
1. Introduction
Arctic regions store vast amounts of carbon (C) in their soils and are a crucial part of the global C cycle (e.g., 
MacDougall et  al.,  2012; McGuire et  al.,  2018; Zimov et  al.,  2006). These C deposits are brought about by 
low temperatures, waterlogging, and cryoturbation, preventing the decomposition of organic matter (OM) and 
facilitating long-term C storage (Davidson & Janssens,  2006). Permafrost regions are sensitive to warming, 
as indicated by rising soil temperatures, thawing permafrost, and increasing active layer thickness (Biskaborn 
et al., 2019). Consequently, long-term soil C sinks may become sources, as the decomposition of soil OM and 
associated increases in microbial respiration are expected to represent a strong positive feedback to global warm-
ing (Elberling et al., 2013; Schädel et al., 2014; Y. Wang et al., 2020). Similarly, nitrogen (N) stored within these 
soils may be transformed via denitrification or nitrification into nitrous oxide (N2O), another potent greenhouse 
gas (Hugelius et al., 2020; Remde & Conrad, 1991; Salmon et al., 2018). Uncertainties arise, limiting the use of 
current soil C inventories of Arctic regions for global climate projections, due to our limited understanding of 
the size of the soil C and N stocks and the factors that influence them (Hugelius et al., 2014; Opfergelt, 2020; 
Palmtag et al., 2018).
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peak in C at depth in humid polygons, a likely result of past changes in vegetation cover. At Qarlikturvik Valley, 
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Plain Language Summary Permafrost soils of the Arctic store large amounts of carbon (C) and 
nitrogen (N), which may be emitted to the atmosphere in form of greenhouse gases further enhancing global 
warming when thawed under warmer conditions. It is therefore important to know how much C and N these 
soils store. Various approaches have been used for upscaling in the past. Here, soil C and N stocks were 
estimated for the main vegetated geomorphological terrain units of a valley in the Arctic. Soil C and N levels 
varied among geomorphological units, due to prevailing geomorphological processes, differences in vegetation 
and soil characteristics, as well as permafrost processes. Overall, C and N decreased with increasing depth. 
These data will allow us to better constrain soil C and N stocks of permafrost regions and ultimately climate 
models.
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Early attempts to quantify soil organic carbon (SOC) stocks at a pan-Arctic scale suggested 1,700 Pg C are stored 
in the upper 3 m of soils of the northern permafrost region (Tarnocai et al., 2009). As more data became available 
this estimate has been constrained to 1,300 Pg C (Hugelius et al., 2014). A more recent estimate suggests global 
permafrost regions store 1,568 Pg C (Strauss et al., 2021). No such estimate exists for soil N stocks despite their 
importance in SOC cycling, as N availability influences plant productivity, thus soil OM inputs, and constrains 
the decomposition of soil OM (Mack et al., 2004). Most studies that assessed regional soil C stocks extrapolated 
data from soil pedons based on landforms (e.g., Ping et al., 2008; Zubrzycki et al., 2013), soil type (e.g., Hugelius 
et al., 2013), vegetation classes (e.g., Hugelius & Kuhry, 2009; Siewert et al., 2015), or a combination thereof 
(e.g., Hugelius, 2012; Hugelius et al., 2014; Siewert et al., 2016), as these factors have a major influence on SOC 
stocks (Grosse et al., 2011). Moreover, they can be readily determined based on existing soil and vegetation maps 
and/or satellite imagery, especially for lowlands (Weiss et al., 2017). However, SOC stocks in mountainous and 
sloping terrains, which are widely distributed and cover about 13% of the area without any ice cover in the Arctic 
(Walker et al., 2005), are poorly represented in these assessments and are thus associated with large uncertainties 
(Hugelius et al., 2014).

