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ABSTRACT 

Higher temporal resolution has been extensively pursued in photography for decades. Although currently 

charge-coupled device (CCD) and complementary metal-oxide-semiconductor (CMOS) technologies have 

revolutionized high-speed and ultrahigh-speed photography, further increasing their temporal resolution is 

fundamentally limited by the bandwidth of the electronics and on-chip storage. Existing ultrahigh-speed 

CCD/CMOS cameras have achieved the temporal resolution of the sub-microsecond level at the cost of 

pixel count, size, and price.  

Compressed ultrafast photography (CUP) is an emerging two-dimensional (2D) computational 

imaging modality that synergistically combines compressed sensing (CS) with streak imaging. CUP 

enables capturing non-repetitive time-evolving events at picosecond-level temporal resolution and has led 

to a variety of exciting discoveries and applications in physics such as the observation of optical chaos, 

dissipative soliton dynamics, and photonics Mach cone. Despite the salient advantage in temporal 

resolution, CUP cannot record long-lasting dynamics (e.g., upconversion luminescence processes on the 

order of microseconds and milliseconds) in a single shot, due to optoelectronic sweeping time of less than 

nanoseconds. Furthermore, a limited quantum efficiency (QE) and the space-charge effect in the 

optoelectronic streak cameras restrain the signal-to-noise ratios (SNRs) and spatial resolution of the CUP’s 

measurement, respectively. To overcome these limitations, this dissertation focuses on efforts in 

developing cost-efficient and compact ultrahigh-speed imaging (i.e., sub-microsecond temporal resolution) 

hardware, high-fidelity image reconstruction software, and pertinent applications.  

First, single-shot ultrahigh-speed imaging is of great significance to capture transient phenomena 

in physics, biology, and chemistry in real time. Existing techniques, however, have a restricted application 

scope, a low sequence depth, or a limited pixel count. To overcome these limitations, we developed single-

shot compressed optical-streaking ultrahigh-speed photography (COSUP) with an imaging speed of 1.5 

million frames per second (fps), a sequence depth of 500 frames, and an (𝑥, 𝑦) pixel count of 0.5 megapixels 

per frame. COSUP’s single-shot ultrahigh-speed imaging ability was demonstrated by recording single 

laser pulses illuminating through transmissive targets and by tracing a fast-moving object. As a universal 

imaging platform, COSUP is capable of increasing imaging speeds of a wide range of CCD and CMOS 

cameras by four orders of magnitude. We envision COSUP to be applied in widespread applications in 

biomedicine and materials science. 

Second, COSUP is applied to biophotonics. The photoluminescence lifetime imaging of 

upconverting nanoparticles is increasingly featured in recent progress in optical thermometry. Despite 
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remarkable advances in photoluminescent temperature indicators, existing optical instruments lack the 

ability of wide-field photoluminescence lifetime imaging in real time, thus falling short in dynamic 

temperature mapping. Here, we further develop COSUP to single-shot photoluminescence lifetime imaging 

thermometry (SPLIT) for video-rate upconversion temperature sensing in a wide field. SPLIT first records 

wide-field luminescence intensity decay compressively in two views in a single shot. Then, an algorithm, 

built upon the plug-and-play alternating direction method of multipliers, is used to reconstruct the video, 

from which the extracted lifetime distribution is converted to a temperature map. Using the core/shell 

NaGdF4:Er3+, Yb3+/NaGdF4 upconverting nanoparticles as the lifetime-based temperature indicators, we 

apply SPLIT in longitudinal wide-field temperature monitoring beneath a thin scattering medium. SPLIT 

also enables video-rate temperature mapping of a moving biological sample at single-cell resolution. 

Third, we developed a snapshot-to-video autoencoder (S2V-AE) for COSUP. S2V-AE is a new deep 

neural network that maps a compressively recorded 2D image to a movie. The S2V-AE preserves 

spatiotemporal coherence in reconstructed videos and presents a flexible structure to tolerate changes in 

input data. Implemented in compressed ultrahigh-speed imaging, the S2V-AE enables the development of 

single-shot machine-learning assisted real-time (SMART) COSUP, which features a reconstruction time of 

60 ms and a large sequence depth of 100 frames. SMART-COSUP is applied to wide-field multiple-particle 

tracking at 20 thousand frames-per-second (kfps). As a universal computational framework, the S2V-AE is 

readily adaptable to other modalities in high-dimensional compressed sensing. SMART-COSUP is also 

expected to find wide applications in applied and fundamental sciences 

Fourth, the concept of COSUP has been extended to electron microscopy. Bringing ultrafast 

(nanosecond and below) temporal resolution to transmission electron microscopy (TEM) has historically 

been challenging. Despite significant recent progress in this direction, it remains difficult to achieve sub-

nanosecond temporal resolution with a single electron pulse, in real-time imaging. To address this 

limitation, here, we propose a methodology that combines laser-assisted TEM with computational imaging 

methodologies based on CS. In this technique, a 2D transient event [i.e. (𝑥, 𝑦) frames that vary in time] is 

recorded through a CS paradigm, which consists of spatial encoding, temporal shearing via streaking, and 

spatiotemporal integration of an electron pulse. The 2D image generated on a camera is used to 

reconstruct the datacube of the ultrafast event, with 2D in space and 1D in time, via a CS-based image 

reconstruction algorithm. Using numerical simulation, we find that the reconstructed results are in good 

agreement with the ground truth, which demonstrates the applicability of CS-based computational imaging 

methodologies to laser-assisted TEM. Our proposed method, complementing the existing ultrafast 

stroboscopic and nanosecond single-shot techniques, opens up the possibility for single-shot, real-time, 

spatiotemporal imaging of irreversible structural phenomena with sub-nanosecond temporal resolution. 
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RÉSUMÉ 

Une résolution temporelle plus élevée a été largement recherchée en photographie depuis des décennies. 

Bien qu'actuellement, les technologies de dispositifs à couplage de charge (CCD) et de métal-oxyde-semi-

conducteur (CMOS) aient révolutionné la photographie à haute et ultra-haute vitesse, l'augmentation 

supplémentaire de leur résolution temporelle est fondamentalement limitée par leur bande passante 

d'électronique et de stockage sur puce. Les caméras CCD/CMOS ultra-rapides existantes ont atteint une 

résolution temporelle inférieure à la microseconde au détriment du nombre de pixels, de la taille et du prix. 

La photographie ultrarapide compressée (CUP) est une nouvelle modalité d'imagerie 

computationnelle bidimensionnelle (2D) qui combine de manière synergique la détection compressée (CS) 

avec l'imagerie par stries. CUP permet de capturer des événements évoluant dans le temps non répétitif 

à une résolution temporelle de niveau picoseconde et a conduit à une variété de découvertes et 

d'applications passionnantes en physique telles que l'observation du chaos optique, la dynamique 

dissipative des solitons et le cône de Mach photonique. Malgré l'avantage saillant de la résolution 

temporelle, CUP ne peut pas enregistrer une dynamique de longue durée (par exemple, des processus de 

luminescence de conversion ascendante de l'ordre de la microseconde et de la milliseconde) en un seul 

coup, en raison du temps de balayage optoélectronique inférieur à la nanoseconde. De plus, une efficacité 

quantique (QE) limitée et l'effet de charge d'espace dans les caméras optoélectroniques à balayage 

limitent respectivement les rapports signal sur bruit (SNR) et la résolution spatiale de la mesure du CUP. 

Pour surmonter ces limitations, cette thèse se concentre sur les efforts de développement de matériel 

d'imagerie à ultra-haute vitesse (c'est-à-dire une résolution temporelle inférieure à la microseconde), d'un 

logiciel de reconstruction d'image haute-fidélité et d'applications pertinentes. 

Tout d'abord, l'imagerie ultra-rapide à un seul coup est d'une grande importance pour capturer les 

phénomènes transitoires en physique, biologie et chimie en temps réel. Les techniques existantes, 

cependant, ont une portée d'application restreinte, une faible profondeur de séquence ou un nombre de 

pixels limité. Pour surmonter ces limitations, nous avons développé la photographie à ultra-haute vitesse 

à stries optiques compressées (COSUP) avec une vitesse d'imagerie de 1.5 million d'images par seconde 

(fps), une profondeur de séquence de 500 images et un pixel (𝑥, 𝑦) compte de 0.5 mégapixels par image. 

La capacité d'imagerie ultra-rapide à un seul coup de COSUP a été démontrée en enregistrant des 

impulsions laser uniques éclairant à travers des cibles transmissives et en traçant un objet en mouvement 

rapide. En tant qu’une plate-forme d'imagerie universelle, COSUP est capable d'augmenter les vitesses 

d'imagerie d'une large gamme de caméras CCD et CMOS de quatre ordres de grandeur. Nous 
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envisageons que COSUP soit appliqué dans des applications généralisées en biomédecine et en science 

des matériaux. 

Deuxièmement, COSUP est appliqué à la biophotonique. L'imagerie à vie par photoluminescence 

des nanoparticules à conversion ascendante est de plus en plus présente dans les progrès récents de la 

thermométrie optique. Malgré des progrès remarquables dans les indicateurs de température 

photoluminescents, les instruments optiques existants n'ont pas la capacité d'imagerie à vie de 

photoluminescence à champ large en temps réel, ce qui ne permet pas de cartographier dynamiquement 

la température. Ici, nous développons davantage COSUP en thermométrie d'imagerie à durée de vie par 

photoluminescence (SPLIT) à un seul coup pour la détection de température de conversion ascendante à 

débit vidéo dans un champ large. SPLIT enregistre d'abord la décroissance de l'intensité de la 

luminescence à champ large de manière compressive dans deux vues en une seule exposition. Ensuite, 

un algorithme, basé sur la méthode de direction alternative plug-and-play des multiplicateurs, est utilisé 

pour reconstruire la vidéo, à partir de laquelle la distribution de durée de vie extraite est convertie en une 

carte de température. En utilisant les nanoparticules de conversion ascendante NaGdF4:Er3+, Yb3+/NaGdF4 

noyau/coquille comme indicateurs de température basés sur la durée de vie, nous appliquons SPLIT dans 

la surveillance longitudinale de la température à champ large sous un milieu de diffusion mince. SPLIT 

permet également la cartographie vidéo de la température d'un échantillon biologique en mouvement à 

une résolution unicellulaire. 

Troisièmement, nous avons développé un auto-encodeur instantané vers vidéo (S2V-AE) pour 

COSUP. S2V-AE est un nouveau réseau neuronal profond qui mappe une image 2D enregistrée par 

compression à un film. Le S2V-AE préserve la cohérence spatio-temporelle des vidéos reconstruites et 

présente une structure flexible pour tolérer les changements dans les données d'entrée. Mis en œuvre 

dans l'imagerie ultra-rapide compressée, le S2V-AE permet le développement d'un COSUP en temps réel 

assisté par apprentissage automatique (SMART) à un seul coup, qui présente un temps de reconstruction 

de 60 ms et une grande profondeur de séquence de 100 images. SMART-COSUP est appliqué au suivi 

de particules multiples à champ large à 20, 000 images par seconde. En tant que cadre de calcul universel, 

le S2V-AE est facilement adaptable à d'autres modalités de détection compressée à haute dimension. 

SMART-COSUP devrait également trouver un large champ d’applications dans les sciences appliquées et 

fondamentales 

Quatrièmement, le concept de COSUP a été étendu à la microscopie électronique. Apporter une 

résolution temporelle ultrarapide (nanoseconde et inférieure) à la microscopie électronique à transmission 

(TEM) a toujours été un défi. Malgré des progrès récents significatifs dans cette direction, il reste difficile 

d'atteindre une résolution temporelle inférieure à la nanoseconde avec une seule impulsion d'électron, en 
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imagerie en temps réel. Pour remédier à cette limitation, nous proposons ici une méthodologie qui combine 

la TEM assistée par laser avec des méthodologies d'imagerie computationnelle basées sur CS. Dans cette 

technique, un événement transitoire 2D [c.-à-d. (𝑥, 𝑦) trames qui varient dans le temps] est enregistré à 

travers un paradigme CS, qui consiste en un codage spatial, un cisaillement temporel via des stries et une 

intégration spatio-temporelle d'une impulsion électronique. L'image 2D générée sur une caméra est utilisée 

pour reconstruire le cube de données de l'événement ultrarapide, avec deux dimensions spatiales et une 

dimension temporelle, via un algorithme de reconstruction d'image basé sur CS. À l'aide de la simulation 

numérique, nous constatons que les résultats reconstruits sont en bon accord avec la vérité terrain, ce qui 

démontre l'applicabilité des méthodologies d'imagerie computationnelle basées sur CS à la TEM assistée 

par laser. Notre méthode proposée, complétant les techniques stroboscopiques ultrarapides et 

nanosecondes existantes, ouvre la possibilité d'une imagerie spatio-temporelle en temps réel de 

phénomènes structurels irréversibles avec une résolution temporelle inférieure à la nanoseconde. 

Mots-clés : imagerie computationnelle; détection compressée; apprentissage en profondeur; détection de 

température; acquisition de données haute dimension; ultra-rapide photographie 
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1 INTRODUCTION 

1.1 Motivation  

Temporal resolution is an important parameter of photography [1]. To quantitatively assess the 

temporal resolution, imaging modalities are characterized by the concept of image speed, which 

is quantified by the frame rate with the unit of frames per second (fps). With early examples being 

well-known recordings in 1878 of a galloping horse [2] and the 1887 photograph of a supersonic 

bullet [3], photographers and scientists have continuously sought methods to capture transient 

scenes at a higher imaging speed [4]. 

Multiscale imaging speeds cater to different scientific research and application needs. For 

instance, high-speed imaging [e.g., up to thousands of fps] plays a key role in particle image 

velocimetry [5], video surveillance [6], and instant replay [7], to name a few. Ultrahigh-speed 

imaging (e.g., up to millions of fps) is necessary for observing neural activities [8], 

phosphorescence light emission [9], conformational changes in proteins [10], etc. Ultrafast 

imaging (e.g., billions of fps) opens scientific research such as monitoring molecular behavior 

(e.g., molecular cinema) [11], characterizing the fine structure of matter [12], and studying 

chemical and biological processes [13] that have been inaccessible before. 

Single-shot ultrahigh-speed imaging is indispensable for visualizing various microsecond-

level phenomena occurring in two-dimensional (2D) space. Existing single-shot ultrahigh-speed 

imaging techniques can be generally categorized into active-detection and passive-detection 

domains. The active-detection approaches exploit specially designed pulse trains to probe 2D 

transient events. However, these methods are not suitable for imaging self-luminescent and color-

selective events. By contrast, the passive-detection approaches leverage receive-only ultrahigh-

speed detectors to record photons scattered and emitted from the transient scenes. Examples 

include charge-coupled device (CCD) [14] and complementary metal-oxide-semiconductor 

(CMOS) [15] technologies that have revolutionized high-speed and ultrahigh-speed photography. 

Despite these sensors' widespread impact, further increasing frame rates using CCD or CMOS 

technology is fundamentally limited by the bandwidth of the electronics and on-chip storage [16]. 

Commercial ultrahigh-speed CCD/CMOS cameras either use customized sensors [17] with 

expensive prices as shown in Table 1.1 or rely on bulky camera arrays [18]. 

Compressed ultrafast photography (CUP) [19-21] is an emerging computational imaging 

modality that synergistically combines compressed sensing (CS) [22] with streak imaging [23].  
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Table 1.1 Typical commercial high-speed cameras 

Part number Price (USD)[Note 1] Imaging speed (kfps) Pixel count Manufacturer 

FASTCAM SA-Z  ~150,000 20 1,000,000 Photron 

i-SPEED 727 ~134,000 50 500,000 iX-Cameras 

HPV-X2 ~250,000 10,000 100,000 Shimadzu 

[Note 1] the prices are based on the market of date December 2021. 

CUP is renowned for its two-dimensional (2D) dynamic imaging with an image speed of up to 1013 

fps. Compared to pump-probe-based ultrafast imaging methods (including but not limited to strobe 

photography) [24-26], CUP enables recording non-repetitive time-evolving events in a single 

snapshot. So far, CUP has led to a variety of exciting applications in physics such as the 

observation of optical chaos [27], dissipative soliton dynamics [28], and photonics Mach cone 

[20]. Despite the salient advantages in imaging speed, CUP cannot record long-lasting dynamics 

(e.g., upconversion luminescence processes on the order of microseconds and milliseconds) in 

a single shot, due to optoelectronic sweeping time of less than nanoseconds. Furthermore, due 

to the photon-to-photoelectron conversion by the photocathode, the quantum efficiency (QE) of 

the optoelectronic streak cameras is typically <15% for visible light, which limits the quality of 

acquired data.  

A mechanical streak camera, using a one-dimensional (1D) slit placed at its entrance, 

usually uses a rotating mirror [e.g., a galvanometer scanner (GS) or a polygon mirror] to deflect 

the light across a 2D imaging plane of an off-the-shelf CCD/CMOS sensor. Since the mechanical 

sweeping is much slower than the optoelectronic counterpart in CUP, the mechanical streak 

camera has a longer exposure time to record long-lasting dynamics (i.e., up to milliseconds) and 

has tunable temporal resolution typically from hundreds of nanoseconds to microseconds to 

satisfy ultrahigh-speed imaging. Moreover, its all-optical data acquisition allows the flexibly 

implementing of many high-sensitivity cameras [e.g., electron-multiplying (EM) CCD and scientific 

CMOS cameras, whose QEs can be >90% for visible light] to obtain superior SNRs in 

measurements. Thus, the mechanical streak camera becomes a good candidate to overcome the 

limitations of the size and price in existing ultrahigh-speed CCD/CMOS cameras and to address 

the limitations of QE and sweeping time in CUP. However, the mechanical streak is a 1D imaging 

technique due to the entrance slit. 
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1.2 Objectives 

This dissertation focuses on efforts in developing cost-efficient and compact ultrahigh-speed 

imaging (i.e., sub-microsecond temporal resolution) hardware, high-fidelity image reconstruction 

software, and pertinent applications. First, we plan to develop a CS-based ultrahigh-speed 

imaging modality adapted from a mechanical streak camera but with 2D imaging ability in a single 

shot. To overcome the limitations in existing ultrahigh-speed cameras, the proposed imaging 

modality targets the image speed over one million fps (i.e., sub-microsecond level temporal 

resolution), a sequence depth over 100 frames (i.e., millisecond exposure time), and a pixel count 

in each frame over 100,000 (e.g., Table 1.1). Using these capabilities, we will be able to 

characterize the behavior of laser pulses through specific targets and track a fast-moving object. 

Second, we aim to apply the newly developed ultrahigh-speed imaging system to novel 

applications with a specific focus on advanced lifetime characterizations in photoluminescence 

nanoparticles. To enable this application, the deployed system needs to satisfy the requirements 

of microsecond-level temporal resolution and high-sensitivity low light imaging, high-fidelity video 

reconstruction algorithm, and temperature-related upconversion nanoparticle as the indicator. 

Third, the CS-based video reconstruction using the analytical-modeling-based method is 

limited by the long processing time and unstable image quality [29]. To resolve these problems, 

deep learning provides an end-to-end video reconstruction avenue as well as good video 

reconstruction quality. Thus, we intend to use deep learning methods for video reconstruction in 

the proposed ultrahigh-speed imaging system. Compared with existing learning-based methods, 

the new deep neural network aims to have the largest sequence depth (i.e., 100 frames) in a 

reconstructed video. Furthermore, the new neural network contributes to the development of next-

generation ultrahigh-speed cameras, which will be applied to on-time feedback applications like 

multiple-particle tracking [30]. 

Fourth, bringing ultrafast imaging speed to transmission electron microscopy (TEM) has 

historically been challenging [31]. Despite significant recent progress in this direction, it remains 

difficult to achieve sub-nanosecond temporal resolution and nanometer-level spatial resolution 

with a single electron pulse in real-time imaging [32, 33]. To achieve this goal, we plan to establish 

analytical modeling of CS-based TEM, which contributes to the construction of dynamic TEM at 

INRS. Compared to the pump-probe methods, CS-based TEM has a distinguished advantage in 

the observation of non-repeatable transient dynamics.  
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1.3 Organization 

This dissertation is organized as follows. Chapter 2 introduces several concepts including 

computational imaging (CI), single-pixel imaging (SPI), compressive spatial imaging (CSI), 

compressive temporal imaging (CTI), sparsity, incoherence, etc. Several typical examples of CTI 

are analyzed and compared. At the end of this chapter, typical CS algorithms in CTI are presented 

and discussed. Chapter 3 presents the prototype and proof-the-concept experiments of the 

proposed CS-based ultrahigh-speed imaging modality termed single-shot compressed optical-

streaking ultrahigh-speed photography (COSUP). Chapter 4 presents COSUP’s application to 

fast wide-field upconverting luminescence lifetime/temperature sensing. The proposed optical 

thermometry is called single-shot photoluminescence lifetime imaging thermometry (SPLIT). With 

the demonstrations in biological tissues with absorption as well as scattering, the SPLIT system 

records not only 2D lifetime images but wide field temperature sensing for a moving sample for 

the first time. Chapter 5 presents a new deep neural network, termed as Snapshot-to-Video Auto-

Encoder (S2V-AE). With the S2V-AE, single-shot machine-learning assisted real-time (SMART)-

COSUP is demonstrated by tracking multiple objects in real time. Chapter 6 presents the concept 

and configurations of compressed ultrafast (CU)-TEM and dual-shearing (DS) CUTEM. 

Conclusions and prospectives conclude this dissertation in Chapter 7. At the end of this 

dissertation is the summary in French. 
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2 METHODS 

In this section, we first introduce the concept of CI to distinguish it from conventional imaging. We 

then briefly present the concept of single-pixel imaging (SPI) as a typical compressed spatial 

imaging (CSI) modality, because SPI has well-established CS-based theory analysis and 

successful applications. For instance, two premises of CS, i.e., sparsity and incoherence are 

covered here. Upon the understanding of SPI, we naturally extend the topic to compressed 

temporal imaging (CTI), which is the core of this dissertation. We elaborate on several typical CTI 

modalities in the following order: system schematic, working principle, and forward model. Finally, 

we elaborate on three types of CTI reconstruction algorithms and compare their reconstruction 

speed, image quality, and flexibility. 

 

2.1 Computational imaging (CI) 

CI is the process of indirectly forming images from measurements using algorithms [34]. CI 

involves a tight integration of the “hardware encoder” and the “software decoder” to form the 

images of interest as shown in Fig. 2.1. In conventional imaging as shown in Fig. 2.1(a), one point 

on the object plane is imaged as one point on the image plane, following the geometry optics rule. 

Two adjacent points on the object plane cannot be sampled by one pixel on the image plane, 

following the Nyquist sampling theorem. In contrast, CI allows one pixel on the image plane to 

record different points on the object plane, introducing a hardware encoder as shown in Fig.2.1(b). 

A software decoder is used to retrieve the object and achieves better performances on the field 

of view (FOV), optical aberrations [35], and spatial bandwidth product [36], to name a few. CI 

covers a broad range of techniques including light field imaging [37], quantitative phase imaging 

[38], CSI, and CTI [39], to name a few. 

 

Figure 2.1 Schematics of conventional imaging (a) and computational imaging (b). 
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2.2 Compressed spatial imaging (CSI) 

The SPI system, as shown in Fig. 2.2, employs a single-pixel detector (e.g., photodiode) at the 

receiving end, offering great potential for optical imaging at wavelengths where pixel-array 

detectors, such as CCD and CMOS cameras, are either not available or prohibitively expensive. 

SPI has been demonstrated with great success when operating with infrared light [40], terahertz 

waves [41], and even photoacoustic signals [42]. Instead of acquiring spatial information through 

parallel detection, SPI relies on using a digital micromirror device (DMD) to display a series of 

encoding patterns and then computationally reconstructs spatial information from a series of 

measurements [43]. The working principle of SPI is shown in Fig. 2.3. The object denoted by an 

image of the logo of “LACI” is expressed as a vector. Each encoding pattern is expressed as a 

vector placed at one row of the sensing matrix. Each measurement is the inner product between 

each encoding pattern and the object. Mathematically, the forward model of SPI can be modeled 

as a matrix-vector product form, 

𝐸 = Φ𝐼. (2.1) 

Here 𝐼 = [𝑥1, 𝑥2, 𝑥3, … 𝑥N]
T  denotes the object, and 𝐸 = [𝑦1, 𝑦2, 𝑦3, … 𝑦𝑀]

T  is the measurement. 

Note that the number 𝑀 of available measurements is less than the dimension 𝑁 of the object. 

The sensing matrix Φ ∈ ℝ𝑀×𝑁 consists of a series of vectors, each of which Φ𝑗 ∈ ℝ
𝑁, represents 

the 𝑗th encoding pattern and is employed to modulate the object, 𝑗 = 1,2,…𝑀. Equation 2.1 is an 

underdetermined linear system and the process of recovering 𝐼 from the measurement 𝐸 is ill-

posed in general, which means there are many candidate solutions. To this end, we need to bring 

in CS [44]. Notably, CS relies on two principles: sparsity, which pertains to the object of interest, 

details in Section 2.2.1, and incoherence, which pertains to the sensing modality, details in 

Section 2.2.2. Despite the unique advantage across almost the entire spectrum range, the 

imaging speed of the-state-of-art SPI is relatively slow, e.g., 1,000 fps given pixel count 32×32 

[45]. 
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Figure 2.2 Schematic of single-pixel imaging. DMD sequentially displays a group of encoding patterns. 

 

 

Figure 2.3 Working principle of single-pixel imaging with a dense sensing matrix. 

 

2.2.1 Sparsity  

Sparsity expresses the idea that the “information rate” of a continuous-time signal may be 

significantly smaller than suggested by its bandwidth, or that the degree of freedom of a discrete-

time signal is much smaller than its (finite) length [44]. In other words, the sparsity of an image is 

the percentage of pixels with zero values. Specifically, CS utilizes the fact that many natural 

signals are sparse or compressible in the sense that they have concise representations when 

expressed in the proper basis ψ. Fortunately, most, if not all, natural signals have concise 

representations when expressed on a convenient basis, for instance, the image in Figure 2.4 (a) 

and its wavelet transform in (b). Despite nearly all the image pixels being nonzero values, the 

wavelet coefficients provide a concise summary: most coefficients are small, whereas relatively 
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few large coefficients contain most of the information. As a result of sparsity, one can discard 

small coefficients without much perceptual loss when a signal has a sparse expansion. Figure 2.4 

(c) shows a case where the perceptual loss is barely noticeable between a megapixel image to 

its approximation obtained by throwing away 97.5% of the coefficients. 

 

Figure 2.4 Illustration of sparsity. (a) Original megapixel image and (b) its wavelet transform coefficients. (c) 
The reconstruction was obtained by keeping 25,000 large coefficients [51]. 

 

2.2.2 Incoherence  

Incoherence extends the duality between time and frequency [44] by expressing that signals 

having a sparse representation in the basis ψ must be spread out in the domain where they are 

acquired. For example, a Dirac or a spike is sparse in the time domain, at the same time, it is 

spread out in the frequency domain. In other words, incoherence indicates that unlike the signal 

of interest, the sampling/sensing waveforms are extremely densely represented in the basis ψ. It 

can be concluded that random matrices are largely incoherent with any fixed basis ψ. Using a 

random matrix as the sampling/sensing waveforms, e.g., white noise, is the standard way to 

conduct spatial encoding in the CS paradigm. 

 

2.3 Compressed temporal imaging (CTI) 

In contrast to CSI, CTI utilizes a pixel-array detector to record a transient scene in a compressive 

manner, ensuing in a CS-based algorithm to reconstruct the input transient scene. The typical 

CTI modalities include CUP and [4, 19-21, 46-59] and CACTI [60-64]. One distinguished 

difference between CACTI and CUP is their encoding scheme and thus their imaging speed. 

CACTI tries to actively change the encoding mask itself for generating a series of encoding 

patterns, while CUP tries to passively change encoding patterns with a static encoding mask. As 
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a result, the maximum imaging speed of the former is thousands of fps while that of the latter is 

over billions of fps. 

 

2.3.1 Compressed ultrafast photography (CUP) 

The system schematic of CUP [19] is shown in Fig. 2.5(a). Through a camera lens, beam splitter, 

tube lens, and objective, an object is imaged onto a DMD [42]. The modulated object is relayed 

into the streak camera by the objective, tube lens, and beam splitter. After the fully opened 

entrance of the streak camera [Fig. 2.5(b)], the modulated object mainly experiences a photon-

to-photoelectron conversion by a photocathode, photoelectron sweeping by a pair of electrodes, 

and spatiotemporal integration of a CCD camera. With the prior information of the object’s 

sparsity, CS-based image reconstruction is used to retrieve the object (e.g., a video). Figure 2.5(b) 

shows the field of view (FOV) of a streak camera is one-dimensional (1D), limited by a narrow 

entrance slit (10–50 μm wide). CUP enables the streak cameras to work with a fully opened slit. 

Figure 2.6 shows the working principle of CUP. Dynamics are encoded by a static encoding 

pattern. Each encoded frame experiences a temporal shearing operator, and then all spatially 

encoded and temporally sheared frames are integrated by a spatiotemporal integration operator. 

Mathematically, the forward model of CUP could be expressed as  

𝐸 = 𝐓𝐒𝐂 𝐼(𝑥, 𝑦, 𝑡). (2.2) 

Here 𝐂 denotes spatial encoding, 𝐒 denotes temporal shearing, and 𝐓 denotes spatiotemporal 

integration. 𝐼(𝑥, 𝑦, 𝑡) denotes dynamics, and 𝐸 denotes the optical energy of measurement. Upon 

the prior knowledge of the operators and the sparsity of the transient scene, 𝐼(𝑥, 𝑦, 𝑡) can be 

recovered from the measurement 𝐸 by solving the inverse problem of 

𝐼 = argmin
𝐼

{
1

2
‖𝐸 − 𝐓𝐒𝐂𝐼‖2

2 + 𝜆𝛷(𝐼)} (2.3) 

Here ‖∙‖2
2  represents the 𝑙2  norm, 𝜆  is a weighting coefficient, and 𝛷(·)  is a regularizer. In 

practice, 𝐼(𝑥, 𝑦, 𝑡) was recovered by using a CS-based algorithm.  
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Figure 2.5 Schematics of compressed ultrafast photography (a) and a streak camera (b). DMD, digital micro-
mirror device. CCD, charge-coupled device [17]. 
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Figure 2.6 Working principle of CUP. The red line denotes the shifting distance along the shearing direction. 

