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Abstract: Due to the climate change situation, water deficit stress is becoming one of the main
factors that threatens the agricultural sector in semi-arid zones. Thus, it is extremely important to
provide efficient tools of water deficit monitoring and early detection. To do so, a set of Synthetic
Aperture Radar (SAR) backscattering and interferometric SAR (InSAR) Sentinel-1 data, covering
the period from January to June 2016, are considered over a durum wheat field in Tunisia. We first
studied the temporal variation of the InSAR coherence data and the SAR backscattering coefficient
as a function of the phenological stage of the wheat. Subsequently, the parameters of the SAR and
InSAR coherence images were analyzed with regard to the water stress coefficient and the wheat
height variations. The main findings of this study highlight the high correlation (r = 0.88) that exists
between the InSAR coherence and the water stress coefficient, on the one hand, and between the
backscattering coefficient, the interferometric coherence, and the water deficit coefficient (R2 = 0.95
and RMSE = 14%), on the other hand. When a water deficit occurs, the water stress coefficient
increases, the crop growth decreases, and the height variation becomes low, and this leads to the
increase of the InSAR coherence value. In summary, the reliability of Sentinel-1 SAR and InSAR
coherence data to monitor the biophysical parameters of the durum wheat was validated in the
context of water deficits in semi-arid regions.

Keywords: water stress; interferometric coherence; Sentinel-1; wheat; radar remote sensing

1. Introduction

Drought and water deficit are considered to be the main environmental factors that
threaten agricultural production by limiting plant growth, photosynthesis, and productivity
worldwide [1].

In areas with insufficient rainfall, such as arid and semi-arid regions, efficient water
management is highly required as water scarcity is a serious problem, and a proper amount
of crop irrigation is essential to maintain the desired crop yield quality and soil conditions.

Durum wheat is the most cultivated plant in the Mediterranean basin [2]. In Tunisia,
it is the most cultivated cereal crop in terms of production and cultivated area, with
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approximately 50% of the total sown area [3]. The climate of Tunisia is arid to semi-arid with
water deficit problems [3], which threaten the sustainability of agricultural production [4].

In order to maintain a constant production rate, it is necessary to assess the crop water
stress in different growing stages. Timely detection and appropriate intervention could
help minimize the risk of crop productivity losses.

In this context, different methods have been investigated to monitor crop water stress.
These methods are mainly based on soil water measurements, plant responses, and remote
sensing systems.

The classical methods that deal with crop water stress detection are based on in situ
soil moisture measurements and meteorological variables to assess the water loss from
a soil–plant system [5]. The conventional in situ plant-based approaches that include
information from stomatal conductance, leaf water potential, relative water content, and
stem and fruit diameter have also been widely adopted since they are more effective than
the soil moisture-based approaches [6].

Although reliable, the classical monitoring tools were found to be inadequate in the
case of cereal crops, which usually extend over large areas.

Therefore, the exploration of faster and more genuine crop monitoring methods,
such as the analysis of remote sensing data, is imperative. Indeed, water stress has been
largely monitored by various remote sensing data and methods, including the optical data
approach of visible and near-infrared bands [7–14] and the thermal infrared band, which is
based on the relationships between the surface temperature and plant transpiration [15–19].
The latter approach is limited due to the optical sensor’s sensitivity to clouds and climatic
conditions [20,21].

On the other hand, the radar data system represents a reliable tool in overcoming
the constraints encountered by optical remote sensing and ensuring the continuity of
information on the Earth’s surface regardless of the climatic (clouds, rain, etc.) and temporal
(day-night) conditions [21–23]. Several studies have monitored vegetation to detect growth
anomalies due to diseases and water stress [19,24–28]. These studies attempted to establish
the relationships among the bio-physical parameters of vegetation. In the case of durum
wheat, several studies have demonstrated the possibility of relating the radar signal to
crop parameters, the LAI, and biomass [29–34]. Other works focused on the vegetation
water content, a key parameter related to evapotranspiration, which is an indicator of the
hydrological cycle and the energetic balance of ecosystems.

Although the different agricultural applications of SAR systems based on the analysis
of the backscattering signals and InSAR coherence have been investigated throughout
various studies [35,36], the potential of using SAR backscattering jointly with InSAR
coherence for water deficit crop monitoring has not been investigated.

