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Crops associate with microorganisms that help their resistance to biotic stress. However, it is not clear how the different partners of
this association react during exposure to stress. This knowledge is needed to target the right partners when trying to adapt crops to
climate change. Here, we grew wheat in the field under rainout shelters that let through 100%, 75%, 50% and 25% of the
precipitation. At the peak of the growing season, we sampled plant roots and rhizosphere, and extracted and sequenced their RNA.
We compared the 100% and the 25% treatments using differential abundance analysis. In the roots, most of the differentially
abundant (DA) transcripts belonged to the fungi, and most were more abundant in the 25% precipitation treatment. About 10% of
the DA transcripts belonged to the plant and most were less abundant in the 25% precipitation treatment. In the rhizosphere, most
of the DA transcripts belonged to the bacteria and were generally more abundant in the 25% precipitation treatment. Taken
together, our results show that the transcriptomic response of the wheat holobiont to decreasing precipitation levels is stronger for

the fungal and bacterial partners than for the plant.

ISME Communications; https://doi.org/10.1038/543705-023-00235-7

INTRODUCTION
Drought is one of the most significant threats to crops and will
become more frequent and intense with climate change [1]. Both
the plant and its microbiota respond to decreasing soil water
content, which affects the fitness of the plant. However, because
of a lack of studies integrating plant and microorganisms, the best
targets for improving crop resistance to water stress are not clear.
Many Actinobacteria and Proteobacteria can improve plant
tolerance to drought- or salinity-related stresses [2-5]. Fungal
endophytes can also improve plant performance under abiotic
stress [6-8]. Mycorrhizal fungi can improve water use efficiency
and reduce drought stress in wheat [9], oat [10], and corn [11].
Interestingly, endophytic and rhizospheric microorganisms iso-
lated from environments prone to drought tend to confer plants
with a better resistance to drought [8, 12]. Many mechanisms are
involved in the enhancement of plant drought tolerance by
microbes. These include modulation of plant drought stress genes
[13], reduction of the stress hormone ethylene levels through
degradation of its precursor 1-aminocyclopropane-1-carboxylic
acid (ACC) by the bacterial enzyme ACC deaminase [2, 3],
stimulation of the expression of plant genes related to osmolytes
and osmoprotectants by bacterial volatile organic compounds [14]
and modaulation of the plant epigenetics response to drought [15].
Plants also directly respond to water stress through genetic,
molecular and physiological mechanisms [16].

A host and its microbiota form an holobiont, and their
combined genomes is the hologenome [17]. Although the
concept has been debated [18-21], it is useful in emphasizing

the role that microbial communities play in the host biology [for
more details on these concepts, see 17]. The hologenome theory
of evolution [22] considers the hologenome as one evolutionary
unit, which provides an interesting framework for studying the
adaptation of holobionts to stressful conditions. It implies that
there are microbial-driven means by which holobionts can adapt
to new environmental conditions [23-25]. The hologenome can
change through 1) recruitment of new microbial partners from
external sources, 2) amplification or reduction of the microbial
partners already in place, and 3) HGT from the external
communities to the microbial partners already in place. These
are coherent with the mechanisms of ecological community
change put forward in the theory of ecological communities
[26, 271, namely 1) migration, 2) selection, 3) speciation and 4)
drift. At the transcriptomic level, the microbial response can
stem from two mechanisms: 1) changes in the metagenome (by
the three mechanisms listed above) and 2) changes in the gene
expression of the members of the community. Although these
two mechanisms cannot be disentangle using metatranscrip-
tomics, the result will be the same: a change in the genes
expressed within the holobiont. For the host, the transcriptomic
response is limited to shifts in gene expression. We therefore
hypothesized that most of the transcriptomic response of the
wheat holobiont to decreasing soil water availability will be
microbial. To test this hypothesis, we grew wheat under rainout
shelters that let through 25, 50, 75 or 100% of the natural
precipitation. Plant roots and rhizosphere were sampled, their
RNA extracted and sequenced.
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MATERIALS AND METHODS

