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Abstract: Continuous monitoring of soil quality is a challenging task in agricultural activity. To meet
this need, scientists have succeeded in developing a quick and inexpensive method to characterize
soil properties. Thus, spectroscopy has become a promising method for quantifying soil parameters.
However, this method remains sensitive to several factors such as water content (WC). The present
study aims to quantify the effect of WC on the estimation of soil texture parameters (sand, silt, and
clay) and organic matter (OM) using spectroscopy. Reflectance measurements in the laboratory on
68 soil samples were performed by varying the WC in each sample. The analysis revealed a significant
influence of WC on spectra acquired from visible to near infrared (V/NIR) spectroscopy data and
that spectra can be divided into two classes. To quantify the effect of WC, calibration/validation
steps were performed on soil texture parameters and OM with and without taking WC into account.
Calibration was performed using the partial least square regression algorithm, and the validation was
assessed using four statistical evaluation indices (R2, Nash criterion (Nash), root-mean-square error
(RMSE), and BIAS). Results showed a systematic increase in the accuracy of all studied soil particles
when the WC is considered. Clay and OM were less influenced, while silt and sand were much
more influenced by the WC. The study also highlighted that estimates of soil texture parameters
using V/NIR data achieved relatively higher levels of accuracy (R2 > 0.80 and Nash > 0.80) than OM
estimation (R2 = 0.83 and Nash = 0.78).

Keywords: sand; clay; silt; visible; NIR; modelling

1. Introduction

Soil areas are increasingly shrinking worldwide. Brabant [1] stated that there will be
only 0.20 hectares per capita left in the world by the year 2100 if population growth and
soil degradation continue at the current rate. Soil is one of the most important resources
for the development of agriculture and the preservation of the environment because it
plays an important role in water and carbon storage as well as temperature regulation.
In addition, it is the source of nutrients for plants and is the habitat of micro-organisms
responsible for the decomposition of organic matter [1]. Therefore, it is important to
preserve this resource through continuous monitoring of its quality. Soil properties such as
structure, aggregation, water retention, infiltration capacity, nutrient sorption, resistance
to root penetration, microbial activity, soil carbon turnover, susceptibility to erosion and
compaction, and ultimately the suitability of the soil for agricultural and forestry production
are all closely related to soil texture and organic matter (OM). Therefore, they are considered
the most important components used to determine soil quality, as it determines the physical,
chemical, and biological properties of the soil quality [2].
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Standard soil texture parameters and OM monitoring programs currently in use rely
on in situ sampling techniques that are laborious, expensive, and limited in time and
space; analysis involves sieving and sedimentation of suspended soil in solution. As an
alternative, the visible and/or near infrared (V/NIR) spectroscopy data has been tested
and used to this purpose [3]. The advantages of V/NIR data over standard monitoring
programs are numerous (inexpensive, simple to implement, and non-polluting). In fact,
V/NIR spectroscopy measures the interaction of radiation with matters (e.g., soil texture
and OM) by absorption, emission, or reflection along the electromagnetic spectrum [4].
These characteristics allow it to record the spectral variations of optically active elements
along the V/NIR spectrum and to identify chemical substances or functional groups in solid,
liquid, or gaseous form. Therefore, spectroscopy spectra can be used to detect differences
among soil particles.

In fact, the potential of the spectroscopic method to model the physical [5], chemical [6],
and biological [7] properties of soil is well established. Many researchers have attempted
and succeeded in modeling soil quality parameters, including soil textures and OM using
V/NIR [8–10]. However, differences in the accuracy have been found between estimates
resulting from field and laboratory acquisition of spectra. This is probably due to the
sensitivity of the spectroscopy to environmental factors such as water content (WC) in soil.
Indeed, water causes a general decrease in reflectance and an increase in an absorption
peak located in the 1400 and 1900 nm region of the electromagnetic spectrum [11]. The
refractive index of wet soil is lower than that of dry soil [12]. This decrease in the refractive
index at the soil-water-air contact points causes consequently a decrease in the scattering of
incident light compared to dry soil. In addition, the layer of water surrounding the soil
particles produces additional reflection of the energy scattered in the water–air interface,
producing more energy that propagates deeper into the soil [13].

In the context of soil modeling using spectroscopy-based data, in most cases, soil
samples undergo a drying process to reach a dry state before their spectra are acquired
and analyzed. The accuracy of the estimates is therefore high for dry soils but tends to be
less accurate for different levels of soil WC. As explained in the section above, soil WC
plays an important role on the intensity of the V/NIR spectral response. Consequently,
it influences soil physicochemical parameters estimation. Therefore, some authors have
separated the analyses according to groups of moisture content levels [12], removed the
effect of water from the estimation of soil parameters [14] or quantified the effect of WC
on the spectra recorded in the field as well as those recorded in the laboratory to estimate
OM [15]. Despite the prominent role of WC on soil parameter modeling, its effect on soil
texture parameters and OM modeling is yet very scarce.

