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Microbial communities are powerful inte-
grators of past and present ecosystem
characteristics.

Several recent studies have used mi-
crobial communities as indicators of
future ecosystem processes, resulting
in high-accuracy models to forecast
crop quality, soil health, and suscepti-
bility to infection, among others.
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Microorganisms are informative biological integrators of past and present environ-
mental abiotic and biotic conditions. At the same time, they are directly involved in
ecosystemprocesses. Unfortunately, the complexity ofmicrobial communities has
so far resulted in most studies being descriptive. Here, we suggest that signals in
the microbiome data can be used to forecast future ecosystem processes. The
combination of omics with various statistical learning approaches, selected
based on accuracy–interpretability and bias–variance trade-offs, will be key to
attain this goal, as exemplified by recent studies. The time is ripe for microbial
ecologists to fully exploit the forecasting power of microbiomes.
The accuracy versus interpretability
and bias versus variance trade-offs,
along with many methodological
considerations specific to microbiome
data, need to be considered when
building forecasting models.

There is an untapped forecasting
potential in microbiome data that can
be harnessed with the application of
statistical/machine learning tools.
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The untapped forecasting potential of the microbiome
Microbiomes (see Glossary) contain a multitude of information, as they are indicators of past
and current ecosystem states and are key players in ecosystem processes. This information
can be comprehensively accessed using modern omics approaches. Despite that, many
microbiome studies remain descriptive, focusing on compositional changes associated with
specific treatments or across ecosystems. Some pioneer studies have used statistical learning
to predict, in the sense of classifying, diagnosing, or discriminating, ecosystem processes/states
from microbiome data. Here, we use the definition of statistical learning from James et al. [1]
which ‘[…] refers to a vast set of tools for understanding data’. For instance, the origin of various
water samples could be predicted by the relative abundance of 30 bacterial operational taxo-
nomic units (OTUs) (mostly Proteobacteria and Bacteroidetes) identified through random forest
models [2]. Bacterial richness together with the relative abundance of 39 bacterial genera pre-
dicted soilmultifunctionality in degraded alpine meadows [3]. In boreal forest, fungal richness,
community composition, and the relative abundance of 15 fungal genera were used with linear
regression to predict soil multifunctionality [4]. In another example, a species balance index
based on the log-ratio between the relative abundance of the 140 taxa accurately (77%) pre-
dicted potato yields [5]. Litter decomposition in soils has also been accurately predicted (72–
80%) as ‘high’ or ‘low’ by community descriptors, such as fungal and bacterial richness, using
logistic regression models [6]. Classifying healthy versus diseased individuals based on their
microbiome has been done successfully using many different datasets and machine learning
tools [7]. However, we think that we can take this one step further and use microbiomes to fore-
cast the future ecosystemprocesses/states. Here, we argue that the application of supervised sta-
tistical learning on microbiome-derived omics datasets (Box 1) could result in forecasting models
for ecosystem processes. We focus most of our discussion on two cases that we see as ripe for
such an approach: forecasting disease based on the human gut microbiome, and forecasting
crop yields and quality based on the soil microbiome.

In our opinion, microbiomes are ideally suited to forecast ecosystem processes because (i) they
are integrators of the past and current environmental conditions of their habitats, and (ii) they are
directly involved in the processes to be modelled (Figure 1). Indeed, microbiomes are composed
of thousands of species that are simultaneously affected by pH [8], oxygen [9], nutrients [10], host
genotype [11], host diet [12], or contamination [13,14]. The abundance and activity levels of each
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Box 1. Supervised and unsupervised learning in a microbiome context

Supervised learning (SL)

SL is a family of methods that model the relationship between inputs (microbiome features, such as taxa, diversity indices,
etc.) and an output (health, yield, degradation, nutrient availability, etc.). Then, the model can be used to predict the output
value of new observations based on the inputs. The SL techniques applied in microbiome modelling are grouped in two
categories: classification (for discrete variables, e.g., disease/healthy) and regression (for continuous variables, e.g., yield).
Some SL algorithms previously used with microbiome data are:

Linear regression

This is the simplest method. It fits a linear equation to explain the relationship between a continuous output variable and
one or more input variables. When applicable, it provides highly interpretable models. It was often used to model
processes based on community descriptors, such as diversity measurements.