In this context, the aim of this work is to evaluate the applicability of Sentinel-1 data
InSAR coherence and the backscattering coefficient for detecting the water stress levels
at the field scale. Accordingly, we first attempt to analyze the temporal variation of the
backscattering coefficient and the InSAR coherence related to durum wheat. Furthermore, a
relationship between the water stress coefficient, the biophysical parameter, and Sentinel-1
data is established.

2. Materials and Methods
2.1. Study Area

The study site is located in the center of Tunisia in the governorate of Sidi Bouzid
(9°21′19.68 E and 35°22′17.10 N) (Figure 1). This region belongs to the semi-arid bioclimatic
stage with an average rainfall of 200–230 mm per year, where the inter- and intra-annual
irregularity is very noticeable. The average temperatures are 10 °C for January and 36 °C
for July. Cereal farming is conducted in rainfed areas with additional irrigation locally. The
monthly rainfall for the 2015–2016 crop year shows that this campaign was characterized
by a water deficit of about 260 mm compared to the durum water requirement. Indeed, the
average rainfall recorded during this campaign was 190 mm with considerable variability,
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especially during critical periods of its development such as the tillering stage in February,
and the water requirement of durum wheat is 450 to 650 mm.

Figure 1. Location of the study area in Sidi Bouzid-Tunisia: (a) Tunisia location; (b) green color is the
governorate of Sidi Bouzid; (c) study field, blue outline irrigated field and red outline rainfed field.

2.2. Field Data Measurement

Twenty-nine durum wheat fields with the variety “karim” were set up, with 13 in
rainfed and 16 in irrigated regimes with an average area of 0.5 ha. The planting was carried
out on 15 December 2015, with a density of 120 kg/ha, and the harvest was carried out
on 25 June 2016. Five samples were collected for each field, with one sample at the center
of the field and one sample at each of the four corners. Figure 2 illustrates the wheat
development stages in the investigated fields. All the sampling points were located by
the geographical positioning system (GPS). The vegetation on the rainfed and irrigated
fields was characterized and the biophysical parameters were measured during every
phenological stage of the crop. These parameters include the variables that are related to
the vegetation conditions, namely: the phenological stage, the wheat height and Leaf Area
Index (LAI), as well as the soil-related variables, i.e., soil moisture, texture, and bulk density.
Because these parameters evolve with the phenological cycle, the assessments were carried
out for each field and at each phenological stage.

Figure 2. Crop management and wheat phenological stages in the studies fields.
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2.2.1. Plant Height Measurements

Throughout the vegetative cycle of wheat, the wheat height measurements were
performed for each test plot. The plant heights were measured from the soil surface
without changing the plant posture. For each stage, approximately 20 measures covering
each plot were randomly collected.

2.2.2. LAI Measurements

The Leaf Area Index (LAI) is the ratio between the surface of the leaves and the surface
of the soil on which the vegetation grows.

LAI =
Leaf area (m2)

Ground cover (m2)
(1)

A series of LAI measurements was carried out in each parcel, which made it possible
to obtain different leaf index observations. The measurements were made on the test plots
during the different phenological stages using the hemispherical method. Then, the photos
were processed using Matlab based on the Hemiview script, which allows batch processing.
To do so, an optimal threshold that suites the cover type and the lighting conditions was
chosen in order to distinguish between the vegetation pixels and the sky or ground pixels.

2.3. Reference Evapotranspiration ET0

The ET0 was calculated based on the Penman–Monteith formula (1981). The me-
teorological data, including air temperature, humidity, wind speed, net radiation, and
rainfall, were recorded at the weather station of Hajeb Layoun, located 6 km away from the
study site. In order to determine the daily reference evapotranspiration ET0 (mm/day),
the daily averaged climatic parameters were computed in accordance with the FAO-56
Penman–Monteith parameterization (Equation (2) [37]).

ET0 =
0.408∆(Rn−G) + γ 900

T+273 U2(es− ea)
∆ + γ(1 + 0.34U2)

(2)

where ET0 is the daily reference evapotranspiration (mm/day); Rn is the net radiation at the
culture surface (M J/m2/day); G is the heat flow exchanged with the ground (M J/m2/day);
T is the daily average temperature (°C); U2 is the average wind speed measured at 2 m
(m/s); es and ea are, respectively, the saturation vapor pressure and the actual pressure of
the air at the same height (kPa); ∆ is the slope of the saturation vapor pressure curve at the
temperature T (kPa /°C); and γ is the psychrometric constant (kPa /°C).