This work attempts to quantitatively investigate the effect of soil WC on the accu-
racy of modeling soil texture parameters (sand, silt, and clay) and OM using the V/NIR
spectroscopy data. The calibration step was performed using the partial least square
regression algorithm. The generated models were evaluated using the bootstrap k-fold
cross-validation technique. Accuracy was assessed using four statistical evaluation indices
(R2, Nash criterion (Nash), root-mean-squares error (RMSE), and BIAS).

2. Materials and Methods
2.1. Study Area

Soil samples were collected by an Agriculture and Agri-Food Canada team from four
fields: two located in Sainte-Catherine-de-la-Jacques-Cartier and two in L’Ile d’Orléans
(Orleans Island; Figure 1). According to the Canadian classification, these samples were
categorized into four soil series (Pont-Rouge, Morin, Orléans, and St-Nicolas) belonging
to two broad classes (Orthic Humo-Ferric Podzol and Eluviated Dystric Brunisol). Orthic
Humo-Ferric Podzolic soils have a brownish Podzolic B horizon with low OM content.
They are common on less moist sites in the Podzolic soil region as well as on moist sites.
They are generally found under coniferous, mixed, or deciduous forests, but may also be
found under grass and shrub vegetation. Eluviated Dystric Brunisols generally have organic
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surface horizons and brownish acidic B horizons overlying acidic C horizons with an eluvial
horizon at least 2 cm thick. These are acidic Brunisols that do not have a well-developed
mineral-organic surface horizon. They are widespread, generally, on parent materials of
low basal status and typically under forest vegetation.
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Figure 1. Geographic location of the experimental fields. The red, orange, and blue frames are
zoomed in on the province of Quebec, Sainte-Catherine-de-la-Jacques-Cartier, and Île d’Orléans
(Orleans Island), respectively.

A narrow range of soil parameters and texture types from the four fields (detailed
in Table 1) are collected in this study. Soil texture ranged from loamy coarse sand (Sainte-
Catherine-de-la-Jacques-Cartier fields) to coarse sandy loam (Orleans Island fields). These
two classes are characterized by more than 25% of coarse and very coarse sand and less
than 50% of any other sand grade. In other words, the proportion of sand in the collected
samples, from all fields, is overrepresented compared to silt and clay.

Table 1. Classification and textures of soil samples [16].

Name of the Site Sainte-Catherine de la Jacques-Cartier Ile d’Orléans (Orleans Island)

Field 1 2 1 2

Soil Type Sandy soil Sandy soil Loamy soil Gravelly soil

Soil Texture Loamy coarse sand Loamy coarse sand Coarse sandy loam Coarse sandy loam

Soil series Pont-Rouge Morin Orléans Saint-Nicolas

Soil
Taxonomic

Orthic Humo-Ferric
Podzol

Orthic Humo-Ferric
Podzol

Eluviated Dystric
Brunisol

Orthic Humo-Ferric
Podzol

2.1.1. Soil Sample Preparation

Sixty-eight samples were collected for this study. Soil texture determination of these
samples was then performed by an analytical team from Agriculture and Agri-Food Canada
following a well-known procedure published by Kroetsch and Wang [17]. Each sample
was after that divided into three plastic Petri dishes (PPD) of size 60 × 60 × 15 mm; the
weights of the PPD were measured in advance (Figure 2). This step serves to account for
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the operator error while varying the WC of samples. The surface of samples was flattened
with a metal spatula while avoiding squeezing the soil particles. This step reduces the
multiplicative and additive effects associated with the roughness of the contact surface
between the sample and reflectance probe. The PPD were then covered by a geotextile,
which is a relatively thin membrane allowing the retention of all soil particles and allowing
only water penetration. The covered PPD were afterwards placed upside down in a tray
filled with pure water and were kept in this position for one hour. This operation allowed
the saturation of the soil by capillarity phenomena without touching the surfaces of the
PPD (where the reflectance measurements will be made). The samples were thereafter
placed on a metal grid for 48 h to allow the water to drain and the soil to reach the WC at
field capacity. Gravity water drainage time is between 24 and 48 h [18], and the choice of
48 h was made after several tests following the steps pre-described above.
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2.1.2. Water Content Measurement

As the objective is to acquire soil spectra at varying WC levels, the samples were heated
in the oven at 43 ◦C to keep the WC of all the soil particles approximately homogeneous
and went through the same weight and reflectance measurement processes every 3 h for
24 h. This was performed to bring the soil samples to a dry state. Although Lekshmi [18]
suggested that the dry state is reached for soil heated to 105 ◦C for 24 h, tests on our samples
showed that there is no significant variation after 24 h of heat at 43 ◦C, and therefore, no
variation in soil weight was observed after 24 h. The WC computation for each weight
measurement, for each replica, was performed using Equation (1). Figure 3 summarizes all
steps undergone for generating the database. It is important to mention that before starting
the above process, the weight of each replica was measured by an electronic balance.