Support vector machines (SVMs)

These are a set of classification algorithms that draw a decision boundary line between points (samples) in an n-dimensional
space to create groups. The decision boundary maximises the distance between the closest data points to the line (support
vectors) and the line itself. In microbiome studies, it has been used to identify input variables that have a high discriminant
power for output variables.

k-nearest neighbours (kNNs)

This is an algorithm for performing classification and regression. The main idea is that the value of a point is calculated
based on a k number of nearest neighbour points. In a classification task, the label is assigned democratically according
to neighbouring k values. In a regression task, the mean value of the k closest points is calculated for the predicted point.

Random forest (RF)

This is also a common classification and regression algorithm. It combines decision trees with bootstrap sampling (samples
selected randomly with replacement). Here, many decision trees are estimated in parallel (bagging), which increases accu-
racy and reduces overfitting. In microbiome studies, this tool was used to classify phenotypic groups and to identify informa-
tive microbial features.

Gradient boosted decision trees (GB)

This combines decision trees with boosting. GB fits a series of decision trees, where each tree is an improved version of the
previous one. It is a computationally demanding technique, but it performs particularly well in ecosystem state predicting
tasks (i.e., effective at the classification of sex, or country of origin, in a human microbiome context [30]).

Unsupervised learning (UL)

UL methods are used to find relationships and structure in the input data without having output data. These are the most
used methods in microbiome studies, where output variables are often not available or are not used. Some common UL al-
gorithms include:

k-means clustering

This finds a structure to group the data into k number of clusters specified by the researcher. The algorithm maximises the
distance between clusters while minimising the distance within a cluster. It is relatively fast and easy to interpret.

Hierarchical clustering

This groups similar samples into groups called clusters following an agglomerative or divisive approach and yields a
classification tree. The number of clusters does not need to be specified. It is slower than k-means, but it always yields
the same clustering result.

Principal component analysis (PCA) (and other ordination methods)

These methods use eigenvalue decomposition to create a new set of (n – 1) variables (eigenvectors) that are orthogonal
(i.e., not correlated), represent all the variation in the original dataset, and are ordered by the amount of variation explained.
The first few components usually represent most of the variation in the original dataset and are plotted to visually identify
patterns among samples. PCA can also be used as a dimension reduction tool for SL algorithms.

For further details about supervised and unsupervised learning algorithms applicable to microbiome data, the readers are
referred to [7].
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Glossary
Explanatory variable, independent
variable, predictor, input: these
terms are used interchangeably to refer
to parameters, often referred to as
features of a model, that influence the
variation in a response variable. For
example, abundance of a taxa or gene,
microbial diversity, etc.
Legacy effect: the impact of previous
biotic and abiotic conditions on current
processes.
Microbiome: refers to the combination
of all themicroorganisms (bacteria, fungi,
protozoa, archaea, and algae) in an
environment.
Multifunctionality: the combination of
multiple functions or properties provided
by a system. For example, forests
providing food, wood and fibre,
livelihoods and incomes, carbon sink,
environmental and landscape
protection, recreation, and habitats for
biodiversity.
Multivariate niche: multiple
environmental biotic and abiotic
characteristics acting together to create a
niche.
Omics: methods used to characterize
the entire set of biomolecules in a sample,
such as genes (metagenomics), RNA
transcripts (metatranscriptomics), or
proteins (metaproteomics).
Response variable, dependent
variable, predicted variable, output:
these terms are used interchangeably
for a set of qualitative or quantitative
variables that depend on the values of
the explanatory variables. The aim is
generally to model the response variable
using the explanatory variables. For
example, yields, health status, etc.
Statistical learning: supervised
statistical learning is used to predict or
estimate, through modelling, an output
(ecosystem processes) based on inputs
(microbiome omics data). Unsupervised
statistical learning is quite common in
microbiome studies, it does not involve
an output, and is limited to
understanding the inherent relationships
and structure in the inputs (i.e., the
algorithm is asked to identify trends in
the input dataset without supervision
from a response variable).
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Figure 1. The forecasting power of the microbiome. Traditionally, ecosystem processes have been modelled using
various environmental physicochemical predictors. This has often resulted in models with low resolution and accuracy
because the parameters mostly influence ecosystem processes indirectly through their influence on the microbiome. Here
we suggest focusing the modelling efforts directly on the microbiome. Microbiomes are integrators of past and presen
environmental characteristics (1), management techniques (2), and climatic conditions (3), and at the same time they are
involved directly in the process to be modelled, giving them an unparalleled forecasting power.
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microorganism results from the combined pressures of these abiotic and biotic characteristics,
creating a multivariate niche. The combined presence of thousands of microorganisms, each
with their own multivariate niche, results in a highly integrated description of the biotic and abiotic
characteristics of an environment.