 

2.3.2 Coded aperture compressive temporal imaging (CACTI) 

The system schematics of CACTI [60, 61, 63, 64] are shown in Fig. 2.7. A transient scene (e.g., 

an intensity-decay letter ‘C’) is imaged by front optics onto an encoding plane, in which a 

sequence of encoding patterns are generated by a moving printed mask loaded on a piezoelectric 

stage [Fig. 2.7(a)], a DMD [Fig. 2.7(b)], and an LCOS [Fig. 2.7(c)], respectively. The modulated 

scene is relayed to a CCD/CMOS camera by relay optics for conducting spatiotemporal 

integration. Figure 2.8 shows the working principle of CACTI. Each frame of video is modulated 

by a different encoding pattern. All modulated frames are integrated into a single measurement. 

Mathematically, the forward model could be expressed as  

𝐸 = 𝐓(𝐒𝐂)𝐼(𝑥, 𝑦, 𝑡). (2.4) 

Here 𝐼(𝑥, 𝑦, 𝑡) denotes dynamics and (𝐒𝐂) denotes the spatial encoding and temporal shearing 

happening simultaneously. 𝐓 denotes spatiotemporal integration. 𝐸 denotes the optical energy of 

measurement. Compared to Eq. (2.2), CACTI could be viewed as a special case of CUP, where 

the spatial encoding and temporal shearing occur simultaneously, and CACTI shares the same 

reconstruction algorithms with CUP. 

To compare with CSI, the forward model of CTI could also use matrix-vector product form 

to express 

𝐸 = Φ̂𝐼. (2.5) 

Here, Φ̂ = 𝐓𝐒𝐂 or 𝐓(𝐒𝐂) denotes sensing matrix. Figure 2.9 illustrates the 𝑖th frame in the video 

and the 𝑖 th encoding pattern, 𝑖 = 1,2,3…𝑁𝑡 . It is worth noting that the sensing matrix is the 
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concatenation of 𝑁𝑡 diagonal matrices. Each diagonal matrix is reshaped from the corresponding 

encoding pattern. Compared to the dense sensing matrix in CSI in Fig. 2.3, this type of sensing 

matrix is sparse. Although the problem can be cast as a CS problem, existing CS theory cannot 

be employed directly to study the CTI, due to the special structure of the sensing matrix. To this 

end, Ref. [65] proposed a compression-based framework for the theoretical analysis of CTI 

systems. CACTI leveraged an active way to change encoding patterns with a changing rate higher 

than an off-the-shelf CCD or CMOS camera’s image speed. Since the changing rate of encoding 

patterns is inherently limited by either the moving speed of a piezoelectric stage or the refreshing 

rate of DMD (or LCOS), the imaging speeds of these imaging modalities are clamped at several 

thousand fps.  

 

Figure 2.7  Schematics of coded aperture compressive temporal imaging. The encoding mask is loaded on a 
piezoelectric stage (a), a digital micro-mirror device (b), and a liquid crystal on silicon (c). 
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Figure 2.8  Working principle of coded aperture compressive temporal imaging. 

 

 

 

Figure 2.9  Schematic of the matrix-vector product form of compressed temporal imaging. 
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2.3.3 Investigation of temporal shearing  

The concept of temporal shearing is of significance in performing CTI. For instance, in CUP, a 

static encoding pattern was temporally sheared by a streak tube to generate multiple encoding 

patterns, which is the key to achieving an ultrafast encoding scheme. Inspired by the tomography 

concept, the temporal shearing could be viewed as a kind of projection operator. It links the time 

domain to another domain, such as space, spectrum, and angle, to name a few. For example, the 

common temporal shearing is the time-to-space projection, which could be mainly grouped into 

three categories, including single-shearing, dual-shearing, and diagonal-shearing methods. 

Among them, CUP is the typical single-shearing model as shown in Fig. 2.6. Figure 2.10 shows 

the working principle of dual-shearing time-to-space conversion. The dynamic scene is temporal 

shearing first and then is encoded by a static encoding pattern, in which each frame of the 

dynamic scene goes through a different area on the encoding pattern. Then, inverse temporal 

shearing is applied to cancel the first temporal shearing effect. After the spatiotemporal 

integration, all modulated frames are integrated into one compressed image. Compared to the 

single-shearing time-to-space conversion, the dual-shearing method makes full use of the pixel 

count of the detector in the shearing direction. Furthermore, each pixel in the measurement is the 

linear combination of the same-position pixel value in all frames, which maximally preserves the 

spatial information in the dynamic scene without the effect of the shearing operator and cross-

talk. Figure 2.11 shows a diagonal shearing time-to-space conversion. Not only were the encoded 

frames sheared along the horizontal direction but were sheared along the vertical direction 

simultaneously. The way of diagonal shearing makes the temporal information mixed with the 

horizontal and vertical information, which could supply more prior for improving the reconstruction 

accuracy in time. 

In the meantime, temporal shearing provides a way to improve image reconstruction 

quality. For instance, multiple-view CUP [20] as shown in Fig. 2.12 includes three views, including 

two time-shearing views (generated by the states of ‘OFF’ and ‘ON’ of a DMD simultaneously) 

and one time-unshearing view (captured by an external camera). The time-unshearing view was 

used to preserve the spatial information in the dynamic scene. Meanwhile, both time-shearing 

views retain temporal information by electronic streaking via time-to-space conversion. 

Altogether, three views maximally keep rich spatiotemporal information. 
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Figure 2.10  Working principle of dual-shearing time-to-space conversion. The red line denotes the shifting 
distance along the horizontal direction. 

 

 

Figure 2.11  Working principle of diagonal shearing time-to-space conversion. The red line denotes the shifting 
distance along with the horizontal and vertical directions. 
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Figure 2.12  Schematic of multiple view CUP with the lossless-encoding scheme [20]. 

 

2.4 Reconstruction algorithms 

The reconstruction algorithms of CTI could be grouped into two categories. The first one is 

iterative algorithms with preset priors such as total variation (TV) [66] or deep denoising priors 

[67]. The typical iterative algorithms include two steps iteration shrink/thresholding (TwIST) [68] 

and plug-and-play (PnP) alternative direction multiplier methods (ADMM) [69]. The second one is 

end-to-end learning-based algorithms, in which a measurement (input) directly generates a video 

(output) through a pre-trained network [70]. 

2.4.1 TwIST 

TwIST is applied to solve an inverse problem (i.e., given 𝐸 and Φ to find a solution to 𝐸 = Φ𝐼) by 

a minimizer of a convex objective function:  

𝑓(𝐼) = argmin
𝐼

{
1

2
‖Φ𝐼 − 𝐸‖2 + 𝜆𝛷(𝐼)} . (2.6) 

Here, 𝐼  denotes the video to be reconstructed. Φ  represents the sensing matrix. 𝛷(∙)  is the 

regularization function. λ is the known regularization constant. For the 𝑗th iteration, the estimation 

of 𝐼 becomes 
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𝐼1 = 𝒯𝜆(𝐼0), (2.7) 

𝐼𝑗+1 = (1 − 𝛼)𝐼𝑗−1 + (𝛼 − 𝛽)𝐼𝑗 +  𝛽𝒯𝜆(𝐼𝑗). (2.8) 

Here, 𝐼0 is the vectorized signal. 𝛼 and 𝛽 are the pre-set constants for different reconstruction 

tasks, which affect the convergence rate of the minimization problem of Eq. (2.6). The designation 

“two-step” stems from the fact that it depends on both 𝐼𝑗−1 and 𝐼𝑗, rather than only on 𝐼𝑗. For 𝑗 ≥ 1, 

a function mapping operation 𝒯𝜆: R
𝑚 ⟶ R𝑚 is defined as  

𝒯𝜆(𝐼) =  Ψ𝜆[𝐼 + Φ
𝑇(𝐸 − Φ𝐼)]. (2.9) 

Here, Φ𝑇 denotes the transpose of Φ. Ψ𝜆 denotes a denoising operator, whose choice is related 

to the regularization function 𝛷(∙). With TV as the regularization function, the denoising operator 

leverages the Chambolle algorithm [71]. 

 The relative change of the estimated output from the objective function [i.e., Eq. (2.6)] is 

used as the merit function. The iteration process stops when this change is less than the pre-set 

tolerance value 𝜗 (e.g., 0.01), i.e., 

|𝑓(𝐼𝑗) − 𝑓(𝐼𝑗−1)|

𝑓(𝐼𝑗)
≤ 𝜗. (2.10) 

2.4.2 PnP-ADMM 

ADMM is an advanced tool for minimizing the sum of multiple separable functions. For simplicity, 

we use the two-function model as an example. The algorithm works by converting the 

unconstrained optimization [i.e., Eq. (2.6)] into a constrained problem by introducing a variable 𝑣: 

(𝐼, 𝑣) = argmin
𝐼,𝑣

{
1

2
‖Φ𝐼 − 𝐸‖2 + 𝜆𝛷(𝐼)} , subject to 𝐼 = 𝑣. (2.11) 

It considers the augmented Lagrangian function by introducing a Lagrange multiplier 𝑢  and 

penalty parameter 𝜌, so that Eq. (2.11) becomes 

(𝐼, 𝑣, �̂�) = argmin
𝐼,𝑣,𝑢

{ℒ(𝐼, 𝑣, 𝑢)} . (2.12) 

where ℒ(𝐼, 𝑣, 𝑢) =  
1

2
‖Φ𝐼 − 𝐸‖2 + 𝜆𝛷(𝑣) + 𝑢𝑇(𝐼 − 𝑣) +

𝜌

2
‖𝐼 − 𝑣‖2.  Then, the algorithm finds the 

solution by seeking a saddle point of ℒ, which involves solving a sequence of sub-problems in the 

form 
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𝐼(𝑗+1) = argmin
𝐼

{
1

2
‖Φ𝐼 − 𝐸‖2 +

𝜌

2
‖𝐼 − 𝐼(𝑗)‖

2
} , (2.13) 

𝑣(𝑗+1) = argmin
𝑣

{𝜆𝛷(𝑣) +
𝜌

2
‖𝑣 − �̃�(𝑗)‖

2
} , and (2.14) 

�̅�(𝑗+1) = �̅�(𝑗) + (𝐼(𝑗+1) − 𝑣(𝑗+1)). (2.15) 

Here, �̅�(𝑗) ≝ 𝑢(𝑗)
𝜌⁄  is the scaled Lagrange multiplier. 𝐼(𝑗) ≝ 𝑣(𝑗) − �̅�(𝑗)  and �̃�(𝑗) ≝ 𝐼(𝑗+1) + �̅�(𝑗) 

are the intermediate variables [72]. Under the mild conditions, one can show that the iterates 

returned by Eqs. (2.13)–(2.15) converge to the solution of Eq. (2.11).  

 The idea of plug-and-play(PnP)-ADMM is to modify Eq. (2.14) by observing that it is a 

denoising step if we treat �̃�(𝑗) as a “noisy” version of 𝑣 and 𝛷(𝑣) as a regularization for 𝑣. Based 

on this observation, we can replace Eq. (2.14) with a denoiser 𝒟𝜎: R𝑚 ⟶ R𝑚 such that 

𝑣(𝑗+1) = 𝒟𝜎(�̃�
(𝑗)), (2.16) 

where 𝜎 =  √𝜆/𝜌  is the denoising strength. The choice of 𝒟𝜎 is broad, including TV denoising, 

deep convolution neural network, and block-matching and 3D filtering (BM3D) [73] to name a few. 

PnP-ADMM uses the relative change of the estimate in adjacent iterations as the merit function:  

if 
‖𝐼(𝑗+1)−𝐼(𝑗)‖

2

‖𝐼(𝑗+1)‖
2

< 𝜛 and 𝜌𝑗+1 = 𝜌𝑗  . (2.17) 

Here, 𝜛 (0 < 𝜛 < 10-3) is the pre-set tolerance value.  

2.4.3 Learning-based CTI 

The long-running time of the iteration algorithm precludes wide applications of CTI, especially in 

some cases, a real-time visualization is desired. Benefitting from recent advances in deep 

learning, real-time end-to-end reconstruction has been demonstrated in CTI [74]. The deep 

learning approach first learns, Φ−1, an approximate inverse function of the system forward model 

in training and then provides instantaneous reconstruction by directly estimating outputs from the 

input measurements without an iteration process. Mathematically, it could be expressed as: 

𝐼 = Φ−1𝐸. (2.18) 

For obtaining the accurate Φ−1, a large number of training data is required for the supervised 

learning methods, in which labeled datasets are used to train algorithms for classifying data or 

predicting outcomes accurately. Furthermore, another testing data that have never been seen by 
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the network is used to test the robustness and inference ability of the trained network. The typical 

network structures include deep fully connected networks [70], U-net [75] with convolution neural 

networks, and autoencoder with generative adversarial networks [76]. To overcome the overfitting 

issue during the training procedure, different merit functions, like pixel-wise mean squared error 

and the multiscale structural similarity index, are employed. 

 

2.4.4 Comparison between TwIST, PnP-ADMM, and learning-based methods 

The PnP-ADMM framework [i.e., Eqs. (2.11)–(2.17)] has a better decomposability than that of the 

TwIST algorithm [i.e., Eqs. (2.6)–(2.10)] in handling complex and multiple-featured global 

optimization problems. Using a decomposition-coordination strategy, PnP-ADMM divides the 

large global optimization problem into small and easier-to-handle sub-problems, whose solutions 

are coordinated to help pinpoint the global minimization [72]. For instance, the inverse problem 

Eq. (2.6) is separated into three sub-problems as Eqs. (2.13)–(2.15) in PnP-ADMM. Among them, 

Eq. (2.14) is cast as a denoising step to leverage advanced denoising functions, which leads to a 

better image reconstruction quality.  

Despite the learning-based methods having the reconstruction speed advantage, it usually 

requires a deep model, long training time, and a large amount of training data. Furthermore, it is 

less flexible than the iteration-based algorithms because the model is trained and then works on 

the system with determined hyper-parameters such as image size, compression ratio, and coding 

patterns.  

In terms of reconstruction speed and image quality, learning-based methods are the best, 

but they are also the least flexible than the iterative methods, meanwhile, the PnP-ADMM 

outperforms TwIST as shown in Fig.2.13. Considering overall performance on quality, flexibility, 

ease of use, cost, and speed, the PnP-ADMM is a good baseline for CTI reconstruction. 
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Figure 2.13  Comparison of three types of reconstruction methods in terms of reconstruction image quality, 
reconstruction speed, and flexibility. 
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Abstract 

Single-shot ultra-high-speed imaging is of great significance to capture transient phenomena in 

physics, biology, and chemistry in real time. Existing techniques, however, have a restricted 

application scope, a low sequence depth, or a limited pixel count. To overcome these limitations, 

we developed single-shot compressed optical-streaking ultra-high-speed photography (COSUP) 

with an imaging speed of 1.5 million frames per second, a sequence depth of 500 frames, and an 

(𝑥, 𝑦) pixel count of 0.5 megapixels per frame. COSUP’s single-shot ultra-high-speed imaging 

ability was demonstrated by recording single laser pulses illuminating through transmissive 

targets and by tracing a fast-moving object. As a universal imaging platform, COSUP is capable 

of increasing imaging speeds of a wide range of CCD and CMOS cameras by four orders of 

magnitude. We envision COSUP to be applied in widespread applications in biomedicine and 

materials science. © 2018 Optical Society of America 

OCIS codes: (110.1758) Computational imaging; (170.6920) Time-resolved imaging; (100.3010) 

Image reconstruction techniques 
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3.1 Introduction 

Single-shot ultra-high-speed [i.e., 0.1 to 10 million frames per second (Mfps)] imaging [77] is 

indispensable for visualizing various instantaneous phenomena occurring in two-dimensional 

(2D) space, such as phosphorescence light emission [78], neural activities [79], and 

conformational changes in proteins [80]. Existing single ultra-high-speed imaging techniques [14, 

18, 81-87] can be generally categorized into active-detection and passive-detection domains. The 

active-detection approaches exploit specially designed pulse trains to probe 2D transient events 

[i.e. (𝑥, 𝑦) frames that vary in time]. The representative modalities include frequency-dividing  

imaging [81] and time-stretching imaging [82-85]. However, these methods are not suitable for 

imaging self-luminescent and color-selective events. By contrast, the passive-detection 

approaches leverage receive-only ultra-high-speed detectors to record photons scattered and 

emitted from the transient scenes. Examples include rotatory-mirror-based cameras [18], beam-

splitting-based framing cameras [86], the in-situ storage image sensor CCD camera [14], and the 

global shutter stacked CMOS camera [87]. Nevertheless, these cameras either have a bulky and 

complicated structure or have a limited sequence depth (i.e., the number of frames in one 

acquisition) and pixel count. 

 To circumvent these drawbacks, computational imaging techniques [88], combining 

physical data acquisition and numerical image reconstruction, were increasingly featured in recent 

years. In particular, the implementation of compressed sensing (CS) [89] for spatial and/or 

temporal multiplexing has allowed overcoming the speed limit with a substantial improvement in 

the sequence depth and pixel count [90, 91]. The representative techniques in this category 

include programmable pixel compressive camera (P2C2) [92, 93], coded aperture compressive 

temporal imaging (CACTI) [63, 94], and the multiple-aperture (MA)-CS CMOS camera [95]. 

However, despite reaching over one megapixel per frame, the imaging speeds of P2C2 and 

CACTI, inherently limited by the refreshing rate of a spatial light modulation and the moving speed 

of a piezoelectric stage, are clamped at several thousand fps (kfps). For MA-CS CMOS, despite 

its ultra-high-speed imaging speeds, it has a limited pixel count of 64×108 with a sequence depth 

of 32. Thus, existing computational imaging modalities fall short to simultaneously possess 

satisfying specifications in the frame rates, sequence depth, and pixel count for ultra-high-speed 

imaging.  

To overcome these limitations, in this Letter, we propose single-shot compressed optical-

streaking ultra-high-speed photography (COSUP), which is a passive-detection computational 
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imaging modality with a 2D imaging speed of 1.5 Mfps, a sequence depth of 500, and an (𝑥, 𝑦) 

pixel count of 1000 × 500 per frame. 

3.2 Results 

3.2.1 Operating principle of COSUP 

The schematic of the COSUP system is shown in Fig. 3.1. A transient scene is first imaged onto 

a digital micromirror device (DMD, AJD-4500, Ajile Light Industries), on which a binary pseudo-

random pattern (with an encoding pixel size of 32.4 × 32.4 µm2) is loaded to conduct spatial 

encoding. Subsequently, the spatially encoded frames are relayed onto a CMOS camera (GS3-

U3-23S6M-C, FLIR) by a 4f system. A galvanometer scanner (GS, 6220H, Cambridge 

Technology), placed at the Fourier plane of this 4f system, temporally shears the spatially 

encoded frames linearly to different spatial locations along the 𝑥  axis of the CMOS camera 

according to their time of arrival. The synchronization between the GS’ rotation and the camera’s 

exposure is controlled by the sinusoidal signal and the rectangular signal from a function 

generator (DG1022, Rigol Technologies), as depicted in the inset of Fig. 3.1. Finally, via 

spatiotemporal integration, the CMOS camera compressively records the spatially encoded and 

temporally sheared scene as a 2D streak image with a single exposure. It is noted that our work 

is inspired by recent advances in compressed ultrafast photography [96-98]. However, instead of 

using a streak camera, we implement the GS [99, 100] for temporal shearing and use an off-the-

shelf CMOS camera for detection. This design thus avoids drawbacks—such as the space-charge 

effect and the low quantum efficiency of the photocathode—that are presented in the streak 

camera. In the following, we shall demonstrate that this all-optical approach can increase the 

imaging speed of the CMOS camera by four orders of magnitude to the Mfps level for recording 

single laser pulses illuminating through transmissive targets and for tracking a fast-moving object. 
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Figure 3.1 Schematic of the COSUP system. Inset: Synchronization between the CMOS camera’s exposure 

(black solid line) with an exposure time of 𝒕𝐞 and the galvonometer scanner’s sinusoidal control signal (blue dashed 
line) with a period of 𝒕𝐠. Lenses 1 and 4. 

 

The operation of the COSUP system can be described by the following model 

𝐸 = 𝐓𝐒𝐨𝐂 𝐼(𝑥, 𝑦, 𝑡), (3.1) 

where 𝐼(𝑥, 𝑦, 𝑡) is the light intensity of the transient event, C represents spatial encoding by the 

DMD, 𝐒𝐨 represents linearly temporal shearing by the GS (the subscript “o” stands for “optical”), 

and T represents spatiotemporal integration by the CMOS camera. Because of the prior 

knowledge of the operators and the spatiotemporal sparsity of the transient scene, 𝐼(𝑥, 𝑦, 𝑡) can 

be recovered from the measurement E by solving the inverse problem of 

𝐼 = argmin
𝐼

{
1

2
‖𝐸 − 𝐓𝐒𝐨𝐂𝐼‖2

2 + 𝜆𝛷TV(𝐼)} (3.2) 

Here ‖∙‖2
2 represents the 𝑙2 norm, 𝜆 is a weighting coefficient, and 𝛷TV(·) is the total variation (TV) 

regularizer. In practice, 𝐼(𝑥, 𝑦, 𝑡)  was recovered by using a CS-based algorithm that was 

developed upon the two-step iterative shrinkage/thresholding algorithm [101]. 

 To obtain a linear temporal shearing operation, we synchronized the camera’s exposure 

window with the GS’ linear rotation region. In particular, a static target was placed at the object 

plane. By tuning the initial phase of the sinusoidal function, the camera’s exposure window was 

slid to search for the peak or valley of the sinusoidal signal. The search was completed when 

local features of the static target were precisely matched in the streak image due to the symmetric 
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back and forth scanning. Finally, 90° was added to the initial phase to find the linear slope region 

of the sinusoidal function. 

 The reconstructed movie has a frame rate of 

𝑟 =
𝛼𝑈𝑓4
𝑡𝑔𝑑

. (3.3) 

Here α=0.07 rad/V is a constant that links the voltage added onto the GS, denoted as U, with the 

deflection angle in its linear rotation range. 𝑓4=75 mm is the focal length of Lens 4, 𝑡𝑔 is the period 

of the sinusoidal voltage waveform added to the GS, and 𝑑 = 5.86 µm is the CMOS sensor’s pixel 

size. In addition, the preset exposure time of the CMOS camera, 𝑡e, determines the total length 

of the recording time window. If the entire streak is located within the sensor, the sequence depth 

can be calculated by 𝑁𝑡  =  𝑟𝑡e. The number of pixels in the 𝑥 axis of each frame, 𝑁𝑥, can be 

calculated by 𝑁𝑥 ≤ 𝑁c + 1 − 𝑁𝑡 , where 𝑁cdenotes the number of pixels in each column of the 

CMOS sensor. The number of pixels in the 𝑦 axis of each frame, 𝑁𝑦, is less than or equal to that 

in each row of the CMOS sensor, 𝑁r [i.e., 𝑁𝑦 ≤ 𝑁r].  

3.2.2 Quantification of system’s spatial resolution 

To characterize COSUP’s spatial frequency responses, we imaged single laser pulses 

illuminating through a resolution target [Fig. 3.2(a)]. In particular, a 532-nm continuous wave laser 

was controlled by an external trigger to generate laser pulses with different temporal widths. Five 

different pulse widths (100, 300, 500, 700, and 900 µs) were used to provide decreased sparsity 

from 90% to 10% with a step of 20% in the temporal axis for a recording time window of 1 ms. 

COSUP captured these dynamic scenes at 60 kfps. The illuminated bars (i.e., Elements 4 to 6 in 

Group 2 and Elements 1 to 6 in Group 3) are shown as the first panel in Fig. 3.2(b). We 

reconstructed movies for each pulse width and projected these datacubes onto the 𝑥-𝑦 plane, as 

shown as the rest of the panels in Fig. 3.2(b). These results reveal that the spatial resolution of 

COSUP depends on the sparsity of the transient scene. The contrast in the reconstructed image 

quality degrades with the increased laser pulse widths. Moreover, longer pulse widths produce 

lower reconstructed intensity. To quantify the system’s performance by considering both effects, 

we used the normalized product of the contrast and the reconstructed intensity as the merit 

function [Fig. 3.2(c)]. For the 900-µs pulse illumination, Element 3 in Group 3 in the reconstruction 

has a normalized product below 0.25, which was used as the threshold to determine the 

resolvable feature. Thus, the COSUP’s spatial resolution was quantified to be 50 µm. 
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Figure 3.2 Quantifying COSUP’s spatial frequency responses. (a) Experimental setup. (b) Illuminated bars on 
the resolution target. In the first panel, the numbers represent Elements 4 to 6 in Group 2 and Elements 1 to 6 in Group 
3. The rest of the panels show the projected images of illuminated bars for different laser pulse widths, calculated by 
summing over voxels the reconstructed (𝑥, 𝑦, 𝑡 ) datacubes along the 𝑡 axis. (c) Comparison of COSUP’s spatial 
frequency responses with different laser pulse widths. 

 

3.2.3 Quantification of system’s temporal resolution 

To demonstrate COSUP’s multi-scale ultra-high-speed imaging capability, we captured the 

transmission of single laser pulses through a mask. An incident laser pulse was divided by a beam 

splitter into two components. The reflected component was recorded by a photodiode, and the 

transmitted component illuminated a transmissive USAF mask that modulated the laser pulses’ 

spatial profiles. For the first experiment, we generated a pulse train that contained four 300-µs 

pulses. COSUP’s imaging speed was set to 60 kfps. While the CMOS camera, at its intrinsic 

(c)

(b)

(a)

100 μs 300 μs 500 μs 700 μs 900 μs

1

0

N
o

rm
a

liz
e

d
 in

te
n

s
ity

 

 

 

 

 

Spatial frequency (lines/mm)

N
o

rm
a

li
z
e

d
 p

ro
d

u
c

t 
o

f 
th

e
 c

o
n

tr
a

s
t

a
n

d
 t

h
e
 r

e
c
o

n
s
tr

u
c
te

d
 i
n

te
n

s
it

y

14 20 26

1.0

0.5

0.0

100 μs

300 μs

500 μs

700 μs

900 μs

G
ro

u
p

 2
G

ro
u

p
 3

4

5

6

1

2

3

4

5

6
100 µm



   

28 
 

imaging speed of 20 fps, could only provide a single image [red solid box in Fig. 3.3(a)] without 

any temporal information, COSUP recorded the mask’s spatial profile and laser pulse’s intensity 

time course in a movie with 240 frames. A representative frame (t = 433 µs) is shown in Fig. 

3.3(a). Figure 3.3(b) depicts the normalized intensity of a selected cross section [cyan dashed 

line in Figs. 3.3(a) and (d)], which demonstrates the well reconstructed spatial features to the 

ground truth. Moreover, we calculated the average intensity in each frame. The time course shows 

a good agreement with the photodiode-recorded result [Fig. 3.3(c)]. We then increased the 

imaging speed to 1.5 Mfps to record a single 10-µs laser pulse. A representative frame (t = 33 µs) 

is shown in Fig. 3.3(d). The comparison of the time courses of averaged intensity [Fig. 3.3(e)] 

confirmed consistency between the COSUP and photodiode results under this imaging speed.  

 

Figure 3.3 Recording transmission of single laser pulses through a mask using COSUP. (a) A represented 
reconstructed frame showing a 300-µs laser pulse passing through a transmissive USAF pattern. The imaging speed 
was 60 kfps. Inset: the time-integrated image captured by the CMOS camera with its intrinsic imaging speed (20 fps). 
(b) Normalized intensity of a selected cross section [cyan dash lines in (a) and (d)] in the ground truth (black circle) and 
in the representative reconstructed frames using 300-µs (green solid line) and 10-µs (magenta dashed line) laser 
pulses. (c) Comparison of the measured normalized average intensity of the laser pulse as a function of time using the 
COSUP system (red solid line) and a photodiode (black dashed line) for the 300-µs laser pulse. (d) As (a), but using a 
10-µs laser pulse with a 1.5-Mfps imaging speed. (e) As (c), but for a 10-µs laser pulse. 

 

3.2.4 Application of COSUP to fast-moving objects tracking 

To demonstrate COSUP’s ability to track fast-moving objects, we imaged an animation of a fast-

moving ball [Fig. 3.4(a)]. This animation comprised 40 patterns, which were loaded and played 

by another DMD (D4100, Digital Light Innovations) at 20 kHz. We shone a collimated laser beam 

onto the DMD at ~24° from its surface normal. The COSUP system perpendicularly faced the 
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DMD’s surface and collected the light diffracted by the patterns at 140 kfps. Figure 3.4(b) shows 

a time-integrated image of this dynamic event acquired by the CMOS camera at its intrinsic frame 

rate of 20 fps. Figure 3.4(c) shows a color-encoded image generated by superimposing 10 

representative time-lapse frames (with an interval of 215 µs) of the moving ball from the movie 

reconstructed by the COSUP system. While the time-integrated image merely presents the overall 

trace, the time-lapse frames unambiguously show the evolution of the spatial position and the 

shape (especially the deformation from the round to the elliptical shape at the turning points of its 

trajectory) at each time point. To evaluate the reconstruction’s accuracy, we traced the centroids 

of the bouncing ball in each reconstructed frame [Fig. 3.4(d)]. The measurement errors were 

calculated by subtracting the measured position of centroids from the preset ones. Further, the 

root-mean-square errors (RMSEs) of reconstructed centroids along the 𝑥  and 𝑦 axes were 

calculated to be 22 µm and 9 µm, respectively. These analyses confirm that the COSUP system 

has good measurement precision with respect to the ground truth. The anisotropy of RMSEs was 

attributed to the spatiotemporal mixing along the shearing direction. 
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Figure 3.4 Tracing a fast-moving object using COSUP. (a) Experimental setup. (b) Time-integrated image of the 
fast-moving ball patterns, imaged at the intrinsic frame rate of the CMOS camera (20 fps). (c) Superimposed image of 
10 representative time-lapse frames (with an interval of 215 µs) of the same dynamic scene in (b), imaged by using the 

COSUP system. (d) Comparison of the centroid positions along the 𝑥 and 𝑦 axes between the measurement results 
and the ground truths. To avoid cluttering, only one data point is shown for every seven measured data points. 