θ =
wet weighti − dry weight

dry weight
× 100 (1)

where θ is volumetric water content (WC) in percent, wet weighti (gram) are weights of
samples in all WC levels other than dry measured (i: 3 h:24 h), and dry weight (gram) is the
weight of the samples after 24 h of heating in the oven at 43 ◦C.
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2.1.3. Reflectance Measurement

The reflectance of the soil samples was measured by the Ocean Optics system. This
system is composed of six main parts: (1) a dark support in contact with the surface of the
soil sample and on which the probe has been fixed to prevent stray light from reaching it.
This support is also used to keep a constant distance (1.7 cm) between the probe and the
soil surface during the acquisition of the spectral signature; (2) an HL-2000 halogen lamp
which represents the light source; (3) two spectrometers allowing the measurement of the
reflectance on two different spectral ranges. One spectrometer operates in the visible range
and part of the NIR (340–1038 nm) with a spectral resolution of 0.4 nm. The other operates
in the NIR (900–1700 nm) with a spectral resolution of 3 nm; (4) a premium reflection
probe connected at one end to eight optical fibers that carry light photons from the halogen
lamp to it, and at the other end it is connected to a single optical fiber whose role is to
transfer the amount of energy reflected from the soil sample (captured by the probe) to the
spectrometer; (5) a reference characterized by a total reflectance (reflectance equal to 100%)
for the calibration of the spectrometers; and (6) the OceanView software (Ocean Insight,
Orlando, FL, USA) for acquisition, reading, and storage of spectra (Figure 4).

The acquisition parameters were set so that the software would average two internal
acquisitions to reduce the signal-to-noise ratio. For each replica, four measurements, in
four different points (approximately one point every 45◦ of the ground surface circle), were
acquired. After 20 reflectance measurements, the software was recalibrated again to remove
the material derivative.
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2.2. Statistical Methods and Evaluation Indices
2.2.1. K-Means Unsupervised Classification

The K-means is a non-hierarchical data partitioning algorithm based on moving
centers. The computational principles of this algorithm can be summarized in four basic
steps: (1) choose arbitrarily “n” individuals who will be the centers (or kernels) of the
classes; (2) assign each observation in the database to one of the “n” classes whose kernel is
the closest; (3) recompute the new centers of gravity for each class; (4) check if the centers
and classes change or the maximum number of iterations is reached. If these two conditions
are not verified, the computation continues starting from step #2 [19].

2.2.2. Correlogram

In data analysis, a correlogram is a graphical representation highlighting one or more
correlations between the data sets. A correlogram can be used to visualize data in different
forms. The forms often used in graphical representation are plots (2-dimensional (D) or
3-D graphs) or 2-D matrices. The goal, however, is to facilitate decision making in the
modeling process.

2.2.3. Principal Component Analysis (PCA)

The basic idea of PCA is the dimensionality reduction in data in which there are
many interrelated variables while keeping the maximum variance in the new variables
(principal components). This reduction is achieved by projecting the variables onto a new
space so that the latter are uncorrelated, and the former retain the maximum amount
of information present in the original variables [20]. Therefore, this method serves to
concentrate the information stored in large databases by representing it in a reduced space
(2- or 3-D space). This also allows the identification of similarities between samples and
thus facilitates identifying the groups of individuals as well as the determination of links
between variables.
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2.2.4. Classification and Regression Tree (CART)

Developed by Breiman et al. [21] in the 1980s, the CART method is widely used for
classification and regression purposes. To build decision trees, the CART uses a learning
sample, composed of a set of historical data with pre-assigned classes for all observations
and a set of splitting variables. These decision trees are used afterwards to classify new
data. Classification trees are built in accordance with a splitting rule, which splits learning
samples into smaller groups of maximum homogeneity. The maximum homogeneity of
child nodes is determined by the impurity function, which can be calculated by either the
Gini or the Towing splitting rule.

2.2.5. Partial Least Squares Regression (PLSR)

The PLSR is a method for constructing predictive models when the factors are highly
collinear [22], such as the case of spectroscopy data. It is an iterative statistical technique
developed by Wold [23]. Similarly to PCA, the PLSR acts to relate data matrices using a
linear multivariate model and subsequently reduce collinearity and noise within a data
set [24]. This two-step technique moderates the predictors of a data set to a smaller set
of uncorrelated components and performs least squares regression on these components
rather than on the original data.