Geomorphological processes are particularly important in the formation of soil C stocks in mountainous terrain 
and associated sloping foothills, as they periodically redistribute and burry soil OM (Hugelius et al., 2014; Weiss 
et al., 2017). Since alluvial fans form at the bottom of cliffs and slopes they are very common terrain features of 
Arctic regions (French, 2017). Indeed, in Zackenberg Valley, Greenland alluvial fans occupy an area of about 
12%–15% (Cable et al., 2018; Palmtag et al., 2018). In alluvial fans, discharge travels downslope either as concen-
trated or sheet flow. Sufficiently concentrated flow may result in debris flow, while sheet flow may result in thin 
layers of deposited sediment (Blair & McPherson, 1994). Although little is known about the biogeochemistry 
of sediment deposited in alluvial fans, soil C contents in alluvial fans ranged from 0.4% to 19.6% in Zackenberg 
Valley, Greenland (Cable et al., 2018). Given the widespread distribution of alluvial fans in Arctic landscapes, 
research on the biogeochemistry of C and N stocks in alluvial fans and how it compares to other terrain units is 
urgently needed.

Qarlikturvik Valley at Bylot Island is a typical geosystem of the Eastern Canadian Arctic. In addition to incised 
plateaus with alluvial fans at the hill toes, terraces with polygons can be found along the proglacial river. These 
tundra polygons are the result of repeated frost cracking of the ground in winter and water entering these cracks 
during snow melt, leading to the formation of ice veins and eventually ice wedges (Allard,  1996; Fortier & 
Allard, 2004, 2005; Fortier et al., 2006). Accretion of organic material and eolian sediment leads to the formation 
of soil C deposits (Allard, 1996; Ping et al., 2016). Permafrost aggrades either downward after the accumula-
tion of peat/sediments (epigenetic permafrost) or upward concurrent with peat/sediment deposition (syngenetic 
permafrost). The later thus freezes shortly after deposition potentially sequestering large quantities of C (Ewing 
et al., 2015). Low-centered polygons often accumulate water and are therefore considered humid polygons. They 
form syngenetic permafrost. While low-centered polygon rims and gently sloping terrain are drier and consid-
ered mesic environments (Perreault et al., 2016), form epigenetic permafrost. These differences in permafrost 
formation and soil moisture likely influence soil C stocks (Ewing et al., 2015; Lee et al., 2012; Zona et al., 2012). 
However, in the Kolyma Delta, Siberia soil C stocks were very similar in the active layer of the polygon ridge 
(i.e., mesic conditions) and the polygon center (i.e., humid conditions), but greater in the frozen ground of the 
polygon center. In contrast, in the Lena Delta active layer soil C was greater at the polygon center, but frozen 
ground soil C was greater at the polygon ridge (Beermann et al., 2016). This suggests that soil C and N stocks 
of polygonal terrain are also highly variable, warranting further data to constrain uncertainties associated with 
current soil C inventories.

This study aimed to assess soil C and N stocks at Qarlikturvik Valley at Bylot Island, Nunavut, Canada and to 
explore potential differences in soil C and N concentrations among dominant vegetated geomorphological terrain 
units (i.e., alluvial fans, humid polygonal terrain, mesic polygonal terrain) and with depth. It was hypothesized 
that C and N stocks differ among geomorphological terrain units, as the factors that determine C and N inputs, 
storage, and losses also differ among these terrain units.

Writing – review & editing: A. Ola, 
D. Fortier, S. Coulombe, J. Comte, F. 
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2. Materials and Methods
2.1. Study Site

Qarlikturvik Valley (73°10′N, 80°00′W, Figure 1) is located on the southern plain of Bylot Island, Nunavut, in the 
eastern Canadian Arctic. The valley floor has a length of approximately 17 km with a width of up to 4 km (Godin 
& Fortier, 2012). It is bounded by the glaciers C-79 and C-93 to the East, and plateaus and terraces comprising 
up to 4–5 m of ice-rich peat mixed with eolian sediment to the North and South. Alluvial fans at the toe of incised 
plateaus are made of silty sand and gravels, covered by organics except in the numerous active channels. Streams 
and rills from sub-perpendicular gullies and alluvial fans flow in a proglacial braided river, forming a glacioflu-
vial outwash plain. The south-western portion of the valley is dominated by glacial deposits covered by organics 
(Fortier & Allard, 2004). Approximately 17.6 km 2 of Qarlikturvik Valley are covered by alluvial fans, 20.2 km 2 
by humid polygonal terrain, and 5.5 km 2 by mesic polygonal terrain. This corresponds to 14.5%, 16.4%, and 
3.5% of the total area, respectively (Figure 1). The remaining area is covered for example, by colluvium (30.1%), 
the glacio-fluvial outwash plain (18.8%), glacio-proximal terrain (moraine, 7.7%), and bedrock outcrops (4.1%) 
(Figure 1).