Experimental design and sampling

Four rainfall manipulation treatments were set-up in 2016 at the Armand-
Frappier Santé Biotechnologie Centre (Laval, Québec, Canada) using rain-
out shelters that passively let through 25%, 50%, 75%, and 100% of the
natural precipitation. The rainfall exclusion treatments were performed
using 2 m X 2 m rain-out shelters, which were covered with nine, six, three,
or zero 2m X 16.7 cm sheets of transparent plastic for the 25%, 50%, 75%,
and 100% treatments, respectively. The rain was intercepted by the plastic
sheeting and guided in a gutter and downspout and collected in 20L
buckets that were manually emptied when they were full. Two wheat
genotypes were seeded under these shelters (drought sensitive, Triticum
aestivum cv. AC Nass and drought tolerant, Triticum turgidum spp. durum
cv. Strondfield), and the experiment was replicated over six fully
randomized blocks, resulting in 48 plots (4 treatments X 2 genotypes X 6
blocks). Plots were seeded at a density of 500 seeds per m? on May 18
(2016) and May 23 (2017). Seeds harvested from each of the plots were re-
seeded in the exact same plot the following year. For the current
manuscript, only the Strondfield cultivar was used, from which rhizosphere
soil and root samples were taken on July 26, 2017. For rhizosphere
sampling, a plant was randomly selected (avoiding the edge of the plots),
uprooted and shaken vigorously to remove the loosely attached soil. Soil
tightly adhering to roots after shaking was considered as rhizosphere soil
and was collected in sterile 1.5 ml microcentrifuge tubes. After collecting
the rhizosphere soil, roots were washed with distilled water, separated
from the plant and placed in sterile 15ml Falcon tubes. Collected
rhizosphere soil and root samples were flash frozen in liquid nitrogen
within a span of 2 minutes after uprooting the plant to maintain the RNA
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integrity. Tubes were stored at —80 °C until the samples were processed
for RNA extraction. At sampling, we also collected a bulk soil sample from
the center of each plot for soil water content measurement. We measured
soil water content by weighing soils before and after drying overnight at
105°C.

RNA extraction and sequencing

Total RNA was extracted from 2 g of rhizosphere soil using the RNeasy
PowerSoil Total RNA Kit (QIAGEN, Canada) and 0.5 g roots using RNeasy
Plant Mini Kit (QIAGEN, Canada). Extracted RNA was treated with DNAse
(ThermoFisher, Canada) to remove the DNA prior to sequencing. The
absence of DNA was confirmed by the lack of PCR amplification using
16S rRNA gene specific primers. Total RNA was sent for Illlumina
HiSeq4000 2 x 100 bp pair end sequencing at the Centre d’Expertise et
de Services Génome Québec (Montréal, Québec). Libraries for rhizo-
sphere samples were created using a microbial ribosome subtraction
approach to capture all microbial transcripts, whereas libraries for root
samples were created using a poly-dT reverse transcription approach to
focus on the plant and fungal transcripts. The raw data produced in this
study was deposited in the NCBI under Bioproject accession
PRINA880647.

Bioinformatics

The metatranscriptome sequencing of the 24 root and 24 rhizosphere
samples resulted in 2639 M reads resulting in 264 giga bases which were
processed together through our metatranscriptomics bioinformatics pipe-
line [28]. Briefly, bases at the end of reads having a quality score less than
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Soil water content and kingdom-level affiliation of transcripts. A Mean soil water content at the time of sampling for the four

different precipitation manipulation treatments. B Kingdom-level taxonomic affiliation of the transcripts retrieved for all roots and rhizosphere
samples. C Kingdom-level affiliation of the differentially abundant (DA) transcripts together with information if they were more or less