On top of integrating many biotic and abiotic environmental characteristics, microbiomes also show
a clear signature of past events, called legacy effect. Past events of drought [15,16], freeze-thaw
and drying-rewetting cycles [17], antibiotic usage [18], and host plant presence [19,20] were
shown to influence the composition, diversity, and functions of microbiomes and their response to
contemporary events. For instance, the soil microbiome of two fields that had a different history of
water stress responded differently to contemporary water stress, which in turn affected wheat
growth [15,16]. Plant composition also has strong legacy effects on microbial communities in soil,
especially for fungi [20], where past plant community composition outweighed the effect of the
current plant community for up to 5 months [19]. In other ecosystems, such as the human gut,
there is a strong legacy effect of the use of antibiotics [18] or diet [12] on the microbiome. Vanco-
mycin caused long-term shifts in human gutmicrobial communities, with only 39%of the previously
abundant taxa still present 22 weeks after the vancomycin treatment had ceased, as compared to
90% for control subjects [18]. Taken together, these examples indicate that the legacy effect of
past abiotic and biotic environmental conditions can be captured using modern omics tools
targeting the microbiome. When predicting actual disease status of individuals from their gut
microbiome data, legacy effects were seen as unwanted confounding factors reducing the accuracy
of themodels [21]. However, since legacy effects have important consequences on future ecosystem
processes that we wish to forecast, it is important to be able to take them into account in the models.

Not only are microbiomes integrators of the present and past environmental conditions where
they occur, they are also responsible for many ecosystem processes such as nutrient cycling,
organic matter decomposition, fermentation of nondigestible plant residues, and pollutant degra-
dation (Figure 1). In that sense, there is a possibility that some microbial predictors selected by
the models will have a causal relationship with the processesmodelled. In view of their capacity to
integrate past and present conditions of their habitats and their direct implication in processes,
we think that microbiomes also have some predictive power for future ecosystem processes or
states (Figure 1).

Microbiomes and the environment where they occur are complex. Microbiome complexity arises
from a combination of factors, such as spatial heterogeneity, microscale biotic and abiotic inter-
actions, rapid turnover, high dispersal capacity, and horizontal gene transfer, among others. To
further compound this complexity, ecosystem processes often involve multiple species in
syntrophic or symbiotic relationships, occupying diverse ecological niches, and possessing
various isozymes of different biochemical properties. The nature and the mechanisms behind
microbial interactions are poorly understood and difficult to study. One might wonder how it
will be possible to forecast future ecosystem processes as this should require an exhaustive
knowledge of microbiome diversity, interactions, metabolism, genomic make-up, and physiology,
all this varying spatially and temporally at the micrometer scale [22]. In fact, we argue that omics
datasets recapitulate, often cryptically, a large part of this information, but it is difficult, if not impos-
sible, to derive it without the help of advanced statistical/modelling tools. In the next section, we
discuss the few studies that have used the microbiome as a predictor for future ecosystem
processes/states and discuss the rationale behind choosing various statistical learning tools
for the purpose of forecasting. For detailed reviews of statistical learning approaches in general and
as it applies to the (human) microbiome, the interested reader is referred to James et al. [1] and
Marcos-Zambrano et al. [7], respectively.
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Microbial-based forecasting
In subsequent text, we discuss some key criteria that differentiate the various statistical learning
approaches, namely, the relative importance of accuracy versus interpretability for the output and
the goal of the modelling (hypothesis generation, microbiome engineering, diagnosis, monitoring),
the bias/variance trade-off, and specific considerations for modelling microbiome data.