The annual mean air temperature for the period from 1994 to 2019 is −14.6°C (CEN, 2020). Maximum temper-
atures barely exceed 20°C, while minimum temperatures are about −50°C (CEN,  2020). The annual mean 

Figure 1. (a) Location of Bylot Island in the Eastern Canadian Arctic, (b) the location of Qarlikturvik Valley on Bylot Island, and (c) the locations of the soil pedons 
sampled at Qarlikturvik Valley (73°10′N, 80°00′W), where green points represent alluvial fan sampling locations, blue points: mesic polygons, and red points: humid 
polygons (based on Coulombe et al. 2021).
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precipitation is 189 mm (ca. 50% of which is rain) (CEN, 2020). Permafrost at nearby Somerset Island and Devon 
Island has a thickness of >400 m (Smith & Burgess, 2002). At Bylot Island active-layer thickness varies from 
1 m in sands and gravels to 0.3–0.7 m in peaty and silty soils (Allard et al., 2020). The vegetation at Bylot Island 
comprises graminoid and grass meadows, as well as shrub-forb tundra (Gauthier et al., 2011, Table 1).

2.2. Data Set

Data of 18 active layer soil pits and corresponding permafrost cores from Qarlikturvik Valley were included in 
the data set. Most of the sampling and coring (13 soil pits and corresponding permafrost cores) was performed in 
July 2017, July 2018, and July 2019. Data for another five locations were sourced from the ADAPT (2014, 2016) 
data set, which were collected in July 2013. Humid and mesic polygonal terrain was sampled in the central 
portion of the polygons to avoid cryoturbation near and over the ice wedges (Fortier & Allard, 2004). Thaw 
depths at the time of sampling ranged from 13 to 59 cm (for details see Table 1). A soil pit was dug and the 
thawed surface soil was sampled at fixed depths. Subsequently, permafrost cores were collected from the same 
location as the soil pits starting at the permafrost table using an earth auger equipped with a 10.8 cm diameter 
diamond carbide core barrel. The samples were stored frozen (−20°C) until analysis in the laboratory. Most 
permafrost cores were subsampled by horizon, but a small number (i.e., the ADAPT cores) were also subsampled 
at fixed depths. To study the vertical distribution of soil C and N within the top 100 cm of soil and to allow the 
comparison among geomorphological terrain units, total C and N, which were standardized by soil bulk density 
values, and C:N ratios, which are an index of the SOM degradability (Hobbie et al., 2002), were averaged for 
the following depth intervals: 0–5 cm, 5–20 cm, 20–60 cm, 60–100 cm. Initially, 20 cm intervals were chosen 
(e.g., Jobbágy & Jackson, 2000; Petrenko et al., 2016), but since there were no significant differences in C and 
N between 20–40 and 40–60 cm depths (Kruskal-Wallis Test: X 2 = 0.281, p = 0.596), data from these depth 
intervals were combined. The same was true for 60–80 and 80–100 cm depth intervals (Kruskal-Wallis Test: 
X 2 = 0.892, p = 0.345). The top 5 cm were analyzed separately to reflect the potentially high variability in topsoil 
C and N (Zubrzycki et al., 2013). Soil C and N contents (%) were determined using an elemental analyzer (LECO 
Corporation, St. Joseph, MI, US). Inorganic C was determined for all samples collected in 2018 and 2019 with a 
pH > 6.9, as alkaline soils are associated with carbonates (Jorgenson et al., 2013). These samples were analyzed 
for C after the organic C was oxidized in a muffle furnace (450°C, 8h, D. Wang & Anderson, 1998).