 

3.3 Conclusions 

In conclusion, we have demonstrated single-shot 2D ultra-high-speed passive imaging using 

COSUP. Featuring optical streaking using a GS in the 4f imaging system, COSUP endows an off-

the-shelf CMOS camera with tunable imaging speeds of up to 1.5 Mfps, which is approximately 

three orders of magnitude higher than the state-of-art in imaging speed of CS-based temporal 

imaging using silicon sensors [19-21]. In addition, the system is capable of reaching a sequence 

depth of up to 500 frames and a pixel count of 0.5 megapixels in each frame. COSUP’s ultra-
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high-speed imaging capability was demonstrated by capturing the transmission of single laser 

pulses through a mask and by tracing the shape and position of a fast-moving object in real time.  

 As a universal imaging platform, COSUP can achieve a scalable spatial resolution by 

coupling with different front optics in microscopes and telescopes. Moreover, although not 

demonstrated in this work, COSUP can be easily applied to other CCD or CMOS cameras 

according to specific studies. For instance, integration of an electron-multiplying CCD camera in 

the COSUP system will enable high-sensitivity optical neuroimaging of action potential 

propagating at tens of meters per second [102] under microscopic settings [103]. As another 

example, an infrared-camera-based COSUP system could enable wide-field temperature sensing 

in deep tissue using nanoparticles [104]. In summary, by leveraging the advantages of off-the-

shelf cameras and sensors, COSUP is expected to find widespread applications in both 

fundamental and applied sciences. 
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Abstract 

Photoluminescence lifetime imaging of upconverting nanoparticles is increasingly featured in 

recent progress in optical thermometry. Despite remarkable advances in photoluminescent 

temperature indicators, existing optical instruments lack the ability of wide-field 

photoluminescence lifetime imaging in real time, thus falling short in dynamic temperature 

mapping. Here, we report video-rate upconversion temperature sensing in wide field using single-

shot photoluminescence lifetime imaging thermometry (SPLIT). Developed from a compressed-

sensing ultrahigh-speed imaging paradigm, SPLIT first records wide-field luminescence intensity 

decay compressively in two views in a single exposure. Then, an algorithm, built upon the plug-

and-play alternating direction method of multipliers, is used to reconstruct the video, from which 

the extracted lifetime distribution is converted to a temperature map. Using the core/shell 

NaGdF4:Er3+,Yb3+/NaGdF4 upconverting nanoparticles as the lifetime-based temperature 

indicators, we apply SPLIT in longitudinal wide-field temperature monitoring beneath a thin 

scattering medium. SPLIT also enables video-rate temperature mapping of a moving biological 

sample at single-cell resolution.   
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4.1 Introduction 

Temperature is an important parameter associated with many physical, chemical, and biological 

processes [105]. Accurate and real-time (i.e., the actual time during which the event occurs) 

temperature sensing at microscopic scales is essential to both industrial applications and scientific 

research, including the examination of internal strains in turbine blades [106], control of the 

synthesis of ionic liquids [107], and theranostics of cancer [108]. In the past decade, 

photoluminescence lifetime imaging (PLI) has emerged as a promising approach to temperature 

sensing [109]. Because photoluminescence can be both excited and detected optically, the 

resulting non-contact PLI possesses a high spatial resolution [104, 110, 111]. This advantage not 

only overcomes the intrinsic limitation in spatial resolution of imaging thermography due to the 

long wavelengths of thermal radiation but also avoids heat-transfer-induced inaccuracy in 

conventional contact methods [112]. Moreover, independent of prior knowledge of samples’ 

physical properties (e.g., emissivity and Grüneisen coefficient [113, 114]), PLI brings in higher 

flexibility in sample selection. Furthermore, PLI is less susceptible than the intensity-based 

measurements to inhomogeneous signal attenuation, stray light, photobleaching, light’s path 

length, and excitation intensity variations [115-119]. Finally, PLI does not rely on the concentration 

of labeling agents [110], which eliminates the need for special ratiometric probes [120]. 

Overcoming many challenges in previous methods, PLI is becoming a popular choice for optical 

thermometry [121-125].  

The success of PLI in temperature mapping depends on two essential constituents: 

temperature indicators and optical imaging instruments. Recent advances in biochemistry, 

materials science, and molecular biology have discovered numerous labeling agents [126-129] 

for PLI-based temperature sensing. Among them, lanthanide-doped upconverting nanoparticles 

(UCNPs) are ideal candidates. Leveraging the long-lived excited states provided by the lanthanide 

ions, UCNPs can sequentially absorb two (or more) low-energy near-infrared photons and convert 

them to one higher-energy photon. This upconversion process allows using excitation power 

densities several orders of magnitude lower than those needed for simultaneous multi-photon 

absorption [130, 131]. The near-infrared excitation, with smaller tissue extinction coefficients, also 

gains deeper penetration [132]. Besides, the upconverted luminescence, particularly the 

Boltzmann-coupled emission bands in co-doped erbium/ytterbium (Er3+/Yb3+) systems, is highly 

sensitive to temperature changes [133, 134]. Moreover, long-lived (i.e., microseconds to 

milliseconds) photoluminescence of UCNPs circumvents interferences from autofluorescence 

and scattering during image acquisition, which translates into improved imaging contrast and 
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detection sensitivity. Finally, because of advances in their synthesis and surface functionalization 

coupled with the innovation of core/shell engineering, over the years, UCNPs have become much 

brighter, photostable, biocompatible, and non-toxic [135]. As a result of these salient merits, 

UCNPs are one of the frontrunners in temperature indicators for PLI.  

Advanced optical imaging is the other indispensable constituent in PLI-based temperature 

mapping [136]. To detect photoluminescence on the time scale of microseconds to milliseconds, 

like that produced by UCNPs, most PLI techniques use point-scanning time-correlated single-

photon counting (TCSPC) [137]. Although they possess high signal-to-noise ratios, the scanning 

operation leads to an excessively long imaging time to form a two-dimensional (2D) lifetime map 

because extended pixel dwell time is required to record the long-lived emission [138]. To 

accelerate data acquisition, wide-field PLI modalities based on parallel collection in time-domain 

and frequency-domain have been developed [139]. In the time domain, these techniques extend 

the TCSPC technique to wide-field imaging (e.g., TimepixCam [140] and Tpx3Cam [141]). 

Photoluminescence decay over a 2D field of view (FOV) is synthesized from >100,000 frames, 

which requires the emission to be precisely repeatable. Alternatively, the frequency-domain wide-

field PLI techniques [142, 143] use phase difference between the intensity-modulated excitation 

and the received photoluminescence signal to determine the 2D lifetime distribution. 

Nevertheless, limited by the range of frequency synthesizers, the measurable lifetimes are mostly 

restricted to ≤100 µs, which is shorter than the lifetimes of most UCNPs. Akin to the time-domain 

techniques, these systems rely on the integration over many periods of modulation intensity, 

during which the sample must remain stationary. Thus far, existing PLI techniques fall short in 2D 

temperature sensing of moving samples with a micrometer-level spatial resolution.  

To surmount these limitations, we report an optical temperature mapping modality, termed 

single-shot photoluminescence lifetime imaging thermometry (SPLIT). Synergistically combining 

dual-view optical streak imaging with compressed sensing [144], SPLIT records wide-field 

luminescence decay of Er3+, Yb3+ co-doped NaGdF4 UCNPs in real time, from which a lifetime-

based 2D temperature map is obtained in a single exposure. Largely advancing existing optical 

thermometry techniques in detection capabilities, SPLIT enables longitudinal 2D temperature 

monitoring beneath a thin scattering medium and dynamic temperature tracking of a moving 

biological sample at single-cell resolution.  
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4.2 Results 

4.2.1 Operating principle of SPLIT  

The schematic of the SPLIT system is shown in Fig. 4.1. A 980-nm continuous-wave laser (BWT, 

DS3-11312-113-LD) is used as the light source. The laser beam passes through a 4f system 

consisting of two 50-mm focal length lenses (L1 and L2, Thorlabs, LA1255). An optical chopper 

(Scitec Instruments, 300CD) is placed at the back focal plane of lens L1 to generate 50-µs optical 

pulses. Then, the pulse passes through a 100-mm focal length lens (L3, Thorlabs, AC254-100-B) 

and is reflected by a short-pass dichroic mirror (Edmund Optics, 69-219) to generate a focus on 

the back focal plane of an objective lens (Nikon, CF Achro 4×, 0.1 numerical aperture, 11-mm 

field number). This illumination scheme produces wide-field illumination (1.5×1.5 mm2  FOV) to 

UCNPs at the object plane.  

The near-infrared excited UCNPs emit light in the visible spectral range. The decay of light 

intensity over the 2D FOV is a dynamic scene, denoted by 𝐼(𝑥, 𝑦, 𝑡). The emitted light is collected 

by the same objective lens, transmits through the dichroic mirror, and is filtered by a band-pass 

filter (Thorlabs, MF542-20 or Semrock, FF01-660/30-25). Then, a beam splitter (Thorlabs, BS013) 

equally divides the light into two components. The reflected component is imaged by a CMOS 

camera (FLIR, GS3-U3-23S6M-C) with a camera lens (Fujinon, HF75SA1) via spatiotemporal 

integration (denoted as the operator 𝐓) as View 1, whose optical energy distribution is denoted 

by 𝐸1(𝑥1, 𝑦1). 

The transmitted component forms an image of the dynamic scene on a transmissive 

encoding mask with a pseudo-random binary pattern (Fineline Imaging, 50% transmission ratio; 

60-µm encoding pixel size). This process of spatial encoding is denoted by the operator 𝐂. Then, 

the spatially encoded scene is imaged by a mechanical streak camera. In particular, the scene is 

relayed to the sensor plane of an electron-multiplying (EM) CCD camera (Nüvü Camēras, HNü 

1024) by a 4f imaging system consisting of two 100-mm focal length lenses (L4 and L5, Thorlabs, 

AC254-100-A). A galvanometer scanner (Cambridge Technology, 6220H), placed at the Fourier 

plane of the 4f imaging system, temporally shears the spatially encoded frames linearly to different 

spatial locations along the 𝑥2 axis of the EMCCD camera according to their time of arrival. This 

process of temporal shearing is denoted by the operator 𝐒. Finally, the spatially encoded and 

temporally sheared dynamic scene is recorded by the EMCCD via spatiotemporal integration to 

form View 2, whose optical energy distribution is denoted by 𝐸2(𝑥2, 𝑦2). 
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Figure 4.1 Schematic of the SPLIT system. The illustration shows data acquisition and image reconstruction of 
luminescence intensity decay in a letter “C”. L1–L5, Lens. 

 

By combining the image formation of 𝐸1(𝑥1, 𝑦1) and 𝐸2(𝑥2, 𝑦2), the data acquisition of 

SPLIT is expressed by 

𝐸 = 𝐓𝐌 𝐼, (4.1) 

where 𝐸 denotes the concatenation of measurements [𝐸1, 𝛼𝐸2]
𝑇 (the superscript T denotes the 

transpose), 𝐌 denotes the linear operator [𝟏, 𝛼𝐒𝐂]𝑇, and 𝛼 is a scalar factor introduced to balance 

the energy ratio between the two views during measurement [145]. The hardware of the SPLIT 

system is synchronized for capturing both views (detailed in Methods) that are calibrated before 

data acquisition (detailed in Supplementary Note 1 and Supplementary Fig. 4.1).  
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After data acquisition, 𝐸 is processed by an algorithm that retrieves the datacube of the 

dynamic scene by leveraging the spatiotemporal sparsity of the dynamic scene and the prior 

knowledge of each operator [146, 147]. Developed from the plug-and-play alternating direction 

method of multipliers (PnP-ADMM) framework [148, 149], the reconstruction algorithm of SPLIT 

solves the minimization problem of 

𝐼 = argmin
  𝐼

{
1

2
‖𝐓𝐌𝐼 − 𝐸‖2

2 + 𝑅(𝐼) + 𝐈+(𝐼)}. (4.2) 

Here, ‖∙‖2  represents the l2 norm. The fidelity term, 
1

2
‖𝐓𝐌𝐼 − 𝐸‖2

2 , represents the similarity 

between the measurement and the estimated result. 𝑅(∙) is the implicit regularizer that promotes 

sparsity in the dynamic scene. 𝐈+(∙) represents a non-negative intensity constraint. Compared to 

existing reconstruction schemes [150-152], PnP-ADMM implements a variable splitting strategy 

with a state-of-the-art denoiser to obtain fast and closed-form solutions to each sub-optimization 

problem, which produces a high image quality in reconstruction (see Supplementary Notes 2 and 

3 and Supplementary Fig. 4.2). The retrieved datacube of the dynamic scene has a sequence 

depth (i.e., the number of frames in a reconstructed movie) of 12–100 frames, each containing 

460 × 460 (𝑥, 𝑦) pixels. The imaging speed is tunable from 4 to 33 thousand frames per second 

(kfps) (detailed in Methods).  

The reconstructed datacube is then converted to a photoluminescence lifetime map. In 

particular, for each (𝑥, 𝑦) point, the area under the normalized intensity decay curve is integrated 

to report the value of the photoluminescence lifetime [153]. Finally, using the approximately linear 

relationship between the UCNPs’ lifetime and the physiologically relevant temperature range (20–

46 °C in this work) [121, 154], the 2D temperature distribution, 𝑇(𝑥, 𝑦), is calculated by 

𝑇(𝑥, 𝑦) = 𝑐t +
1

𝑆a
∫
𝐼(𝑥, 𝑦, 𝑡)

𝐼(𝑥, 𝑦, 0)
𝑑𝑡, (4.3) 

where 𝑐t is a constant, and 𝑆a is the absolute temperature sensitivity [136]. The derivation of 

Equation (4.3) is detailed in Supplementary Note 4. Leveraging the intrinsic frame rate of the 

EMCCD camera, the SPLIT system can generate lifetime-determined temperature maps at a 

video rate of 20 Hz. 
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4.2.2 Quantification of the system’s performance of SPLIT 

We prepared a series of core/shell UCNP samples to showcase SPLIT’s capabilities. These 

UCNPs shared the same NaGdF4: 2 mol% Er3+, 20 mol% Yb3+ active core of 14.6 nm in size, 

while differed by the thickness of their undoped NaGdF4 passive shell of 1.9, 3.5, and 5.6 nm (Fig. 

4.2a and detailed in Supplementary Note 5). All of the UCNP samples were of pure hexagonal 

crystal phase (Supplementary Fig. 4.3). Under the 980-nm excitation, upconversion emission 

bands of all samples were measured at around 525/545 nm and 660 nm, which correspond to the 

2H11/2/4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 radiative transitions, respectively (Figs. 4.2b–c). 

To characterize SPLIT’s spatial resolution, we covered the 5.6 nm-thick-shell UCNP 

sample with a negative USAF resolution target (Edmund Optics, 55-622). Operating at 33 kfps, 

SPLIT recorded the photoluminescence decay. The temporally projected datacube reveals that 

the intensity and contrast in the reconstructed image degrade with the decreased spatial feature 

sizes, eventually leading to the loss of structure whose size approaches that of the encoding pixel 

(Fig. 4.2d). The effective spatial resolution was thus determined to be 20 µm (Fig. 4.2e). Under 

these experimental conditions, the minimum power density for the SPLIT system was quantified 

to be 0.06 W mm-2 (detailed in Supplementary Note 6 and Supplementary Fig. 4.4).  

To demonstrate SPLIT’s ability to distinguish different lifetimes, we imaged the UCNPs 

with shell thicknesses of 1.9 nm, 3.5 nm, and 5.6 nm, covered by transparencies of letters “C”, 

“A”, and “N”, respectively, using a single laser pulse. The lifetime maps of these samples are 

shown in Fig. 4.2f, which reveals the averaged lifetimes for the 4S3/2 excited state of samples “C”, 

“A”, and “N” to be 142 µs, 335 µs, and 478 µs, respectively (Figs. 4.2g–h). These results were 

verified by using the standard TCSPC method (detailed in Supplementary Note 7 and 

Supplementary Fig. 4.5).  

SPLIT’s reconstruction algorithm shows a superb performance to existing mainstream 

algorithms popularly used in single-shot compressed ultrafast imaging [97, 144, 150, 152]. By 

using the experimental data, the comparison demonstrates that the dual-view PnP-ADMM 

algorithm used by SPLIT is more powerful in preserving spatial features while maintaining a low 

background, which enables a more accurate lifetime quantification and the ensuing temperature 

mapping (detailed in Supplementary Note 8 and Supplementary Fig. 4.6). 
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Figure 4.2 Quantification of the performance of the SPLIT system. a Images of core/shell UCNPs acquired with 
a transmission electron microscope. Scale bar: 25 nm. b Normalized upconversion spectra of UCNPs shown in (a). c 
Simplified energy level diagram of Yb3+-Er3+ energy transfer upconversion excitation and emission. d Temporally 

projected image of photoluminescence intensity decay of the 5.6 nm-thick-shell UCNPs covered by a negative 
resolution target. e Comparison of averaged light fluence distribution along the horizontal bars (blue) and vertical bars 
(orange) of Element 5 in Group 4 on the resolution target. Error bar: standard deviation. f Lifetime images of UCNPs 

with the shell thicknesses of 1.9 nm, 3.5 nm, and 5.6 nm covered by transparencies of letters “C”, “A”, and “N” in green 
emission. g Time-lapse averaged emission intensities of the samples. h Histograms of photoluminescence lifetimes in 

the letters shown in (f). 
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4.2.3 Single-shot temperature mapping using SPLIT 

We used the 5.6 nm-thick-shell UCNPs as the temperature indicator for SPLIT. The UCNPs’ 

temperature was controlled by a heating plate placed behind the sample. To image the green 

(4S3/2) and red (4F9/2) upconversion emissions, the sample was covered by transparencies of a lily 

flower and a maple leaf, respectively. The temperature of the entire sample was measured with 

both a Type K thermocouple (Omega, HH306A) and a thermal camera (FLIR, E4) as references. 

The reconstructed lifetime images in the 20–46 ºC temperature range are shown in Figs. 4.3a–b. 

Plotted in Figs. 4.3c–d, the time-lapse averaged intensity over the entire FOV shows that the 

averaged lifetimes of green and red emissions decrease from 489 to 440 µs and from 458 to 398 

µs, which is due to their enhanced multi-phonon deactivation at higher temperatures. We further 

plotted the relationship between the temperatures and lifetimes for both emission channels (Fig. 

4.3e). Finally, the temperature sensitivities in the preset temperature range were calculated to be 

𝑆a = −1.90 µs °C
−1 for the green emission and 𝑆a = −2.40 µs °C

−1  for the red emission (see 

detailed calculation and further analysis in Supplementary Note 9 and Supplementary Fig. 4.7). 

Compared to the green emission, the higher temperature sensitivity of the red emission results 

from the greater energy separation between its emitting state and the adjacent lower-laying 

excited state (Fig. 4.2c). Since multi-phonon relaxation rate depends exponentially on the number 

of phonons necessary to deactivate an excited state to the one below it, the increase in phonon 

energies at higher temperatures has greater influence over the states with a larger energy gap 

between them [155]. These results establish lifetime-temperature calibration curves [i.e., Equation 

(4.3)] for ensuing thermometry experiments. 

To demonstrate SPLIT’s feasibility in a biological environment, we conducted longitudinal 

temperature monitoring under a phantom, made by using the 5.6 nm-thick-shell UCNPs covered 

by lift-out grids (Ted Pella, 460-2031-S), overlaid by fresh chicken breast tissue. We investigated 

SPLIT’s imaging depth with varied tissue thicknesses of up to 1 mm (Fig. 4.3f, Supplementary 

Note 10 and Supplementary Fig. 4.8). The chicken tissue of 0.5 mm thickness, where both the 

green and red emissions produced images with full spatial features of the lift-out grid, was used 

in the following imaging experiments. Subsequently, we cycled the temperature of the sample 

between 20 ºC and 46 ºC. The lifetime distributions of both green and red emissions and their 

corresponding temperature maps were monitored every 20 minutes and 23 minutes, respectively, 

for ~4 hours (see the full evolution in Supplementary Fig. 4.9). As shown in Fig. 4.3g, the results 

are in good agreement with the temperature change preset by the heating plate, and decisively 
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showcase how SPLIT can map 2D temperatures over time with high accuracy beneath biological 

tissue. 

We also demonstrated SPLIT using a fresh beef phantom as a scattering medium, where 

both light scattering and absorption are present (detailed in Supplementary Note 10 and 

Supplementary Fig. 4.10). The results reveal better penetration of the red emission over the green 

counterpart due to its weaker scattering and absorption. More importantly, the results confirm the 

independence of the measured photoluminescence lifetime of UCNPs to tissue thickness and 

hence the excitation light power density used in our work (≤0.4 W mm-2). 

 

 



   

43 
 

Figure 4.3 Single-shot temperature mapping using SPLIT. a–b Lifetime images of green (a) and red (b) 
upconversion emission bands under different temperatures. c–d Normalized photoluminescence decay curves of green 
(c) and red (d) emission bands at different temperatures, averaged over the entire field of view. e Relationship between 

temperature and mean lifetimes of green and red emissions with linear fitting. Error bar: standard deviation from three 
independent measurements. f Normalized contrast versus chicken tissue thickness for green and red emission bands 
with single-component exponential fitting. g Longitudinal temperature monitoring through 0.5 mm-thick fresh chicken 

tissue. 

 

 

4.2.4 Single-cell dynamic temperature tracking using SPLIT 

To apply SPLIT to dynamic single-cell temperature mapping, we tested a single-layer onion 

epidermis sample labeled by the 5.6 nm-thick-shell UCNPs (detailed in Supplementary Note 11 

and Supplementary Fig. 4.11). Furthermore, to generate non-repeatable photoluminescent 

dynamics, the sample was moved across the FOV at a speed of 1.18 mm s-1 by a translation 

stage. In the 3-second measurement window, the SPLIT system continuously recorded 60 

lifetime/temperature maps. Four representative time-integrated images and their corresponding 

lifetime maps are shown in Figs. 4.4a–b. Figure 4.4c shows intensity decay curves from four 

selected regions with varied intensities in the onion cell sample at 0.05 seconds. The 

photoluminescence lifetimes and hence the temperatures remain stable, showing SPLIT’s 

resilience to spatial intensity variation. We also tracked the time histories of the averaged emitted 

fluence and lifetime-indicated temperatures of these four regions during the sample’s translational 

moving (Fig. 4.4d). In this measurement time window, the emitted photoluminescence fluences 

have varied in each selected region. In contrast, the measured temperatures show a small 

fluctuation of ±0.35 °C, which validates the advantage of PLI thermometry in handling temporal 

intensity variation.  
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Figure 4.4 Dynamic single-cell temperature mapping using SPLIT. a Representative time-integrated images of 
a moving onion epidermis cell sample labeled by UCNPs. b Lifetime images corresponding to (a). c Photoluminescence 
decay profiles at four selected areas [marked by the solid boxes in the first panel of (a)] with varied intensities. d Time 

histories of averaged fluence and corresponding temperature in the four selected regions during the sample’s 
translational motion.  

 

4.3 Discussion 

In summary, we have developed SPLIT for wide-field dynamic temperature sensing in real time. 

In data acquisition, SPLIT compressively records the photoluminescence emission over a 2D FOV 

in two views. Then, the dual-view PnP-ADMM algorithm reconstructs spatially resolved intensity 

decay traces, from which a photoluminescence lifetime distribution and the corresponding 

temperature map are extracted. Used with core/shell NaGdF4:Er3+,Yb3+/NaGdF4 UCNPs, SPLIT 

has enabled temperature mapping with high sensitivity for both green and red upconversion 

emission bands with a 20-µm spatial resolution in a 1.5×1.5 mm2 FOV at a video rate of 20 Hz. 

SPLIT is demonstrated in longitudinal temperature monitoring of a phantom beneath fresh chicken 

tissue. SPLIT is also applied to dynamic single-cell temperature mapping of a moving single-layer 

onion epidermis sample. 

SPLIT advances the technical frontier of optical instrumentation in PLI. The high 

parallelism in SPLIT’s data acquisition drastically improves the overall light throughput. The 

resulting system, featuring single-shot temperature sensing over a 2D FOV, solves the long-
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standing issue in scanning-based techniques (see Supplementary Note 12 and Supplementary 

Figs. 4.12-4.13). In particular, SPLIT improves the measurement accuracy by avoiding artifacts 

generated from the scanning-induced motion blur and the excitation intensity fluctuation. More 

importantly, as shown in Fig. 4, SPLIT extends the application scope of PLI to observing non-

repeatable 2D temperature dynamics. Its high tunability of imaging speeds also accommodates 

a variety of UCNPs with a wide lifetime span (from hundreds of nanoseconds to milliseconds). 

Among existing single-shot 2D ultrafast imaging modalities based on streak cameras, SPLIT is 

well suited for dynamic PLI of UCNPs in terms of the targeted imaging speed, detection sensitivity, 

spatial resolution, and cost efficiency (detailed in Supplementary Note 12 and Supplementary 

Table 4.1). Finally, the SPLIT system by itself records only the lifetime images; yet, when using 

UCNPs as contrast agents, those images carry temperature information in situ, where the UCNPs 

reside. Thus, compared to thermal imaging cameras, SPLIT supplies superior temperature 

mapping results with higher image contrast and better resilience to background interference 

(detailed in Supplementary Note 13 and Supplementary Fig. 4.14). 

From the perspective of system design, both the dual-view data acquisition and the PnP-

ADMM algorithm support high imaging quality in SPLIT. In particular, View 1 preserves the spatial 

information in the dynamic scene [156]. Meanwhile, View 2 retains temporal information by optical 

streaking via time-to-space conversion. Altogether, both views maximally keep rich 

spatiotemporal information. In software, the dual-view PnP-ADMM algorithm provides a powerful 

modular structure, which allows separated optimization of individual sub-optimization problems 

with an advanced denoising algorithm to generate high-quality image restoration results.  

SPLIT offers a versatile PLI temperature-sensing platform. In materials characterization, 

it could be used in the stress analysis of metal fatigue in turbine blades [157]. In biomedicine, it 

could be implemented for accurate sub-cutaneous temperature monitoring for theranostics of skin 

diseases (e.g., micro-melanoma) [158, 159]. SPLIT’s microscopic temperature mapping ability 

could also be exploited for the studies of temperature-regulated cellular signaling [160]. Finally, 

the operation of SPLIT could be extended to Stokes emission in lanthanide-doped nanoparticles 

and spectrally resolved temperature mapping. All of these topics are promising research 

directions in the future.  
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4.4 Methods  

4.4.1 Synchronization of the SPLIT system 

The optical chopper outputs a transistor-transistor logic (TTL) signal that is synchronized with the 

generated optical pulses. This TTL signal is input to a delay generator (Stanford Research 

Systems, DG 645), which then generates three synchronized TTL signals at 20 Hz. The first two 

signals are used to trigger the 3-ms exposure of the EMCCD and CMOS cameras. The last one 

is used to trigger a function generator (Rigol, DG1022Z) that outputs a 20-Hz sinusoidal waveform 

under the external burst mode to control the rotation of the galvanometer scanner (GS).  

 

4.4.2 Calculation of SPLIT’s key parameters 

The GS, placed at the Fourier plane of the 4𝑓 imaging system consisting of lenses L4 and L5 (Fig. 

4.1), deflects temporal information to different spatial positions. Rotating during the data 

acquisition, the GS changes the reflection angles of the spatial frequency spectra of individual 

frames with different time-of-arrival. After the Fourier transformation by Lens 5, this angular 

difference is converted to the lateral shift in space on the EMCCD camera, which results in 

temporal shearing. An illustration with a simple example is provided in Supplementary Fig. 4.15.  

The imaging speed is determined by the data acquisition for View 2. In particular, the 

reconstructed movie has a frame rate of [161] 

r =
𝛾a𝑉g𝑓5

𝑡s𝑑
. (4.4) 

Here, 𝑉g is the voltage added onto the GS. 𝛾
a
 is a constant that links 𝑉g with GS’s deflection angle 

with the consideration of the input waveform. 𝑓
5
=100 mm is the focal length of lens L5, 𝑡s = 50 ms 

is the period of the sinusoidal voltage waveform added to the GS, and 𝑑 = 13 µm is the EMCCD 

sensor’s pixel size. In this work, we used the voltage from 𝑉g = 0.2–1.7 V. The imaging speed of 

SPLIT ranged from 4 to 33 kfps. In addition, we used 𝑡e = 3 ms as the exposure time of the 

EMCCD and CMOS cameras. The sequence depth, 𝑁𝑡, is determined by  

𝑁𝑡 = r𝑡e.  (4.5) 

In the experiments presented in this work, 𝑁𝑡 ranged from 12 to 100 frames.  
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Supplementary Note 1: Two-view image registration of the SPLIT system 

To conduct the image registration between the two views, we used an established procedure 

[162] to calibrate the single-shot photoluminescence lifetime imaging thermometry (SPLIT) 

system. In particular, a static target of upconverting nanoparticles (UCNPs) was imaged by the 

SPLIT system to form View 1 and View 2. No optical shearing was performed in the recording of 

View 2. The projective transformation was then quantified by using the registration estimator 

toolbox in MATLAB R2019b [163], which supplied a feature-based registration operator to 

automatically detect distinct local features, such as sharp corners, blobs, or regions of images. 

The transformation matrix 𝐏tm is defined as  

𝐏tm = [

𝑠𝑥 cos 𝜃 −𝑠𝑦 sin 𝜃 𝑙𝑥
𝑠𝑥 sin 𝜃 𝑠𝑦 cos 𝜃 𝑙𝑦
0 0 1

].  (S4.1) 

Here 𝑠𝑥 and 𝑠𝑦 are the scaling factors in the 𝑥 direction and the 𝑦 direction. 𝜃 is the rotation angle. 