2.4. Actual and Potential Evapotranspiration

According to FAO-56, the water needs of a culture are defined by “the amount of
water needed to cover the water loss through the evapotranspiration of a healthy crop,
grown in a large plot, without soil constraints (fertility and moisture), and realizing its
production potential under the conditions considered” [38]. This definition corresponds to
the potential evapotranspiration of a culture (PET), which depends on the climatic demand
or the reference evapotranspiration (ET0) and the crop coefficient (Kc). To calculate the PET,
FAO-56 approach is generally the most used. It is based on Equation (3):

PET = Kc× ET0 (3)

The actual evapotranspiration (AET), also called real evapotranspiration, is defined as
the sum of the quantities of water vapor evaporated from the soil and the vegetation at a
given physiological developmental stage in the presence of water stress.

AET = Ks×Kc× ET0 (4)
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For the present work, we performed the calculations using the FAO formula with the
WEAP “water evaluation and planning” software (Version 2015.0, Stockholm Environment
Institute, 2015 [39]).

The crop coefficient (Kc) was calculated directly using the crop coefficient that is
proposed by the FAO in its Bulletin No. 56 [38] and then calibrated using the following
Equation (5) [40]:

Kcstage(n) = Kcstage(n)(tab) + [0.04(u2 − 2)− 0.004(RHmin − 45)(
h
3
)0.3] (5)

where Kcstage(n)(tab) is the standard Kc value proposed by the FAO-56 approach [38], u2
is the daily value of the wind speed at a 2 m height during the development cycle (m/s),
RHmin is the daily value of the minimum relative humidity during the development cycle
(%), and h is the height of the crop in (m). In order to verify the calibration of the crop
coefficient, the Leaf Area Index (LAI) was measured in situ and the Kc were related. A
correlation coefficient of 0.9 was found.

2.5. Water Stress Index (Ks)

The water stress index (Ks) is related to the soil water reserve, which indicates the
water volume that is contained in the soil at a given time. As detailed in (Equation (6)), it
makes it possible to take into account the state of the useful soil reserve in the calculation
of the evapotranspiration of the crop.

Ks = 1− Actual Evapotranspiration (AET)
Potential Evapotranspiration (PET)

(6)

The water stress index permits determining if the plant is in a water stress condition.
When Ks is equal to 0, the plant is in the optimal conditions of development. However, the
more the water stress increases, the Ks value will tend to 1.

2.6. Remote Sensing Data

Thirteen Sentinel-1 images were acquired during the period from January to June 2016
in interferometric wide swath mode (IW) with a 250 km swath at a spatial resolution of
5 m by 20 m. The mean incidence angle is 37.5◦. The data were acquired in ascending
pass using vertical-0vertical (VV) and vertical–horizontal (VH) polarization modes. These
images were acquired during the same period as the ground measurement. We generated
an InSAR coherence image for each of the different pairs and for each polarization (VH
and VV). We averaged the coherence over a 3× 3-pixel window, to avoid registration and
georeferencing errors in order to associate the field measurements with the right sample
pixel on the InSAR coherence image. Figure 3 shows a graph of the baseline configurations
that were used for the selected InSAR coherence image pairs. The used temporal baseline
was 12 days, and the perpendicular baseline was between 23 m and 92 m.
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Figure 3. Baseline configuration of the used dataset between 10 January 2016 and 14 June 2016.
The lines correspond to interferograms and nodes correspond to SLC images. The bold blue lines
represent the baselines between the consecutive images used for coherence analysis. The horizontal
axis is the temporal baseline, and the vertical axis shows the perpendicular spatial baseline.

3. Methodology

Our methodology, presented in Figure 4, consists of estimating the empirical relation-
ships between radar signals (sigma VH, sigma VV, coherence VH, and coherence VV) and
the coefficient of stress (Ks).

The preprocessing of Sentinel-1 data was performed using SNAP, the available tool of
ESA. Then, the backscattering coefficients and the InSAR coherence for the two polariza-
tions VH and VV were calculated at each field. The performance of this relationship was
determined by statistical parameters such as the coefficient of determination R2 and the
root-mean-squared error (RMSE) using the R package.

Figure 4. Flowchart of the proposed methodology.