The data were grouped into three different geomorphological terrain units with a specific geomorphology and 
sediment type (e.g., Stephani et al., 2014): (a) alluvial fans (sampling locations/samples: 11/157), which are fed 
by taluses (i.e., the accumulations of rocks at the base of a cliff) on poorly consolidated Cretaceous-Tertiary sand-
stones and shales; (b) syngenetic low-center ice-wedge polygons (humid polygons sampling locations/samples: 
3/32) formed in interstratified peat and eolian silt and sand of humid lowlands; and (c) epigenetic flat-center 
ice-wedge polygons (mesic polygons sampling locations/samples: 4/61) formed in glacigenic sediments of mesic 
hilly terrain (Table 1). Although alluvial fan sediments can be affected by frost-cracking and may contain synge-
netic ice wedges at depth, the polygonal pattern at the alluvial fan studied was poorly expressed, both in terms of 
geometry (incomplete polygon), as well as height and width of the ridges (Table 1). Thus, the dominant landform 
and processes were considered alluvial.

Finally, soil C stock values (kg m −2) for each depth interval were calculated by multiplying the C concentration 
(kg kg −1) by the dry soil bulk density (kg m −3) and by the thickness of the depth interval (m). Subsequently, the 
soil C stock estimates of the depth intervals were summed to obtain a soil C stock estimate for each soil profile, 
which were then averaged to obtain C stock estimates for the top 100 cm of each geomorphological terrain unit 
(Mishra & Riley, 2012). The dry soil bulk density (kg m −3) was calculated by dividing the dry weight with the 
volume of the sample (Obu et al., 2017).

2.3. Statistical Analysis

As the assumption of normality was not met by most of the variables, the Kruskal-Wallis test was used to 
determine the importance of geomorphological terrain unit (i.e., alluvial fan, humid low-center polygon, mesic 
flat-center polygon) on soil C stocks, N stocks, total C density, total N density, and C:N ratio of each soil depth 
interval (0–5 cm, 5–20 cm, 20–60 cm, 60–100 cm). Dunn's Test with Benjamini-Hochberg adjustment was used 
for multiple comparison of groups (Benjamini & Hochberg, 1995). For data that were normally distributed, a 
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one-way ANOVA was used to analyze the effect of geomorphological terrain 
unit on N density at 5–20 cm, and C:N ratio at 20–60 cm. For the former, the 
Tukey's HSD Test was used for multiple comparison of groups. All data were 
analyzed using R (R Core Team: www.R-project.org/).

3. Results
Soil C significantly differed among geomorphological terrain units (Figure 2, 
Table 2). At a depth of 0–5 cm pairwise comparison suggested alluvial fan C 
contents (0.025 ± 0.002 g cm −3) were significantly lower than humid polygon 
C contents (0.094 ± 0.014 g cm −3, p = 0.006). At 5–20 cm soil C contents 
were significantly lower in the alluvial fan (0.018 ± 0.002 g cm −3) compared 
to those in polygonal terrain (humid: 0.059 ± 0.015 g cm −3, p = 0.013; mesic: 
0.045 ± 0.002 g cm −3, p = 0.025). Similarly, at 20–60 cm C contents were 
significantly lower in the alluvial fan (0.015 ± 0.001 g cm −3) compared to 
those in polygonal terrain (humid: 0.061 ± 0.007 g cm −3, p = 0.007; mesic: 
0.037 ± 0.007 g cm −3, p = 0.05). Below 60 cm alluvial fan C contents were 
significantly lower than humid polygon C (p = 0.009). Inorganic C contents 
were very low ranging from 0.0% to 0.25% with a mean of 0.04 ± 0.0%.

Carbon concentration decreased with increasing soil depth in all geomorphological terrain units studied 
except humid polygonal terrain. In the alluvial fan C content decreased by 44% (from 0.025 ± 0.002 g cm −3 to 
0.014 ± 0.001 g cm −3) between the topsoil (0–5 cm) and the layer at depth (60–100 cm) (Figure 2). Similarly, in 
mesic polygonal terrain C content decreased by 36.2% (from 0.047 ± 0.006 g cm −3 to 0.03 ± 0.01 g cm −3), while 
in humid polygonal terrain C content increased by 15.4% (from 0.094 ± 0.014 g cm −3 to 0.111 ± 0.01 g cm −3) 
with increasing depth (Figure 2).

In addition, N content significantly differed among geomorphological terrain units (Table  2). At a depth of 
0–5 cm pairwise comparison revealed alluvial fan N contents were significantly lower than mesic polygon N 

contents (p = 0.041). At 5–20 cm N contents were significantly lower in the 
alluvial fan (0.0012 ± 0.0001 g cm −3) compared to those in polygonal terrain 
(humid: 0.0037 ± 0.0008 g cm −3, p = 0.001; mesic: 0.0032 ± 0.0004 g cm −3, 
p = 0.003). Below 20 cm alluvial fan N contents were significantly lower 
than humid polygon N contents (p = 0.007).