Interpretability versus accuracy
An important aspect of forecasting usingmicrobiomes is interpretability, which often comes at the
cost of accuracy. Nonparametric statistical learning tools, such as neural networks, are very
accurate but difficult to interpret by humans as the inner layers are hidden from the user. At the
other end of the spectrum, linear regression, and more so when combined with a dimensionality
reduction approach (more information on that in subsequent text), is easier to interpret, but often
at the cost of reduced accuracy. In linear regression, the coefficients allow the user to
determine the relative effect of the predictor (positive or negative; scale) on the dependent
variable. For example, both random forest and support vector machine (SVM) models identified
the microbiome composition based on 16S rRNA gene sequencing as being an accurate predic-
tor of agricultural soil health in a continental-scale study [23]. However, it was not straightforward
to identify the taxa that contributed themost to the predictive power, and a leave-one-out analysis
of thousands of taxa had to be performed a posteriori. Another study forecasted wheat yield and
grain quality in two fields using multiple linear regression based on forward-selected microbial indi-
cators, which allowed direct identification of the most important predictors [24]. Surprisingly, both
studies identified a similar subset of important predictors of agricultural soil health/productivity
(Gaiella, Candidatus Udeaobacter, Blastocatellales). With only two studies, it is not possible to
draw a strong conclusion, but it may suggest the existence of robust commonmicrobial predictors
for important ecosystem services that were captured using models with different interpretability.

Interpretability also enables the elaboration of confirmatory experiments formodel validation. These ex-
periments are crucial because when amicrobial feature is selected in amicrobiome-based forecasting
model, it can (i) be unrelated to the process of interest but have an environmental optimum that over-
laps with the optimum of the process, (ii) be related causally to the process of interest, such as the
abundance of a certain functional guild responsible for a process, or (iii) be indicative of legacy effects
that affected the process. An interpretablemodel could also orient microbiome engineering efforts [25]
by identifying parameters to be manipulated. For example, the abundance of ammonia oxidizers at
seeding was a key feature selected in stepwise multiple linear regression and random forest models
for wheat yields and grain quality at the end of the season [24,26]. Since the coefficients were negative,
an independent confirmatory field experiment was set up targeting the ammonia oxidizer using a nitri-
fication inhibitor to increase grain quality [27]. In another example, using unsupervised learning
methods, early rhizosphere microbial taxa were identified as key features for the future susceptibility
of tomato plants to Ralstonia solanacearum wilt [28]. Five bacteria corresponding to these taxa were
isolated and, when inoculated on healthy plants, they reduced disease by 30–100%. These studies
show the value of model interpretability for some application of forecasting using the microbiome.

The choice between accuracy or interpretability is context dependent, and the researcher may
consider accuracy of utmost importance for the question at hand. When forecasting susceptibility
to infection or disease, it might bemore important to have a highly accuratemodel, even though the
model might not be easily interpretable. For example, using the relative abundance of approxi-
mately 100 taxa and SVM, it was possible to forecast the susceptibility of the human gut to invasion
by Vibrio cholerae [29]. 16S rRNA gene sequencing is becoming a routine tool, which means that
highly accurate models containing hundreds to thousands of taxa or general community descrip-
tors (alpha-diversity indices or ordination axes) could be used for high-accuracy forecasting.
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However, in the meantime, tools that can select a few variables, such as least absolute shrinkage
and selection operator (LASSO), ridge, elastic net, or forward-selected regressions can be useful,
when forecasting accuracy is not paramount. Indeed, to forecast the state of a new sample, the
few selected taxa could be simply measured using taxa-specific tools, such as qPCR, and the re-
sults could then be used in the regression equations. This might not be the best way to proceed in
complex ecosystems (e.g., soils) where many processes can be forecasted from the same omic
dataset, which might warrant a full sequencing.

Accuracy can increase with model complexity, but at the cost of training time. For instance, when
predicting soil health based on 16S rRNA gene amplicon data at the amplicon sequence variant
(ASV) level, SVM could be trained in 20 min, whereas random forest models took almost 19 days
to compute [23]. In that case, the accuracy was not necessarily improved, and in fact SVM
regression often outperformed random forest regression accuracy [23]. Some recent ap-
proaches [e.g., extreme gradient boosting (XGBoost)] allow updating of trained datasets with
new observation, which can dramatically improve training time of many methods. Code
parallelization and the efficient use of graphics processing units (GPUs) could also reduce drasti-
cally training time. With the view of ‘acting’ on predictors identified in forecasting models, training
times in the range of weeks is problematic as the opportunity window to modify the ecosystem or
make interventions on patients might not be that large.

