D/V Chikyu shakedown cruise of CK-06-
06 (41.1771°N, 142.2016°E, 1,180 m, 5.2 m below the seafloor [mbsf]) and frozen at 280°C
immediately after the sampling. DNA was extracted from 5 g of the frozen sediment as
previously described (4, 5). In brief, DNA was extracted using DNeasy PowerMax soil kit
(Qiagen) according to the manufacturer’s instruction with small modifications; concentra-
tions were determined by PicoGreen (Thermo Fisher Scientific) after ethanol precipitation.

The geosmin TS fragment (432 bp) was amplified using primers geosmin-for (59-TCGTCG
GCAGCGTCAGATGTGTATAAGAGACAGCATCGAGATGCGSCGCAAGG-39) and geosmin-rev (59-G
TCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGASCGSAKGTGCCACTCGTG-39) primers (adapter
sequences are in italics). The 2-MIB TS primers were mib-for (59-TCGTCGGCAGCGTCAGATGTG
TATAAGAGACAGACGACDNBTACTGCGAGGAC-39) and mib-rev (59-GTCTCGTGGGCTCGGAGAT
GTGTATAAGAGACAGGGVCGGAAGTTGTTGAACTG-39) (331 bp). The PCR mix consisted of 1�
EmeraldAmp Max PCR master mix (TaKaRa), 0.4 mM each primer, and 0.05 ng of sediment
DNA. The two-phase touchdown PCR protocol for increased specificity and sensitivity was
used (6). The cycling conditions, which were the same for both primer sets, were 95°C for
60 s, followed by 15 cycles of 98°C for 10 s, a touchdown gradient from 65°C to 50°C for 30 s,
and 72°C for 30 s. The second phase was 20 cycles of 98°C for 10 s, 50°C for 30 s, and 72°C for
30 s. PCR products of expected sizes were excised from the agarose gel (NucleoSpin gel and
PCR clean-up kit [Macherey-Nagel]) and purified using AMPure magnetic beads (Beckman
Coulter). Twenty nanograms of each PCR product was used for index library preparation
(Nextera XT index kit [Illumina] and Tks GFlex DNA polymerase [TaKaRa]). Libraries were puri-
fied as described above, quantified by QuantiFluor (Promega), and sequenced using 500-cycle
MiSeq reagent nanokit v2 (MiSeq system, Illumina).

The obtained sequences (Table 1) were processed with the AmpliconTagger v1.3.0
pipeline (7). Default parameters were used for all software unless otherwise specified;
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details are available at https://zenodo.org/record/7455812. Raw reads were quality controlled
and clustered at 97% identity to generate operational taxonomic units (OTUs). OTUs were
filtered for chimeras using VSEARCH’s implementation of UCHIME de novo (8) and blasted
against the NCBI nucleotide (nt) database (9). Hits with an E value of ,1e-20, alignment
length $100, and alignment percentage $60 were kept to build the RDP classifier (10)
training set for an OTU taxonomic lineage assignment. Bacterial or archaeal lineages were
combined with the OTU abundance matrix to generate a raw OTU table. The sequence-
specific primer sequences were removed using MEGA v7.0.26 (11).

This data set can be used in studies on TS gene diversity and distribution in subsea-
floor environments.

Data availability. Raw reads were deposited in a BioProject at DDBJ/ENA/GenBank
under the accession number PRJNA846928. The GenBank accession numbers for OTUs
are ON723903 to ON723912 (2-MIB) and ON723913 to ON723935 (geosmin).
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TABLE 1 Amplicon sequence counts and the blastx annotation results obtained in this study

Primer set
Total no.
of reads

No. of reads
clustered in OTUs
(clusters ‡10 reads) Total no. of OTUs

No. of TS-annotated
OTUs (no. of reads)a Highest blastx hitb % identity

Geosmin TS 122,670 35,055 39 23 (32,826) Actinobacterial/
cyanobacterial
geosmin and
terpene synthases

72–100

2-MIB TS 42,472 10,363 17 10 (10,269) Streptomycete
cyclases/2-MIB
synthases

86–98

a OTUs with the highest hits to TS sequences as annotated by blastx algorithm (12) and NCBI GenBank nonredundant (nr) protein sequence database (accessed October to
November 2020). Read numbers of TS-annotated OTUs are given in brackets.

b The highest blastx hits of TS-annotated OTUs from the “no. of TS-annotated OTUs (no. of reads)” column.
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