Generally N concentrations decreased with increasing soil depth except in 
humid polygonal terrain, where N content was relatively stable within the top 
meter of soil (Figure 3). In the alluvial fan N content decreased by 40% (from 
0.0015 ± 0.0002 g cm −3 to 0.0009 ± 0.0 g cm −3) and in mesic polygonal 
terrain by 48.5% (from 0.0033 ± 0.0006 g cm −3 to 0.0017 ± 0.0004 g cm −3) 
between the topsoil (0–5 cm) and the layer at depth (60–100 cm) (Figure 3).

The C:N ratios did not differ among geomorphological terrain units up to a 
depth of 60 cm (Table 2). C:N ratios ranged from 14.4 ± 1.3 (mesic polygon) 
to 18.3 ± 1.9 (alluvial fan) at a depth of 0–5 cm, from 14.8 ± 1.2 (mesic poly-
gon) to 18.4 ± 3.3 (alluvial fan) at a depth of 5–20 cm, and from 15.7 ± 0.5 
(humid polygon) to 18.0  ±  1.2 (mesic polygon) at a depth of 20–60  cm 
(Figure  4). However, at a depth of 60–100  cm C:N ratios differed among 
geomorphological terrain units (Table 2), due to the significantly higher C:N 
ratio of 26.3 ± 2.1 in humid polygonal terrain compared to 15.3 ± 0.9 in the 
alluvial fan (p = 0.013) (Figure 4). Furthermore, C:N ratios increased with 
increasing depth in polygonal terrain (humid: from 16.9 ± 1.0 to 26.3 ± 2.1; 
mesic: from 14.4  ±  1.3 to 17.0  ±  0.9), while C:N ratios decreased with 
increasing depth in the alluvial fan (from 18.3 ± 1.9 to 15.8 ± 0.3) (Figure 4).

Figure 2. Distribution of total carbon ± standard error (g cm −3) at different 
depths (0–5, 5–20, 20–60, and 60–100 cm) within a permafrost soil profile for 
various geomorphological terrain units (alluvial fan, humid polygonal terrain, 
mesic polygonal terrain). Letters indicate significant differences. Note the 
Y-axis is not linear.

Variable Depth (cm) Df X 2/F-value p

Total C 0–5 2 11.471 a 0.003 *

5–20 2 11.056 a 0.004 *

20–60 2 11.529 a 0.003 *

60–100 2 9.45 a 0.009 *

Total 100 2 12.895 a 0.002 *

Total N 0–5 2 8.221 a 0.016 *

5–20 2 15.84 b <0.001 *

20–60 2 10.998 a 0.004 *

60–100 2 10.562 a 0.005 *

Total 100 2 12.895 a 0.002 *

C:N Ratio 0–5 2 0.382 a 0.148

5–20 2 0.321 a 0.852

20–60 2 0.576 b 0.576

60–100 2 8.301 a 0.016 *

 aKruskal-Wallis Test (X 2).  bANOVA (F-value).  *Significant effects (p < 0.05) 
are highlighted.

Table 2 
The Effect of Geomorphological Terrain Units on Soil Carbon (C), Soil 
Nitrogen (N) and C:N Ratio for Various Soil Depth Intervals (0–5, 5–20, 
20–60, and 60–100 cm), as Well as the Total for the Top 100 cm of Soil

http://www.R-project.org/
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Total soil C stocks for the top 100 cm differed significantly among geomor-
phological terrain units (Table  2). Soil C stocks were greatest in humid 
polygonal terrain (82.0 ± 4.1 kg m −2), followed by mesic polygonal terrain 
(39.8 ± 9.0 kg m −2), and alluvial fan (15.7 ± 0.6 kg m −2, Figure 5a). Subse-
quent pairwise comparison showed that total C stocks differed significantly 
between alluvial fan and humid polygonal terrain (p = 0.005). Further, there 
was a significant difference in C stocks between alluvial fan and mesic polyg-
onal terrain (p = 0.024).