𝑙𝑥 and 𝑙𝑦 represent translation factors in the 𝑥 direction and the 𝑦 direction, respectively. Each 

mailto:Fiorenzo.Vetrone@inrs.ca
mailto:Jinyang.Liang@inrs.ca
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pixel in View 1 with a homogeneous coordinate [ℎ𝑥  ℎ𝑦 1] is transformed to the corresponding 

point [ℎ𝑥c ℎ𝑦c 1] by 

[ℎ𝑥c ℎ𝑦c 1]
𝑇
= 𝐏tm[ℎ𝑥 ℎ𝑦 1]

𝑇
.   (S4.2) 

In practice, 𝐏tm was computed by using the static letter “A” pattern. Supplementary Figs. 

1a–b show the acquired images in View 1 and View 2. The co-registered View 1 image 

(Supplementary Fig. 4.1c) and the View 2 image were used for SPLIT’s image reconstruction. 

 

 

Supplementary Figure 4.1  Image registration in SPLIT’s dual-view data acquisition. a Image acquired in View 
1. b Image acquired in View 2 without using optical shearing. c Co-registered image of View 1. 

 

Supplementary Note 2: Derivation of the SPLIT’s reconstruction algorithm  

In image reconstruction, the datacube of the dynamic scene is recovered by solving the 

minimization problem aided by regularizers [164]. In particular, the inverse problem [i.e., Equation 

(4.2)] is first written as  

𝐼 = argmin
𝐼,𝑣,𝑢,𝑤∈𝐀

{
1

2
‖𝐓𝑣 − 𝐸‖2

2 + 𝑅(𝑢) + 𝐈+(𝑤)}

subject to  𝑣 = 𝐌𝐼, 𝑢 = 𝐼, 𝑤 = 𝐼,

   (S4.3) 

where 𝑣, 𝑢, and 𝑤 are primal variables. 𝐀 is the set of possible solutions in compliance with the 

spatial constraint [47], which is generated by binarizing the image of View 1 (i.e., 𝐸1) with an 

appropriate intensity threshold that is determined by the Otsu's method [165]. Then, 

Supplementary Equation (S4.3) is further written in the augmented Lagrangian arguments [52, 

55, 166]: 
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𝐼 = argmin
𝐼,𝑣,𝑢,𝑤∈𝐀

{
1

2
‖𝐓𝑣 − 𝐸‖2

2 + 𝑅(𝑢) + 𝐈+(𝑤)

+
𝜇1
2
‖𝐌𝐼 − 𝑣 +

𝛾1
𝜇1
‖2
2 +

𝜇2
2
‖𝐼 − 𝑢 +

𝛾2
𝜇2
‖2
2 +

𝜇3
2
‖𝐼 − 𝑤 +

𝛾3
𝜇3
‖2
2} .

 (S4.4) 

Here, 𝛾1, 𝛾2, and 𝛾3 are dual variables. 𝜇1, 𝜇2, and 𝜇3 are penalty parameters [167, 168]. The 

block-matching and 3D (BM3D) filtering [169] is used as the plug-and-play (PnP) denoiser in the 

implicit regularizer 𝑅(∙). The ramp function [170] is used in the non-negative indicator function 

𝐈+(∙). 

To retrieve the dynamic scene, the reconstruction algorithm sequentially updates primal 

variables, estimated solution 𝐼𝑘+1  (𝑘  denotes the iteration time), dual variables and penalty 

parameters as well as evaluates the pre-set criteria, as following five steps. 

Step 1: update primal variables (i.e., 𝑣, 𝑢, and 𝑤) by 

𝑣𝑘+1 = (𝐓𝑇 ∙ 𝐓 + 𝜇1
𝑘D)−1 ∙ (𝐓T𝐸 + 𝜇1

𝑘𝐌𝐼𝑘 + 𝛾1
𝑘),

𝑢𝑘+1 = DBM3D(𝐼
𝑘 +

𝛾2
𝑘

𝜇2
𝑘
), and

𝑤𝑘+1 = max{0, 𝐼𝑘 +
𝛾3
𝑘

𝜇3
𝑘
}.  

 (S4.5) 

Here, D is the identity matrix. DBM3D(∙) stands for the BM3D filtering [169]. 

Step 2: update the estimated datacube of the dynamic scene [i.e., 𝐼(𝑥, 𝑦, 𝑡)] by 

𝐼𝑘+1 = (𝜇1
𝑘𝐌𝑇 ∙ 𝐌 ∙ D + 𝜇2

𝑘D + 𝜇3
𝑘D)

−1

[𝜇1
𝑘𝐌𝑇(𝑣𝑘+1 −

𝛾1
𝑘

𝜇1
𝑘
) + 𝜇2

𝑘(𝑢𝑘+1 −
𝛾2
𝑘

𝜇2
𝑘
) + 𝜇3

𝑘(𝑤𝑘+1 −
𝛾3
𝑘

𝜇3
𝑘
)]
. (S4.6) 

Step 3: update dual variables (i.e., 𝛾1, 𝛾2, and 𝛾3) by 

    𝛾1
𝑘+1 = 𝛾1

𝑘 + 𝜇1
𝑘(𝐌𝐼𝑘+1 − 𝑣𝑘+1),

𝛾2
𝑘+1 = 𝛾2

𝑘 + 𝜇2
𝑘(𝐼𝑘+1 − 𝑢𝑘+1),

𝛾3
𝑘+1 = 𝛾3

𝑘 + 𝜇3
𝑘(𝐼𝑘+1 −𝑤𝑘+1).

and (S4.7) 

Step 4: update the penalty parameters (i.e., 𝜇1, 𝜇2, and 𝜇3) by 
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𝜇𝑖
𝑘+1 =

{
 
 

 
 𝜑𝜇𝑖

𝑘 , if  𝑝 > 𝜎𝑞

𝜇𝑖
𝑘

𝜑
, if 𝜎𝑝 < 𝑞

𝜇𝑖
𝑘 , otherwise 

(𝑖 = 1, 2, 3). (S4.8) 

Here, 𝑝 = ‖𝐼𝑘+1 − 𝑣𝑘+1‖
2
 is the primal residual, and 𝑞 = 𝜇𝑖

𝑘‖𝐼𝑘+1 − 𝐼𝑘‖
2
 is the dual residual. 𝜑 

(𝜑 > 1) is the balancing factor, and 𝜎 (𝜎 > 1) is the residual tolerance [171]. In our experiments, 

we chose 𝜑 = 1.1 and 𝜎 = 1.5.  

Step 5: judge the relative change in results and the parameters 𝜇1
𝑘+1, 𝜇2

𝑘+1, and 𝜇3
𝑘+1 in adjacent 

iterations by 

if 𝜂 =
‖𝐼𝑘+1 − 𝐼𝑘‖

2

‖𝐼𝑘+1‖2
< 𝜌 and 𝜇𝑖

𝑘+1 = 𝜇𝑖
𝑘  (𝑖 = 1, 2, 3). (S4.9) 

Here, 𝜌 (0 < 𝜌 < 10-3) is the pre-set tolerance value. These steps are repeated until both criteria 

in Step 5 are satisfied. The image reconstruction recovers the datacube of the dynamic scene.  

 

Supplementary Note 3: Simulation results of the dual-view PnP-ADMM algorithm 

To test the proposed dual-view PnP alternating direction method of multipliers (ADMM) algorithm, 

we reconstructed a simulated dynamic scene—the intensity decay of a static Shepp-Logan 

phantom. This dynamic scene contains 12 frames, each with a size of 200 × 200 pixels. The 

intensity in each frame is determined by a single exponential function of 𝐼𝑛𝑡 = exp[−(𝑛𝑡 − 1)/2], 

where 𝑛𝑡 = 1,… , 12 denotes the frame index. 

Then, this dynamic scene was fed into SPLIT’s forward model [i.e., Equation (4.1)] to 

generate 𝐸1  and 𝐸2 . To mimic the experimental conditions, we added Gaussian noise (0.01 

variance and 0 mean value) into 𝐸1 and 𝐸2, respectively. Finally, these two images were input 

into the dual-view PnP-ADMM algorithm to retrieve the datacube of this dynamic scene. 

Representative reconstructed frames and their corresponding ground truth frames are compared 

side by side in Supplementary Fig. 4.2a. The averaged peak signal-to-noise ratio (SNR) and the 

averaged structural similarity index over all reconstructed images were calculated to be 34.6 dB 

and 0.96, respectively. The reconstructed three local features in Frame 1 are compared to their 

ground truths (Supplementary Fig. 4.2b). Supplementary Fig. 4.2c presents the reconstructed 
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normalized average intensity versus time, which has a good agreement with the pre-set intensity 

decay (black dashed line).  

 

 

Supplementary Figure 4.2  Simulation of the dual-view PnP-ADMM reconstruction algorithm. a Comparison of 
representative frames of the reconstructed result with the ground truth. b Comparison of three local features in Frame 
1 of the reconstructed result with the ground truth (marked by the red, magenta, and black dashed boxes). c Normalized 

average intensity of the reconstructed result versus the frame index. Error bar: standard deviation. 

 

Supplementary Note 4: Details on the relationship between temperature and lifetime 

The normalized area integration method is commonly used for calculating lifetime based on 

pulsed excitation [172]. Photoluminescence lifetime of UCNPs following pulsed excitation can be 

expressed by 

Lt = ∫ 𝑓(𝑡) ∗ 𝑔(𝑡)𝑑𝑡
∞

0

. (S4.10) 

Here 𝑓(𝑡) =
1

√𝜋𝑡w
exp (−

𝑡2

𝑡w
2 ) represents the Gaussian excitation pulse with a pulse width of 𝑡w. 

𝑔(𝑡) = ∑ε𝑖exp(
−𝑡

𝜏𝑖⁄ )  is used to represent the photoluminescence with multiple exponential 
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decays, each of which has a lifetime 𝜏𝑖  and a proportion ε𝑖 . “∗” denotes convolution. Then, 

Supplementary Equation (S4.10) becomes  

Lt =∑ε𝑖𝜏𝑖 exp(
𝑡w
2

4𝜏𝑖
2). (S4.11) 

When 𝑡w  approaches to zero, which denotes the case of an ultrashort pulse, Supplementary 

Equation (S4.11) becomes  

Lt =∑ε𝑖𝜏𝑖 . (S4.12) 

Following the established theory [173], we defined the photoluminescence lifetime as 𝜏 =

∑ε𝑖𝜏𝑖 ∑ε𝑖⁄ . Considering that ∑ ε𝑖 = 1, we have 𝜏 = Lt.  

The lifetime is linearly linked to the temperature by 

𝑇 = 𝑐t +
Lt
𝑆a
. (S4.13) 

Here 𝑆a denotes the absolute temperature sensitivity, and 𝑐t denotes a constant. This derivation 

produces Equation (4.3).  

In the SPLIT system, we used a continuous-wave laser and an optical chopper to generate 

excitation pulses. Although the chopper blade’s slit width could approach zero for generating an 

ultrashort pulse duration, it demands a high laser power. Thus, a finite pulse width needs to be 

chosen to provide sufficient SNRs in measurements while still maintaining accurate lifetime 

calculation. In practice, we chose 𝑡w =  50 μs, which was comparable to the values used in the 

literature [172]. Our calculation also showed that this pulse width induced a <0.3% calculation 

error for the 5.6-mm-thick-shell UCNPs that were mainly used in our experiments. Thus, 50-μs 

pulse width allowed SPLIT to produce accurate temperature mapping results.  
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Supplementary Note 5: Preparation and characterization of UCNPs 

Synthesis of UCNPs  

Core/shell NaGdF4: 2 mol% Er3+, 20 mol% Yb3+/NaGdF4 UCNPs were synthesized via the 

previously reported thermal decomposition method, with minor modifications to the synthesis 

procedure [174]. Core precursors were prepared by mixing 0.025 mmol of Er2O3 (REacton 

99.99%), 0.250 mmol Yb2O3 (REacton 99.99+%), and 0.975 mmol Gd2O3 (REacton 99.99+%) 

with 5 mL trifluoroacetic acid (99%) and 5 mL of distilled water in a 50 mL three-neck round bottom 

flask. Shell precursors were prepared separately by mixing 1.5 mmol of Gd2O3 with 5 mL of 

trifluoroacetic acid and 5 mL of distilled water in a 50 mL three-neck round bottom flask. Mixtures 

were refluxed under vigorous stirring at 80 °C until each solution turned from turbid to clear, at 

which point the temperature was decreased to 60 °C to slowly evaporate the excess trifluoroacetic 

acid and water. All precursors were obtained as solid dried materials and were used for the 

UCNPs synthesis without further purification. All materials involved in the precursor synthesis 

(obtained from Alfa Aesar) were used without further purification. 

The first step was to synthesize the core UCNPs. An initial mixture of 12.5 mL each of 

oleic acid (OA; 90%, Alfa Aesar) and 1-octadecene (ODE; 90%, Alfa Aesar) was prepared in a 

100 mL three-neck round bottom flask (Solution A). Aside, 2.5 mmol of sodium trifluoroacetate 

(98%, Alfa Aesar) was added to the dried core precursor together with 7.5 mL each of oleic acid 

and 1-octadecene (Solution B). Both Solutions A and B were degassed at 145 ºC under vacuum 

with magnetic stirring for 30 minutes. After degassing, Solution A was placed under an inert Ar 

atmosphere and the temperature was slowly raised to 315 ºC. Solution B was then injected into 

the reaction vessel containing Solution A using a syringe and pump system (Harvard Apparatus, 

Pump 11 Elite) at a 1.5 mL min-1 injection rate. The mixture was left at 315 ºC under vigorous 

stirring for 60 minutes. The synthesized core UCNPs were stored in Falcon centrifuge tubes (50 

mL) under Ar for the further shelling step. Due to the evaporation of impurities in starting materials 

(e.g., OA and ODE) and reaction byproducts, as well as minor losses accrued from intermediate 

steps of liquid handling, the final volume of the core mixture was around 36 mL. 

In the second step, core/shell UCNPs of different shell thicknesses were prepared by 

epitaxial growth of the shell on the preformed cores via a multi-step hot-injection approach. First, 

we prepared Solution A by mixing approximately 1.5 mmol of core UCNPs (~21.6 mL) in a 100 

mL three-neck round bottom flask together with 9.2 mL each of OA and ODE. Separately, we 

prepared Solution B by mixing 3 mmol of gadolinium trifluoroacetate (shelling) precursors with 3 
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mmol of sodium trifluoroacetate, and 10.5 mL each of OA and ODE. Both solutions were 

degassed under vacuum and magnetic stirring at 110 ºC for 30 minutes. After degassing, Solution 

A was back-filled with argon gas and the temperature was raised to 315 ºC. Solution B was then 

injected into the reaction vessel containing Solution A using a syringe and pump system at a  

0.75 mL min-1 injection rate in three steps. After each ~7 mL injection step, the mixture was 

allowed to react for 60 minutes. A portion of core/shell UCNPs would be extracted before the next 

injection step: 15.6 mL after the first injection step for core/shell UCNPs with a 1.9 nm-thick shell 

and 19.2 mL after the second injection step for core/shell UCNPs with a 3.5 nm-thick shell. 

Extractions were allowed to cool down to room temperature before transfer from glass syringe to 

Falcon centrifuge tube for subsequent washing. After the final injection step and a total of 180 

minutes of reaction, the mixture (core/shell UCNPs with a 5.6 nm-thick shell) was cooled to room 

temperature under argon gas and magnetic stirring. All core/shell UCNPs were precipitated with 

ethanol and washed three times with hexane/acetone (1/4 v/v in each case), followed by 

centrifugation (with 5400 x g). Finally, all UCNPs were re-dispersed in hexane for further structural 

and optical characterization. 

 

Structural characterization 

The morphology and size distribution of the core/shell UCNPs were investigated by transmission 

electron microscopy (TEM, Philips, Tecnai 12). The particle size was determined from TEM 

images using ImageJ software with a minimum set size of 280 individual UCNPs per sample. The 

results are shown in Figure 2a. The crystallinity and phase of the core-only and core/shell UCNPs 

were determined via X-ray powder diffraction (XRD) analysis using a diffractometer (Bruker, D8 

Advance) with CuKα radiation (Supplementary Fig. 4.3). The peaks in measured XRD spectra 

match the reference tabulated data (PDF# 01-080-8787). Along with the TEM images (i.e., Figure 

4.2a), this result ensured that the fabricated UCNPs were of the hexagonal crystal phase.  
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Supplementary Figure 4.3  X-ray powder diffraction patterns of UCNPs. The core-only and core/shell NaGdF4:Er3+, 
Yb3+/NaGdF4 UCNPs following their growth by increasing the shell thickness. Red lines: Diffraction peaks of pure 
hexagonal NaGdF4 (data are taken from PDF# 01-080-8787). 

 

Supplementary Note 6: Characterization of SPLIT’s system sensitivity  

To test the sensitivity of SPLIT, we monitored the reconstructed image quality while decreasing 

the laser power. The detection sensitivity of the SPLIT system was characterized by imaging 

photoluminescence intensity decay with various excitation power densities (Supplementary Fig. 

4.4). Transparency of the letter “P” covered the sample of UCNPs with a shell thickness of 5.6 

nm. The laser power density was varied from 0.4 to 0.04 W mm-2. All other experimental 

parameters, such as exposure time, camera gain, and temperature, were kept the same. The 

quality of reconstructed images kept degrading with decreased laser power density until partially 

losing spatial structure at <0.06 W mm-2. In addition, lower SNRs in measurements deteriorate 

the image reconstruction, manifested by the increase in noise levels in the intensity decay curves 

and the deviation of the calculated photoluminescence lifetime from the correct values. Thus, the 

SPLIT’s sensitivity under single-shot imaging for this UCNP sample was quantified to be 0.06 W 

mm-2. 
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Supplementary Figure 4.4  Characterization sensitivity of the SPLIT system. a Temporally integrated reconstructed 
image at the excitation laser power density of 0.06 W mm-2. b Normalized intensity as a function of time with a fitting 

curve.  

 

Supplementary Note 7: Measurement of lifetimes of UCNPs using the TCSPC technique  

To ascertain our results, we used the standard TCSPC method (Edinburgh Instruments, FLS980, 

70-µs excitation pulse) to measure photoluminescence decay of the 5.6 nm-thick-shell UCNPs 

dispersed in hexane. The measured intensity decay curve is shown in Supplementary Fig. 4.5. 

Lifetime values acquired from the SPLIT and TCSPC measurements yielded a 6.9% mismatch. 

This difference is attributed to different environments in which UCNPs were measured (dried 

powder for SPLIT and solution for TCSPC), different excitation pulse widths (50-µs for SPLIT and 

70-µs for TCSPC), and different instrumental responses.  

 

 

Supplementary Figure 4.5  Measurement of the green upconversion emission lifetime of the 5.6 nm-thick-shell UCNPs 
using the TCSPC method. 
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Supplementary Note 8: Comparison of reconstructed image quality 

To quantitatively demonstrate the superiority of the dual-view PnP-ADMM algorithm employed in 

SPLIT’s image reconstruction, we compared it with two other algorithms dominantly used in 

existing streak-camera-based single-shot ultrafast imaging—the single-view two-step iterative 

thresholding/shrinkage (TwIST) algorithm and the dual-view TwIST algorithm. Specifically, we 

used the experimental data of the green emission of UCNPs with shell thicknesses of 1.9 nm, 3.5 

nm, and 5.6 nm, covered by transparencies of letters “C”, “A”, and “N”, respectively. Both View 1 

and View 2 were used for the dual-view TwIST algorithm and the dual-view PnP-ADMM algorithm. 

Only View 2 was used for the single-view TwIST algorithm. All the reconstructed datacubes had 

the same size. Supplementary Figs. 4.6a–c show the time-integrated images by projecting 

datacubes reconstructed by the three algorithms along the time axis. Among them, the result from 

the dual-view PnP-ADMM is duplicated from Figure 4.2f to better illustrate this comparison. We 

selected one line from each letter and compared their profiles in Supplementary Figs. 4.6d–f. 

From these results, the single-view TwIST algorithm gives the worst contrasts of 0.41 for “C”, 0.88 

for “A”, and 0.76 for “N”. Dual-view TwIST improves the contrast to 0.82 for “C”, 0.99 for “A”, and 

0.93 for “N”, respectively. Dual-view PnP-ADMM gives the best result—producing contrasts of 1 

for all three cases.  

The better quality in the reconstructed images translated to higher accuracy in lifetime 

quantification. Supplementary Figs. 4.6g–i show two-dimensional (2D) lifetime maps of these 

samples with zoom-in-views of three local areas. Both the single-view and dual-view TwIST 

algorithms yield artifacts, manifesting as false lifetime values on pixels in the background. In 

contrast, the dual-view PnP-ADMM algorithm eliminates these artifacts with a clean background. 

Meanwhile, in the selected local areas of letters “C” and “N” (insets in Supplementary Figs. 4.6g–

i), single-view TwIST completely wipes out the features induced by the non-uniform distribution 

of the UCNPs. In contrast, both dual-view TwIST and dual-view PnP-ADMM algorithms preserve 

these features. Finally, benefitting from the superb denoising capability of the dual-view PnP-

ADMM, the noise level in the intensity decay curves as a function of time reduces by 4.6× and 

2.5× compared to those of the single-view TwIST and dual-view TwIST algorithms, which 

contributes to a more accurate lifetime calculation. 
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Supplementary Figure 4.6  Comparison of quality of images reconstructed by using different algorithms. a Letter “C” 

reconstructed by using the single-view TwIST, dual-view TwIST, and dual-view PnP-ADMM algorithms, respectively. 
b-c As (a), but for letters “A” and “N”. d Comparison of the selected line profiles of the reconstructed images of letter 
“C”. e-f As (d), but for letters “A” and “N”. g-i Lifetime maps of the three letters produced by the single-view TwIST (g), 

single-view PnP-ADMM (h), and dual-view PnP-ADMM (i) algorithms. Insets: zoom-in views of three local areas. 
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Supplementary Note 9: Determination of the absolute temperature sensitivities, relative 
temperature sensitivities, and thermal uncertainty 

Both the absolute temperature sensitivity 𝑆a and the constant 𝑐t in Equation (4.3) are determined 

by using the curve fitting toolbox in Matlab. Using the data presented in Figure 4.3e with linear 

fitting, we quantified 𝑆a = −1.90 µs °C
−1  and 𝑐t = 278 °C  for the green emission and 𝑆a =

−2.40 µs °C−1 and 𝑐t = 210 °C for the red emission.  

Moreover, the relative temperature sensitivity can be calculated by [175]  

𝑆r =
|𝑆a|

𝜏
. (S4.14) 

Using the data shown in Figure 3e, 𝑆r in the pre-set temperature range were quantified to be 

0.39–0.43%∙ºC-1 for the green emission and 0.52–0.60%∙ºC-1 for the red emission 

(Supplementary Fig. 4.7).  

 Finally, the thermal uncertainty [175] in SPLIT is calculated by 

𝛿𝑇 =
1

𝑆r
×
𝛿τ

τ
, (S4.15) 

where 𝛿τ represents the uncertainty in the measured lifetimes. Supplementary Equation (S4.15) 

shows that 𝛿𝑇 depends on both the UCNPs’ performance (quantified by the relative sensitivity, 

𝑆r ) and experimental setup (that limits the normalized fluctuation of lifetimes, 
𝛿τ

τ
). 𝛿τ  was 

characterized by repeating measurements using the SPLIT system under the same experimental 

conditions. Specifically, using the sample of the 5.6 nm shell thickness UCNPs at 20 ºC, we 

repeated the 2D lifetime measurements 60 times using the excitation power density of  

0.4 W mm-2 and 0.06 W mm-2, respectively. These measurements produced 𝛿τ of 1.4–2.7 μs for 

the green emission and 2.2–4.0 μs for the red emission, respectively. With known values of |𝑆a| 

and by using Supplementary Equation (S4.15), SPLIT’s thermal uncertainty was calculated to be 

0.7–1.4 ºC for the green emission and 0.9–1.7 ºC for the red emission.  
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Supplementary Figure 4.7  Quantification of relative temperature sensitivities of the green and red emissions of the 
core/shell NaGdF4:Er3+,Yb3+/NaGdF4 UCNPs with a 5.6 nm-thick shell. Error bar: standard deviation. 

 

Supplementary Note 10: Demonstration of SPLIT in biological environment 

The UCNP sample with the shell thickness of 5.6 nm was covered by lift-out grids (Ted Pella, 

460-2031-S), in which we chose the features of the letter “O” with a triangular shape on the bottom 

and the letter “m”. Then, five pieces of fresh chicken tissue with the thicknesses of 0.25, 0.5, 0.65, 

0.75, 1.0 mm were used to cover the sample (Supplementary Fig. 4.8a). SPLIT captured the 

photoluminescence decay at 20 kfps. The reconstructed datacubes were projected to the 𝑥 − 𝑦 

plane (Supplementary Figs. 4.8b-c).  

The image without chicken tissue, which is referred to as the thickness of “0 mm”, is also 

included for comparison. With the increased depth, the image intensity and contrast gradually 

approach zero. Supplementary Fig. 4.8d depicts the normalized fluence profiles across the white 

dashed line as shown in the first panel of Supplementary Fig. 4.8b. The experimental result was 

fitted using a single-component exponential function, which yielded a decay coefficient of  

26 cm-1. At the depth of 0.65 mm, the triangular feature and the letter “m” cannot be distinguished. 

Using a similar experimental procedure, we characterized SPLIT’s imaging depth for the red 

emission (Supplementary Figs. 4.8c and 4.8e). By using the single-component exponential fitting, 

the red emission had a decay coefficient of 18 cm-1. The spatial features vanished at the depth of 

0.75 mm. These results show that the red emission has, as expected, a greater imaging depth 

than the green upconversion counterpart. These results also show that good contrast can be 

maintained by using fresh chicken tissue of 0.5 mm thickness, which was selected for the 

longitudinal temperature monitoring experiments (Supplementary Fig. 4.9).  
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To test SPLIT using a scattering medium with the presence of both light scattering and 

absorption, the UCNPs with the shell thickness of 5.6 nm were injected into a piece of fresh beef 

tissue, where we also inserted a 90 µm-diameter copper wire at the depth of 0.09 mm as a spatial 

feature (Supplementary Fig. 4.10a). Myoglobin in the beef tissue, which has similar optical 

absorption properties to hemoglobin [176, 177], was used to mimic the absorption by blood. To 

evaluate the SPLIT’s imaging ability at different depths, this phantom was covered by different 

additional fresh beef slices, so that the thicknesses from the surface to the copper wire were 0.09 

mm, 0.34 mm, 0.55 mm, and 0.60 mm. SPLIT performed photoluminescence lifetime imaging at 

20 kfps. For both the green and the red emissions, the reconstructed datacubes with the different 

beef thicknesses were projected temporally, as shown in Supplementary Figs. 4.10b–c. 

Furthermore, we plotted the profiles of a selected local edge feature of the inserted copper wire 

under the different thicknesses, as shown in Supplementary Figs. 4.10d–e. We calculated the 

contrast of these edge profiles. For the green emission, the values are 0.78, 0.27, 0.26, and 0.09 

for the four selected curves. As for the red emission, these values are 0.80, 0.38, 0.33, and 0.09. 

Moreover, these experimental results were fitted by using single-component exponential 

functions, which yielded decay coefficients of 65 cm-1 for the green emission and 33 cm-1 for the 

red emission (Supplementary Fig. 4.10f), which are greater than their counterpart of the chicken 

tissue of 26 cm-1 and 18 cm-1
. Because of its longer wavelength, the red emission has weaker 

scattering and weaker absorption by the myoglobin, which led to deeper penetration over the 

green emission for both types of scattering media. Finally, we analyzed the photoluminescence 

lifetimes for different thicknesses, and the results are shown in Supplementary Fig. 4.10g. The 

measured photoluminescence lifetimes for both emissions do not depend on the tissue thickness 

and hence excitation power density under the experimental conditions of our work. Lower 

excitation intensity, however, reduced the SNRs in the captured snapshots, which transfers to a 

larger standard deviation.  
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Supplementary Figure 4.8  Demonstration of SPLIT with a fresh chicken tissue phantom. a Experimental setup. b 

Temporally projected images of the reconstructed dynamic scene at the depths from 0 to 1 mm with the green emission. 
c As (b), but for the red emission. d Comparison of normalized fluence of a representative cross-section [marked by 
the white dashed line in the first panel in (b)] for various imaging depths. e As (d), but for the red emission. The 

representative cross-section is marked by the white dashed line in the first panel in (c).  
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Supplementary Figure 4.9  Longitudinal temperature monitoring using green (a) and red (b) luminescence emissions 
from the 5.6 nm-thick UCNPs covered by a transmissive mask of letters “rob”. 
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Supplementary Figure 4.10  Demonstration of SPLIT with a fresh beef tissue phantom. a Sample preparation. 
b Temporally projected images of the reconstructed dynamic scenes at the depths from 0.09 to 0.60 mm for the green 
emission. c As (b), but for the red emission. d–e Cross-sections of a selected spatial feature [marked by the light blue 
solid line in (b) and (c)] for various depths for the green emission (d) and the red emission (e). f Normalized fluence 
versus tissue thickness for the green and red emissions with single-component exponential fitting. g Lifetimes as the 

function of the thickness for the green emission (blue circles; the mean value is plotted as the blue dashed line) and 
the red emission (orange diamonds; the mean value is plotted as the orange dashed line). Error bar: standard deviation. 
Right insets show the decay of normalized average intensity at the depth of 0.09 mm for the green and red emissions, 
respectively. 
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Supplementary Note 11: Preparation of the single-layer onion cells doped with UCNPs 

For the onion cell experiments, UCNPs with a 5.6 nm-thick shell were first transferred to water via 

ligand exchange with citrate molecules. In a typical procedure, citrate-coated UCNPs were 

prepared by mixing 50 mg of oleate-capped UCNPs dispersed in 25 mL of hexane and 25 mL of 

0.2 M trisodium citrate (99%; Alfa Aesar) solution (pH 3-4) under vigorous stirring for 3 hours. The 

two-phase (aqueous/organic) mixture was then poured into the separatory funnel, and the 

aqueous phase containing the UCNPs was isolated. The UCNPs were precipitated with acetone 

(1/3 v/v) via centrifugation (5400 x g) for 30 minutes. The obtained pellet was re-dispersed in 25 

mL of 0.2 M trisodium citrate solution (pH 7-8) and left under stirring for an additional 2 hours. 