abundant in the 25% treatment as compared to the 100% treatment.
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30 were cut off (Trimmomatic v0.32) [29] and scanned for sequencing
adapters contaminants reads using DUK (http://duk.sourceforge.net/) to
generate quality controlled (QC) reads. QC-passed reads from each
sample were co-assembled using Megahit v1.1.2 [30] with iterative kmer
sizes of 31, 41, 51, 61, 71, 81, and 91 bases. Transcript prediction was
performed by calling transcripts on each assembled contig using
Prodigal v2.6.2 [31]. Transcripts were annotated following the JGI's
guidelines [32] including the assignment of KEGG orthologs (KO). QC-
passed reads were mapped (BWA mem v0.7.15) (unpublished - http://
bio-bwa.sourceforge.net) against contigs to assess quality of metatran-
scriptome assembly and to obtain contig abundance profiles. Alignment
files in bam format were sorted by read coordinates using samtools v1.2
[33] and only properly aligned read pairs were kept for downstream
steps. Each bam file (containing properly aligned paired-reads only) was
analyzed for coverage of called transcripts and contigs using bedtools
(v2.17.0) [34] using a custom bed file representing transcript coordinates
on each contig. Only paired reads both overlapping their contig or
transcript were considered for transcript counts. Coverage profiles of
each sample were merged to generate an abundance matrix (rows =
contig, columns = samples) for which a corresponding CPM (Counts Per
Million—normalized using the TMM method) (edgeR v3.10.2) [35]. Each
contig was blasted (BLASTn v2.6.0+) against NCBI's nt database (version
downloaded from NCBI's server on January 9th 2019) and the best hit's
taxonomic identifier was used to assign a taxonomic lineage to the
contig. Taxonomic summaries were performed using MicrobiomeUtils
v0.9 (github.com/microbiomeutils). The metatranscriptome co-assembly,
transcript abundance, read count summaries and mapping statistics and
other results generated by our bioinformatic workflow are provided in

the companion online Zenodo archive (https://doi.org/10.5281/
zenodo.7121038).
A 57 — T~
L]
o

Log 2 fold change (25%/100%)

1 100 10000

Mean read count

P.M. Pande et al.

Statistical analyses

All statistical analyses were performed in R version 4.1.0. [36]. Transcript
differential abundance analyses between the 100% and 25% precipitation
treatments were carried out using the EBTest function of the EBSeq library
with a false discovery rate (FDR) of 0.05. Anovas were performed using the
aov function of the stats package. The R project folder containing the R
code used for data manipulation, statistical analyses, and tables and figure
generation is available on our lab GitHub repository (https://github.com/le-
labo-yergeau/MT_Holobiont_Wheat). The associated transcript abundance
and annotation tables, the metadata, and the soil water content files used
with the R code are available on Zenodo: https://doi.org/10.5281/
zeno0do.7096909.

RESULTS

Soil water content (SWC)

There was a significant difference (p =0.000367) between the
mean SWC across the four treatments. The water content was
highest in plots exposed to 100% of the natural precipitation and
gradually decreased in plots receiving 75%, 50% and 25% of the
natural precipitation (Fig. 1A). The SWC was of 11% at its lowest (in
the 25% precipitation treatment) and of 23% at its highest (in the
100% treatment). The rest of our analyses focus on the two most
extreme conditions, the 25% and 100% precipitation treatments.

Responses of the holobiont partners
We retrieved 1,069,108,624 clean sequencing reads (per sample,
mean: 22,746,992, max: 43,912,775, min: 13,943,395) that were
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Fig. 2 Volcano plots of transcripts. Volcano plot of transcripts log2 fold change vs. mean relative abundance, with significantly differently
abundant (DA) transcripts highlighted by colors corresponding to their kingdom-level taxonomy for (A) roots and (B) rhizosphere soil. Blue:
fungi, green: plant, red: bacteria, yellow: others, purple: unclassified, pink: archaea.
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Fig. 3 Phylum- and class-level affiliations of transcripts. Stack bar chart comparing the taxonomical affiliations of transcripts associated to
(A) fungi and to (B) bacteria in the roots and the rhizosphere across all samples vs. among transcripts positively (DA+) or negatively (DA-)
differentially abundant. The transcripts not classified at this level (“NULL") were removed.