Total soil N stocks for the top 100  cm also differed significantly among 
geomorphological terrain units (Table  2). Soil N stocks were greatest in 
humid polygonal terrain (4.0 ± 0.1 kg m −2), followed by mesic polygonal 
terrain (2.3 ± 0.4 kg m −2), and alluvial fan (1.0 ± 0.1 kg m −2, Figure 5b). A 
pairwise comparison demonstrated that total N stocks differed significantly 
between alluvial fan and humid polygonal terrain (p  =  0.005), as well as 
between alluvial fan and mesic polygonal terrain (p = 0.024).

In total, alluvial fans at Qarlikturvik Valley store about 0.277  Tg C and 
0.018 Tg N in the top meter of soil. Humid polygonal terrain stores 1.654 Tg 
C and 0.081  Tg N, while mesic polygonal terrain stores 0.219  Tg C and 

0.013 Tg N in the top meter of soil. Assuming inorganic C contents of 0.4%, alluvial fans store 0.226 Tg of SOC, 
while humid and mesic polygonal terrain store 1.643 and 0.218 Tg SOC, respectively.

4. Discussion
Geomorphological processes significantly affect soil C stocks. Lower soil C stocks in the alluvial fan setting 
compared to the polygonal terrain are in part the result of geomorphological processes characterized by strong 
erosive forces of the fluvial flows in the alluvial fan (Blair & McPherson, 1994), preventing the deposition of 
light particles such as OM (Powell, 1998). In periglacial environments, snowmelt, permafrost thaw, and rainfall 
in the catchment in spring and summer can create considerable discharge (de Haas et al., 2015). Discharge and 
fan gradient determine the depositional energy, influencing the characteristics of the sediment in an alluvial fan 
(Schillereff et al., 2014). In addition, sediment characteristics and supply, as well as proximity to fluvial sources 
may be important (Schillereff et al., 2014). For example, low levels of C in the alluvial fan may be the result 
of low levels of C of the source material and high influx of mineral sediments, acting as dilution factor (Berhe 
et al., 2007; Doetterl et al., 2012). Furthermore, fluvial flows may transport a significant fraction of the eroded 
material into the periglacial river, which constrains the extent of the alluvial fans, preventing the deposition and 
accumulation of soil and OM (Clarke et al., 2010) and associated soil C stocks at the fan base.

Plant productivity is another important factor influencing soil C stocks by 
adding OM to the soil, as soil C stocks reflect the balance between C inputs 
via primary production or deposition, and outputs via erosion, decomposi-
tion, volatilization and leaching of organic compounds (Amundson, 2001). 
Indeed, vascular vegetation cover has been shown to have the strongest 
correlation with SOC stocks in the Thule region (Howarth Burnham & 
Sletten,  2010). Since geomorphic processes (e.g., erosion and sediment 
deposition) interfere with plant growth in alluvial fans (Ishida et al., 2010; 
Lane et  al.,  2016; Tomczyk et  al.,  2019), greater plant productivity in the 
polygonal terrain may also have contributed to higher SOC stocks observed 
here. However, soil development in late stages of fan development or in fan 
sections with abandoned channels facilitates changes in plant diversity (Ishida 
et al., 2010; Lane et al., 2016; Tomczyk et al., 2019), thus plant productivity 
(Fraser et al., 2015; Grace et al., 2016; Grime, 1973). Additionally, changes 
in vegetation cover potentially reduce the erodibility of the soil, as vegeta-
tion alters soil properties such as aggregate stability (Gyssels et  al., 2005; 
Ola et al., 2015). At our study site the shrub Salix richardsonii increasingly 

Figure 3. Distribution of total nitrogen ± standard error (g cm −3) at different 
depths (0–5, 5–20, 20–60, and 60–100 cm) within a permafrost soil profile for 
various geomorphological terrain units (alluvial fan, humid polygonal terrain, 
mesic polygonal terrain). Letters indicate significant differences. Note the 
Y-axis is not linear.

Figure 4. C:N ratios at different depths (0–5, 5–20, 20–60, and 60–100 cm) 
within a permafrost soil profile for various geomorphological terrain units 
(alluvial fan, humid polygonal terrain, mesic polygonal terrain). Letters 
indicate significant differences. Note the Y-axis is not linear.