2.2.6. Bootstrap k-Fold Cross-Validation (BKFCV)

In statistics, bootstrap techniques are statistical inference methods based on multiple
replication of data from the dataset under study, using resampling techniques [25]. The
cross-validation is a resampling procedure used to evaluate machine learning models on
a limited data sample. The procedure has a single parameter called “k” that refers to
the number of groups into which a given data sample should be divided. As such, the
procedure is often referred to as k-fold cross-validation [26]. This technique is mainly
used in applied machine learning to estimate the accuracy of a machine learning model on
unseen data. The general procedure is as follows: (1) randomly shuffle the database and
divide it into k groups; (2) hold out the observations of group-1 as the test data set and use
the observations of the remaining groups as the training data set; (3) fit a model with the
training dataset (k-group-1) and evaluate it with the observations of the hold-out group
(group-1) by the fitted model function; (4) save the estimates of group-1 and discard the
fitted model; (5) put group-1 back into the database and hold-out group-2; (6) repeat steps
(2) to (5) until group-k is reached [26]. It is important to note that each observation in the
sample data is assigned to an individual group and remains in that group for the duration
of the procedure. This means that each sample is used one time in the holding set and used
to train the model k-1 times (Figure 5).
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The BKFCV is a combination of these two methods developed specifically to this study.
It is a resampling (bootstrap) technique and a k-fold cross-validation (or split technique)
that uses a group of the database as the training data set and the remaining observations as
group of the test data set. However, unlike k-fold cross-validation, once the model is fitted
with the training dataset (size of the database-group-x (k-fold)) and evaluated with the
samples from the hold-out group-x (step 3 of k-fold cross-validation), the samples of the
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group-x are put back into the training dataset and another test dataset (group-y) is randomly
held out and the remaining samples (size of the database-group-y (k-fold)) are used as the
training dataset, and so on until the number of the bootstrap iterations is reached (set to 1 K
in this study). The advantage of this technique is that the estimations (the outputs of the
different trained models) are evaluated several times by their corresponding observations.
It allows us also to quantify the robustness of the modeling process. Indeed, the use of this
technique allows us to calculate the variance of the estimates at each observation; the lower
the variance is, the more robust the estimates are.

2.2.7. Statistical Evaluation Indices

Four statistical evaluation indices (coefficient of determination (R2), Nash criterion
(Nash), root-mean-square error (RMSE), and BIAS) were used (Equations (2)–(5)). The
Nash criterion evaluates the performance of the models by comparing the estimated values
with the average of the measured ones. For a negative Nash, it would be better to use the
average of the measured values than those estimated by the model, which is very poorly
performing. The model starts to be satisfactory at Nash ≥ 0.60. A Nash ≥ 0.80 in the
modeling is considered good. The model is perfect for Nash = 1 [27].

R2 =

 ∑n
i=1 (Mi − M)(Es − Es)√

∑n
i=1 (Mi − M)

2
√

∑n
i=1 (Esi − Es)2

2

(2)

BIAS =
1
n

n

∑
i=1

(Esi − Mi) (3)

RMSE =

√
1
n

n

∑
i=1

(Esi − Mi)
2 (4)

NASH = 1 − ∑n
i=1 (Mi − Esi)

2

∑n
i=1 (Mi − M)

2 (5)

where n is the sample size, M and Es are the measured and estimated values, and M and Es
are the averages of the measured and estimated values.

2.3. Methodological Approach

Since the V/NIR spectra were acquired separately, observations with missing visible or
NIR spectra were removed from the database, leaving a total number of 1025 observations.
Then, samples with fewer than 3 replicates were removed in the averaging step of their
spectra. In addition, the number of wavelengths was reduced via a moving average of one
quarter, one sixth, one eighth, and one tenth for each domain (visible and NIR) to reduce
the roughness of the raw signal. Assuming the reduction factor is f, this operation consists
of assigning the average of the reflectance j to j + (f − 1) at wavelength j. The choice of the
reduction factor applied to the visible and NIR wavelengths was based on the appearance
of the spectra (smooth signature) provided. At the end of these compilation processes, the
final database size was 288 observations.

Once the database compiled, two analyses were conducted. The first was to evaluate
the accuracy of modeling soil texture parameters and OM taking into account the influence of
WC. To do so, it was necessary to develop a classifier allowing us to discriminate between
samples with a high and low WC. An unsupervised k-means classification was applied.
The number of individuals was set to 2; the choice of using two classes in explained in
Section 3.2.1 (“K-means Unsupervised Classification”). This step allowed us to label two
classes of spectroscopy data with respect to WC. Next, a correlogram was computed. The
correlogram was used to quantify the correlation between the V/NIR spectroscopy data and
WC. The highly correlated bands (R2 > 0.85) were retained, and the others were discarded.
Once the bands were selected, a PCA was applied on these bands for dimensionality
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reduction. The first two principal components were then used in a CART algorithm with
the pre-labeled classes obtained from the k-means classification. Once the classifier was
developed, it was possible to spectrally divide the database into two classes (high and low
WC). For the BKFCV purpose, the following steps were performed:

1. Hold out 10% of the database for validation.
2. Classification of the 90% into two classes using the discrimination threshold.
3. For each class, the following steps were applied:

• Training using the PLSR algorithm.
• Classification of the validation data set (10%) using the discrimination threshold.
• Estimation of the corresponding soil parameters using the calculated PLSR pa-

rameters (coefficients and intercept) corresponding to each class.
• Recording of the estimates with respect to their corresponding observations.