Agriculture 2022, 12, 1032 7 of 14

4. Experimental Results
4.1. Temporal Variation of Actual and Potential Evapotranspiration and Water Stress Coefficient

Figure 5a illustrates the results of the actual evapotranspiration, the potential evapo-
transpiration, and the rainfall analysis. The potential evapotranspiration is proportional to
the baseline evapotranspiration and is dependent on the vegetation growth. It increases
proportionally with the vegetation cover and reaches its maximum value during the months
of March and April, which correspond to the period of the full development of the an-
nual crops. The actual evapotranspiration is very low throughout the crop cycle with the
exception of days when there has been precipitation. Moreover, we noticed a significant
difference between the actual evapotranspiration and the potential evapotranspiration. This
difference is reduced in the rainfall months such as April, which explains the presence of a
water deficit during the periods of water shortage [38]. For this reason, 1− AET

PET represents
the water stress index (Ks).

The daily variation of the water stress index is presented in Figure 5b. The results
show that, during the majority of the agricultural campaign days, the coefficient of stress
is equal to 1, which means a high water stress. The minimum amount of water stress is
observed during the months of April and March, when the rainfall was recorded. This
water stress, which is observed from the coefficient of water stress, directly influences the
development of the crops.

1 
 

 

  Figure 5. Daily measurement of actual (AET) and potential evapotranspiration (PET) and rainfall (a).
Daily variation of the water stress index (Ks) (b).

4.2. Temporal Variation of Height and LAI

Figure 6 shows the evolution of the height and LAI during the wheat cycle. A differ-
ence between the growth of durum wheat in the rainfed and the irrigated hydrological
regimes was noticed in the field. The assessed change in the irrigated wheat height between
the two stages was 15 cm, but it was only 10 cm for the rainfed wheat (Figure 6a). This
shows the effect of the water deficit on the plants. Furthermore, it was found that the
growth of the crop stops before any noticeable lowering, which is perceptible in the relative
water content. According to [41], the first effect of water deficit is reducing the growth
rate of the stem cells. On the other hand, the LAI values for the irrigated wheat are more
pronounced than for the rainfed wheat (Figure 6b). In fact, according to [42], water stress
causes a reduction in the leaf area and the height as a sort of adaptation to limit yield losses.

4.3. InSAR Coherence and Backscatter Analysis and Their Relation with Crop Growth

For each stage, the vegetation parameters were recorded in the different field measure-
ments. As shown in Figure 7a, the InSAR coherence value was maximum at the sowing and
harvesting stages. The mean coherence values became maximum for the VV polarization
and the VH polarization for both irrigated and rainfed wheat. The InSAR coherence values
started to decrease with the growth of the plants. At the beginning of the leaf development
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stage, the ground becomes covered by the plants and the InSAR coherence reaches its low-
est value. However, before reaching the harvesting time, an increase was observed in the
coherence values for the rainfed and irrigated wheat mainly for VV polarization (γ = 0.6).
When comparing the irrigated and rainfed crops, it was noticed that the InSAR coherence
values for the irrigated crops were lower, which indicates that their growth variation is
more pronounced. Figure 7b shows the changes in the wheat backscatters’ temporal profiles
for the growing seasons of all the irrigated and rainfed fields in the study area. There were
some minor differences between the averaged temporal profiles of the backscatter of the
irrigated and rainfed wheat. During the tillering stage, the backscattering coefficient (σ0)
increased from −10 db to −7 db for VV polarization and from −20 db to −15 db for VH
polarization. During the mid-stage (i.e., heading, flowering, and development of fruit), the
values continued to be constant or showed minor changes. 

2 

 
Figure 6. Wheat height (a) and Leaf Area Index (LAI) (b) variation for irrigated and rainfed wheat;
blue line, LAI in rainfed field, and green line, LAI in irrigated field

Figure 7. Temporal variation of: (a) the InSAR coherence coefficient and (b) the backscattering coefficient.
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4.4. Detection of Water Deficit Using Interferometric Coherence

The effect of water stress can be observed through the biophysical parameters of the
plant, in particular the LAI and the height. During the period of water stress, the increase
of the height and the LAI of the plant was low. In this case, the InSAR coherence and
the backscattering coefficient can give valuable information about the variation of these
biophysical parameters of the plant, which means a better estimation of the water stress
coefficient. In fact, the variation of the InSAR coherence between two acquisitions without
changes in the soil roughness and moisture is systematically explained by a variation of
the crop height and LAI. Basically, the InSAR coherence values vary between 1, which
represents a perfect correlation between two SAR acquisitions, and 0, which indicates a
total decorrelation between the acquisitions.