Journal of Geophysical Research: Biogeosciences

OLA ET AL.

10.1029/2021JG006750

8 of 12

colonizes alluvial fans (Tremblay,  2018, Table  1), which may increase the soil C stocks in the alluvial fans 
at Qarlikturvik Valley in the long-term. However, differences in soil C stocks between polygonal terrain units 
may partly be explained by differences in soil moisture (Cadieux et al., 2008; Gauthier et al., 2011), as anoxic 
conditions slow down decomposition (Lee et al., 2012; Zona et al., 2012). Similarly, the presence of syngenetic 
permafrost may also be responsible for better preserved soil C stocks in humid polygons, as opposed to epigenetic 
permafrost in mesic polygons (Ewing et al., 2015).

Comparable C stock estimates from the Arctic are rare. However, by upscaling data from eight soil pedons, SOC 
stocks for the top meter of soil of 17.8 ± 11.0 kg m −2 have been calculated for the region (Hugelius et al., 2014). 
This C stock estimate is much lower than the estimates for polygonal terrain at Qarlikturvik Valley (82.0–39.8 kg 
m −2 for humid and mesic polygonal terrain respectively), but similar to estimates of 15.7 ± 0.6 kg m −2 for the 
studied alluvial fan area. This highlights the importance of considering geomorphological terrain units for soil C 
stock assessments. Soil C stocks at Spitsbergen, Norway for humid tundra (26.3 kg m −2, Weiss et al., 2017) are 
much lower than the C stocks measured in both types of polygonal terrain on Bylot Island (Table 3). However, the 
C stock estimates presented here for humid polygonal terrain are strikingly similar to SOC stock estimates from 
Herschel Island, Canada (84.1 kg m −2, Obu et al., 2017, Table 3). Conversely, alluvial fan C stocks presented here 
(15.7 kg m −2) are much lower than SOC stocks for alluvial fans on Herschel Island (42.5 kg m −2, Obu et al., 2017, 
Table 3) or at Zackenberg, Denmark (42.7 kg m −2, Palmtag et al., 2018, Table 3). Thus, soil C stocks are highly 
variable among sites even within the same geomorphological terrain unit and more studies are needed to improve 
circumpolar soil C estimates, which are more precise when geomorphology is considered.

Figure 5. (a) Total soil carbon stocks ± standard error (SE) (kg m −2) and (b) total nitrogen stocks ± SE (kg m −2) for the top 
100 cm of permafrost soil in various geomorphological terrain units (alluvial fan, humid polygonal terrain, mesic polygonal 
terrain). Letters indicate significant differences.

Terrain unit Location SOC stock (kg m −2) Study

Alluvial Fan Herschel Island, Yukon 69.58°N, 139.08°W 42.5 Obu et al. (2017)

Zackenberg, Greenland 74.47°N, 20.57°E 42.7 Palmtag et al. (2018)

Bylot Island, Nunavut 73.10°N, 80.00°W 15.6 a This study

Polygonal Terrain Herschel Island, Yukon 69.58°N, 139.08°W 84.1 Obu et al. (2017)

Spitsbergen, Svalbard 77.88°N, 20.98°E 26.3 Weiss et al. (2017)

Bylot Island, Nunavut 73.10°N, 80.00°W 39.6 to 81.7 a This study

 aAfter subtracting 0.4% of total C for inorganic C.

Table 3 
Soil Organic Carbon (SOC) Stocks (kg m −2) for Alluvial Fans and Polygonal Terrain From Arctic Regions



Journal of Geophysical Research: Biogeosciences

OLA ET AL.