4. Record the calculated PLSR parameters if the Nash is higher than 0.25 and put all
observations back together.

5. Repeat steps 1:4 1 K times.

At the end of the iterations, each observed value had a set of corresponding estimates.
These underwent the following calculations for each class separately and by combining the
two classes:

1. Compute the averages of estimates that were challenged with their corresponding
observations to evaluate the modeling process using statistical evaluation indices (R2,
Nash, RMSE, and BIAS).

2. Compute the variances of estimates to assess the robustness of the modeling for each
observation (Figure 6).
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The second was to evaluate the accuracy of modeling soil texture parameters (sand,
silt, and clay) and OM using hyperspectral data without considering the influence of WC. To
do so, the BKFCV algorithm was used by the following steps:

1. Hold out 10% of the database for validation purposes.
2. Train the remaining 90% using the PLSR algorithm.
3. Estimate the corresponding soil parameters using the calculated PLSR parameters

(coefficients and intercept).
4. Record the estimates with respect to their corresponding observations.
5. Record the calculated PLSR parameters if the Nash is higher than 0.25 and put all

observations back together.
6. Repeat steps 1:5 for 1 K times.

For the modeling evaluation, averages and variances were calculated as described
previously (Figure 7).
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Finally, for the comparative analysis, the means and variances calculated in this step
(as in the case where the effect of WC is not taken into account) were compared to the
results of the two classes studied previously (as in the case where the effect of WC is taken
into account). To ensure consistency in the comparison analysis, the results of the two
classes were combined, and the four evaluation indices were recalculated. The flow chart
in Figure 5 summarizes the steps of the methodological approach (Figure 8).
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3. Results and Discussions
3.1. Database Compilation and Description
3.1.1. Soil Properties

The size of the soil parameters database was 288 observations (Table 2). A wide range
of WC was covered in this study. The standard deviation for clay and OM is narrow, while
it is wide for sand and silt. From a modeling point of view, this narrowness could be a
limiting factor to achieving good performance since the modeling process is data-oriented.

Table 2. Descriptive analysis for the different soil properties studied.

Property Minimum Maximum Average Standard Deviation

Water content (%) 0.00 31.37 8.75 8.42
Clay content (%) 2.72 13.23 7.13 2.36
Silt content (%) 3.40 34.27 18.54 7.41
Sand content (%) 54.25 91.10 74.21 9.07
Organic matter content (%) 1.90 7.20 4.34 1.35

3.1.2. Soil Spectra

The spectral behavior along the spectrum is typical of soil, characterized by a con-
tinuous increase in the reflectance magnitude from blue to NIR with an absorption dip
around 1400 nm (Figure 9A). Hunt [28] has also highlighted this absorption of light energy
around 1454 nm, among others, and related it to the overtones of the O-H molecules of
water and the combinations of vibrational modes of liquefied water when excited by radia-
tion frequencies in these NIR ranges. To verify this finding, the database was subdivided
into 6 (<5%, [5–10%[, [10–15%[, [15–20%[, [20–25%[, ≥25%) WC intervals. Our results
(Figure 9B) also show that there is a clear dependence relationship between the soil WC
and the absorption dip around 1400 nm, as suggested in the literature.
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3.2. Modeling Soil Texture Parameters Taking into Acount the Influence of Water Content
3.2.1. K-Means Unsupervised Classification

Since k-means is a non-hierarchical data partitioning algorithm, and the number of
classes must be defined. However, the number of classes was not known beforehand. A
spectral analysis had to be performed for this purpose. Therefore, to analyze the effect of
WC on spectra, each percentage of soil sample textures was plotted. Figure 10 shows two
examples of these plots. In Figure 10A, the spectrum of 12.45% clay (equivalent to 32.99%
silt, 54.55% sand, and 4.09% OM) depending on the variation in WC after 3 h heating for
24 h is shown as an example of high clay content. In Figure 10B, the spectrum of 4.82%
clay (equivalent to 14.22% silt, 80.97% sand, and 4.15% OM) depending on the variation
in WC after 3 h heating for 24 h is presented as an example of low clay content. In both
examples, two batches of spectra are well distinguished. A batch of dry soils, characterized
by the absence of the absorption dip around 1400 nm and a higher reflectance along the
spectrum, and a batch of wet soils, characterized by the absorption dip around 1400 nm
and a lower reflectance along the spectrum. Based on this analysis, it was hence decided to
set the number of classes to two when using the k-means classification.
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(B) 4.82% clay (equivalent to 14.22% silt, 80.97% sand, and 4.15% OM) according to the WC.