assembled in a total of 1,269,055 transcripts, among which
1,193,501 and 1,136,587 transcripts were found in the rhizosphere
soil and wheat roots, respectively. Among the wheat root
transcripts, 12,792 (1.1%) belonged to the Archaea, 365,435
(32.2%) to Bacteria, 200,233 (17.6%) to Fungi, 200,823 (17.7%) to
plants, 132,313 (11.6%) to other Eukaryotes, 3660 (0.3%) to viruses
and 221,331 (19.5%) were not identified at the kingdom level
(Fig. 1B). Among the rhizosphere soil transcripts, 14,943 (1.3%)
belonged to the archaea, 430,984 (36.1%) to the bacteria, 186,745
(15.6%) to the fungi, 169,788 (14.2%) to the plants, 132,042
(11.1%) to other eukaryotes, 4255 (0.4%) to viruses, and 254,744
(21.3%) were not classified at the kingdom level (Fig. 1B).

In the roots, among the 1,136,587 transcripts, 42,001 (3.70%)
were differentially abundant (DA) at a FDR of 0.05. Among these
DA transcripts, 2309 belonged to the bacteria (5.50%), 23,274 to
the fungi (55.41%), 4357 to the plants (10.37%), 5303 were not
classified at the kingdom level (12.63%) and 6758 belonged to
other taxa (16.09%) (Figs. 1C and 2A). For bacteria and fungi, most
of the DA transcripts were more abundant in the 25% treatment
as compared to the 100% treatment (23,042 and 2231 more
abundant vs. 232 and 78 less abundant for fungi and bacteria,
respectively), whereas it was the inverse for plant (1295 genes
more abundant vs. 3061 less abundant) (Figs. 1C and 2A).

In the rhizosphere, among the 1,193,501 transcripts, 21,765
(1.82%) were differentially abundant at a FDR of 0.05. Among
these DA transcripts, 14,178 belonged to the bacteria (65.14%),
159 to the archaea (0.73%), 402 to the fungi (1.85%), 219 to the

SPRINGER NATURE

plants (1.01%), 5,224 were not classified at the kingdom level
(24.00%) and 1,583 belonged to other taxa (7.27%) (Figs. 1C and
2B). For bacteria, slightly more DA transcripts were more abundant
in the 25% treatment as compared to the 100% treatment (7,938
more abundant vs. 6,240 less abundant), whereas it was the
inverse for plant (41 more abundant vs. 178 less abundant) and
fungi (149 more abundant vs. 253 less abundant) (Figs. 1C and 2B).

High level taxonomy and functions of the DA transcripts

We compared the taxonomic affiliations at the phylum/class
levels for all transcripts vs. the positive and negative DA
transcripts in the roots and the rhizosphere (Fig. 3). Since the
DA analyses result in a single list of DA transcripts per plant
compartment, we are not able to test statistically for the
differences in the representation of the taxa in the different
subsets. However, interesting trends emerged. Some taxa were
relatively less abundant among DA transcripts than among all
transcripts, suggesting a lack of response to the precipitation
exclusion treatments. The Sordariomycetes, Chloroflexi, Gemma-
timonadetes, among others, were in this situation across all
compartments, together with the Acidobacteria in the roots and
the Dothideomycetes in the rhizophere (Fig. 3). Other taxa were
overrepresented among the positive DA transcripts and under-
represented among the negative DA transcripts, suggesting an
increase in relative abundance or an upregulation of several
genes under lower soil water content. The Actinobacteria in
both compartments, the Ascomycota in the rhizosphere, and the

ISME Communications
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(A) roots and (B) the rhizosphere across all samples vs. among transcripts positively (DA+) or negatively (DA-) differentially abundant. The

transcripts not classified at this level (“NULL") were removed.

Dothideomycetes in the roots were in that situation (Fig. 3). In
contrast, some taxa were overrepresented among the negative
DA transcripts and underrepresented among the positive DA
transcripts, suggesting a decrease in relative abundance or a
downregulation of several genes under lower soil water content.
The Proteobacteria, Bacteroidetes, and Eurotiomycetes in both
compartments, the Acidobacteria in the rhizosphere and the
Agaricomycetes in the roots showed this pattern (Fig. 3).