UCNPs were then precipitated with acetone (1/3 v/v) via centrifugation (5400 x g) for 30 minutes 

and washed twice with a mixture of water/acetone (1/3 v/v). The citrate-coated UCNPs were re-

dispersed in distilled water. The yellow household onion was used to peel single-layer sheets of 

onion cells, which were incubated in a solution of citrate-coated UCNPs (3 mg mL-1) for 24 hours. 

After the incubation, single-layer onion cells were rinsed in distilled water and dried by gently 

tapping with a soft tissue paper, before being placed onto microscope slides for subsequent 

imaging experiments. Before lifetime imaging, the presence of UCNPs in single-layer onion cells 

was confirmed (Supplementary Fig. 4.11a) with a bright-field microscope (Nikon, ECLIPSE Ti-S). 

In addition, a reference photoluminescence intensity image was taken by a custom-built confocal 

imaging platform (Photon Etc.), equipped with pulsed femtosecond Ti: Sapphire laser (Spectra-

Physics, Mai Tai DeepSee). Samples were excited and imaged epi-fluorescently through a 

20×/0.40 NA objective lens (Nikon, CFI60 TU Plan Epi ELWD). Photoluminescence intensity was 

recorded by a low-noise CCD camera (Princeton Instruments, Pixis100). The upconversion 

emission images of static onion cells (Supplementary Fig. 4.11b) were obtained through raster 

scanning a 120×120 pixel map, each of which has the size of 2 µm and the integration time 0.2 

seconds per pixel. The total time to form one lifetime map was 48 minutes. 
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Supplementary Figure 4.11  Single-layer onion cell sample. a Image of the sample taken by a bright-field 
microscope. b Confocal microscopy of green upconversion emission of UCNPs diffused in an individual onion cell 

[marked by the magenta dashed box in (a)].  

 

Supplementary Note 12: Comparison between SPLIT and previous imaging modalities for 
2D lifetime imaging 

To articulate the difference between SPLIT and previous works on ultrafast imaging that used 

streak cameras, we summarize their technical specifications and applications in Supplementary 

Table 4.1. To explain the details included in this table, we first detail the working principles of 

streak cameras and compressed ultrafast photography (CUP); then, we summarize technical 

specifications and applications of the existing imaging modalities. 

 

Streak cameras for wide-field lifetime imaging 

Streak cameras are highly suitable for 2D lifetime imaging. In its conventional operation, the field 

of view (FOV) of streak cameras is limited by an entrance slit with typical widths of 50–100 µm. A 

sweeping unit deflects the time-of-arrival of the incident light signal along the axis perpendicular 

to the device’s entrance slit. Depending on the mechanisms of the sweeping unit, streak cameras 

can be generally categorized into optoelectronic and mechanical types. In optoelectronic streak 

cameras (Supplementary Fig. 4.12a), incident photons are first converted to photoelectrons by a 

photocathode. After acceleration, these photoelectrons are deflected by a time-varying voltage 

applied on a pair of sweep electrodes. Then, these photoelectrons are converted back to photons 

on a phosphor screen. Finally, the optical signal is imaged to an internal sensor. The 

optoelectronic streak camera can achieve a temporal resolution of up to 100 fs. Because of this 

ultrafast imaging ability, optoelectronic streak cameras have been used for imaging the emission 

of fluorescence that has lifetimes in the order of picoseconds and nanoseconds [4, 19, 20, 178, 

179]. However, due to the photon-to-photoelectron conversion by the photocathode, the quantum 

efficiency (QE) of the optoelectronic streak cameras is typically <15% for visible light. Besides, 

the space-charge effect in the electrostatic lens system imposes constraints in the spatial 

resolution (typically tens to hundreds of micrometers) and the dynamic range (e.g., <10 for certain 

femtosecond streak cameras). Both weaknesses severely limit the quality of acquired data.  

Unlike optoelectronic streak cameras, a mechanical streak camera (Supplementary Fig. 

4.12b) usually uses a rotating mirror (e.g., a GS or a polygon mirror) to deflect the light. Since the 
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mechanical sweeping is much slower than the optoelectronic counterpart, this type of streak 

camera has tunable temporal resolutions typically from hundreds of nanoseconds to 

microseconds, which makes them highly suitable for lifetime imaging of luminescence processes 

on the order of microseconds and milliseconds, such as phosphorescence and parity forbidden 

4f-4f transitions in lanthanide ions [180]. Moreover, its all-optical data acquisition allows flexibly 

implementing many high-sensitivity cameras [e.g., electron-multiplying (EM) CCD and scientific 

CMOS cameras, whose QEs can be >90% for visible light] to obtain superior SNRs in 

measurements. The all-optical operation also avoids the space-charge effect, which enables 

optics-limited spatial resolution and high dynamic range (e.g., >60,000 of the EMCCD camera 

used in this work). Finally, the mechanical streak camera is considerably more cost-efficient than 

the optoelectronic streak camera. Therefore, mechanical streak cameras are perfectly suitable 

for imaging microsecond-level emission from UCNPs.  

 

 

Supplementary Figure 4.12  Schematics of an optoelectronic streak camera (a) and a mechanical streak 
camera (b) in their conventional operations. 

 

Single-shot compressed temporal imaging for fast 2D lifetime mapping 

Single-shot compressed temporal imaging is a novel computational imaging concept that enables 

2D lifetime mapping in one acquisition. In the conventional operation of the streak camera, the 

entrance slit limits the imaging FOV to be one-dimensional (1D). To lift this limitation, compressed-

sensing paradigms have been implemented with optoelectronic streak cameras. The resulted 

CUP technique [4, 19, 20, 178, 179] allows complete opening of the entrance slit for 2D ultrafast 

imaging in a single shot. CUP and its variants have been applied to single-shot fluorescence 
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lifetime imaging [4, 19, 178]. In contrast, to our knowledge, single-shot compressed temporal 

imaging has not yet been applied to 2D imaging of microsecond-to-millisecond scale lifetimes, 

like those of UCNP emission. SPLIT thus marks the first technique in this category. It is also the 

first demonstration of single-shot photoluminescence lifetime-based temperature mapping in a 2D 

FOV. Compared to conventional line-scanning counterpart [181], SPLIT has considerable 

advantages in light throughput and sample choices.  

 

Performance comparison between SPLIT and line-scanning lifetime imaging 

To experimentally demonstrate the advantages of SPLIT to the line-scanning confocal setup 

[181], we imaged a moving photoluminescent sample (Supplementary Fig. 4.13). The major 

experimental parameters (e.g., magnification ratio, camera’s exposure time, and camera’s frame 

rate) were kept the same as those of SPLIT. The UCNPs with the shell thickness of 5.6 nm were 

covered by a piece of transparency of letter “A”. Loaded onto a translation stage, this sample 

moved downward at a speed of 0.8 mm s-1. To perform line scanning, we placed a 200-µm-wide 

slit at the intermediate image plane (i.e., equivalently 50-µm-wide at the sample plane) to limit the 

FOV to 1D (Supplementary Fig. 4.13a). Attached to another translation stage, the slit was 

scanned in the 𝑥 direction at a speed of 2.8 mm s-1. Using the green emission, this line-scanning 

confocal setup generated six 1D lifetime maps (Supplementary Fig. 4.13b). After stitching these 

results together, we obtained a 2D lifetime map as shown in Supplementary Fig. 4.13c. However, 

the stitched result inevitably suffers from the loss of spatial content due to the dark time between 

adjacent camera exposures. In the meantime, the map is distorted in the vertical direction due to 

the sample’s movement, which proves the incapability of line-scanning-based techniques in 

measuring dynamic photoluminescent objects. As a comparison, we used SPLIT to image this 

sample under the same experimental conditions. Because of its single-shot imaging ability, SPLIT 

produced six 2D lifetime maps (Supplementary Fig. 4.13d). No image produced by the SPLIT 

system has any loss of spatial content or distortion. The results also clearly illustrate the 

downward movement of the letter “A”. Therefore, SPLIT has unique advantages over the 

conventional scanning-based lifetime measurement in data throughput, measurement accuracy, 

and application scope.  

It is also worth pointing out that from the perspective of optical instrumentation, SPLIT 

provides high-sensitivity cameras with ultrahigh imaging speeds in 2D FOV. In this regard, 

besides the single-shot wide-field photoluminescent lifetime mapping demonstrated in this work, 



   

70 
 

the SPLIT system offers a generic imaging platform for many other studies. Potential future 

applications include optical voltage imaging of action potentials in neurons and high-throughput 

flow cytometry.  

 

Supplementary Figure 4.13  Comparison between line-scanning microscopy and SPLIT in 2D PLI capability. a 

Experimental setup of line-scanning microscopy. The moving UCNPs sample was loaded onto a translation stage. The 
moving directions of the sample and the slit are marked by orange arrows. b 1D photoluminescence lifetime images 
produced by using the line-scanning setup. c Distorted partial 2D lifetime map synthesized by using the data in (b). d 

Six 2D lifetime maps of the sample moving downward captured by using the SPLIT system. 

 

Supplementary Note 13: Comparison between SPLIT and thermal imaging 

We used a thermal imaging camera (Yoseen, X384D) (Supplementary Fig. 4.14a) and SPLIT 

(Supplementary Fig. 4.14b) to image UCNPs covered by a metal mask of letters “rob” in lift-out 

grids (Ted Pella, 460-2031-S). Akin to the SPLIT system, a 4× magnification ratio was used for 

the thermal imaging camera. A blackbody radiator (Yoseen, YSHT-35) was used to heat this 

sample to 27 ºC. The images produced by these two methods are shown in Supplementary Figs. 

14c–d and the selected line profiles are shown in Supplementary Figs. 4.14e–f. The edge contrast 

of the imaged letters using the thermal imaging camera is much worse than that using SPLIT. 

Moreover, the thermal imaging result presents strong background due to the same temperature 

of the mask, whereas SPLIT keeps a clean background thanks to its optical sensing ability. 
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In another experiment, we loaded the metal mask on a translation stage. The mask was 

kept out of the FOV to keep its temperature at 18 °C (i.e., the room temperature in our laboratory). 

The UCNPs were still heated up by the blackbody radiator to 27 °C. The mask was quickly moved 

into the FOV, and the thermal imaging camera captured the images immediately (Supplementary 

Fig. 4.14g). The thermal image and the selected line profiles are shown in Supplementary Figs. 

4.14h–i. Despite the slight improvement in contrast compared to Supplementary Figs. 4.14c and 

4.14e, the image quality is still incomparable to the results produced by the SPLIT system 

(Supplementary Figs. 4.14d and 4.14f). Thus, compared to a thermal imaging camera, SPLIT 

supplies superior temperature mapping capability. 

 

 

Supplementary Figure 4.14  Comparison between the thermal imaging camera and SPLIT in temperature 
imaging. a–b Experimental setup using thermal imaging camera (a) or SPLIT (b). The sample and mask were heated 
up by a blackbody radiator. c Temperature image captured by using the thermal imaging camera. d As (c), but using 
SPLIT. e–f Selected line profile from (c) and (d), respectively. g As (a), but using a translation stage to move the mask 
with the room temperature. h Temperature image captured by the setup in (g). i Selected line profile from (h). 
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Supplementary Figure 4.15  Illustration of the working principle of SPLIT. 

 

Supplementary Table 

Supplementary Table 4.1 Comparison of representative 2D lifetime imaging modalities using streak cameras. 

 

Note: CUP, compressed ultrafast photography; CUSP, compressed ultrafast spectral photography; FLIM, fluorescence 

lifetime imaging; LLE, lossless-encoding; PpLIM, phosphorescence lifetime imaging microscopy.  
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Abstract 

Single-shot two-dimensional (2D) optical imaging of transient scenes is indispensable for 

numerous areas of study. Among existing techniques, compressed optical-streaking ultrahigh-

speed photography (COSUP) uses a cost-efficient design to endow ultra-high frame rates with 

off-the-shelf CCD and CMOS cameras. Thus far, COSUP’s application scope is limited by the 

long processing time and unstable image quality in existing analytical-modeling-based video 

reconstruction. To overcome these problems, we have developed a snapshot-to-video 

autoencoder (S2V-AE)—a new deep neural network that maps a compressively recorded 2D 

image to a movie. The S2V-AE preserves spatiotemporal coherence in reconstructed videos and 

presents a flexible structure to tolerate changes in input data. Implemented in compressed 

ultrahigh-speed imaging, the S2V-AE enables the development of single-shot machine-learning 

assisted real-time (SMART) COSUP, which features a reconstruction time of 60 ms and a large 

sequence depth of 100 frames. SMART-COSUP is applied to wide-field multiple-particle tracking 

at 20 thousand frames-per-second. As a universal computational framework, the S2V-AE is 

readily adaptable to other modalities in high-dimensional compressed sensing. SMART-COSUP 

is also expected to find wide applications in applied and fundamental sciences. © 2021 Optical 

Society of America 
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5.1 Introduction 

Two-dimensional (2D) optical visualization of transient phenomena in the actual time of the 

event’s occurrence plays a vital role to understand many mechanisms in biology, physics, and 

chemistry [182-184]. To discern spatiotemporal details in these phenomena, high-speed optical 

imagers are indispensable. Imaging speeds of these systems, usually determined by the frame 

rates of deployed CCD or CMOS cameras, can be further increased using novel sensor designs 

[185-187], new readout interfaces [188, 189], and advanced computational imaging methods 

[190-193].  

Among existing approaches, compressed ultrafast photography (CUP) [96, 194-200] is an 

innovative coded-aperture imaging scheme [17, 201] that integrates video compressed sensing 

[202] into streak imaging [203]. In data acquisition, a spatiotemporal ( 𝑥, 𝑦, 𝑡 ) scene is 

compressively recorded by optical imaging hardware to a 2D snapshot. The ensuing 

reconstruction recovers the datacube of the scene computationally. Despite initially demonstrated 

using a streak camera, the concept of CUP was soon implemented in CCD and CMOS cameras 

in compressed optical-streaking ultrahigh-speed photography (COSUP) [204]. Compared to other 

single-shot ultrahigh-speed imaging modalities [205-208], COSUP is not bounded by the moving 

speed of piezo-stages [205, 206] or the refreshing rate of spatial light modulators [207, 208]. 

Exhibiting as a cost-efficient system, COSUP has demonstrated single-shot transient imaging 

ability with a tunable imaging speed of up to 1.5 million frames-per-second (fps) based on an off-

the-shelf CMOS camera with an intrinsic frame rate of tens of hertz.  

Despite these hardware innovations, COSUP’s video reconstruction has ample room for 

improvement. Existing reconstruction frameworks can be generally grouped into analytical-

modeling-based methods and machine-learning-based methods [209]. Using the prior knowledge 

of the sensing matrix and the sparsity in the transient scene, the analytical-modeling-based 

methods reconstruct videos by solving an optimization problem that synthetically considers the 

image fidelity and the sparsity-promoting regularization. However, demonstrated methods, such 

as the two-step iterative shrinkage/thresholding (TwIST) algorithm [210], augmented Lagrangian 

algorithm [211], and alternating direction method of multiplier (ADMM) algorithm [208], undergo 

time-consuming processing that uses tens to hundreds of iterations. The excessively long 

reconstruction time strains these analytical-modeling-based methods from real-time (i.e., ≥16 Hz 

[212]) reconstruction, which excludes COSUP’s application scope from tasks that need on-time 

feedback [213]. Moreover, the reconstructed video quality highly depends on the accuracy of prior 

knowledge and the empirical tuning of parameters. 
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To solve these problems, machine learning has become an increasingly popular choice. 

Instead of relying solely on prior knowledge, large amounts of training data are used for deep 

neural networks (DNNs) [214] to learn how to map an acquired snapshot back to a video. Upon 

the completion of training, DNNs can then execute non-iterative high-quality reconstruction during 

runtime. Thus far, DNNs that employ the architectures of the multi-layer perceptrons (MLPs) [215, 

216] and the U-net [54, 74, 217, 218] have shown promise for compressed video reconstruction. 

Nonetheless, MLPs, with fully connected structures, scale linearly with the dimensionality of input 

data [219]. Besides, the decomposition in the reconstruction process presumes that all 

information in the output video block is contained in a patch of the input image, which cannot 

always be satisfied [215, 216]. As for the U-net, the reconstruction often starts with a pseudo-

inverse operation to the input snapshot to accommodate the equality in dimensionality required 

by the original form of this network [220]. This initial step increases the reconstruction burden in 

computational time and memory. Moreover, akin to MPLs, U-net-based methods require slicing 

input data for reconstruction, which could cause the loss of spatial coherence [54]. Finally, 

inherent temporal coherence across video frames is often unconsidered in the U-net [221]. 

Because of these intrinsic limitations, videos reconstructed by the U-nets are often subject to 

spatiotemporal artifacts and a shallow sequence depth (i.e., the number of frames in the 

reconstructed video) [218]. 

Here, we propose to overcome these limitations with the use of an autoencoder (AE), 

whose objective is to learn a mapping from high-dimensional input data to a lower-dimensional 

representation space, from which the original data is recovered [222]. The implementation of 

convolutional layers in AE’s architecture provides a parameter-sharing scheme that is more 

efficient than MLPs. Besides, without relying on locality presumptions, deep AEs with 

convolutional layers can preserve the intrinsic coherence in information content. Furthermore, 

recent advances in combining AE with adversarial formulations [223] have allowed replacing the 

loss functions based on pixel-wise error calculation to settings where perceptual features are 

accounted for, which have enabled more accurate capture of data distribution and increased 

visual fidelity [224]. In the particular case of training generative models [e.g., generative 

adversarial networks (GANs)] for natural scenes, recent advances have improved the 

reconstructed imaging quality by dividing the overall task into sub-problems, such as independent 

modeling of foreground and background [225], separated learning of motion and frame content 

[226], and conditioning generation on optical flows [227]. Despite these advances, with popular 

applications in audio signal enhancement [228] and pattern recognition [229], AEs have been 

mainly applied to one-dimensional and 2D reconstruction problems [230, 231]. Thus, existing 
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architectures of AEs cannot be readily implemented for video reconstruction in compressed 

ultrahigh-speed imaging.  

To surmount these problems, we have developed a snapshot-to-video autoencoder (S2V-

AE)—a new DNN that directly maps a compressively recorded 2D (𝑥, 𝑦) snapshot to a 3D (𝑥, 𝑦, 𝑡) 

video. This new architecture splits up the reconstruction process into two sub-tasks, each of which 

is trained individually to obtain superior quality in reconstructed videos. Implemented in 

compressed ultrahigh-speed imaging, such a video reconstruction framework enables developing 

single-shot machine-learning-assisted real-time (SMART) COSUP, which is applied to tracking 

multiple fast-moving particles in a wide field at 20 thousand fps (kfps).  

 

5.2 Principle of SMART-COSUP  

The schematic of the SMART-COSUP system is shown in Fig. 5.1(a). Its operating principle 

contains single-shot data acquisition and real-time video reconstruction [Fig. 5.1(b)]. A dynamic 

scene, 𝐼(𝑥, 𝑦, 𝑡), is imaged by front optics onto a printed pseudo-random binary transmissive mask 

(Fineline Imaging) with encoding pixels of 25 µm × 25 µm in size. This spatial modulation 

operation is denoted by the operator 𝐂. The intensity distribution right after the encoding mask is 

expressed as 

𝐼c(𝑥, 𝑦, 𝑡) =∑𝐼 (
𝑥

𝑀f
,
𝑦

𝑀f
, 𝑡)

𝑗,𝑘

𝐶𝑗𝑘rect (
𝑥

𝑑e
− 𝑗,

𝑦

𝑑e
− 𝑘) . (5.1) 

Here, 𝑀f  is the magnification of the front optics. 𝐶𝑗𝑘  denotes an element of a binary matrix 

representing the encoding pattern, 𝑗 and 𝑘 are matrix element indices. 𝑑e is the size of encoding 

pixels on the mask. rect(∙) represents the rectangular function.  

Subsequently, the spatially modulated scene is relayed by a 4f imaging system, consisting 

of a galvanometer scanner (GS, Cambridge Technology, 6220H) and two identical lenses (Lens 

1 and Lens 2, Thorlabs, AC254-075-A). The GS is placed at the Fourier plane of this 4f imaging 

system to conduct optical shearing in the 𝑥-direction, denoted by the operator 𝐒𝐨. The sheared 

image can be expressed as 

𝐼s(𝑥, 𝑦, 𝑡) = 𝐼c(𝑥 − 𝑣s𝑡, 𝑦, 𝑡), (5.2) 

where 𝑣s , denoting SMART-COSUP’s shearing velocity, is calculated by 𝑣s = 𝛼𝑉g𝑓2 𝑡g⁄ . Here, 

𝑉g =0.16–0.64 V is the voltage added onto the GS. 𝛼  is a constant that links 𝑉g  with GS’s 



   

78 
 

deflection angle with the consideration of the input waveform. 𝑓2 = 75 mm is the focal length of 

Lens 2 in Fig. 5.1(a). 𝑡g = 50 ms is the period of the sinusoidal signal added to the galvanometer 

scanner. 

Finally, the dynamic scene is spatiotemporally integrated by a CMOS camera (FLIR, GS3-

U3-23S6M-C) to a 2D snapshot, denoted by the operator 𝐓 . The optical energy,  𝐸(𝑚, 𝑛) , 

measured at pixel (𝑚, 𝑛), is 

𝐸(𝑚, 𝑛) =∭𝐼𝑠(𝑥, 𝑦, 𝑡)rect (
𝑥

𝑑c
−𝑚,

𝑦

𝑑c
− 𝑛)𝑑𝑥𝑑𝑦𝑑𝑡. (5.3) 

Here, 𝑚 and 𝑛 are the pixel indices in the 𝑥 and 𝑦 axes on the camera. 𝑑c = 5.86 μm is the CMOS 

sensor’s pixel size. From Eqs. 5. (1)–(3), the forward model of SMART-COSUP is expressed by  

𝐸(𝑚, 𝑛) = 𝐓𝐒𝐨𝐂𝐼(𝑥, 𝑦, 𝑡). (5.4) 

In the ensuing real-time video reconstruction, the captured data is transferred to a 

workstation equipped with a graphic processing unit (NVIDIA, RTX Titan). The S2V-AE retrieves 

the datacube of the dynamic scene in 60 ms. 

 

 

Figure 5.1  Single-shot machine-learning assisted real-time (SMART) compressed optical-streaking ultrahigh-speed 
photography (COSUP). (a) System schematic. (b) Operating principle. S2V-AE, snapshot-to-video autoencoder. 
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The frame rate of the SMART-COSUP system is derived from  

𝑟 =
𝑣𝑠

𝑑c
. (5.5)

In this work, the reconstructed video has a frame rate of up to 𝑟 = 20 kfps, a sequence depth of 

𝑁𝑡 = 40 − 100 frames, and a frame size of up to 𝑁𝑥 × 𝑁𝑦 = 256 × 256 pixels. 

Compared to the previous hardware configuration [204], SMART-COSUP replaces the 

digital micromirror device (DMD), which functions as a 2D programmable blazed grating [55], with 

the transmissive mask for spatial modulation. This arrangement avoids generating a large number 

of unused diffraction orders, preventing a limited modulation efficiency to unblazed wavelengths, 

and eliminating intensity loss from the reflection from its cover glass as well as by its inter-pixel 

gap. In addition, the printed mask is illuminated at normal incidence, making it fully conjugated 

with both the object and the camera. Thus, the SMART-COSUP system presents a simpler, 

economical, and compact design with improved light throughput of the system and image quality 

of the captured snapshot. 

5.3 Structure of S2V-AE 

The architecture of S2V-AE consists of an encoder and a generator [Fig. 5.2(a)]. The encoder 

(denoted as 𝓔) converts a 2D snapshot to a series of low-dimensional latent vectors that represent 

particular features of the dynamic scene under study. As shown in Fig. 5.2(b), its architecture 

consists of five convolutional layers, a bi-directional long short-term memory (Bi-LSTM) recurrent 

layer [232], and a fully connected layer. In the convolutional layers, each convolution operation is 

followed by batch normalization (BN) [233] along with rectified linear unit (ReLU) activation [234]. 

The number of channels of feature maps, denoted by 𝑁, decreases from a preset value (512 in 

our experiments) to 𝑁𝑡. Then, the feature map, output by the last convolutional layer, is reshaped 

from a tensor into 𝑁𝑡 vectors, all of which are fed into the Bi-LSTM recurrent blocks with the fully 

connected layer to model temporal coherence. The outputs of the encoder, referred as to latent 

vectors, are then input to the generator (denoted as 𝓖). In particular, each latent vector is 

reshaped back to a tensor, which is fed into the generator to reconstruct one frame in the video. 

As shown in Fig. 5.2(c), the architecture of the generator consists of seven transposed 

convolutional layers. Akin to the encoder, BN and ReLU activation are employed after each 

transposed convolution, whose preset number of channels decreases from 1024 to 1. Each latent 
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vector is processed by the generator to a frame of 𝑁𝑥 × 𝑁𝑦 in size. The composition of 𝑁𝑡 such 

frames produces the reconstructed video. 

 

Figure 5.2  Snapshot-to-video autoencoder (S2V-AE). (a) General architecture. FI, frame index. (b) Architecture 
of encoder showing the generation of latent vectors from a compressively recorded snapshot. Bi-LSTM, Bi-directional 
long short-term memory; BN, Batch normalization; ReLU, Rectified linear unit; 𝑾, 𝑯, and 𝑵, output dimensions; 𝑾𝐢𝐧, 

𝑯𝐢𝐧, and 𝑵𝐢𝐧, input dimensions. (c) Architecture of the generator showing the reconstruction of a single frame from one 

latent vector. (d) Generative adversarial networks (GANs) with multiple discriminators {𝓓𝒌}. 𝓛𝓓𝒌, the loss function of 

each discriminator; 𝓛𝓖, the loss function of the generator; {𝒑𝒌}, random projection with a kernel size of [8, 8] and a 

stride of [2, 2]. (e) Architecture of each discriminator. 
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The training of the encoder and the generator in the S2V-AE is executed sequentially. Training 

data are generated on the fly. The details of the training data collection and the training procedure 

are described in our open-source code (see the link in Disclosure). Additional data, not included 

in its training phase, are used for evaluation. The generator is first trained under the setting of a 

GAN with multiple discriminators to ensure its sufficient diversity. In brief, a random noise vector 

𝔃𝐍𝐨𝐢𝐬𝐞, sampled from a prior distribution 𝑝𝔃𝐍𝐨𝐢𝐬𝐞 (i.e., 𝔃𝐍𝐨𝐢𝐬𝐞~𝑝𝔃𝐍𝐨𝐢𝐬𝐞  ), is input to the generator to 

produce a fake frame 𝓖(𝔃𝐍𝐨𝐢𝐬𝐞) that is expected to have visual similarity with the real frame 𝔁𝐃𝐚𝐭𝐚 

with an implicit data distribution 𝑝𝔁𝐃𝐚𝐭𝐚 (i.e., 𝔁𝐃𝐚𝐭𝐚~𝑝𝔁𝐃𝐚𝐭𝐚). The fake or real data are judged by 𝐾 =

40 discriminators [Fig. 5.2(d)]. In each such discriminator, the data are first projected by a random 

matrix (denoted by 𝒑𝑘 , where 𝑘 = 1, 2, … , 𝐾 ) to lower dimensions. Then, each discriminator 

(denoted as 𝓓𝑘) converts the input to a number that is expected to be high for a real frame and 

low for a fake frame. Each discriminator, corresponding to a binary classifier as schematically 

shown in Fig. 5.2(e), consists of seven convolutional layers with the numbers of channels ranging 

from 1024 to 1. The loss functions of each discriminator {𝓓𝑘} (𝑘 = 1, 2, … , 𝐾) (denoted by ℒ𝓓𝑘) 

and the generator (denoted by ℒ𝓖) are calculated by  

 

ℒ𝓓𝑘 = −𝔼𝔁𝐃𝐚𝐭𝐚~𝑝𝔁Data [log (𝓓𝑘( 𝔁𝐃𝐚𝐭𝐚𝑘))] −

                             𝔼𝔃𝐍𝐨𝐢𝐬𝐞~𝑝𝓏Noise
[log(1 − 𝓓𝑘( 𝓖(𝔃𝐍𝐨𝐢𝐬𝐞)𝑘))],

  (5.6) 

ℒ𝓖 = −
1

𝐾
∑𝔼𝔃𝐍𝐨𝐢𝐬𝐞~𝑝𝔃Noise

[log(𝓓𝑘( 𝓖(𝔃𝐍𝐨𝐢𝐬𝐞)𝑘 ))]

𝐾

𝑘=1

. (5.7) 

Here, ℒ𝓓𝑘 corresponds to the cross-entropy loss [235]. After the random projection {𝒑𝑘}, the input 

to each discriminator is either 𝔁𝐃𝐚𝐭𝐚𝑘 or 𝓖(𝔃𝐍𝐨𝐢𝐬𝐞)𝑘. Note that each discriminator is trained on two 

mini-batches of samples (i.e., real frames and fake frames).The notations 𝔼𝔁𝐃𝐚𝐭𝐚~𝑝𝔁𝐃𝐚𝐭𝐚
[∙] and 

𝔼𝔃𝐍𝐨𝐢𝐬𝐞~𝑝𝔃𝐍𝐨𝐢𝐬𝐞
[∙]  indicate taking the expectations over the distribution 𝔁𝐃𝐚𝐭𝐚~𝑝𝔁𝐃𝐚𝐭𝐚  and 

𝔃𝐍𝐨𝐢𝐬𝐞~𝑝𝔃𝐍𝐨𝐢𝐬𝐞, respectively. These loss functions are estimated over mini-batches to compute the 

gradients of losses for each parameter update. Moreover, training iterations are such that each 

discriminator is first updated in the descent direction of its corresponding loss and then ℒ𝓖 ’s 

gradients are used to update the generator’s parameters. The described training game is 

expected to converge to equilibrium (i.e., no player can improve without changing the other 

player), which is not guaranteed to occur in highly non-convex cases, such as in the training of 

neural networks. However, the results found in practice in our setting are satisfactory. Successful 
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training of the generator will yield parameters that enable its outputs 𝓖(𝔃𝐍𝐨𝐢𝐬𝐞)  to resemble 

characteristics of the real data. Leveraging this architecture, the goal of each discriminator is to 

distinguish the real data from the fake ones. The generator, by contrast, aims at fooling all 

discriminators by learning how to produce frames as close as possible to real data. Parameters 

in the generator and discriminators are updated according to these loss functions (i.e., Eqs. 5.6 

and 5.7), which are minimized via gradient-descent-based optimization. 