Two classes of spectra are well distinguished. The green likely related to samples
with low WC (dry soils) and the orange likely related to samples with high WC (wet
soils). However, there exists an area of confusion between the two classes (Figure 11).
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It is important to keep in mind that the portions of the soil texture in each sample are
different. The soil spectra may react differently, in some cases, depending on the rate of
each element in the soil sample being scanned. The example in Figure 10B is perhaps
the most appropriate for further explanation. The sample at 6.66% WC is in the dry soil
batch, while its spectrum shows a clear dip around 1400 nm, specific to wet soils. This
is likely related to the amount of sand (≈80%) in this sample. Sand is highly reflective
compared to silt and clay. Thus, the amplitude of the reflectance is higher. On the other
hand, this sample still has about 20% silt and clay. These elements are known to be very
water retentive. Therefore, the presence of the dip around 1400 nm.
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3.2.2. Water Content and Spectroscopy Data Correlogram

As mentioned earlier, correlograms are the best way to present data for analysis and
to highlight one or more relationships between a data set. The purpose of this step was
to identify the most sensitive (highly correlated) spectral regions to WC before applying
the PCA algorithm. This will allow us to compute principal components that are uniquely
sensitive to WC. It is very important to compute principal components that are as unaffected
by noise from the other soil parameters (sand, silt, clay, etc.) as possible, as the first two
will be used with the CART algorithm to develop our classifier. Contrary to expectations,
the bands around 1400 nm were not the most correlated with the WC. The bands at the
end of the visible range were the most correlated (Figure 12). This is most likely due to the
high percentage of sand in the studied samples. The water retention capacity of sand is
known to be low, and the dip around 1400 nm is very much related to the O-H molecules in
water, which are generally more abundant in silt and clay. This may explain the relatively
low correlation between WC and the wavelength around 1400 nm. Therefore, wavelengths
with R2 > 0.85 were selected and used for the PCA calculation.

3.2.3. Classifier Parametrization

To develop the classifier that allows spectral discrimination between the two pre-
identified classes, a PCA was first applied on the selected bands. The first principal
component (PC1) explained 99.91% of the variance. For visualization purposes, the first
two principal components (PC1 and PC2) are shown in Figure 13. A clear discrimination
pattern is observed along the PC1. There is an area of confusion between the two classes,
which is likely related to the spectra confusion discussed in the section above. PC1 and
PC2 are orthogonal, which highlights the lack of dependence between the two variables
(collinearity). In fact, efficiency of multivariable classification highly depends on correlation
structure among predictive variables. When the covariates in the model are not independent
one to another, collinearity problems arise, which leads to biased classification [29]. As
mentioned earlier, the CART requires a set of partition variables, which are PC1 and PC2,
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in our case, and a training sample composed of a data set with pre-assigned classes for all
observations. The unsupervised k-means classification result was used for this purpose.
As expected, the CART algorithm utilized CP1 for discrimination of the two classes. The
discrimination threshold is set to −22.015 (blue line in Figure 13).
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3.2.4. Results of the Bootstrap k-Fold Cross-Validation (BKFCV)
Clay Percentage Estimates in Each Class:

In both classes, for high (Figure 14A) and low (Figure 14B) WC, good accuracy is
achieved. The R2 and Nash were greater than 0.80 and the RMSE was less than 1.07%. The
high-WC observations achieved the best performance (R2 = Nash = 0.86; Figure 14B). The
scatter points around the 1:1 line in both classes emphasize that the estimates tend to be
slightly underestimated for high values percentage, particularly for low-WC (Figure 14B).
The variance bars also tend to be wider with high percentages for both classes, reflecting
the less robust modeling of these values compared to the low clay percentages.
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Silt Percentage Estimates in Each Class:

In both classes, for high (Figure 15A) and low (Figure 15B) WC, a relatively lower
accuracy than the percentage estimate of clay is obtained, but it is still high. The R2 and
Nash were greater than 0.79 and the RMSE was less than 3.37%. Unlike the clay percentage,
the low-WC observations achieved the best performance (R2 = Nash = 0.82; Figure 15B). The
scatter points around the 1:1 line in both classes emphasize that the silt tend to be slightly
underestimated for high percentages and relatively overestimated for low percentages.
The variance bars are narrower in the central modeling space (values between 15 to 25%)
and wider at both extremities. This makes perfect sense, as the central values are well
distributed around the 1:1 line (case of high modeling robustness), while the extreme values
are located either above (case of overestimation) or below (case of underestimation) the 1:1
line, highlighting lower modeling robustness.
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Sand Percentage Estimates in Each Class:

Accuracy performance of sand percentage estimate is quite equal to clay. The R2

and Nash were greater than 0.81, and the RMSE was less than 4.05%. Unlike the clay
percentage, the low-WC observations achieved the best performance (R2 = 0.84 and Nash
= 0.83; Figure 16B). However, a lack of quality estimates is apparent for low percentages
(<70%), especially for observations with high WC (Figure 16A). This is likely because the
range of sand percentages is higher than that of clay and silt (10%, 30%, and 37% for clay,
silt, and sand, respectively). This could have created two different observation populations
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in the sand samples. Furthermore, the sum soil textures must be 100%, samples with less
than 70% sand (where estimates are subject to error) must imperatively contain 30% to 50%
clay and silt. Knowing that the physicochemical mechanisms and WC retention capacity
of sand are not the same as those of clay and silt, this probably made the V/NIR spectra
responses of the group of samples with 70% sand and above different from those with a
lower fraction of sand (50% to 70%). The presence of large amounts of silt and clay must
have interfered with the spectral signature and influenced the sensitive regions for sand
detection. As for the two soil textures above, the error bars are larger at the extremities,
especially for low percentages in both classes.
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Organic Matter Percentage Estimates in Each Class:

Accuracy performance of OM percentage estimate is quite equal to the other soil
textures in terms of R2 (>0.80). However, a clear decrease in Nash results, which is much
more severe statistical evaluation index, is perceived (Figure 17B). The OM percentage
with the high-WC observations achieved the best performance (R2 = 0.86 and Nash = 0.81;
Figure 17A). In both classes, the scatter points around the 1:1 line are well distributed
with a slight tendency of overestimation for low percentages and underestimation for high
percentages. Nevertheless, one to two observations in each class are far from the 1:1 line,
which explains the poor modeling performance assessed by Nash. Compared to the soil
textures, error bars are in most cases wider, notably at the extremities.
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3.3. Modeling Soil Texture Parameters with and without Considering the Influence of
Water Content
3.3.1. Clay Percentage Estimates

The modeling performance is quite similar in both cases, with a slight increase in
accuracy when WC is considered in the modeling process (Figure 18). This improvement
in accuracy is probably related to the low percentage values, because they are well dis-
tributed around the 1:1 line (Figure 18B). In both cases, high percentage values tend to be
underestimated, notably in the case of modeling clay percentage without considering WC
(Figure 18A). The error bars are quite similar, with less pronounced bars for the high-WC
class (green dots in Figure 18B), highlighting the similarity in the robustness of the clay
modeling from the V/NIR spectroscopy data using both approaches. Overall, the accu-
racy achieved in both cases is a good modeling quality with R2 > 0.80, Nash > 0.80, and
RMSE < 1.07%. Our results are consistent with the study of Jaconi, Vos and Don [9], where
the authors have found an R2 = 0.82 of clay for loamy soils. It can be concluded that the
WC does not much affect the clay percentage modeling.
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3.3.2. Silt Percentage Estimates

The modeling performance is obviously not similar in both cases, with a clear increase
in accuracy when WC is considered in the modeling process (Figure 19B). Two populations
of observations are clearly distinguished in Figure 19A (group of samples below 20% silt
and above this threshold). The two groups are merged into one when considering WC
in the modeling process, resulting in a good estimation quality. In fact, dividing the silt
samples into two classes allowed us to train two types of PLSR-based models. One with
training coefficients and spectral regions that are sensitive to low-WC and another with
training coefficients and spectral regions that are sensitive to high-WC. This enabled a
much better distribution of observations around the 1:1 line (Figure 19B) resulting in a
significant improvement in the accuracy. In both cases, high percentage values tend to be
underestimated, and low percentage values tend to be overestimated, notably in the case
of modeling clay without considering WC (Figure 19A). The error bars are quite similar,
with less pronounced bars for the high WC class (green dots in Figure 19B), highlighting
the similarity in the robustness of the silt modeling from the V/NIR spectroscopy data
using both approaches. The accuracy of the silt estimates without considering WC was
acceptable (R2 = Nash = 0.74, and RMSE = 3.70%) and was quite similar to the results of
the study by Jaconi, Vos and Don [9] where the authors found an R2 = 0.77 of silt for sandy
soils. On the other hand, the accuracy achieved when considering the WC effect is much
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higher with R2 = 0.81, Nash = 0.80, and RMSE = 3.22%. It can be concluded that the WC
does affect the silt percentage modeling.
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Figure 19. Evaluation of silt percentage modeling for (A) without considering water content and
(B) considering water content (combined classes). The green and blue dots represent the high and
low water content classes, respectively.

3.3.3. Sand Percentage Estimates

Again, the modeling performance is obviously not similar, with a clear increase in
accuracy when the WC is considered in the modeling process (Figure 20B). Two populations
of observations are clearly distinguished in Figure 20A (group of samples below 75% sand
and above this threshold). These two groups are merged into one when considering WC
in the modeling process, resulting in a better estimation quality. This improvement in
accuracy is due to the PLSR models training mechanisms related to the subdivision of the
database into two classes, as explained above. Nevertheless, in both cases, low percentages
of sand are subject to high error rates, even after accounting for WC. This result may
confirm the hypothesis raised earlier that the percentages of silt and clay may also strongly
influence the spectral response of sand. This could be related to the color component
(greyish, yellow, or whitish (light hue) versus brown or brown ochre (dark hue) for sand
and silt and clay, respectively).
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In fact, the spectral response of the light hue (sand) will of course have a higher
magnitude than that of the dark hue (silt and clay), even for high percentages of WC, which
can easily be confused with low WC silt and clay spectra (i.e., the confusion area when
classifying the database using k-means algorithm; Figure 8). This confusion increases, of
course, with lower percentages of sand, as the silt and clay portions are larger. This may
explain the inaccuracy of low percentage values (overestimated) even when considering
WC (Figure 20B). The error bars are quite similar, with less pronounced bars for the high
WC class (grey dots in Figure 20B), highlighting the similarity in the robustness of the
sand modeling from the V/NIR spectroscopy data using both approaches. The accuracy
of the sand estimates without considering WC was acceptable (R2 = Nash = 0.78, and
RMSE = 4.26%) and again was quite similar to the results of the study by Jaconi, Vos
and Don [9] where the authors found a R2 = 0.80 of sand for sandy soils. On the other
hand, the accuracy achieved when considering the WC effect is relatively higher with
R2 = Nash = 0.82, and RMSE = 3.85%. It can be concluded that the WC does affect the sand
percentage modeling, but it is not the only parameter that should be considered.