As for COG (clusters of orthologous genes) categories, some
were overrepresented in the positive DA transcripts and under-
represented in the negative DA transcripts (Fig. 4), suggesting
high-level categories that are generally upregulated following a
reduction of soil water content. Among these were “Carbohydrate
transport and metabolism” and “Lipid metabolism” in the roots, “
“Cell envelope biogenesis, outer membrane”, “Signal transduction
mechanisms”, and “Transcription” in the rhizosphere (Fig. 4). The
COG categories overrepresented in the negative DA transcripts
included “Translation, ribosomal structure and biogenesis” in both
the rhizosphere and the roots and “Posttranslational modifica-
tions, protein turnover, chaperones” in the roots (Fig. 4). These
would be COG categories that are generally downregulated with
decreasing soil water content. Some COG categories were
relatively less abundant among positive and negative DA
transcripts than among all transcripts, suggesting a lack of
response to the precipitation exclusion treatments. This included
“Amino acid transport and metabolism” in the rhizosphere and
“Cell envelope biogenesis, outer membrane”, “DNA replication,

ISME Communications

recombination and repair”, “Signal transduction mechanisms” and
“Transcription” in the roots (Fig. 3).

Most differentially abundant transcripts
For DA analyses of the root samples, there were many transcripts
that had a P-value=0, so we sorted them by mean abundance and
are showing the top 50 transcripts in Table 1 and Fig. 5A. Twenty-
seven transcripts among the top 50 transcripts belonged to the
Agaricomycetes, mostly Coprinopsis cinerea, and were almost all
more abundant in the 25% precipitation treatment (Table 1 and
Fig. 5A). Seven transcripts could be related to the wheat tribe
(Triticum aestivum or Aegilops tauschii), all of which were less
abundant in the 25% precipitation treatment (Table 1 and Fig. 5A).
Many of the most significantly more abundant transcripts in the
25% precipitation treatment were related to amino acid and
carbohydrate transport and metabolism, with transcripts such as
“Amino acid transporters”, “Glycerol uptake facilitator and related
permeases”, “Beta-glucanase/Beta-glucan synthetase”, “Dipeptide/
tripeptide permease”, “Fucose permease”, “Neutral trehalase” and
“Hexokinase” (Table 1). In contrast, many of the most significantly
less abundant transcripts in the 25% precipitation treatments were
linked to the COG categories “Posttranslational modification,
protein turnover, chaperones” and “Secondary metabolites
biosynthesis, transport and catabolism” (Table 1).

For the rhizosphere, as not that many DA transcripts had a
P-value = 0, we are presenting the 50 lowest P-values observed in
Table 2 and Fig. 5B. Half the DA transcripts with the lowest

SPRINGER NATURE
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Fig. 5 Heatmap for top DA transcripts. Heatmaps for the top 50 most differentially abundant transcripts for (A) roots and (B) rhizosphere

samples.

P-values belonged to the Proteobacteria, mainly the Alpha- and
Delta- classes (Table 2 and Fig. 5B). Many of the most significantly
less abundant transcripts in the 25% precipitation treatment were
linked to the COG categories “Cell motility and secretion” and
“Intracellular trafficking and secretion”, with functions related to
pilus, flagella and type Il and VI secretion systems (Table 2). Similar
to what we observed in the roots, the fungal transcripts more
abundant in the 25% precipitation treatment belonged to the
Agaricomycetes and were related to carbohydrate and amino acid
transport and metabolism (e.g., “monoamine oxidase”, “hexoki-
nase”) (Table 2).