Figure 8 illustrates the correlation coefficients between the InSAR coherence, the SAR
backscatter, the height variation, the LAI, and the stress coefficient.

The results show a strong correlation between the InSAR coherence and the water
stress coefficient Ks when using the VV polarization.

Furthermore, the height of the plant is correlated with the backscattering coefficient at
the VV polarization. This is explained by the sensitivity of the vertical polarization VV to
the biophysical parameters of the plant.

Figure 8. Matrix of correlation between sigma VH (σ0VH), sigma VV (σ0VV), coherence, LAI, Ks, and
height. The cells color is proportional to the strength of the Pearson correlation, ranging from red
(negative correlations) to blue (positive correlations), as indicated in the color scale; note: “***”, “**”,
“*” and “.” indicate significance at the 0, 0.001, 0.01, 0.05, and 0.1 levels, respectively

Figure 9 shows the relation between the InSAR coherence, the variation of the height,
and the water stress index (Ks) in Figure 9a,b, respectively. The results show a strong
relationship between the coefficient of the stress, the height variation, and the InSAR
coherence mainly for VV polarization. The field observations showed that the occurrence
of water stress is directly associated with healthy culture development. During the water
deficit circumstances, the stress coefficient increases and the variation of the crop growth
and the height becomes negligible. This stability in the plant status is represented by an
important increase in the InSAR coherence values.
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Figure 9. Relationship between the InSAR coherence and (a) the height variation and (b) the Ks.

Based on this assumption, we used a multiple regression model to predict the water
deficit Ks based on the SAR and InSAR parameters. As detailed in Table 1, we tested
four models:

• The first two models considered Ks as a function of the SAR backscatter and the InSAR
coherence data.

• The other two models integrated also the interaction between both Ks with crop height
and Ks with LAI values.

The predictive performance of the four models tested in this study were evaluated
using the classical accuracy indicators, namely R2 and RMSE. The evaluation of the first
model indicates a good R2 and RMSE performance for Ks as a function of the InSAR
coherence in the VV polarization. In the second model, the constant used to detect the effect
of the other parameters on the Ks was eliminated. In this case, a better performance of the
Ks was noticed when considering a function of the InSAR coherence at VV polarization
and the SAR backscattering coefficient at VH polarization. In the third model, we found
that the introduction of the height did not enhance the prediction of the Ks. However, the
introduction of the LAI, in the fourth model, showed no significant results and led to a
high RMSE.

Table 1. Indicators of the models’ performance that were tested in this study.

Equation R2 RMSE

Model 1 Ks = −0.31 + 1.77γVV 0.74 24%
Model 2 Ks = 2.068γVV + 0.25σ0VH 0.95 14%
Model 3 Height ∗ Ks = −7.4σ0VV + 5.9σ0VH + 132.2γVV − 111.3γVH 0.83 39%
Model 4 LAI ∗ Ks = 3.97 + 0.38γVV − 5.48γVH + 0.13σ0VV + 0.06σ0VH 0.4 57%

5. Discussion
5.1. Variation of the InSAR Coherence and SAR Backscattering Coefficient as a Function of the
Wheat Growth Stages

A multi-temporal and multi-polarization analysis, based on the interferometric co-
herence and the SAR backscattering of Sentinel-1 data, was carried out for durum wheat
growth monitoring. The main findings included a significant correlation between the
different phenological stages of the wheat and the Sentinel-1 data. In particular, the study
pointed out that, before the plowing and after the seeding phases, the InSAR coherence
values were high and then sharply decreased once the wheat growing season started. How-
ever, during the harvesting stage, the InSAR coherence values significantly increased again.
This indicates that the decrease of the InSAR coherence values is mainly related to the dense
vegetation during the growth state of the wheat. Thus, the temporal variation of the InSAR
coherence can be considered as a key factor in identifying the existence of weak vegetation
due to the water deficit stress. The achieved results demonstrated that the InSAR coherence
values of the rainfed wheat were higher compared with the irrigated wheat values due
to the fact that the vegetation cover of the irrigated crops was denser, which produces
more changes between the stages in terms of height, LAI, and biomass. This result is in
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agreement with [35,43], which analyzed the temporal variation of the InSAR coherence
for the wheat crop. Furthermore, according to [43,44], when the geometrical properties
of the scatterers (position, orientation, etc.) change, the InSAR coherence decreases. As a
result, it is expected to be low in dense vegetation and high in bare soils. Moreover, it was
noticed that the InSAR coherence values of the VV acquisitions give a better representation
of wheat development than the VH acquisitions. This is explained by the sensitivity of the
co-polarization towards the enhanced volume scattering of the vegetation and the lack of
the canopy penetration of the VV polarization in the C band [35,45].

