Dépôt numérique
RECHERCHER

Modélisation locale et régionale du régime thermique des rivières.

Téléchargements

Téléchargements par mois depuis la dernière année

Plus de statistiques...

Souaissi, Zina (2022). Modélisation locale et régionale du régime thermique des rivières. Thèse. Québec, Doctorat en sciences de l'eau, Université du Québec, Institut national de la recherche scientifique, 236 p.

[thumbnail of T1051.pdf] PDF
Document sous embargo jusqu'à 17 décembre 2024.

Télécharger (6MB)

Résumé

La température extrême de l’eau influence de nombreuses propriétés physiques, chimiques et biologiques des rivières. l ’ évaluation de l ’ Une prédiction précise de la température de l’eau est importante pour impact environnemental. Dans ce cadre, différents modèles ont été utilisés pour estimer les températures de l ’ linéaires simp eau à différentes échelles spatiales et temporelles, allant des méthodes les pour déterminer l’incertitude à des modèles sophistiqués non linéaires. Cependant, cette variable primordiale n’a pas été traitée dans un contexte probabiliste (ou fréquentiste). Donc, l’estimation des évènements extrêmes thermiques à l’aide des approc hes d’analyse fréquentielle locale (AFL) est importante. Lors de l’estimation des extrêmes thermiques, il est crucial de tenir compte de la forme de la distribution de fréquences considérée. Dans la première partie de la thèse , nous nous concentrons sur la sélection de la distribution de probabilité la plus appropriée des températures des rivières. Le critère d critère d ’ ’ information d ’ Akaike (AIC) et le information bayésien (BIC) sont utilisés pour évaluer la qualité de l distributions statis ’ ajustement des tiques. La validation des distributions candidates appropriées est également effectuée en utilisant l ’ approche de diagramme de rapport des L obtenus montrent que la distribution de Weibull (W2) moments (MRD). Les résultats est celle qui semble s’ajuster le données provenant des stations de haute altitude, tandis que les mieux aux séries d’extrêmes provenant des stations situées dans les régions de basse altitude sont bien adaptées avec la distribution normale (N). Ceci correspond au premier article. L a ’ couverture spatiale des données de température des cours d ’ eau est limitée dans de nombreuses régions du monde. Pour cette raison, une analyse fréquentielle régionale (AFR) permettant d estimer les extrêmes de température des rivières sur des sites non jau gés ou mal surveillés est nécessaire. En général, l’AFR inclut deux étapes principales, la délimitation des régions homogènes (DRH) qui vise à déterminer les sites similaires, et l’estimation régionale (ER) qui transfère l’information depuis les sites déte rminés dans la première étape vers le site cible. Par conséquent, le modèle d’indice thermique (IT) est introduit dans le contexte d’AFR pour estimer les extrêmes du régime thermique. Cette méthode est analogue au modèle d ’ indice de crue (IF) largement uti lisé en hydrologie. Le modèle IT incorpore l’homogénéité de la distribution de fréquence appropriée pour chaque région, ce qui offre une plus grande flexibilité. Dans cette étude, le modèle IT est comparé avec la régression linéaire multiple (MLR). Les rés ultats indiquent que le modèle IT fournit la meilleure performance (Article 2) . Ensuite, l’approche d’analyse canonique des corrélations non linéaires (ACCNL) est intégrée dans la DRH, présentée dans le Chapitre 4 de ce manuscrit (Article 3). Elle permet de considérer la complexité des phénomènes thermiques dans l’étape de DRH. Par la suite, dans le but d’identifier des combinaisons (DRH-ER) plus prometteuses permettant une meilleure estimation, une étude comparative est réalisée. Les combinaisons considérées au niveau des deux étapes de la procédure de l’AFR sont des combinaisons linéaires, semi-linéaires et non linéaires. Les résultats montrent que la meilleure performance globale est présentée par la combinaison non linéaire ACCNL et le modèle additif généralisé (GAM). Finalement, des modèles non paramétriques tels que le foret aléatoire (RF), le boosting de gradient extrême (XGBoost) et le modèle régression multivariée par spline adaptative (MARS) sont introduits dans le contexte de l’AFR pour estimer les quantiles thermiques et les comparer aux quantiles estimés à l’aide du modèle semi-paramétrique GAM. Ces modèles sont combinés avec des approches linéaires et non linéaires dans l’étape DRH, telles que ACC et ACCNL, afin de déterminer leur potentiel prédictif. Les résultats indiquent que ACCNL+GAM est la meilleure, suivie par ACC+MARS. Ceci correspond à l’article 4.