DA transcripts common to roots and rhizosphere

We looked for DA transcripts that showed a common DA response
in roots and the rhizosphere. Among the 37,242 and 10,565
positive DA transcripts in roots and the rhizosphere, respectively,
513 were shared (Fig. 6). Out of these 513 transcripts, 392 were
affiliated to the Actinobacteria, 27 to the Basidiomycota, 12 to the
Ascomycota and 11 to the Proteobacteria (Table S1). The most
represented COG category were “Translation, ribosomal structure
and biogenesis” (43 transcripts), “Transcription” (33 transcripts),
“Carbohydrate transport and metabolism” (29 transcripts), “Post-
translational modification, protein turnover, chaperones” (26
transcripts) and “Amino acid transport and metabolism” (14
transcripts) (Table S1). Among the 4758 and 11,200 negative DA
transcripts for roots and rhizosphere, respectively, 47 transcripts
were shared (Fig. 6). Most of these transcripts were not affiliated at
the phylum level (26 transcripts), followed by transcripts affiliated
to Streptophyta (7 transcripts) and Basidiomycota (3 transcripts)
(Table S2). For COG categories, again, most of the transcripts were
not affiliated with a category, and the rest were mostly affiliated to
“Cytoskeleton” (5 transcripts), “Energy production and conversion”
(2 transcripts), and “Translation, ribosomal structure and biogen-
esis” (2 transcripts) (Table S2).

DISCUSSION

We wanted to know how the wheat holobiont would respond to
change in soil water availability at the transcriptomic level, and
which of the partners would be more responsive. We were
successful in reducing soil water content in a field experiment
using rainout shelters, and found that, when comparing the two
most contrasting treatments, most of the differentially abundant

SPRINGER NATURE

(DA) genes were linked to the fungi in the roots and to the
bacteria in the rhizosphere. In the roots, most of the DA fungal
transcripts were more abundant, whereas about half the DA
bacterial transcripts in the rhizosphere were more abundant and
the other half less abundant. These DA transcripts belonged to
specific taxa and many of them could be related to genes known
to help plants and microorganisms cope with water stress. Our
results agree with one of our previous studies of the willow
holobiont that showed that the root fungi are the strongest
responders to soil contamination [37]. Bacteria responded mainly
by expressing pollutant degradation genes, whereas plants did
not show large transcriptomic responses [37]. Plant gene
expression in the roots was more variable across plant
genotypes than between contaminated and non-contaminated
soils, in contrast to the strong response of bacteria to soil
contamination [38].

The microbial component of the hologenome (the metagen-
ome) is much more dynamic and plastic than the host genome
[24]. Indeed, the microbial metagenome can be modified rapidly
by changing the relative abundance of the community members,
by recruiting new members from the environment or through
mechanisms such as horizontal gene transfer (HGT) [24]. The host
genome cannot be modified in response to environmental stress
within a single generation. This could explain why most of the DA
transcripts were microbial, as it combines changes in microbial
gene expression and in the metagenome. The response of the
host is limited to changing gene expression levels. The changes
detected in plant gene expression could still affect important
physiological processes, including root exudation [39]. As root
exudates influence the transcriptome of bacteria [40], the
microbial transcriptomic response to decreasing soil water
content could have been mediated by the plant. The water
depletion caused by our rainout shelters did not result in
extremely low soil water content (around 12% soil water content
at the lowest), which did not result in any visible stress on wheat.
The wheat variety used is also water stress resistant, and this could
explain the lack of a strong transcriptomic response. It would
be interesting to contrast our results to the transcriptomic
response of sensitive plant holobionts when exposed to much
more extreme stress levels.

With the method used here, it is difficult to disentangle the
metatranscriptomic response due to shifts in the composition of
the microbial community and in the gene expression within the
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Fig. 6 Shared and unique transcripts. Upset plot showing the shared and unique transcripts between the root and rhizosphere transcripts

positively (DA+) or negatively (DA-) differentially abundant.

same community. The Actinobacteria well exemplify this. There
was an overrepresentation of the Actinobacteria among positive
DA transcripts in the rhizosphere, and most of the transcripts that
were positively DA in both the roots and the rhizosphere were
from this phylum. This phylum increases in relative abundance
when soils get drier [41-45]. Inversely, the Proteobacteria and
Acidobacteria were overrepresented among the negative DA
transcripts and underrepresented among the positive DA tran-
scripts, in line with their heightened sensitivity to water stress
[45, 46]. In these two cases, the shifts observed are likely a
combination of shifts in the relative abundance and of gene
expression. Therefore, we referred to our differential expression
analysis as a transcript differential abundance analysis. Looking
only at high-level functional categories, like in Fig. 4, could partly
solve this problem, as general trends in gene expression at this
level is less likely to be influenced by shifts in community
composition. Nevertheless, we argue that whatever the underlying
mechanisms are, variation in the rhizosphere and root metatran-
scriptome complement will have functional consequences on the
holobiont adaptation to stress.