As the second step, the encoder is trained with the parameters of the generator fixed. The 

mean square error (MSE) between the recovered video 𝓖(𝓔(𝐸)) and the input data 𝐼 is defined 

as the loss function denoted by ℒ𝓔, i.e.,  

ℒ𝓔 = MSE[ 𝓖(𝓔(𝐸)), 𝐼 ]. (5.8) 

Via minimizing ℒ𝓔, the encoder learns how to correctly extract the latent vectors with temporal 

coherence from the 2D snapshot. The training of S2V-AE is finished when the reconstructed video 

quality stops increasing. Weight decay is employed during the training of the encoder to prevent 

the weights of the encoder from growing too large [236]. Hyper-parameters to be trained in the 

encoder are defined through a search over a small grid of candidate values using cross-validation 

with reconstruction performance measured over a freshly generated batch of data examples.  

In the training of both the generator and the encoder, the Adam optimization algorithm 

[237] was employed with a fixed learning rate, set to 10-3 for the training of the generator, and 

3×10-4 for the training of the encoder. Adam’s 𝛽1 and 𝛽2 parameters were set to 0.9 and 0.999 for 

the training of the generator and 0.5 and 0.9 for the training of the encoder, respectively. Data 

loading was set at training time such that both scenes and corresponding snapshots were 

generated on the fly, yielding a virtually infinite amount of training data. Once the completion of 

both the generator and the encoder training, the S2V-AE was employed to reconstruct dynamic 

scenes. 

5.4 Validation of S2V-AE’s reconstruction  

To test the feasibility of S2V-AE, we simulated video reconstruction of flying handwritten digits 

[238]. Each dynamic scene had a size of (𝑁𝑥 , 𝑁𝑦, 𝑁𝑡) = (64, 64, 40) , which produced the 

snapshot of (103, 64) in size. Snapshots were generated using the forward model of SMART-

COSUP (i.e., Eq. 5.1). Simulation results are summarized in Fig. 5.3. For the flying digits 

corresponding to “3”, “5”, and “7”, six representative frames in the ground truth and the 

reconstructed videos are shown in Figs. 5.3(a)–(c), respectively. To quantitatively assess the 
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reconstructed video quality, we analyzed the peak signal-to-noise ratio (PSNR) and the structural 

similarity index measure (SSIM) [239] frame by frame [Figs. 5.3(d)–(e)]. The average PSNR and 

SSIM of reconstructed results are 22.9 dB and 0.93, respectively. These results demonstrate that 

the S2V-AE can accurately reconstruct dynamic scenes from compressively acquired snapshots.  

Furthermore, to show that the S2V-AE possesses a more powerful ability of high-quality 

video reconstruction, we compared its performance to the U-net, which is most popularly used in 

video compressed sensing [74]. In particular, this U-net featured a convolutional encoder-decoder 

architecture with residual connection and used the same loss function in Ref. [74]. To implement 

the optimal specifications of this U-net based technique, we used an approximate inverse operator 

𝚽T(𝚽𝚽T)
−𝟏

 to alleviate the burden in learning the forward model [54, 74]. In particular to SMART-

COSUP, we defined 𝚽 = 𝐓𝐒𝐨𝐂. Using the compressively recorded snapshot of the scene (i.e., 

𝐸), the initialized input to the U-net is expressed as 𝐼𝑜 = 𝚽
T(𝚽𝚽T)

−𝟏
𝐸, which had the same 

(𝑥, 𝑦, 𝑡) dimension to the ground truth. Both the initialized input and its ground truth were used to 

train the U-net to obtain a good inference ability for new training scenes generated on the fly. To 

compare the results between the U-net and the S2V-AE, we reconstructed the flying digits of “3”, 

“5”, and “7”. Despite resembling a close trace of these moving digits to their ground truths, the U-

net reconstruction failed to recognize the digits’ spatial information in each frame. The limited 

feature extraction ability (imposed by the large number of frames in these scenes) and the 

requirement of high temporal coherence (broken by the fast and randomly moving traces of the 

digits in these scenes) are the two main reasons that attribute to the unsuccessful reconstruction 

using the U-net. In contrast, benefiting from its two-step strategy that incorporates spatiotemporal 

coherence, the S2V-AE has shown superior performance, manifesting in the sharpness of 

reconstructed digits, the maintenance of high image quality over a large sequence depth, and the 

capability of handling random moving traces. 

5.5 Demonstration of SMART-COSUP 

The proof-of-concept experiments of SMART-COSUP were conducted by imaging an animation 

of three bouncing balls, whose starting positions and moving directions were randomly chosen. 

This scene had the size of (𝑁𝑥 , 𝑁𝑦, 𝑁𝑡) = (256, 256, 100), which produced a snapshot with a size 

of (355, 256). To improve S2V-AE’s reliability for experimentally captured data, we included 

various experimental conditions in the forward model to train the S2V-AE. In particular, an 

experimentally captured mask image was used for the spatial modulation operator. Moreover, 

with consideration of the noise level in the deployed CMOS camera, Gaussian noise with a 
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standard deviation randomly selected from 10-1 to 10-4 was added into the training data to match 

the signal-to-noise ratios (SNRs) in acquired snapshots. Finally, distortion in the acquired 

snapshot was corrected by an established procedure [240, 241]. 

This animation was displayed on a DMD (Ajile Light Industries, AJD 4500) at a pattern 

refreshing rate of 5 kHz. The trajectories of all three balls were blind to the S2V-AE. A collimated 

laser beam from a 640-nm continuous-wave laser (CNI, MRL-III-640-50mW) illuminated this DMD 

at an incident angle of ~24° [Fig. 5.4(a)]. A camera lens (Fujinon, HF75SA1) was used as the 

front optics. The SMART-COSUP system imaged this event at 5 kfps. A captured 2D snapshot is 

shown as the inset in Fig. 5.4(a). Video reconstruction using the S2V-AE was compared with 

those using TwIST and plug-and-play (PnP)-ADMM with the BM3D denoiser [194]. In terms of 

the reconstruction speed, the execution of algorithms of S2V-AE, TwIST, and PnP-ADMM used 

0.06, 5, and 220 seconds, respectively. Thus, the S2V-AE offers speed enhancement of ~80× 

and ~3,700× to TwIST and PnP-ADMM, respectively. The S2V-AE also provides superior quality 

in the real-time reconstructed images. Figure 5.4(b) shows five representative frames of ground 

truth and their corresponding reconstructed results using the three methods. For both TwIST and 

PnP-ADMM, the reconstructed balls appear blurry and part of the balls are lost in certain frames. 

In contrast, the S2V-AE provides the best results, in which each ball is fully recovered with a clean 

background. To quantitatively compare these results, we plotted the PSNRs and SSIMs for all 

frames [Figs. 5.4(c)–(d)]. The reconstructed frames of S2V-AE have an average PSNR of 25.62 

dB, superior to 15.09 dB of TwIST and 16.30 dB of PnP-ADMM. The results from the S2V-AE 

have an average SSIM of 0.94, considerably better than 0.76 of TwIST and 0.85 of PnP-ADMM. 

Moreover, we traced the centroids of each ball over time. To further evaluate the reconstruction’s 

accuracy, we calculated the standard deviations of reconstructed centroids (Table 5.1). On 

average, the S2V-AE improves the accuracy by ~3× compared to the TwIST reconstruction and 

by ~2× to the PnP-ADMM reconstruction.  

Furthermore, the three centroids in each frame were used as vertices to build a triangle. 

Figures 5.4(e)-(f) show the time histories of the geometric center of this triangle generated from 

the results of the three reconstruction methods. The standard deviations in the 𝑥- and 𝑦-directions 

averaged over time were calculated as (25.4 µm, 17.0 µm), (14.8 µm, 14.5 µm), and (8.3 µm, 6.7 

µm) for TwIST, PnP-ADMM, and S2V-AE, respectively. These results show that the S2V- AE has 

delivered superior performance in image quality and measurement accuracy. 
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Figure 5.3  Simulation of video reconstruction using the S2V-AE. (a) Six representative frames of the ground 
truth (GT, top row) and the reconstructed result (bottom row) of the handwritten digit “3”. The snapshot is shown in the 
rightmost column. (b)–(c) As (a), but showing handwritten digits “5” and “7”. (d)–(e) Peak signal-to-noise ratio (PSNR) 
and the structural similarity index measure (SSIM) of each reconstructed frame for the three handwritten digits. 

 

Table 5.1 Standard deviations of reconstructed centroids of each ball averaged over time (Unit: µm) 

Ball 1 2 3  

Centroid 𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 Mean 

TwIST 37.5 36.3 39.4 35.7 43.2 34.9 37.8 

PnP-
ADMM 

27.6 26.2 25.6 25.3 28.6 30.5 27.3 

S2V-AE 15.0 12.3 11.0 12.6 15.3 16.0 13.7 

 

5.6 Application of SMART-COSUP to multiple-particle tracking 

To show the broad utility of SMART-COSUP, we applied it to tracking multiple fast-moving 

particles. In the setup, white microspheres were scattered on a surface that rotated at 6800 

revolutions per minute [Fig. 5.5(a)]. The 640-nm continuous-wave laser was used to illuminate the 

rotating microspheres at an incident angle of ~50°. To visualize the beads’ continuous motion 

while capturing a sufficiently long trace, the scattered light was captured by the SMART-COSUP 

system at 20 kfps. An objective lens (Nikon, CF Achro 4×) was used as the front optics. Figure 

5.5(b) shows a static image of three microspheres (marked as M1–M3) around the rotation center. 

Figure 5.5(c) shows a time-integrated image of this dynamic event acquired by using the CMOS 
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camera in the SMART-COSUP system at its intrinsic frame rate of 20 fps. Due to the low imaging 

speed, this time-integrated image cannot discern any spatiotemporal details. In contrast, imaging 

at 20 kfps, SMART-COSUP captures the trajectory of each microsphere. The top image in Figure 

5.5(d) provides a color-coded overlay of five reconstructed frames (from 0.55 ms to 4.55 ms with 

a 1-ms interval), which are shown individually in the bottom row of Fig. 5.5(d). The rotation of M1 

and M3 at two different radii [i.e., 𝑟M1
 and 𝑟M3

 labeled in Fig. 5.5(b)] is evident.  

 

 

Figure 5.4  SMART-COSUP of animation of bouncing balls at 5 kfps. (a) Experimental setup. DMD, digital 
micromirror device. Inset: An experimentally acquired snapshot. (b) Five representative frames with 4-ms intervals in 
the ground truth (GT) and the videos reconstructed by TwIST, PnP-ADMM, and S2V-AE, respectively. Centroids of the 
three balls are used as vertices to build a triangle (delineated by cyan dashed lines), whose geometric center is marked 
with a green asterisk. (c)–(d) PSNR and SSIM at each reconstructed frame. (e) Comparison of the positions of the 
geometric center between the GT and the reconstructed results in the 𝒙-direction. (f) As (e), but showing the results in 

the 𝒚-direction. 

 

To quantitatively analyze these images, we calculated the time histories of 𝑥- and 𝑦- 

positions [Fig.5.5(e)] and the corresponding velocities [Fig.5.5(f)] of these microspheres. M2, 

sitting at the rotation center, barely changes its position. The time histories of the positions and 

velocities of M1 and M3 follow sinusoidal functions expressed as 

𝒗𝑖(𝑥 or 𝑦)(𝑡) = 𝛚F𝑟M𝑖
sin(𝛚F𝑡 + 𝛼𝑖(𝑥 or 𝑦)).  (5.9)

Here, 𝑖 =1 or 3. 𝛚F denotes the angular velocity, whose value was preset at 0.71 rad/ms (i.e., 

6800 rounds per minute). 𝑟M𝑖
 denotes the radius of each microsphere’s rotation trajectory. In this 
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experiment, 𝑟M1
= 0.44 mm and 𝑟M3

= 0.64 mm. 𝛼𝑖(𝑥 or 𝑦) is the initial phase of the 𝑖th microsphere 

in either the 𝑥-direction or the 𝑦-direction. Thus, the theoretical linear speeds of M1 and M3 are 

0.31 m/s and 0.45 m/s, respectively. 

Based on the above analysis, we used single sinusoidal functions to fit the measured 

velocities. The fitted maximum velocities in the 𝑥-direction and the 𝑦-direction are 0.30 m/s and 

0.32 m/s for M1 and 0.46 m/s and 0.45 m/s for M3, respectively. The fitted angular speeds in the 

𝑥-direction and the 𝑦-direction are 0.71 rad/ms and 0.70 rad/ms for M1 and 0.71 rad/ms and 0.72 

rad/ms for M3. The experimentally measured values have a good agreement with the preset 

angular speed of the rotating surface.  

 

 

Figure 5.5  SMART-COSUP of multiple-particle tracking at 20 kfps. (a) Experimental setup. (b) Static image of 
three microspheres (labeled as M1–M3) and the radii (labeled as 𝒓𝐌𝟏

 and 𝒓𝐌𝟑
). (c) Time-integrated image of the rotating 

microspheres imaged at the intrinsic frame rate of the CMOS camera (20 fps). (d) Color-coded overlay (top image) of 
five reconstructed frames (bottom row) with a 1-ms interval. (e) Time histories of the microspheres’ centroids. (f) 
Measured velocities of microspheres with fitting. 

 

5.7 Discussion and conclusions  

The S2V-AE offers a new real-time reconstruction paradigm to compressed ultrahigh-speed 

imaging [Fig. 5.2(a)]. The new architecture of the encoder allows mapping a compressively 
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recorded snapshot into a set of low-dimensional latent vectors. After that, the GAN-trained 

generator maps such latent vectors into frames of the reconstructed video. Using this scheme, 

the training procedure is divided into two distinct phases: to train a generative model of static 

frames and to train an encoding model aiming to sample from the generator. By doing so, unlike 

direct reconstruction approaches, high quality in frame-wise reconstruction can be ensured by the 

initially trained generator, while the encoding model needs to learn only how to query coherently 

across time. This scheme brings in benefits to the reconstructed videos in terms of both quality 

and flexibility. The encoder in S2V-AE preserves coherence in both space and time. Different 

from previous works [54, 215, 216], no artificial segmentation is conducted in the S2V-AE, which 

avoids generating artifacts due to the loss of spatial coherence. The S2V-AE also explicitly models 

temporal coherence across frames with the Bi-LSTM. Both innovations ensure artifact-free and 

high-contrast video reconstruction of sophisticated moving trajectories. Meanwhile, the S2V-AE 

presents a flexible structure with a higher tolerance for input data. In particular, the generator, 

used in a PnP setting [147], is independent of the system’s data acquisition, which is important 

for adaptive compressed sensing applications. 

The multiple-discriminator framework implemented in the S2V-AE improves training 

diversity. While able to generate high-quality, natural-looking samples, generators trained under 

the framework of the GAN have known drawbacks that have to be accounted for at training time. 

Namely, mode collapse refers to cases where trained generators can generate only a small 

fraction of the data support [242]. Standard GAN settings do not account for the diversity of the 

generated data, but instead, the generator is usually rewarded if its outputs are individually close 

to the real data instances. As such, a large body of recent literature has tackled the mode collapse 

using different approaches to improve the diversity of the GAN generators [242, 243]. Mode 

collapse is especially critical in the application we consider herein. The generator in the S2V-AE 

needs to be able to generate any possible frame, which means being able to output images 

containing any objects (e.g. balls or digits) in any position. To ensure that the generator is 

sufficiently diverse, the S2V-AE implements the multiple-discriminator framework [244, 245]. 

Moreover, each such discriminator is augmented with a random projection layer at its input. More 

random views of the data distribution aid the generator in producing results that are approximate 

to the real data distribution. 

The S2V-AE enables the development of SMART-COSUP. This new technique has 

demonstrated the largest sequence depth (i.e., 100 frames) in existing DNNs-based compressed 

ultrahigh-speed imaging methods [54, 74, 215-218]. The sequence depth, as a tunable 
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parameter, could certainly exceed 100 frames. In this aspect, the performance of the S2V-AE 

mainly depends on the encoder [Fig. 5.2(b)] since it needs to extract the same number of latent 

vectors as the sequence depth. Although a large sequence depth may bring in training instabilities 

due to vanishing/exploding gradients, our choice of the Bi-LSTM architecture in the S2V-AE could 

alleviate gradient-conditioning issues relative to standard recurrent neural networks [246]. Thus, 

we expect the limit of sequence depth to be up to 1000 frames in the current setup. Moreover, 

although we only experimentally demonstrated the 20-kfps imaging speed in this work, the S2V-

AE could be extended to reconstructing videos with much higher imaging speeds. As shown in 

Eq. 5.5, SMART-COSUP’s imaging speed is determined completely by hardware. Regardless of 

the imaging speed, the operation of the S2V-AE—reconstruction of a 3D datacube from a 2D 

snapshot—remains the same. Moreover, considering the link between imaging speeds and 

SNRs, the successful reconstruction of snapshots with different SNRs during the training 

procedure (Section 5.5) indicates S2V-AE’s applicability to reconstruct videos with a wide range 

of imaging speeds. Furthermore, SMART-COSUP replaces the DMD with a printed transmissive 

mask. Despite being inflexible, the implemented pseudo-random binary pattern has better 

compatibility with diverse dynamic scenes, improves light throughput and image quality, as well 

as offers a simpler and more compact system arrangement. Along with its real-time image 

reconstruction, the SMART-COSUP system is advancing towards real-world applications. 

In summary, we have developed the S2V-AE for fast and high-quality video reconstruction 

from a single compressively acquired snapshot. This new DNN has facilitated the development 

of the SMART-COSUP system, which has demonstrated single-shot ultrahigh-speed imaging of 

transient events in both macroscopic and microscopic imaging at up to 20 kfps with a real-time 

reconstructed video size of (𝑁𝑥 , 𝑁𝑦 , 𝑁𝑡) = (256, 256, 100) . This system has been applied to 

multiple-particle tracking. Despite demonstrated only with the SMART-COSUP system, the S2V-

AE could be easily extended to other modalities in compressed temporal imaging [196] and single-

shot hyperspectral imaging [247]. Moreover, by implementing the variational AE [248], the 

dependence of the encoder on the sensing matrix could be further reduced. SMART-COSUP’s 

ability to track multiple fast-moving particles in a wide field may enable new applications on 

particle imaging velocimetry [249] and flow cytometry [250]. All of these topics are promising 

research directions in the future. 
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Abstract 

Bringing ultrafast (nanosecond and below) temporal resolution to transmission electron 

microscopy (TEM) has historically been challenging. Despite significant recent progress in this 

direction, it remains difficult to achieve sub-nanosecond temporal resolution with a single electron 

pulse, in real-time (i.e., duration in which the event occurs) imaging. To address this limitation, 

here, we propose a methodology that combines laser-assisted TEM with computational imaging 

methodologies based on compressed sensing (CS). In this technique, a two-dimensional (2D) 

transient event [i.e. (𝑥, 𝑦) frames that vary in time] is recorded through a CS paradigm, which 

consists of spatial encoding, temporal shearing via streaking, and spatiotemporal integration of 

an electron pulse. The 2D image generated on a camera is used to reconstruct the datacube of 

the ultrafast event, with two spatial and one temporal dimensions, via a CS-based image 

reconstruction algorithm. Using numerical simulation, we find that the reconstructed results are in 

good agreement with the ground truth, which demonstrates the applicability of CS-based 

computational imaging methodologies to laser-assisted TEM. Our proposed method, 

complementing the existing ultrafast stroboscopic and nanosecond single-shot techniques, opens 

up the possibility for single-shot, real-time, spatiotemporal imaging of irreversible structural 

phenomena with sub-nanosecond temporal resolution.  
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transmission electron microscopy; ultrafast imaging; compressed sensing; streak imaging; 
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6.1 Introduction  

Imaging materials with combined high spatial and temporal resolutions merits our attention to 

understanding the origins of many microscopic phenomena. However, developing such 

spatiotemporal imaging techniques has been traditionally challenging because of the limitations 

of the elementary particles used in the imaging processes. Photons and electrons, two 

fundamental particles that account for the most, if not all, imaging technologies, are dissimilar in 

terms of the spatiotemporal domains they can access. Photons, with no dispersion in free space 

and with no elementary charge, excel in forming ultrashort pulses that can propagate long 

distances and, hence, can be used for extremely high (up to attosecond) temporal studies. Fast 

electrons, on the other hand, with their picometer wavelengths and strong interaction cross-

sections, excel in forming images with the highest spatial resolution (sub-angstrom) available 

today.  

Methodologies based on the former, such as ultrafast optical spectroscopy, have offered 

access to the first “moments” of fundamental phenomena, including the birth of chemical species 

and evolution of molecular bonds [251, 252], phonon dynamics [253, 254], and valance-band 

electronic transitions [255]. While excelling in temporal resolution, photons lack the extreme 

spatial resolution that electrons can achieve in transmission electron microscopy (TEM). 

In the last couple of decades, it was possible to make photons and electrons work together 

in one microscope [31-33, 256-262] to achieve combined spatiotemporal resolutions that were 

not possible before. At the California Institute of Technology, a TEM system was modified to 

merge it with a femtosecond laser [263]. In such an ultrafast TEM, instead of using continuous 

electron beams, ultrashort electron pulses created by the photoelectric effect were used for 

imaging, while optical pulses are used to clock the sample synchronously. With such a pump-

probe scheme, it was possible to achieve few-nanometers real-space resolution combined with 

sub-picosecond temporal resolution stroboscopically [261], which represents the current 

resolution limits in spatiotemporal imaging. Complementarily, another photon-electron imaging 

methodology was developed at the Lawrence Livermore National Laboratory (LLNL) [264], 

following the original work of O. Bostanjoglo and colleagues [256-258]. This technique was based 

on using several intense electron pulses to image a photo-excited sample, and then deflecting 

these pulses successively to fill a CCD camera with several frames. This single-shot, real-time 

(i.e., duration in which the event occurs), ultrafast imaging approach enabled to visualize 

irreversible phenomena, albeit with limited sequence depth (i.e., the maximum number of frames 
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that can be captured in one acquisition), real-space resolution of tens of nanometers, and 

temporal resolution in the nanosecond range [264].  

Recently, compressed sensing (CS)—a scheme that allows underdetermined 

reconstruction of sparse scenes [88]—has been introduced into non-laser-assisted TEM [265]. In 

this proposal, a coded-aperture-based CS method [62] was implemented to increase the TEM’s 

frame rate. After the sample, the spatiotemporally modulated electron beam was encoded by a 

binary transmissive mask loaded on a moving piezoelectric stage. Different encoding masks were 

attached to individual temporal frames. These spatially encoded frames were integrated in a 

single camera exposure during the acquisition process. Their simulation showed that a movie 

could be reconstructed via CS inversion by using the captured single image. This proposed 

scheme would allow increasing TEM’s frame rate to several kilohertz [62]. However, constrained 

by the translational speed of the piezoelectric stage, the limited frame rate prevents this scheme 

from achieving sub-nanosecond temporal resolution. CS has also been implemented in the time 

domain with a TEM system [266, 267]. In this technique, four replicated images (arranged as a 

2×2 array) of the dynamic scene was generated on an image sensor by a high-speed deflector. 

A dynamic shutter, encoded by a distinct grayscale code sequence for each image, modulated 

the temporal integration process. The acquired data were fed into a CS-based reconstruction 

algorithm to generate 10 frames at the kilohertz level. Thus, this method has limitations in the 

imaging speed and the sequence depth.  

To overcome these limitations, here, we introduce a new methodology in laser-assisted 

TEM, inspired by compressed ultrafast photography (CUP) that has demonstrated breakthroughs 

in recording optical ultrafast transient scenes [19-21]. CUP, based on streak imaging and CS, has 

exhibited the fastest receive-only imaging modality at up to 10 trillion frames per second with 0.58 

ps temporal resolution. Leveraging a CS-based data acquisition and image reconstruction 

paradigm, CUP adds another spatial dimension into the conventional streak camera, enabling 

two-dimensional (2D) ultrafast (i.e., 𝑥, 𝑦, 𝑡 ) imaging with one camera exposure[90]. CUP has 

enabled capturing, for the first time, a number of transient optical phenomena, such as real-time 

fluorescence lifetime mapping [19], propagation of a scattering-induced photonic Mach cone [20], 

and temporal focusing of a femtosecond laser pulse [21]. Thus far, CUP has been applied only in 

optical imaging. However, CUP’s principle is generic, indicating the possibility of extending it to 

imaging with electrons. 

In this work, we propose two single-shot real-time ultrafast electron imaging 

configurations, synergizing CUP and laser-assisted TEM. The first configuration, termed 
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compressed ultrafast TEM (CUTEM), can be integrated into a laser-assisted TEM system without 

excessive modifications. The second configuration, termed dual-shearing (DS)-CUTEM, can offer 

improved technical specifications, but with more elaborate modifications to the hardware. For 

each configuration, we examined how each manipulation of a transient scene during electron 

propagation and data acquisition affected reconstructed image quality by using experimental data 

as the ground truth. These quantitative analyses guided us to optimize the reconstructed imaging 

quality. As a result, we were able to use the proposed configurations to reconstruct spatiotemporal 

datacubes, which were found to be in good agreement with the ground truth. This study verifies 

the feasibility of implementing CS-aided ultrafast imaging modalities to TEM. The proposed 

schemes have potential to achieve single-shot ultrafast imaging in real time with sub-nanosecond 

temporal resolution and nanometers real-space resolution. 

The rest of the paper is organized as follows. In Section 6.2, we describe the system 

designs with the analytical models of associated data acquisition and imaging reconstruction. In 

Section 6.3, we present the optimization of reconstructed image quality and proof-of-concept 

demonstrations using numerical simulation. In Section 6.4, we discuss how the proposed 

techniques could guide future experiments, followed by a short summary that concludes this 

paper. 

 

6.2 Method  

6.2.1 CUTEM  

The proposed CUTEM [Fig. 6.1(a)] technique can be experimentally realized by integrating a 

mask and shearing electrodes to a laser-assisted TEM machine. In CUTEM, a single nanosecond 

electron pulse probes a transient event initiated in a sample to generate a spatiotemporally 

modulated electron density function, 𝐼(𝑥, 𝑦, 𝑡). The transmitted electron pulse, then, experiences 

several manipulations, each of which is accounted by an operator (detailed in the following 

paragraph). Specifically, the pulse undergoes spatiotemporal electron distortion during the 

ensuing propagation within the TEM system. A binary transmission mask, with a specifically 

designed pattern, is placed on the path of the imaging electrons to encode 𝐼(𝑥, 𝑦, 𝑡). Produced by 

existing nanofabrication tools, this mask blocks the electrons at certain regions in space and 

allows them to pass through at others. Following the mask, a time-varying voltage, applied to a 

pair of electrodes, temporally shears 𝐼(𝑥, 𝑦, 𝑡). Finally, a single streak image, denoted as 𝐸, is 
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formed on a CCD camera via spatiotemporal integration (spatially integrating over each CCD pixel 

and temporally integrating over the exposure time). The mask and the shearing electrodes can 

be inserted to the TEM machine using one of the ports after the projection lens system. 

Mathematically, the above-described data acquisition process can be expressed as a 

forward model [Fig. 6.1(a)] by 

𝐸 = 𝐓𝐒𝐂𝐃 𝐼(𝑥, 𝑦, 𝑡), (6.1) 

where the linear operator 𝐃  accounts for electron’s spatiotemporal distortion induced by all 

experimental factors. 𝐂  represents spatial encoding by the binary transmission mask, 𝐒 

represents temporal shearing by the time-varying voltage applied to the electrodes, and 𝐓 

represents spatiotemporal integration by the CCD camera. For simplicity in denotation, we use a 

linear operator 𝐎 to represent the entire data acquisition process (i.e., 𝐎 = 𝐓𝐒𝐂𝐃). After data 

acquisition, we retrieve the transient scene computationally. Given the known operator 𝐎 and the 

spatiotemporal sparsity of the transient scene, 𝐼(𝑥, 𝑦, 𝑡) can be recovered by solving the inverse 

problem of Eq. (6.1). This process can be formulated as 

𝐼 = argmin
𝐼

‖𝐸 − 𝐎𝐼‖2
2 + 𝜆𝛷(𝐼) , (6.2) 

where 𝜆 is a weighting parameter, and 𝛷(·)  is the regularization function. In Eq. (6.2), the 

minimization of the first term, ‖𝐸 − 𝐎𝐼‖2
2, occurs when the actual measurement 𝐸 closely matches 

the estimated solution 𝐎𝐼, while the minimization of the second term, 𝛷(𝐼), encourages 𝐼 to be 

piecewise constant (i.e., sparse in the spatial gradient domain). The weighting of these two terms 

is adjusted by 𝜆 to lead to the results that are most consistent with the ground truth. Given the 

number of rows and columns of the CCD camera to be 𝑁r and 𝑁c, the number of voxels in the 

reconstructed datacube (i.e., 𝑁𝑥, 𝑁𝑦, and 𝑁𝑡) must meet the requirement of 

𝑁𝑥 ≤ 𝑁c ,   𝑎𝑛𝑑
𝑁𝑦 +𝑁𝑡 − 1 ≤ 𝑁r .