10.1029/2021JG006750

9 of 12

Geomorphological terrain type also influences soil N levels. Soil N is related to soil OM inputs (Jobbágy & 
Jackson, 2000). Thus, like soil C, the distribution of soil N across geomorphological terrain units reflects the 
absence of erosive forces at the study sites located in polygonal terrain, as well as differential inputs from the 
vegetation (Hobbie,  1996), where N has essentially been accumulating throughout the late Holocene. Other 
factors that may influence the distribution of N are temperature and hydrology, affecting decomposition (Schuur 
et al., 2008), sediment characteristics, and geochemistry, influencing OM stabilization (Evgrafova et al., 2018), 
as well as the presence and abundance of birds such as geese (Gauthier et al., 1996). Total N stocks in the humid 
polygonal terrain at Qarlikturvik Valley (4.0 ± 0.1 kg m −2) are four times greater than those at the Lena River 
delta (1.1 kg m −2, Zubrzycki et al., 2013), but similar to those reported at Herschel Island (4.6 kg m −2, Obu 
et al., 2017). Conversely, N stocks in the alluvial fan here (1.0 ± 0.0 kg m 2) are three times lower than N stocks 
at Herschel Island (3.4 kg m −2, Obu et al., 2017), but similar to those at Zackenberg valley (1.1 kg m −2, Palmtag 
et al., 2018). These C and N dynamics are also reflected in the relatively high C:N ratios indicating limited degra-
dation of OM or N availability in these soils, both of which are very common phenomena in Arctic ecosystems 
(Chapin & Shaver, 1996; Chapin et al., 1975; Hobbie et al., 2002; Mack et al., 2004).

Carbon and N concentrations decreased with increasing soil depth in all terrain units studied except humid polyg-
onal terrain. Decreases in SOC with depth have frequently been reported in circumpolar regions (e.g., Obu 
et al., 2017; Weiss et al., 2017). Indeed, Hugelius et al. (2014) found that 30%–50% of the total SOC stored up to 
a depth of 300 cm are stored within the top-soil (0–30 cm). As for N, a 44% decrease with increasing depth up to 
100 cm has been reported in Zackenberg valley (Palmtag et al., 2018). Greater C and N contents at the soil surface 
are the result of fresh OM inputs from vegetation (Jobbágy & Jackson, 2001; Lorenz & Lal, 2005). As fresh litter 
and, depending on setting, eolian or alluvial sediment is added to the soil surface, it buries previously deposited 
litter in various stages of decay, resulting in the widely observed decreases in soil C and N with depth (Jobbágy & 
Jackson, 2001; Lorenz & Lal, 2005). Relatively low levels of C and N at depth may reflect initial soil formation 
processes after glacier retreat (Wietrzyk-Pełka et al., 2020). The increase in C levels in humid polygonal terrain at 
60–100 cm may have accumulated under a different vegetation and climate in the past facilitating OM production, 
as well as high (eolian) sedimentation facilitating the upward movement of the permafrost table thereby prevent-
ing decomposition (Allard, 1996; Fortier et al., 2006). These unexpected high levels of C and N at depth highlight 
the need to sample depths below 100 cm to accurately estimate soil C and N stocks expressed earlier (e.g., Harden 
et al., 2012). This may be particularly true for alluvial fans, which are characterized by the frequent deposition 
of potentially large volumes of mineral sediment, diluting soil C concentrations. However, due to the potentially 
large spatial variability in soil characteristics (Siewert et al., 2021) further sampling in alluvial fans of various 
developmental stages, humid and mesic polygonal terrain at the local and regional scale is needed.

5. Conclusions
Soil C and N contents in the top 1 m at Qarlikturvik Valley differ among dominant vegetated geomorphological 
terrain units and are greater in polygonal terrain than in the alluvial fan area. This is likely due to geomorpholog-
ical processes in the alluvial fan (i.e., fluvial flows and associated sediment transport), differences in vegetation 
cover and soil characteristics such as moisture levels and oxygen availability, as well as permafrost processes. 
Carbon stocks in polygonal terrain at Qarlikturvik Valley are 2.2 to 4.6 times greater (39.8–82.0 kg C m −2) than 
estimates proposed in an initial assessment of Arctic soil C stocks (Hugelius et al., 2014). Alluvial fans store 
15.7 kg C m −2, which is in line with earlier assessments (Hugelius et al., 2014). This highlights the need for an 
increased resolution considering the numerous geomorphological terrain units frequently found in Arctic regions 
to estimate representative soil C and N stocks and to predict greenhouse gas (e.g., CO2, CH4, and N2O) emissions 
from Arctic regions.

Data Availability Statement
The data used to determine the effect of geomorphological terrain unit on soil carbon and nitrogen stocks at Bylot 
Island is available at ZENODO via (Ola et al., 2022) https://doi.org/10.5281/zenodo.6753897.

https://doi.org/10.5281/zenodo.6753897
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