Many of the most positive DA transcripts in the roots under 25%
precipitation regime, were related to amino acid and carbohydrate
transport and metabolism. Amino acids, such as proline,
glutamine, and glycine, betaine, and carbohydrates, such as
trehalose and ectoine can be used as osmolytes [47] to maintain
cellular turgor and protect macromolecular structures [48]. Gram-
negative bacteria produce osmolytes purely as a drought-
inducible response, whereas Gram-positive bacteria tend to

ISME Communications

produce osmolytes, at least partially, on a constitutive basis [49],
which could explain some of the differences in the transcriptomic
response of different taxa observed here. It would be interesting
to know how much this higher abundance of transcripts is
beneficial to the microbes vs. the host plant. There is some
evidence that microbial endophytes and rhizobacteria can
increase plant osmolyte concentration [50, 51], including proline
[52], and some studies have reported that microbes can exude
these compounds in the plant environment [53, 54], enabling
them to directly contribute to the plant osmolyte concentration
during water stress. For instance, Coprinopsis were often reported
as endophytes of plants, including Arabidopsis [55] and were
found here among the root fungi that showed the strongest
response to decreasing soil water content, with many of their
more abundant transcripts related to carbohydrate or amino acid
transport and metabolism.

Other important transcripts were affected by the precipitation
treatments. Among the rhizosphere bacteria, transcripts related to
pilus and flagella formation were less abundant with decreasing
soil water content, which might be indicative of a switch from a
free-living to a biofilm lifestyle. Biofilm formation is a well-known
mechanism that bacteria use to cope with environmental stresses
[56]. Transcripts related to heat shock proteins were more
abundant in the rhizosphere and the roots under low water
content, in line with their important roles for microbes and plants
under water stress [57-59]. In both root and rhizosphere, there
was an overrepresentation of genes related to translation among
the negative DA transcripts. A similar down-regulation of the
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protein biosynthesis machinery was observed in a recent soil
warming metatranscriptomic study [60]. The author suggested
that the increased enzymatic activity and overall metabolism
caused by warming could call for a lower energy investment in
ribosomes, thus optimizing resource allocation [60]. In contrast,
during soil drying, Acidobacteria and Verrocumicrobia reduced
their ribosomal content, whereas the Actinobacteria increased it
[61]. Similarly, among a general decrease in translation-related
transcripts, we observed here that for positive DA transcripts
found in both the roots and in the rhizosphere, translation-related
transcripts affiliated to the Actinobacteria was the most repre-
sented category. This differential regulation of translation among
microbial groups could explain the dominance of Actinobacteria
under reduce soil water availability.

In conclusion, holobionts are posited to respond in a
coordinated fashion to stressful events. In our case, the microbial
partners were clearly the strongest responders to decreasing
water content, being responsible for most of the DA transcripts
across the wheat holobiont. We had hypothesized that this would
be the case since transcriptomic shifts in the microbiome
combines changes in the metagenome and in gene expression,
something that is not possible for the host. These transcriptomic
shifts were related to microbial genes and taxa, such as the
Actinobacteria and osmolyte-related genes, that are known to be
beneficial to plants under water stress. Because of their dynamic
response and beneficial potential, the microbiome should be
considered as central in efforts to adapt crop holobionts to water
stress.
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The raw data produced in this study was deposited in the NCBI under Bioproject
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MT_Holobiont_Wheat). The associated transcript abundance and annotation tables,
the metadata, and the soil water content files used with the R code are available on
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