3.3.4. Organic Matter Percentage Estimates

The modeling performance is quite similar in both cases, with a slight increase in
accuracy when the WC is considered in the modeling process. This improvement in
accuracy is probably related values between 5% and 6%, as they became better distributed
around the 1:1 line (Figure 21B). Two populations of observations (Figure 21A) can be
distinguished (group of samples below 5.5% sand and above this threshold), but not as
clearly as those of silt and sand percentages. However, these two groups are merged
into one when considering the WC in the modeling process, resulting in a slightly better
estimation quality. As for the silt, low percentage values tend to be overestimated and
high percentage values tend to be underestimated in both cases. The error bars are quite
similar highlighting the similarity in the robustness of the OM modeling from the V/NIR
spectroscopy data using both approaches. It can be concluded that the WC does not
much affect the OM percentage modeling. Overall, the accuracies of the OM estimates
with or without considering WC were similar and acceptable (R2 = 81, Nash = 0.77, and
RMSE = 0.71% and R2 = 83, Nash = 0.78, and RMSE = 0.68%). They were again quite
similar to a result conducted by Lazaar et al. [30] where the authors found an R2 = 0.80
and R2 = 0.85 for OM estimated from samples collected from two different sites. It can be
concluded that the WC does not affect the OM percentage modeling.
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4. Conclusions

The purpose of this work was to compare the modeling performance of soil texture
parameters (clay, silt, and sand) and organic matter (OM) with and without considering
water content (WC) using visible and near infrared (V/NIR) spectroscopy data. Partial
least squares regression was used to train the models in both cases, and the classification
and regression tree method was added in the case of considering WC. Evaluation of the
models was performed using four statistical indices (R2, Nash criterion (Nash), root-mean-
square errors (RMSE), and BIAS) based on the Bootstrap k-fold cross-validation (BKFCV)
technique in both cases. The results highlighted the potential of V/NIR spectra to estimate
soil particles with sufficient accuracy. For soil texture parameters, the best performance was
recorded when considering the WC in the modeling process (R2 up to 0.83, Nash up to 0.83,
and RMSE down to 1.00%). Results when WC was not considered in the modeling process
were less accurate (R2 up to 0.81, Nash up to 0.78, and RMSE down to 1.07%). For the OM,
the best performance was recorded when the WC was taken into account in the modeling
process (R2 = 0.83, Nash = 0.78, and RMSE = 0.63%). Results when WC was not considered
in the modeling process were less accurate, but were acceptable (R2 = 0.81, Nash = 0.77, and
RMSE = 0.71%). Clay and OM were less influenced, while silt and sand were much more
influenced by WC. However, it appears that in most cases, whether WC was considered or
not, low values tended to be slightly overestimated and high values tended to be slightly
underestimated for all soil particles studied. This behavior was more pronounced when
WC was not considered, highlighting the importance of taking into account this parameter
when modeling soil particles. Nevertheless, the low percentages of sand remained affected
by a strong overestimation even when considering WC, leading to the conclusion that
sand modeling is also influenced by other soil components, notably the hue. This study
highlighted the potential of V/NIR spectroscopy data and the added value of considering
WC in the estimation of soil texture parameters and OM. The results showed that WC
can, at some level, improve the quality of soil parameter modeling (Table 3), but some of
the variance remained unexplained. Incorporating other soil properties (hue, structure,
infiltration capacity, nutrient sorption, soil carbon turnover, compaction, etc.) into a deep
learning model could further improve the accuracy of soil parameter modeling, especially
sand and OM. This kind of tool could be of great help for soil quality monitoring managers,
especially in provinces such as Quebec, which covers a very large territory.

Table 3. Summary table of results. The colors red, green, blue, and gray correspond to the evaluation
indices of clay, silt, sand and organic matter, respectively.

Without Considering the Influence of Water Content Considering the Influence of Water Content

R2 Nash BIAS RMSE R2 Nash BIAS RMSE

0.80 0.80 −0.01 1.07 0.83 0.83 −0.03 1.00

0.74 0.74 −0.04 3.70 0.81 0.80 −0.09 3.22

0.78 0.78 0.07 4.26 0.82 0.82 0.07 3.85

0.81 0.77 0.13 0.71 0.83 0.78 0.11 0.68
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