(6.3) 
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Figure 6.1  Proposed methods for single-shot real-time ultrafast electron imaging. (a), Hardware schematic of 

CUTEM and its forward model. 𝐂, spatial encoding operator; 𝐃, electron spatiotemporal distortion operator; 𝐒, temporal 

shearing operator; 𝐓, spatiotemporal integration operator. (b), Hardware schematic of DS-CUTEM and its forward 

model. 𝐒′, reverse temporal shearing operator. 𝒕, time; 𝒙, 𝒚, spatial coordinates.  

 

6.2.2 Dual-shearing (DS)-CUTEM 

To increase the size of reconstructed datacube, we further propose a variant referred to as dual 

shearing (DS)-CUTEM, whose system schematic is shown in Fig. 6.1(b). The difference of DS-

CUTEM with respect to CUTEM is that 𝐼(𝑥, 𝑦, 𝑡) is sheared twice in opposite directions by two 

pairs of electrodes, which sandwich the spatial encoding mask. A similar voltage ramping 

waveform is used to control both pairs to avoid asymmetric shearing. The delay of shearing onsets 

is determined by the distance between these two deflectors and the electron pulse’s propagation 

speed. The streak image recorded on the CCD camera is denoted as 𝐸DS. Mathematically, the 

forward model of DS-CUTEM can be expressed as  

𝐸DS = 𝐓𝐒
′𝐂𝐒𝐃 𝐼(𝑥, 𝑦, 𝑡), (6.4) 

where 𝐒′represents temporal shearing in a reverse direction to that of 𝐒. After data acquisition, 

DS-CUTEM uses the similar computational reconstruction method as CUTEM to retrieve the 

result, expressed by  

𝐼 = argmin
𝐼

‖𝐸DS − 𝐎
′𝐼‖2

2 + 𝜆𝛷(𝐼) , (6.5) 
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where the linear operator 𝐎′ = 𝐓𝐒′𝐂𝐒𝐃. 

 Compared with CUTEM, the dual-shearing operation implemented in DS-CUTEM allows 

the temporal course of a specific spatial position in the scene to be integrated at the same pixel 

of the CCD camera, circumventing the requirement [i.e., Eq. (6.3)] that is imposed by CUTEM. 

Consequently, each frame in the reconstructed datacube could have a maximum size of 𝑁𝑥 ×

𝑁𝑦 = 𝑁c × 𝑁r, and 𝑁𝑡 would be limited by the dynamic range of the CCD camera. In addition, the 

dual-shearing operation implemented in DS-CUTEM enables designing a more incoherent 

measurement matrix. In particular, while encoded by the same mask in CUTEM, each frame in 

𝐼(𝑥, 𝑦, 𝑡) is imprinted by a different random binary mask in DS-CUTEM due to the first shearing 

operation prior to the spatial encoding. Consequently, DS-CUTEM has less mutual coherence 

between the measurement matrix and the sparsity basis of the transient scene than that of 

CUTEM, which yields an improved reconstructed image quality (detailed in Section 6.3). 

 

6.2.3 Comparison of CUTEM and DS-CUTEM with framing TEM  

The proposed two configurations could exceed framing TEM [i.e. where the CCD camera is filled 

with spatially-separated frames, like in the LLNL TEM system [264]] in the temporal resolution 

and the sequence depth. Both CUTEM and DS-CUTEM use spatial encoding and temporal 

shearing to tag each frame with a spatiotemporal “barcode”. This prior information, along with the 

sparsity in the transient scene, allows spatiotemporal mixing of adjacent frames, which can be 

recovered in image reconstruction. The reconstructed frame rate, 𝑟, is thus determined by  

𝑟 =
𝑣

𝑑
, (6.6) 

where 𝑣  is the temporal shearing velocity, and 𝑑  is the CCD’s pixel size along the temporal 

shearing direction. As a result, for a given recording time window, the proposed configurations 

can largely improve the temporal resolution, compared with the framing TEM. For instance, using 

a high-speed electrostatic deflector, the framing TEM [264] can acquire up to 5×5 frames [Fig. 

6.2(a)], each of which has 400×400 pixels in size to fill up a sensor with pixels of 𝑁c  ×  𝑁r =

 2000 × 2000.  The inter-frame time is 25 ns. In comparison, spatiotemporal mixing allowed in 

CUTEM could produce an inter-frame time of 62.5 ps. With the consideration of temporal blurring 

effect [19], the estimated temporal resolution is approximately 0.3 ns. According to Eq. (6.3), in 

CUTEM, the 𝑥 axis is used only for recording the spatial information, which allows making full use 
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of the 𝑁c (i.e.,  𝑁𝑥 = 2000). In the 𝑦 axis, the pixels are distributed to record both spatial and 

temporal information. Physically, this restriction means that the size of captured 2D image has to 

be less than the full size of the sensor [Fig. 6.2(b)]. Therefore, if we keep the number of pixels in 

the 𝑦 axis the same as the framing TEM (i.e., 𝑁𝑦 = 400), the maximum sequence depth is around 

𝑁𝑡 = 1600. 

 

Figure 6.2  Illustrative comparison of the captured images on the camera by (a) framing TEM and (b) CUTEM. 
The magenta dashed box indicates the camera’s sensor area. The dash-dotted arrow lines in (a) and (b) indicate the 
direction of raster scanning of framing TEM and the temporal shearing direction of CUTEM, respectively. 𝑵𝐫 and 𝑵𝐜, 
number of rows and columns of the camera. In (b), the adjacent two frames can be offset by as few as one pixel. 

 

6.2.4 Simulation setup 

To test the proposed methods, two transient scenes were used. The first scene [Fig. 6.3 (a)] 

depicts near-field intensity dynamics of dipoles of two close-by silver nanoparticles excited by an 

ultrashort laser pulse (referred to hereafter as the ‘dipole scene’) [268]. While holding fixed spatial 

positions, the dipoles have fluctuating intensities in time. Second, as shown in Fig. 6.3 (b), a 

transient scene of a moving nanoscale cantilever was used (referred to as the ‘cantilever scene’ 

hereafter) [269]. Complementary to the dipole scene, the cantilever moves in space, while its 

intensity is almost constant. Both datasets are experimentally acquired and previously published 

[268, 269]  

The general framework of our simulation is as follows. First, the sizes of both the dipole 

scene and cantilever scene were set to 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑡 = 300 × 300 × 30. Then, both scenes were 

used for the forward models of the two proposed methods [i.e., Eqs. (6.1) and (6.4)] to generate 

𝐸 and 𝐸DS, respectively. To maximally mimic the experimental conditions, no noise filtering was 
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conducted to any frames in either scene. The sizes of 𝐸 and 𝐸DS were 𝑁𝑥 × 𝑁𝑦,𝑡 = 300 × 329 and 

𝑁𝑥 × 𝑁𝑦,𝑡 = 300 × 300, respectively. Here, 𝑁𝑦,𝑡 represents the number of pixels in the axis where 

the spatial and temporal information are mixed. Finally, 𝐸 and 𝐸DS were fed into the two-step 

iterative shrinkage/thresholding (TwIST) algorithm [68] to retrieve 𝐼(𝑥, 𝑦, 𝑡) by solving Eqs. (6.2) 

and (6.5). Total variation (TV) was used as the regularization function [270]. Compared with other 

regularization functions, such as 𝑙0 or 𝑙1 norms, TV regularization has superior performance in 

denoising while preserving important details in images [271].  

 

Figure 6.3  Examination of the reconstructed image quality to the types of encoding masks, encoding pixel sizes, 
and SNRs. (a), Dipole scene. (b), Cantilever scene. (c), Conventional binary mask. (d), Optimized binary mask. Insets 
in (c) and (d) show the details of local features of the encoding masks; 𝒙, 𝒚, spatial coordinates. (e), SSIM values of the 
reconstructed dipole scene versus different encoding pixel sizes and the two types of encoding masks for both proposed 
methods. (f), As (e), but shows the results using the cantilever scene. (g), SSIM values with the respect to SNRs for 
the dipole scene (using 5×5 encoding pixel size). (h), As (g), but shows the SSIM-SNR relations for the cantilever scene 
(using 4×4 encoding pixel size). The optimized binary masks were used for obtaining the results in (g) and (h).  
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6.2.5 Examination of various operators and reconstructed image quality 

To investigate how each operator impacts the reconstructed image quality, we used different 

combinations of encoding masks, encoding pixel sizes (defined as how many pixels of the sensor 

each encoding pixel contains), and signal-to-noise ratios (SNRs) in both proposed methods. First, 

the encoding mask provides the necessary prior information to extract the temporal information 

in image reconstruction. Following the established theories [63, 272, 273], a pseudo-random 

binary mask [shown in Fig. 6.3(c) and referred to hereafter as the “conventional mask”] was 

implemented. This mask was constructed by binarizing a random matrix whose element values 

follow a Gaussian distribution. While incoherent with the most sparse representation of the scene, 

the conventional mask might not be the optimal choice for a given sparse basis. To optimize the 

encoding mask, we used a column-normalized random matrix �̃� to generate its Gram matrix [274], 

defined by �̃�𝑇�̃�. When the Gram matrix approaches to a unit matrix 𝐻, the mutual coherence 

reaches the minimum. Mathematically, this optimization process can be formulated as 

�̂� = argmin
�̃�

‖�̃�𝑇�̃� − 𝐻‖
𝐹  

2
, (6.7) 

where ‖∙‖𝐹
2 represents Frobenius norm. In practice, a gradient descent method [275, 276] was 

implemented to generate the optimized random binary mask [Fig. 6.3(d)]. For simplicity, we 

denote this mask as the “optimized mask”.  

Besides the mask pattern, we also optimized the encoding pixel size. On one hand, to 

satisfy the Nyquist sampling theorem, the smallest feature in both spatial and temporal domains 

has to be sampled by at least two encoding pixels, meaning that the smaller pixel size aides 

spatial and temporal resolutions. On the other hand, the smaller pixel size is more vulnerable to 

noise in the measurement and thus demands higher SNRs for transient scenes [277]. Thus, the 

optimized encoding pixel size can be chosen by balancing the achievable resolution and noise.  

Finally, the SNRs in 𝐸 and 𝐸DS, associated with the operator 𝐓 [Eqs. (6.1) and (6.4)], were 

analyzed. Here, we defined the SNR as the quotient of the maximal intensity to the standard 

deviation of the noise in the acquired images (i.e., 𝐸 and 𝐸DS). To vary the SNR, we added zero-

mean Gaussian noise with variances from 0 to 0.5.  

To quantitatively compare the reconstructed image quality, the structural similarity (SSIM) 

[278] was used as the merit function. SSIM is a perception-based assessment model that 

considers image degradation as perceived change in structural information while also 

incorporating significant perceptual phenomena, including both luminance and contrast terms. 
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Compared with conventional image quality assessment methods, such as mean squared error 

and peak signal-to-noise ratio, SSIM has a better capability to represent the perceived visual 

quality.  

Figures 6.3(e) and (f) show SSIM values of the reconstructed dipole and cantilever 

scenes, using both the conventional and optimized encoding masks and with different encoding 

pixel sizes, for both CUTEM and DS-CUTEM. For both scenes, dual-shearing operation produces 

better reconstruction image quality than its single-shearing counterpart because of its more 

incoherent measurement matrix. Figures 6.3(e) and (f) also illustrate that mask optimization 

improves reconstructed image quality. Although the mask optimization was conducted only in the 

spatial domain, because 𝐶 is a part of measurement matrix 𝑂 and 𝑂′, this operation still assisted 

in minimizing the mutual coherence between these measurement matrices and the sparsity basis, 

leading to a better reconstruction image quality. It is worth noting that although only demonstrated 

in the spatial domain in this work, mask optimization can be implemented for other sparsity bases, 

including discrete cosine transformation [279] and discrete wavelet transformation [280]. Finally, 

we found the optimal encoding pixel size to be 5×5 for the diploe scene and 4×4 for the cantilever 

scene, respectively. The varied optimal sizes are ascribed to the different imaging contents and 

characteristics in the two scenes. 

Figures 6.3(g) and (h) present the changes in SSIM values of the dipole scene and the 

cantilever scene versus the SNRs of 𝐸  and 𝐸DS . The optimized encoding patterns and the 

optimized encoding pixel sizes were used for both scenes in this quantification. With decreasing 

SNRs, although the reconstructed image quality descends drastically for both proposed methods, 

DS-CUTEM performs consistently better than CUTEM until the SNR approaches five. There, the 

SSIM for both proposed methods converge and remain relatively unchanged for lower SNRs, 

because the noise has dominated the measurement results.  

 Besides the above-described optimization, we accounted for the influence of the space-

charge effect on image distortion by introducing the operator 𝐃 in Eqs. (6.1) and (6.4). The space-

charge effect degrades both spatial resolution and temporal resolution. First, by distorting the 

probing electron pulse, it causes deformation of the system’s point spread function. The distortion 

would lead to crosstalk (i.e., electrons that are supposed to be recorded by a certain pixel on the 

image sensor are actually recorded by a different pixel) in the spatiotemporal integration. Because 

spatial information and temporal information are mixed during the data acquisition in both CUTEM 

and DS-CUTEM, this crosstalk would affect the reconstruction accuracy in both the spatial domain 
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and the time domain. Finally, this inaccurate reconstruction will transfer to the degraded spatial 

and temporal resolutions.  

We modeled electrons’ spatial and temporal expansion by a spatiotemporal Gaussian 

model. The expansion ratio in the model is defined as the quotient between the size of the 

distorted transient scene and that of the original one. A ratio smaller than one means spatial or 

temporal shrinkage. Both proposed methods were implemented to account for 𝐃 and produced 

comparable results. For simplicity, only the results of DS-CUTEM are shown. The flow chart of 

the reconstruction process with electron distortion is shown in the Fig. 6.4(a). The transient scene 

first went through the operator 𝐎′ to generate 𝐸DS [see Eq. (6.4)]. Then, 𝐸DS was used as an input 

into the TwIST algorithm to retrieve the estimated measurement 𝐼u(𝑥, 𝑦, 𝑡) . The operator 𝐎𝐮
′  

represents 𝐓𝐒′𝐂𝐒, and its inverse operator is represented as 𝐎𝐮
′ ∗. Here, the subscript “u” stands 

for “uncorrected”. Finally, we used the estimated measurement 𝐼u(𝑥, 𝑦, 𝑡)  and input transient 

scene 𝐼(𝑥, 𝑦, 𝑡) to calculate the SSIM value. As a comparison, the flow chart of the reconstruction 

process with distortion correction is shown in Fig. 6.4(b). 𝐎′∗ denotes the inverse operator of 𝐎′. 

Figure 6.4(c) shows the normalized SSIM values of reconstructed dipole scene with spatial 

and temporal expansions, both with ratios between 0.7 and 1.3. The expansions in both spatial 

and temporal domains deteriorated the reconstructed image quality, manifesting in the radially 

decreasing SSIM values from the origin (i.e., no spatial or temporal expansion). Similar 

degradation trend is observed for the cantilever scene [Fig. 6.4(d)]. The result after correcting for 

electrons’ spatiotemporal distortion through the operator 𝐃 is shown in Figs. 6.4(e) and (f). In both 

cases, corrections significantly alleviate the degradation, demonstrated as the high normalized 

SSIM values (between 0.95 and 0.96) across various spatiotemporal expansion.  

It is worth pointing out that although we used a simple model for the operator 𝐃  to 

compensate for the spatiotemporal distortions of the electron pulse, the reconstruction approach 

presented here is universal: as long as the operator 𝐃 is known (e.g., obtained through a point-

by-point calibration), image distortions due to electron repulsions can be accounted for. In a TEM 

system, the electron pulse can propagate a significant distance, with several crossovers in the 

imaging/projection lens system. For more precise reconstruction, these effects should be 

accounted for via elaborate studies of the electron trajectories. Nevertheless, for moderate 

electron densities in a pulse, the Gaussian model used here, as a first order approximation to 

model 𝐃, should be sufficient. 
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Figure 6.4  Comparison between the distortion and correction in DS-CUTEM. (a), Flowchart of reconstruction 
without distortion correction. (b), Flowchart of reconstruction with distortion correction. (c), Normalized SSIM values of 
reconstructed datacubes of the dipole scene without distortion correction. (d), As (c), but shows results for the cantilever 
scene. (e), Normalized SSIM values of reconstructed datacubes of dipole scene with distortion correction. (f), As (e), 
but shows results for the cantilever scene. 

 

6.2.6 Feasibility demonstration  

We leveraged the proposed methodology in reconstructing the two transient scenes. The 

represented frames of the dipole scene (as the ground truth) are shown in Fig. 6.5(a). The 

corresponding frames reconstructed by CUTEM and DS-CUTEM are presented in Figs. 6.5(b) 

and (c), respectively. A frame-to-frame comparison of the two reconstructed datacubes with the 

ground truth is shown in Media 1. Both CUTEM and DS-CUTEM significantly removed the noises 

presented in the dipole scene, demonstrated by a clean background in each reconstructed frame. 

Figure 6.5(d) illustrates the change in normalized average intensity across all frames. The 
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reconstruction results of CUTEM and DS-CUTEM are consistent with the ground truth. For a more 

detailed analysis, in Fig. 6.5(e), we plot the intensity profiles of a diagonal line in the ground truth 

and the reconstructed results [marked by the red solid line in Frame 15 in Figs. 6.5(a)–(c)].  The 

reconstruction by both CUTEM and DS-CUTEM well complies with the ground truth.  

Six representative frames of the cantilever scene (as the ground truth) and its 

reconstructed images are shown in Figs. 6.6(a)–(c). Similar to the dipole scene, the noise 

reduction is clearly represented in Figs. 6.6(b) and (c), and the reconstruction is in good 

agreement with the ground truth [Fig. 6.6(d)]. Figure 6(e) shows the intensity profiles of a selected 

horizontal line in the ground truth and reconstructed results [marked by the red solid line in Frame 

5 in Figs. 6.6(a)–(c)], which again demonstrates that the good agreement between the 

reconstructed results with the ground truth.  
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Figure 6.5  Reconstruction of the dipole scene using CUTEM and DS-CUTEM. (a), Representative frames of 
dipole scene as the ground truth [adapted from [268] with permission]. (b) and (c), Corresponding representative frames 
of reconstruction using CUTEM and DS-CUTEM, respectively. (d), Normalized average intensity across all frames of 
dipole scene and the two reconstructed results. (e), Comparison of normalized intensity profiles of a diagonal line in 
the dipole scene and the reconstruction results [marked by the red solid line in Frame 15 in (a)–(c)].  

 

 

Figure 6.6  Reconstruction of the cantilever scene using CUTEM and DS-CUTEM. (a), Representative frames 
of the cantilever scene as the ground truth [adapted from [269] with permission]. (b) and (c), Corresponding 
representative frames of reconstruction using CUTEM and DS-CUTEM, respectively. (d), Change in normalized 
average intensity across all frames of cantilever scene and the two reconstructed results. (e), Comparison of normalized 
intensity profiles of a horizontal line in the cantilever scene and the reconstruction results [marked by the red solid line 
in Frame 5 in (a)–(c)].  

 

6.3 Discussion and Conclusions 

Our analytical models and simulation have shown that the single-shot ultrafast electronic imaging 

with sub-nanosecond temporal resolution could be realized by integrating CS-aided ultrafast 

imaging modalities to laser-assisted TEM. In principle, through hardware modifications detailed 
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in Fig. 6.1, CUTEM and DS-CUTEM will be able to record a single spatiotemporally modulated 

image in measurement and time-resolved frames through reconstruction. Moreover, compared 

with the previous methods [265, 266], both proposed configurations in our work encode the 

transient scene with a static mask. Consequently, no mechanical movement will be induced 

during the image acquisition, which would improve the repeatability and accuracy in calibration 

and experiments. In practice, to generate the image with high SNRs, nanosecond pulsed electron 

beams with more than 10 million electrons will be utilized. Such electron pulses can be generated 

using the photoelectric effect and powerful lasers. Temporal shearing and image recording 

needed for CUTEM and DS-CUTEM can be achieved with electronics with a rise time in the order 

of hundreds of picoseconds to nanoseconds [264]. At Institut National de la Recherche 

Scientifique (INRS), a TEM system using these technologies is under construction.  

 In summary, we have presented the design and simulation studies of CUTEM and DS-

CUTEM—two CS-aided single-shot real-time ultrafast electron imaging methods. Transient 

scenes experimentally captured by laser-assisted TEM were used to test their fidelity. Different 

types of mask patterns and encoding pixel sizes were examined to optimize reconstructed image 

quality for the given SNR. The reconstruction results with both electronic distortion and 

corresponding correction processes were also provided. Based on these investigations, high-

quality reconstruction of both transient scenes have been demonstrated in simulation. Our future 

work will be to apply both proposed methods in the advanced TEM infrastructure at INRS for 

imaging non-repetitive ultrafast events, such as structure dynamics of superheated nanoparticles 

[281] and phase transition in crystals [282, 283] at sub-nanosecond temporal resolution and 

nanometer real-space resolution. In addition, we plan to graft the concept of computational 

tomography (CT) into the spatiotemporal domain [90]. By implementing the multiple-angle 

projections in the proposed configurations and by leveraging various CT reconstruction 

algorithms, the spatial and temporal resolutions of the CUTEM and DS-CUTEM systems could 

be further improved. 
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7 CONCLUSIONS AND PROSPECTIVES  

7.1 Conclusions 

Higher temporal resolution has been extensively pursued in photography for decades. CUP has 

attracted the tremendous interest of scientists by its fascinating merits in imaging speed, 

achieving novel capabilities that one could not with traditional imaging methods. Despite many 

advantages, the usage of an optoelectronic streak camera makes CUP suitable for niche 

applications, in which the system cost, size, and the QE of photocathode are negligible. 

Fortunately, the concept of CUP is generic. Inspired by CUP, we developed COSUP with merits 

such as cost-efficiency, compactness, and high sensitivity. We further developed COSUP to 

SPLIT. Using this system, we have demonstrated new applications in optical thermometry with 

wide-field and fast temperature sensing capability. Moreover, leveraging the rapid advancement 

of deep learning, we developed the SMART-COSUP system that has achieved fast end-to-end 

CS reconstruction in the task of high-speed object tracking. Furthermore, bringing the concept of 

CUP into the electronic imaging domain generates the configurations of CUTEM by combining 

streaking imaging with TEM. The proposed analytical model and simulation demonstrated the 

features of CUTEM and its variant possess nanometer spatial resolution and sub-nanosecond 

temporal resolution simultaneously.  

The specific conclusions are as follows. First, COSUP pertains to single-shot 2D ultrahigh-

speed passive optical imaging. Unlike the optoelectronic sweeping in CUP, COSUP features the 

optical streaking using a GS in the 4f imaging system. As a result, COSUP achieves tunable 

imaging speeds of up to 1.5 Mfps, which is approximately three orders of magnitude higher than 

the state-of-art in imaging speed of CTI [19-21] with an off-the-shelf CMOS camera. Furthermore, 

the COSUP system is capable of reaching a pixel count of 0.5 megapixels in each frame, which 

gives the space-bandwidth-time product of up to 750 gigapixels per second. The COSUP system 

can reconstruct a sequence depth of up to 500 frames in a single measurement, which 

dramatically increases the on-chip storage capacity. The transmission of single laser pulses 

through a mask and the shape and position of tracking of a fast-moving object in real time has 

been used to demonstrate COSUP’s ultra-high-speed imaging capability. 

Second, the SPLIT system has been developed for wide-field dynamic temperature 

sensing in real time. SPLIT, adapted from the COSUP system, compressively records the 

photoluminescence emission over a 2D FOV in two views. Then, the dual-view PnP-ADMM 

algorithm reconstructs spatially resolved intensity decay traces, from which a photoluminescence 
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lifetime distribution and the corresponding temperature map are extracted. Used with core/shell 

NaGdF4:Er3+, Yb3+/NaGdF4 UCNPs, SPLIT has enabled temperature mapping with high sensitivity 

for both green and red upconversion emission bands with a 20-µm spatial resolution in a 1.5×1.5 

mm2 FOV at a video rate of 20 Hz. SPLIT is demonstrated in longitudinal temperature monitoring 

of a phantom beneath fresh chicken tissue. SPLIT is also applied to dynamic single-cell 

temperature mapping of a moving single-layer onion epidermis sample. 

Third, we have developed the S2V-AE for fast and high-quality video reconstruction from 

a single compressively acquired snapshot. This new DNN has facilitated the development of the 

SMART-COSUP system, which has demonstrated single-shot ultrahigh-speed imaging of 

transient events in both macroscopic and microscopic imaging at up to 20 kfps with a real-time 

reconstructed video size of (𝑁𝑥 , 𝑁𝑦 , 𝑁𝑡) = (256, 256, 100) . This system has been applied to 

multiple-particle tracking.  

Fourth, we have presented the design and simulation studies of CUTEM and DS-

CUTEM—two CS-aided single-shot real-time ultrafast electron imaging methods. Transient 

scenes experimentally captured by laser-assisted TEM were used to test their fidelity. Different 

types of mask patterns and encoding pixel sizes were examined to optimize reconstructed image 

quality for the given SNR. The reconstruction results with both electronic distortion and 

corresponding correction processes were also provided. Based on these investigations, high-

quality reconstruction of both transient scenes has been demonstrated in simulation.  

 

7.2 Prospectives 

As a universal imaging platform, COSUP can achieve a scalable spatial resolution by coupling 

with different front optics in microscopes and telescopes. Moreover, although not demonstrated 

in this work, COSUP can be easily applied to other CCD or CMOS cameras according to specific 

studies. For instance, the integration of an EMCCD camera in the COSUP system will enable 

high-sensitivity optical neuroimaging of an action potential propagating at tens of meters per 

second [102] under microscopic settings [103]. As another example, an infrared-camera-based 

COSUP system could enable wide-field temperature sensing in deep tissue using nanoparticles 

[104]. In summary, by leveraging the advantages of off-the-shelf cameras and sensors, COSUP 

is expected to find widespread applications in both fundamental and applied sciences. 
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SPLIT offers a versatile PLI temperature-sensing platform. In materials characterization, 

it could be used in the stress analysis of metal fatigue in turbine blades [157]. In biomedicine, it 

could be implemented for accurate sub-cutaneous temperature monitoring for theranostics of skin 

diseases (e.g., micro-melanoma) [158, 159]. SPLIT’s microscopic temperature mapping ability 

could also be exploited for the studies of temperature-regulated cellular signaling [160]. Finally, 

the operation of SPLIT could be extended to Stokes emission in lanthanide-doped nanoparticles 

and spectrally resolved temperature mapping.  

Despite being demonstrated only with the SMART-COSUP system, the S2V-AE could be 

easily extended to other modalities in CTI [196] and single-shot hyperspectral imaging [247]. 

Moreover, by implementing the variational AE [248], the dependence of the encoder on the 

sensing matrix could be further reduced. SMART-COSUP’s ability to track multiple fast-moving 

particles in a wide field may enable new applications in particle imaging velocimetry [249] and 

flow cytometry [250].  

Single-shot CUTEM could be applied in the advanced TEM infrastructure at INRS for 

imaging non-repetitive ultrafast events, such as structure dynamics of superheated nanoparticles 

[281] and phase transition in crystals [282, 283] at sub-nanosecond temporal resolution and 

nanometer real-space resolution. In addition, we plan to graft the concept of computational 

tomography (CT) into the spatiotemporal domain [90]. By implementing the multiple-angle 

projections in the proposed configurations and by leveraging various CT reconstruction 

algorithms, the spatial and temporal resolutions of the CUTEM and DS-CUTEM systems could 

be further improved. All of these topics are promising research directions in the future.  
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SOMMAIRE RÉCAPITULATIF 

Développement et applications de l'imagerie ultra-rapide à stries optiques 
compressées à un seul coup 

L’introduction 

La résolution temporelle, définissant la proximité temporelle de deux événements adjacents 

discernables, est un paramètre important de la photographie. Pour évaluer quantitativement la 

résolution temporelle, les modalités d'imagerie sont caractérisées par le concept de vitesse 

d'image, qui est quantifiée par la fréquence d'images avec l'unité d'images par seconde (fps). 

Malgré l'avancée fulgurante du nombre de pixels des caméras jusqu'à des gigapixels, la vitesse 

d'imagerie des caméras limite fondamentalement la capacité des humains à discerner le monde 

physique. Les photographes et les scientifiques ont continuellement cherché des méthodes pour 

capturer des scènes transitoires à une vitesse d'imagerie plus élevée, les premiers exemples 

étant des enregistrements bien connus en 1878 d'un cheval au galop et la photographie de 1887 

d'une balle supersonique. 

Les vitesses d'imagerie multi-échelles répondent aux différents besoins de recherche 

scientifique et d'application. Par exemple, l'imagerie à grande vitesse (par exemple, jusqu'à des 

milliers d'ips) joue un rôle clé dans la vélocimétrie par images de particules, la vidéosurveillance 

et la relecture instantanée, pour n'en nommer que quelques-uns. L'imagerie ultra-rapide (par 

exemple, jusqu'à des millions de fps) est nécessaire pour observer les activités neuronales, 

l'émission de lumière phosphorescente, les changements conformationnels des protéines, etc. 

L'imagerie ultra-rapide (par exemple, des milliards de fps) ouvre des recherches scientifiques 

telles que la surveillance du comportement moléculaire (par exemple , cinéma moléculaire), 

caractérisant la structure fine de la matière et étudiant des processus chimiques et biologiques 

jusque-là inaccessibles. 

Actuellement, par rapport à la photographie sur film, les technologies de dispositif à 

couplage de charge (CCD) et de métal-oxyde-semi-conducteur complémentaire (CMOS) ont 

révolutionné la photographie à haute et ultra-haute vitesse. Les caméras CCD/CMOS à la pointe 

de la technologie ont atteint des fréquences d'images allant jusqu'à 107 ips. Malgré l'impact 

généralisé de ces capteurs, l'augmentation supplémentaire des fréquences d'images à l'aide de 

la technologie CCD ou CMOS est fondamentalement limitée par leur bande passante 

d'électronique et de stockage sur puce. Par exemple, la fréquence d'images est généralement 
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inversement proportionnelle au nombre total de pixels acquis. Les caméras CCD/CMOS ultra-

rapides existantes reposent soit sur des capteurs personnalisés à des prix élevés, soit sur des 

réseaux de caméras volumineux. 