Regrading the backscattering coefficient (σ0), during the first two stages: the sowing
and leaf development, the backscattering coefficient showed only a few variations. At these
stages, the crop height did not exceed 10 cm for all the field samples and the backscattering
signal was mainly dominated by the contribution of the bare soil between the crop rows.
Several past studies agreed with this result, such as [28,46]. At the tillering stage, the
σ0 increased. This is explained by the fact that the SAR–target interaction, in this stage,
depends on both the vegetation and the ground characteristics [47]. Starting from the
heading stage, the soil contribution decreased, which caused a rise in the volume scattering
mechanisms. According to [12,19], the drop in SAR backscattering values is explained
by the existence of the vertical wheat stems and the significant absorption of the incident
SAR signal by the leaves, along with a weak direct ground scattering. Furthermore, it was
revealed that the temporal change of the SAR backscatter coefficient values does not vary
proportionally with the crop size. However, it is mostly dependent on the phenological
stage of the crop [31,44,48].

5.2. Estimation of the Water Stress Coefficient Ks

Information from the SAR backscattering and InSAR coherence data has been widely
exploited in the context of estimating and monitoring the soil and crop parameters. How-
ever, this study brings in new dimensions of information for agricultural studies, especially
in detecting the water deficit. According to [41], when the water deficit occurs, the wheat
growth stops before the detection of a relative decrease in the water content. In this context,
an increase in the InSAR coherence values reflects the stability of the plant cover and,
consequently, indicates a very weak growth state of the wheat due to the water deficit. The
potential of the InSAR coherence in detecting the height variation was revealed in [44]. It
highlighted the sensitivity of the InSAR coherence to the variation of the wheat height and
the ability of the Sentinel-1 data to monitor the water deficit. Furthermore, we noticed
that the InSAR coherence in the VV polarization achieved better results than the VH po-
larization, and this can be explained by the sensitivity of this polarization to the height of
the crops.

The backscattering coefficient values are sensitive to the soil moisture and the water
vegetation content [49–51]. Based on this assumption, the backscattering coefficient infor-
mation of Sentinel-1 was used in [52] to estimate the water stress index. They modeled the
actual evapotranspiration and the water stress index as a function of the backscattering
coefficient, and they achieved good performance values (R2 = 0.8). Other studies detected
the water stress by modeling the relationship between the SAR-InSAR coherence data, the
water vegetation content, and the soil moisture variation [53–56].

The backscattering information of the VH polarization was found to be better corre-
lated with Ks. According to [21,57], VH polarization is more sensitive to the detection of
the vegetation water content, whereas VV polarization is more sensitive to the vertical
structure, which is represented by the height of the crop. This explains the fact that Ks is
determined by the two parameters of the SAR backscatter and InSAR coherence data (σ0
and γ).

Our results show that the use of Sentinel-1 data can monitor the phenological stage of
wheat and estimate Ks. However, the detection of Ks remains indirect, so to improve the
results, we can combine SAR data with other remote sensing products, as well as we can
track over several agricultural seasons.
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6. Conclusions

This work presented a new empirical approach for estimating the stress coefficient
(Ks) of durum wheat in a semi-arid area. We used two SAR products: the backscattering
coefficient and the InSAR coherence. The results showed that the SAR products were
sensitive to the phenological stage of the wheat. A significant correlation among the Ks,
height, and SAR products was found. Indeed, when the water deficit occurs, the height
variation of the crop decreases and the InSAR coherence value increases. Correspondingly,
the hypothesis that the SAR data can detect water deficit was confirmed, and a high
correlation was found between the stress coefficient (Ks) and the SAR products (coherence
and backscattering coefficient). The present study adopted a straightforward approach
that takes advantage of the freely available Sentinel-1 SAR and interferometric SAR data
to monitor the water deficit phenomenon. Even though some refinements might still be
necessary such as monitoring over several agricultural seasons and the use of other remote
sensing products, these results could be applied for future research in water management
and irrigation management. Furthermore, they can be considered when developing an
operational tool for water management.
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