Extreme water temperatures have a significant impact on the physical, chemical, and biological properties of the rivers. Environmental impact assessment requires accurate predictions of water temperature. The models used to estimate water temperatures within this framework range from simple linear methods to more complex nonlinear models. However, w ater temperature has not been studied in a probabilistic manner. It is, therefore, essential to estimate extreme thermal events using local frequency analysis (LFA). An LFA aims to predict the frequency and amplitude of these events at a given gauged locat ion. In order to estimate quantiles, it is essential to consider the shape of the frequency distribution being considered. The first part of our study focuses on selecting the most appropriate probability distribution for river water temperatures. The Akai ke information criteria (AIC) and the Bayesian information criteria (BIC) are used to evaluate the goodness of fit of statistical distributions. An Lmoment ratio diagram (MRD) approach is also used to validate sui table candidate distributions. The results good fit for extremes data from the highindicate that the Weibull distribution (W2) provides a altitude stations, while the normal distribution (N) is most appropriate for lowaltitude stations. This corresponds to the first article. In many parts of the world, river temperature data are limited in terms of spatial coverage and size of the series. Therefore, it is necessary to perform a regional frequency analysis (RFA) to estimate river temperature extremes at ungauged or poorly monitored sites. Generall y, RFA involves two main steps: delineation of homogenous regions (DHR), which identifies similar sites, and regional estimation (RE), which transfers information from the identified sites to the target site. The thermal index (TI) model is introduced in t he context of RFA to estimate the extremes of the thermal regime. This method is analogous to the index flood (IF) model commonly used in hydrology. The TI model considers the homogeneity of the appropriate frequency distributions for each region, which pr ovides larger flexibility. This study compares the TI model with multiple linear regression (MLR) approach. Results indicate that the TI model leads to better performances (Article 2). Then, the nonlinear canonical correlations analysis (NLCCA) approach is integrated into the DHR, as presented in Chapter 4 of this manuscript (Article 3). It allows considering the complexity of the thermal phenomena in the DHR step. A comparative study is then conducted to identify more promising combinations (DHR RE), that RFA procedure, linear, semilead to best estimation results. In the two stages of the linear, and nonlinear combinations are considered. The results of this study indicate that the nonlinear combination of the NLCCA and the generalized additive model (GAM ) produces the best overall performances. Finally, nonparametric models such as random forest (RF), extreme gradient boosting (XGBoost), and multivariate adaptive regression splines (MARS) are introduced in the context of RFA in order to estimate thermal q uantiles and compare them to quantiles estimated using the semiparametric GAM model. The predictive potential of these models is determined by combining them with linear and nonlinear approaches, such as CCA and NLCCA, in the DHR step. The results indicat e that NLCCA+GAM is the best, followed by CCA+MARS. This corresponds to article 4.

Type de document: Thèse Thèse
Directeur de mémoire/thèse: Ouarda, Taha B. M. J.
Co-directeurs de mémoire/thèse: St-Hilaire, André
Mots-clés libres: régime thermique; distribution de probabilité; analyse fréquentielle régionale (AFR); estimation régionale (ER); délimitation des régions homogènes (DRH); bassin non jaugé; indice thermique (IT); analyse canonique de corrélation non linéaire (ACCNL); modèles non paramétriques; modèles semi-paramétriques; thermal regime; probability distribution; regional frequency analysis (RFA); regional estimation (RE); delineation of homogenous regions (DHR); ungauged basin; thermal index (TI); canonical nonlinear correlation analysis (NLCCA); nonparametric models; semi-parametric models
Centre: Centre Eau Terre Environnement
Date de dépôt: 30 mars 2023 19:30
Dernière modification: 30 mars 2023 19:30
URI: https://espace.inrs.ca/id/eprint/13260

Gestion Actions (Identification requise)

Modifier la notice Modifier la notice