La photographie ultrarapide compressée (CUP) est une modalité émergente d'imagerie 

computationnelle (CI) qui combine de manière synergique la détection compressée (CS) avec 

l'imagerie par stries. CUP est réputé pour son imagerie dynamique bidimensionnelle (2D) avec 

une vitesse d'image pouvant atteindre 1013 ips. Par rapport aux méthodes d'imagerie ultrarapides 

basées sur la pompe-sonde, CUP permet d'enregistrer des événements non répétitifs évoluant 

dans le temps en un seul instantané. Jusqu'à présent, CUP a mené à une variété d'applications 

passionnantes en physique telles que l'observation du chaos optique, la dynamique dissipative 

des solitons et le cône de Mach photonique. Malgré les avantages saillants de la vitesse 

d'imagerie, CUP ne peut pas enregistrer une dynamique de longue durée (par exemple, des 

processus de luminescence de conversion ascendante de l'ordre de microsecondes et de 

millisecondes) en un seul coup, en raison d'un temps de balayage optoélectronique inférieur à 

des nanosecondes. De plus, en raison de la conversion photon-photoélectron par la 

photocathode, l'efficacité quantique (QE) des caméras optoélectroniques à balayage est 

généralement <15 % pour la lumière visible. En outre, l'effet de charge d'espace dans le système 

de lentille électrostatique impose des contraintes dans la résolution spatiale (généralement des 

dizaines à des centaines de micromètres) et la plage dynamique (par exemple, <10 pour certaines 

caméras à balayage femtoseconde). Ces deux faiblesses limitent considérablement la qualité des 

données acquises. 

Une caméra à balayage mécanique, utilisant une fente unidimensionnelle (1D) placée à 

son entrée, utilise généralement un miroir rotatif [par exemple, un scanner galvanométrique (GS) 

ou un miroir polygonal] pour dévier la lumière à travers une fente bidimensionnelle (2D) plan 

d'imagerie d'un capteur CCD/CMOS standard. Étant donné que le balayage mécanique est 

beaucoup plus lent que l'homologue optoélectronique dans CUP, la caméra à balayage 

mécanique a un temps d'exposition plus long pour enregistrer une dynamique de longue durée 

(jusqu'à quelques millisecondes) et a une résolution temporelle réglable généralement de 

centaines de nanosecondes à microsecondes pour satisfaire ultra-haute- imagerie rapide. De 

plus, son acquisition de données entièrement optique permet de mettre en œuvre de manière 

flexible de nombreuses caméras à haute sensibilité [par exemple, des caméras CCD à 

multiplication d'électrons (EM) et des caméras CMOS scientifiques, dont le QE peut être> 90% 

pour la lumière visible] pour obtenir des SNR supérieurs dans les mesures. Le fonctionnement 
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tout optique évite également l'effet de charge d'espace, ce qui permet une résolution spatiale 

limitée par l'optique et une plage dynamique élevée (par exemple, > 60 000 d'une caméra 

EMCCD). Ainsi, la caméra à balayage mécanique devient un bon candidat pour surmonter les 

limitations de taille et de prix des caméras CCD/CMOS ultra-rapides existantes et pour répondre 

aux limitations de QE, de l'effet de charge d'espace et du temps de balayage en CUP. Cependant, 

la strie mécanique est une technique d'imagerie 1D en raison de la fente d'entrée. 

 

Objectif de la these 

Cette thèse se concentre sur les efforts de développement de matériel d'imagerie ultra-rapide 

(c'est-à-dire une résolution temporelle inférieure à la microseconde), d'un logiciel de 

reconstruction d'image haute fidélité et d'applications pertinentes. Tout d'abord, nous prévoyons 

de proposer la photographie à ultra-haute vitesse à stries optiques compressées (COSUP) en 

une seule prise. En associant la CS à l'imagerie par traînées optiques, COSUP tente de doter 

une caméra à traînée mécanique d'une capacité d'imagerie 2D. En particulier, un masque 

d'encodage 2D est utilisé pour remplacer la fente 1D de la caméra mécanique à balayage. Un 

GS est placé dans le plan de Fourier d'un système d'imagerie 4f pour effectuer un balayage 

mécanique. Une caméra CCD/CMOS prête à l'emploi est déployée pour recevoir de manière 

compressive une scène transitoire. Par rapport aux techniques d'imagerie ultra-rapides 

existantes, COSUP vise à présenter des avantages en termes de profondeur de séquence (c'est-

à-dire le nombre d'images dans une acquisition), de nombre de pixels, de taille et de coût. 

Deuxièmement, les instruments optiques existants n'ont pas la capacité d'imagerie de 

durée de vie de luminescence à conversion ascendante à champ large en temps réel. En utilisant 

des nanoparticules de conversion ascendante comme indicateurs, COSUP est appliqué à 

l'imagerie de durée de vie de luminescence et au thermomètre optique avec détection de 

température de conversion ascendante à débit vidéo en champ large. Développé à partir du 

système COSUP, le thermomètre enregistre d'abord la décroissance de l'intensité de la 

luminescence à champ large de manière compressive dans deux vues en une seule prise. 

Ensuite, un algorithme basé sur CS est utilisé pour reconstruire la vidéo, à partir de laquelle la 

distribution de durée de vie extraite est convertie en une carte de température. Pour démontrer 

la large utilité, le thermomètre sera appliqué à la surveillance longitudinale de la température à 

champ large sous un milieu de diffusion mince. 
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Troisièmement, dans les systèmes CTI existants, la reconstruction d'image basée sur CS 

est limitée par le long temps de traitement et la qualité d'image instable dans la méthode existante 

basée sur la modélisation analytique. Pour surmonter ces problèmes, nous visons à développer 

un réseau de neurones profonds (DNN) d'instantané à vidéo qui mappe une image 2D enregistrée 

de manière compressive à un film sans processus d'itération. Par rapport aux méthodes 

existantes basées sur l'apprentissage, le nouveau DNN vise une grande profondeur de séquence 

en préservant la cohérence spatio-temporelle des vidéos reconstruites. Combiné à l'imagerie 

ultra-rapide compressée, le nouveau DNN contribue au développement du COSUP en temps réel 

assisté par apprentissage automatique (SMART) en un seul coup. SMART-COSUP vise à des 

applications de rétroaction ponctuelles comme le suivi de particules multiples. 

Quatrièmement, apporter une vitesse d'imagerie ultra-rapide à la microscopie 

électronique à transmission (TEM) a toujours été un défi. Malgré des progrès récents significatifs 

dans cette direction, il reste difficile d'atteindre une résolution temporelle inférieure à la 

nanoseconde et une résolution spatiale au niveau du nanomètre avec une seule impulsion 

électronique, en imagerie en temps réel. Pour remédier à cette limitation, nous prévoyons 

d'apporter le concept de COSUP en TEM et d'établir une modélisation analytique, c'est-à-dire un 

TEM ultrarapide (CU) compressé. Par rapport aux méthodes pompe-sonde, CUTEM est 

compétent pour l'observation de dynamiques transitoires non répétables. De plus, pour obtenir 

une meilleure résolution spatiale reconstruite, le CUTEM à double cisaillement (DS), en tant que 

variante de CUTEM, sera également analysé. 

 

Résultats et discussions 

COSUP 

Le schéma du système COSUP est illustré à la Fig. S1. Une scène transitoire est d'abord imagée 

sur un dispositif à micromiroir numérique (DMD, AJD-4500, Ajile Light Industries), sur lequel un 

motif pseudo-aléatoire binaire (avec une taille de pixel d'encodage de 32,4 × 32,4 µm2) est chargé 

pour effectuer l'encodage spatial. Par la suite, les trames codées spatialement sont relayées sur 

une caméra CMOS (GS3-U3-23S6M-C, FLIR) par un système 4f. Un scanner galvanométrique 

(GS, 6220H, Cambridge Technology), placé dans le plan de Fourier de ce système 4f, cisaille 

temporellement les images spatialement codées linéairement vers différents emplacements 

spatiaux le long de l'axe 𝑥  de la caméra CMOS en fonction de leur temps d'arrivée. La 
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synchronisation entre la rotation du GS et l'exposition de la caméra est contrôlée par le signal 

sinusoïdal et le signal rectangulaire d'un générateur de fonctions (DG1022, Rigol Technologies), 

comme illustré dans l'encadré de la Fig. S1. Enfin, via l'intégration spatio-temporelle, la caméra 

CMOS enregistre de manière compressive la scène encodée spatialement et cisaillée 

temporellement sous forme d'une image de strie 2D avec une seule exposition. Il est à noter que 

notre travail s'inspire des avancées récentes de la photographie ultrarapide compressée. 

Cependant, au lieu d'utiliser une caméra à balayage, nous implémentons le GS pour le 

cisaillement temporel et utilisons une caméra CMOS standard pour la détection. Cette conception 

évite ainsi les inconvénients - tels que l'effet de charge d'espace et le faible rendement quantique 

de la photocathode - qui sont présentés dans la caméra à balayage. Dans ce qui suit, nous 

démontrerons que cette approche tout optique peut augmenter la vitesse d'imagerie de la caméra 

CMOS de quatre ordres de grandeur au niveau Mfps pour enregistrer des impulsions laser 

uniques éclairant à travers des cibles transmissives et pour suivre un objet en mouvement rapide. 

 

 

Figure S1 Schéma du système COSUP. En médaillon : synchronisation entre l'exposition de la caméra CMOS 
(ligne noire pleine) avec un temps d'exposition de 𝒕𝐞 et le signal de commande sinusoïdal du scanner galvonométrique 
(ligne pointillée bleue) avec une période de 𝒕𝐠. Objectifs 1 et 4. 

 

Le fonctionnement du système COSUP peut être décrit par le modèle suivant 

𝐸 = 𝐓𝐒𝐨𝐂 𝐼(𝑥, 𝑦, 𝑡), (S1) 
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où 𝐼(𝑥, 𝑦, 𝑡) est l'intensité lumineuse de l'événement transitoire, C représente l'encodage spatial 

par le DMD, 𝐒𝐨 représente le cisaillement linéairement temporel par le GS (l'indice “o” signifie 

“optique”), et T représente Intégration spatio-temporelle par la caméra CMOS. Du fait de la 

connaissance a priori des opérateurs et de la parcimonie spatio-temporelle de la scène transitoire, 

𝐼(𝑥, 𝑦, 𝑡) peut être récupéré à partir de la mesure E en résolvant le problème inverse de 

𝐼 = argmin
𝐼

{
1

2
‖𝐸 − 𝐓𝐒𝐨𝐂𝐼‖2

2 + 𝜆𝛷TV(𝐼)} (S2) 

Ici ‖∙‖2
2 représente la norme 𝑙2, 𝜆 est un coefficient de pondération et 𝛷TV(·) est le régularisateur 

de la variation totale (TV). En pratique, 𝐼(𝑥, 𝑦, 𝑡) a été récupéré en utilisant un algorithme basé 

sur CS qui a été développé sur l'algorithme itératif de rétrécissement/seuil en deux étapes. 

 

SPLIT 

Le schéma du système SPLIT est illustré à la figure S2. Un laser à ondes continues de 980 nm 

(BWT, DS3-11312-113-LD) est utilisé comme source lumineuse. Le faisceau laser traverse un 

système 4f composé de deux lentilles de focale de 50 mm (L1 et L2, Thorlabs, LA1255). Un 

hacheur optique (Scitec Instruments, 300CD) est placé au niveau du plan focal arrière de la lentille 

L1 pour générer des impulsions optiques de 50 µs. Ensuite, l'impulsion passe à travers une lentille 

de focale de 100 mm (L3, Thorlabs, AC254-100-B) et est réfléchie par un miroir dichroïque passe-

court (Edmund Optics, 69-219) pour générer une mise au point sur la focale arrière. plan d'un 

objectif (Nikon, CF Achro 4×, ouverture numérique 0,1, nombre de champ 11 mm). Ce schéma 

d'éclairage produit un éclairage à grand champ (1,5 × 1,5 mm2 FOV) aux UCNP au niveau du 

plan objet. 

Les UCNP excités dans le proche infrarouge émettent de la lumière dans le domaine 

spectral visible. La décroissance de l'intensité lumineuse sur le FOV 2D est une scène 

dynamique, notée 𝐼(𝑥, 𝑦, 𝑡). La lumière émise est collectée par le même objectif, transmise à 

travers le miroir dichroïque, et est filtrée par un filtre passe-bande (Thorlabs, MF542-20 ou 

Semrock, FF01-660/30-25). Ensuite, un diviseur de faisceau (Thorlabs, BS013) divise également 

la lumière en deux composants. La composante réfléchie est imagée par une caméra CMOS 

(FLIR, GS3-U3-23S6M-C) avec un objectif de caméra (Fujinon, HF75SA1) via une intégration 

spatio-temporelle (notée opérateur T) en tant que vue 1, dont la distribution d'énergie optique est 

notée par 𝐸1(𝑥1, 𝑦1). 
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La composante transmise forme une image de la scène dynamique sur un masque de 

codage transmissif avec un motif binaire pseudo-aléatoire (Fineline Imaging, rapport de 

transmission de 50 % ; taille de pixel de codage de 60 µm). Ce processus de codage spatial est 

noté par l'opérateur 𝐂. Ensuite, la scène codée spatialement est imagée par une caméra à 

balayage mécanique. En particulier, la scène est relayée au plan du capteur d'une caméra CCD 

à multiplication électronique (EM) (Nüvü Camēras, HNü 1024) par un système d'imagerie 4f 

composé de deux lentilles de focale de 100 mm (L4 et L5, Thorlabs, AC254 -100-A). Un scanner 

galvanométrique (Cambridge Technology, 6220H), placé dans le plan de Fourier du système 

d'imagerie 4f, cisaille temporellement les images spatialement codées linéairement vers différents 

emplacements spatiaux le long de l'axe 𝑥2 de la caméra EMCCD en fonction de leur temps 

d'arrivée. Ce processus de cisaillement temporel est noté par l'opérateur S. Enfin, la scène 

dynamique codée spatialement et cisaillée temporellement est enregistrée par l'EMCCD via une 

intégration spatio-temporelle pour former la Vue 2, dont la distribution d'énergie optique est notée 

𝐸2(𝑥2, 𝑦2). 
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Figure S2 Schéma du système SPLIT. L'illustration montre l'acquisition de données et la reconstruction 
d'images de la décroissance de l'intensité de la luminescence dans une lettre “C”. L1–L5, objectif. 

 

En combinant la formation d'image de 𝐸1(𝑥1, 𝑦1) et 𝐸2(𝑥2, 𝑦2), l'acquisition des données 

de SPLIT est exprimée par 

𝐸 = 𝐓𝐌 𝐼, (S3) 

où E désigne la concaténation des mesures [𝐸1, 𝛼𝐸2]
𝑇 (l'exposant T désigne la transposition), 𝐌 

désigne l'opérateur linéaire [𝟏, 𝛼𝐒𝐂]𝑇, et 𝛼 est un facteur scalaire introduit pour équilibrer l'énergie 

rapport entre les deux vues pendant la mesure. Le matériel du système SPLIT est synchronisé 

pour capturer les deux vues (détaillées dans Méthodes) qui sont calibrées avant l'acquisition des 

données. 
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Après acquisition des données, E est traité par un algorithme qui récupère le cube de 

données de la scène dynamique en s'appuyant sur la parcimonie spatio-temporelle de la scène 

dynamique et la connaissance a priori de chaque opérateur. Développé à partir du cadre de la 

méthode des multiplicateurs à direction alternée plug-and-play (PnP-ADMM), l'algorithme de 

reconstruction de SPLIT résout le problème de minimisation de 

𝐼 = argmin
  𝐼

{
1

2
‖𝐓𝐌𝐼 − 𝐸‖2

2 + 𝑅(𝐼) + 𝐈+(𝐼)}. (S4) 

Ici, ‖∙‖2 représente la norme l2. Le terme de fidélité, 
1

2
‖𝐓𝐌𝐼 − 𝐸‖2

2, représente la similitude entre 

la mesure et le résultat estimé. 𝑅(∙) est le régularisateur implicite qui favorise la parcimonie dans 

la scène dynamique. 𝐈+(∙) représente une contrainte d'intensité non négative. Par rapport aux 

schémas de reconstruction existants, PnP-ADMM implémente une stratégie de division variable 

avec un débruiteur de pointe pour obtenir des solutions rapides et fermées à chaque problème 

de sous-optimisation, ce qui produit une qualité d'image élevée en reconstruction. Le cube de 

données récupéré de la scène dynamique a une profondeur de séquence (c'est-à-dire le nombre 

d'images dans un film reconstruit) de 12 à 100 images, chacune contenant 460 × 460 (𝑥, 𝑦) pixels. 

La vitesse d'imagerie est réglable de 4 à 33 000 images par seconde (kfps). 

Le cube de données reconstruit est ensuite converti en une carte de durée de vie de 

photoluminescence. En particulier, pour chaque point (𝑥, 𝑦), l'aire sous la courbe de décroissance 

d'intensité normalisée est intégrée pour rapporter la valeur de la durée de vie de la 

photoluminescence. Enfin, en utilisant la relation approximativement linéaire entre la durée de vie 

des UCNP et la plage de température physiologiquement pertinente (20 à 46 ° C dans ce travail), 

la distribution de température 2D, 𝑇(𝑥, 𝑦), est calculée par 

𝑇(𝑥, 𝑦) = 𝑐t +
1

𝑆a
∫
𝐼(𝑥, 𝑦, 𝑡)

𝐼(𝑥, 𝑦, 0)
𝑑𝑡, (S5) 

où 𝑐t  est une constante et 𝑆a  est la sensibilité absolue à la température. Tirant parti de la 

fréquence d'images intrinsèque de la caméra EMCCD, le système SPLIT peut générer des cartes 

de température déterminées sur la durée de vie à une fréquence vidéo de 20 Hz. 
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SMART-COSUP 

Le schéma du système SMART-COSUP est illustré à la figure S3(a). Son principe de 

fonctionnement contient l'acquisition de données monocoup et la reconstruction vidéo en temps 

réel [Fig. S3(b)]. Une scène dynamique, 𝐼(𝑥, 𝑦, 𝑡), est imagée par une optique frontale sur un 

masque transmissif binaire pseudo-aléatoire (Fineline Imaging) avec des pixels de codage de 25 

µm × 25 µm. Cette opération de modulation spatiale est notée par l'opérateur 𝐂. La distribution 

d'intensité juste après le masque de codage est exprimée par 

𝐼c(𝑥, 𝑦, 𝑡) =∑𝐼 (
𝑥

𝑀f
,
𝑦

𝑀f
, 𝑡)

𝑗,𝑘

𝐶𝑗𝑘rect (
𝑥

𝑑e
− 𝑗,

𝑦

𝑑e
− 𝑘) . (S6) 

Ici, 𝑀f  est le grossissement de l'optique avant. 𝐶𝑗𝑘  désigne un élément d'une matrice binaire 

représentant le motif de codage, 𝑗 et 𝑘 sont des indices d'éléments matriciels. 𝑑e est la taille des 

pixels d'encodage sur le masque. rect(∙) représente la fonction rectangulaire. 

Par la suite, la scène modulée spatialement est relayée par un système d'imagerie 4f, 

composé d'un scanner galvanométrique (GS, Cambridge Technology, 6220H) et de deux lentilles 

identiques (Lens 1 et Lens 2, Thorlabs, AC254-075-A). Le GS est placé au plan de Fourier de ce 

système d'imagerie 4f pour effectuer un cisaillement optique dans la direction 𝑥 , noté par 

l'opérateur 𝐒𝐨. L'image cisaillée peut être exprimée comme 

𝐼s(𝑥, 𝑦, 𝑡) = 𝐼c(𝑥 − 𝑣s𝑡, 𝑦, 𝑡), (S7) 

où 𝑣s, désignant la vitesse de cisaillement de SMART-COSUP, est calculé par 𝑣s = 𝛼𝑉g𝑓2 𝑡g⁄ . Ici, 

𝑉g =0.16–0.64 V est la tension ajoutée sur le GS. 𝛼 est une constante qui relie 𝑉g à l'angle de 

déviation de GS en tenant compte de la forme d'onde d'entrée. 𝑓2 = 75 mm est la distance focale 

de l'objectif 2 sur la figure S7(a). 𝑡g = 50 ms est la période du signal sinusoïdal ajouté au scanner 

galvanométrique. 

Enfin, la scène dynamique est intégrée spatio-temporellement par une caméra CMOS 

(FLIR, GS3-U3-23S6M-C) à un instantané 2D, noté par l'opérateur 𝐓. L'énergie optique, 𝐸(𝑚, 𝑛), 

mesurée au pixel (𝑚, 𝑛), est 

𝐸(𝑚, 𝑛) =∭𝐼𝑠(𝑥, 𝑦, 𝑡)rect (
𝑥

𝑑c
−𝑚,

𝑦

𝑑c
− 𝑛)𝑑𝑥𝑑𝑦𝑑𝑡. (S8) 

Ici, 𝑚 et 𝑛 sont les indices de pixels dans les axes 𝑥 et 𝑦 de la caméra. 𝑑c = 5.86 μm est la taille 

de pixel du capteur CMOS. À partir des équations. S8-10, le modèle avancé de SMART-COSUP 

s'exprime par 
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𝐸(𝑚, 𝑛) = 𝐓𝐒𝐨𝐂𝐼(𝑥, 𝑦, 𝑡). (S9) 

Dans la reconstruction vidéo en temps réel qui s'ensuit, les données capturées sont 

transférées vers un poste de travail équipé d'une unité de traitement graphique (NVIDIA, RTX 

Titan). Le S2V-AE récupère le datacube de la scène dynamique en 60 ms. 

 

 

Figure S3  Photographie à ultra-haute vitesse (COSUP) compressée en temps réel assistée par apprentissage 
automatique (SMART) en une seule prise. (a) Schéma du système. (b) Principe de fonctionnement. S2V-AE, autoencodeur 
instantané-vidéo. 

 

CUTEM 

Le CUTEM proposé [Fig. La technique S4(a)] peut être réalisée expérimentalement en intégrant 

un masque et des électrodes de cisaillement à une machine TEM assistée par laser. Dans 

CUTEM, une seule impulsion électronique d'une nanoseconde sonde un événement transitoire 

initié dans un échantillon pour générer une fonction de densité électronique modulée spatio-

temporellement, 𝐼(𝑥, 𝑦, 𝑡). L'impulsion électronique transmise subit alors plusieurs manipulations 

dont chacune est prise en compte par un opérateur (détaillé dans le paragraphe suivant). Plus 

précisément, l'impulsion subit une distorsion électronique spatio-temporelle au cours de la 

propagation qui s'ensuit dans le système TEM. Un masque de transmission binaire, avec un motif 
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spécialement conçu, est placé sur le trajet des électrons d'imagerie pour coder 𝐼(𝑥, 𝑦, 𝑡). Réalisé 

par les outils de nanofabrication existants, ce masque bloque les électrons dans certaines régions 

de l'espace et leur permet de les traverser dans d'autres. Après le masque, une tension variable 

dans le temps, appliquée à une paire d'électrodes, cisaille temporellement 𝐼(𝑥, 𝑦, 𝑡). Enfin, une 

seule image strie, notée E, est formée sur une caméra CCD via une intégration spatio-temporelle 

(intégration spatiale sur chaque pixel CCD et intégration temporelle sur le temps d'exposition). Le 

masque et les électrodes de cisaillement peuvent être insérés dans la machine TEM en utilisant 

l'un des ports après le système de lentilles de projection. 

Mathématiquement, le processus d'acquisition de données décrit ci-dessus peut être 

exprimé comme un modèle avancé [Fig. S4(a)] par 

𝐸 = 𝐓𝐒𝐂𝐃 𝐼(𝑥, 𝑦, 𝑡), (S10) 

où l'opérateur linéaire 𝐃 rend compte de la distorsion spatio-temporelle de l'électron induite par 

tous les facteurs expérimentaux. 𝐂 représente le codage spatial par le masque de transmission 

binaire, 𝐒 représente le cisaillement temporel par la tension variable dans le temps appliquée aux 

électrodes, et 𝐓 représente l'intégration spatio-temporelle par la caméra CCD. Pour simplifier la 

dénotation, nous utilisons un opérateur linéaire 𝐎 pour représenter l'ensemble du processus 

d'acquisition de données (c'est-à-dire 𝐎 = 𝐓𝐒𝐂𝐃 ). Après l'acquisition des données, nous 

récupérons informatiquement la scène transitoire. Compte tenu de l'opérateur connu O et de la 

parcimonie spatio-temporelle de la scène transitoire, 𝐼(𝑥, 𝑦, 𝑡) peut être récupéré en résolvant le 

problème inverse de l'Eq. (S10). Ce processus peut être formulé comme 

𝐼 = argmin
𝐼

‖𝐸 − 𝐎𝐼‖2
2 + 𝜆𝛷(𝐼) , (S11) 

où 𝜆 est un paramètre de pondération et 𝛷(·) est la fonction de régularisation. Dans l'éq. (S14), 

la minimisation du premier terme, ‖𝐸 − 𝐎𝐼‖2
2, se produit lorsque la mesure réelle 𝐸 correspond 

étroitement à la solution estimée 𝐎𝐼 , tandis que la minimisation du deuxième terme, 𝛷(𝐼) , 

encourage 𝐼 à être constante par morceaux (c'est-à-dire éparse dans le domaine du gradient 

spatial). La pondération de ces deux termes est ajustée par 𝜆 pour conduire aux résultats les plus 

cohérents avec la vérité terrain. Étant donné que le nombre de lignes et de colonnes de la caméra 

CCD est 𝑁r et 𝑁c, le nombre de voxels dans le cube de données reconstruit (c'est-à-dire 𝑁𝑥, 𝑁𝑦, 

et 𝑁𝑡) doit répondre à l'exigence de 

𝑁𝑥 ≤ 𝑁c ,   𝑎𝑛𝑑
𝑁𝑦 +𝑁𝑡 − 1 ≤ 𝑁r .

(S12) 
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Figure S4  Méthodes proposées pour l'imagerie électronique ultrarapide en temps réel monocoup. Schéma 
matériel de CUTEM et de son modèle avancé. 𝐂 , opérateur de codage spatial ; 𝐃 , opérateur de distorsion 

spatiotemporelle électronique ; 𝐒, opérateur de cisaillement temporel ; 𝐓, opérateur d'intégration spatio-temporelle.  

 

 

Conclusions  

Tout d'abord, COSUP concerne l'imagerie optique passive ultra-rapide 2D monocoup. 

Contrairement au balayage optoélectronique dans CUP, COSUP présente la strie optique à l'aide 

d'un GS dans le système d'imagerie 4f. En conséquence, COSUP atteint des vitesses d'imagerie 

réglables allant jusqu'à 1.5 Mfps, soit environ trois ordres de grandeur de plus que la vitesse 

d'imagerie de pointe de CTI avec une caméra CMOS standard. En outre, le système COSUP est 

capable d'atteindre un nombre de pixels de 0.5 mégapixels dans chaque image, ce qui donne un 

produit espace-bande passante-temps allant jusqu'à 750 gigapixels par seconde. Le système 

COSUP peut reconstruire une profondeur de séquence allant jusqu'à 500 images en une seule 

mesure, ce qui augmente considérablement la capacité de stockage sur puce. La transmission 

d'impulsions laser uniques à travers un masque et la forme et la position du suivi d'un objet se 

déplaçant rapidement en temps réel ont été utilisées pour démontrer la capacité d'imagerie ultra-

rapide de COSUP. 

Deuxièmement, le système SPLIT a été développé pour la détection dynamique de la 

température à large champ en temps réel. SPLIT, adapté du système COSUP, enregistre en 
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compression l'émission de photoluminescence sur un FOV 2D en deux vues. Ensuite, l'algorithme 

PnP-ADMM à double vue reconstruit des traces de décroissance d'intensité résolues dans 

l'espace, à partir desquelles une distribution de durée de vie de photoluminescence et la carte de 

température correspondante sont extraites. Utilisé avec les UCNP core/shell NaGdF4:Er3+, 

Yb3+/NaGdF4, SPLIT a permis une cartographie de la température avec une sensibilité élevée 

pour les bandes d'émission de conversion ascendante verte et rouge avec une résolution spatiale 

de 20 µm dans un champ de vision de 1.5 × 1.5 mm2 à une fréquence vidéo de 20 Hz. SPLIT est 

démontré dans la surveillance longitudinale de la température d'un fantôme sous un tissu de 

poulet frais. SPLIT est également appliqué à la cartographie dynamique de la température d'une 

seule cellule d'un échantillon d'épiderme d'oignon monocouche en mouvement. 

Troisièmement, nous avons développé le S2V-AE pour une reconstruction vidéo rapide 

et de haute qualité à partir d'un seul instantané acquis par compression. Ce nouveau DNN a 

facilité le développement du système SMART-COSUP, qui a démontré une imagerie à ultra-haute 

vitesse en un seul coup d'événements transitoires dans l'imagerie macroscopique et 

microscopique jusqu'à 20 kfps avec une taille de vidéo reconstruite en temps réel de 

(𝑁𝑥 , 𝑁𝑦, 𝑁𝑡) = (256, 256, 100). Ce système a été appliqué au suivi de particules multiples. 

Quatrièmement, nous avons présenté les études de conception et de simulation de 

CUTEM et DS-CUTEM, deux méthodes d'imagerie électronique ultrarapide en temps réel 

assistées par CS. Des scènes transitoires capturées expérimentalement par TEM assisté par 

laser ont été utilisées pour tester leur fidélité. Différents types de modèles de masques et de 

tailles de pixels de codage ont été examinés pour optimiser la qualité de l'image reconstruite pour 

le SNR donné. Les résultats de la reconstruction avec à la fois la distorsion électronique et les 

processus de correction correspondants ont également été fournis. Sur la base de ces 

investigations, une reconstruction de haute qualité des deux scènes transitoires a été démontrée 

en simulation. 