Bias versus variance
Another issue to keep in mind arises from the limited capacity of models to capture the true relation-
ships of the predicted processeswith themeasured explanatory variables. There are two compo-
nents to that: bias and variance. Bias is the error in the prediction due to wrong assumptions in the
model. A highly biased model will miss the true relationship between the predictors and the
response variables, failing to capture important patterns of the data, also known as model
underfitting. In contrast, the variance component will increase due to an excessive modelling of
the noise in the training dataset. This results in a reduced performance of the model with new
data. Applying methods with high variance that very accurately represent the training data sets will
not be useful to consistently predict new data, a problem also known as model overfitting.

Ideally, the chosenmodel will accurately capture the regularities of the data used for training (low bias)
while consistently offering relatively good fits for new unseen data (low variance). Unfortunately,
having the best of both worlds is impossible in practice: decreasing one of these terms will increase
the other, a phenomenon called the bias–variance trade-off. Some feature selection methods are
prone to overfitting (high variance). For instance, when selecting the most discriminant features
using correlation analyses, and then using these features to train a gut microbiome model to classify
individuals by disease status, the accuracy of the model to predict disease state decreased when
used on a different cohort (high variance) [21]. Similarly, in agricultural soils, linear regression was
able to forecast grain baking quality and yield with an accuracy of up to 90% (low bias), using only
ten microbial predictors that were preselected by correlation analysis [26]. This model had, however,
high variance, as further efforts to forecast wheat grain quality in different fields did not select the same
variables [30]. Correlation analysis might not be the optimal method to reduce the dimensionality of
the data (more on that in the next section). Regularization, boosting, and bagging are some common
methods that can be used to find a balance between bias and variance (the readers are referred to [1]
for more details). Reducing the variance of forecasting models will be crucial if these models are to be
used routinely to, for instance, forecast agricultural yields or disease susceptibility of patients.

In view of the cost associated with environmental genomics, most studies so far have datasets of
less than 1000 samples. This leads to the problem of high dimensionality discussed in the
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following section and to high variance in the resulting models, but also to the impossibility to have
proper training/test datasets. For instance, a study applying linear models with ridge regulariza-
tion and gradient boosted decision trees on more than 34 000 gut microbiome samples from
US and Israeli individuals accurately predicted various human phenotypes (age, gender, etc.)
[30]. However, modelling with smaller subsamples led to highly variable results [30]. This
suggests that, at least for highly variable environments, very large datasets might be necessary
to generate forecasting models with low variance. The ever-decreasing cost of sequencing
might help to solve this issue, though costs associated with sampling and computing might
become limiting.

Environmental genomics and forecasting: methodological considerations
An important methodological aspect to consider when dealing with microbiome indicators as
inputs in forecasting models is the type of genetic material. For instance, the DNA pools in
soils can change throughout seasons or years, but they are not especially sensitive to changes
over days or weeks, so DNA-based approaches could be good indicators of legacy effects.
This can be specifically useful to forecast soil processes that vary through seasons, such as
N2O or other gas emissions [31]. However, the presence of extracellular DNA that persists
depending on the environmental conditions and various levels of active versus inactive cells
might also blur the picture. In contrast, RNA-based approaches give a snapshot of the current
expression profile of the microbiome, but in view of the short half-life of mRNA, they are unlikely
to inform on the legacy effect or be useful for long-term forecasting. However, RNA-based ap-
proaches such as metatranscriptomics were proven to be useful for monitoring processes, such
as microbial activities during phytoremediation of polluted soils [32–35]. In contrast to amplicon
sequencing, shotgun omics approaches can inform us, in a single sequencing, about multiple
taxa and processes, such as the capacity to fix nitrogen, to degrade contaminants, and to degrade
complex organic matter. However, it dramatically increases the dimensionality of the data.

Whether DNA- or RNA-based, amplicon-based, or shotgun, environmental genomic data are
generally high dimensional [the number of features (p) far exceeds the number of samples (n),
p>>n]. Using all the features can result in models with a perfect fit, even though the features
might be completely unrelated to the response variable. Addingmore features does not necessarily
result in a better model, and in fact, it often leads to a less optimal model with more noise (high
variance), a problem dubbed the ‘curse of dimensionality’. Also, it often results in sparsity in the
descriptor space, which is particularly problematic for many nonparametric approaches, such as
k-nearest neighbour, that use proximity to other descriptors to predict the output from a new
descriptor set. Some approaches were devised to go around this problem, allowing for an im-
proved prediction accuracy and/or model interpretability. The first type of approach consists of
selecting the variables to be included in the model. One well-known example is stepwise multiple
regression modelling, where variables are entered or removed one by one from the regression
equation, until only significant variables are left. Using this approach, it was possible to accurately
forecast wheat grain quality and yields using a few selected microbiome predictors measured at
the seedling stage [26]. Similarly, shrinkage or regularisation methods, such as ridge, LASSO, or
elastic net, include all predictors in the equation but reduce the size of the coefficient estimates to-
wards zero. It was recently used to compare the accuracy of forecasting wheat yield and quality
from microbiome datasets collected at different dates [36]. However, for many of the sampling
dates close to harvest, the LASSO procedure resulted in a null model, where all coefficients
were shrunk to zero, suggesting that the forecasting potential of the microbiome at these dates
was mediocre, or that LASSO was not the most appropriate tool for this task [36]. Similarly,
LASSO and elastic net resulted in less accurate disease prediction models than when using ran-
dom forest selection, even though the accuracy of the latter approach was optimal when more
450 Trends in Microbiology, May 2023, Vol. 31, No. 5
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Outstanding questions
Can we tailor models from microbiome
data that suitably predict a range of
ecosystem processes across multiple
geographical scales?

How do simple models with low
dimensionality descriptors compare to
complex machine-learning models in
terms of interpretability, accuracy,
bias, and variance?

How many microbiome features
are enough to provide highly
accurate models without incurring
high complexity? Is there a sweet
spot? Does it widely vary depending
on the environment/process?

Can we use forecasting models
to engineer microbiomes, through
agricultural management practices,
use of specific inhibitors, prebiotics, or
probiotics?

To what extent can we infer causality
relationships from forecasting models?
What type of confirmatory experiments
are needed?
than 60 species were selected [21], which is still a lot of descriptors. Another type of approach is to
project the predictors in a lower dimension using eigenvalues decomposition algorithms, such as
principal component analysis (PCA). This approach was used in the context of disease prediction
from 16S rRNA amplicon data and was shown to improve accuracy, but only for certain diseases
[37]. Similarly, PCA was shown to bring no improvement to accuracy in the context of disease pre-
diction [38]. The best method to tackle the high dimensionality of microbiome data will depend on
many factors, and feature selection is an active area of research, with many recent approaches de-
veloped specifically for microbial omic datasets [39].

Finally, the microbial features selected in a model could consist of genetic material with no known
representative in databases. This is not necessarily a problem as it is expected that a high propor-
tion of the genetic material retrieved from environmental samples will have no known attributed
function or taxonomy but could still have a predictive power [40]. Using the CoMeta algorithm
[41] to calculate similarity between metagenomic reads without prior annotation, it was possible
to predict the geographical origin of samples with an accuracy of 87.5%, similar to methods
relying on taxonomical/functional information (71–91.2%) [42]. Although using unannotated
sequences can be faster, it reduces the interpretability of the results and may be especially
sensitive to different genome sequencing methods [43].

Concluding remarks
Microbiomes integrate past and current ecosystem biotic and abiotic characteristics and are
major players in ecosystem processes. As such, we think that they contain a signal that can be
used to forecast ecosystem processes and states. This signal can be harnessed through the
combination of microbial omics and statistical learning, two fields that have tremendously devel-
oped in recent years. We discussed the challenges associated with both the data and the
methods to fully exploit the combination of these powerful tools for forecasting (see
Outstanding questions). We envisage that microbial-based forecasting models will be used in
all kinds of environments to (i) help site managers, farmers, foresters, physicians, and veterinar-
ians to decide on the best management approach to optimize ecosystem services, and (ii)
guide microbiome manipulation efforts that could help solve humanity’s most pressing problems
such as environmental degradation, antibiotic resistance, or food shortages. We believe that it is
now time to harness the forecasting power of the microbiome.
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