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Abstract: In northern Italy, most greenhouses rely on gas or oil heaters which are sometimes subject
to high operating costs. Several greenhouses are nearby quarry lakes, which are the legacy of the
expansion of cities in the last decades, including Turin (NW Italy). About 20 quarry lakes were
excavated close to the Po riverbed in the southern part of this urban area, along a belt of more than
30 km in length, with an overall volume exceeding 10 million m3 water. The study addresses these
artificial lakes as a low enthalpy thermal energy source, potentially providing heat to surrounding
agri-business buildings. Detailed temperature monitoring of a large lake quarry was conducted
over two years at different depths, measuring the surrounding groundwater level as well. Two
different behaviors of the lake during the winter and summer seasons enabled the definition of
a quite low water mixing process between the surrounding aquifers and the lake (in the range of
2–4 ◦C). An evaluation of the heat extraction potential using the lake as a heat source, depending
on water temperature and its volume, and a qualitative comparison with groundwater systems are
proposed. This study contributes to increasing knowledge on an overlooked resource for sustainable
heating.

Keywords: quarry lake; temperature; geothermal heat pump; greenhouse; mining activity;
environmental restoration

1. Introduction

In Italy, most of the aggregate production originates from alluvial deposits providing
high-quality material. In the Turin area (NW Italy), there is a massive presence of quarries
exploiting such deposits. These mining activities represent a relevant environmental
concern, especially when the excavation reaches the water table of the shallow aquifer(s).
As this happens, the so-called quarry lakes are formed, which are associated with several
possible impacts [1–4]. Previous studies have dealt with quarry lakes because of progressive
flooding of the excavated area with groundwater, rainfall, or surface runoff [2]. They
can become a potential threat because of harmful chemical and physical groundwater
pollution [3]. Dewatering pumping systems are kept in operation even after the mine
closure to avoid groundwater contamination. A similar application was recently proposed
also for pump-and-treat systems in groundwater remediation projects [5].
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Quarry lakes can also modify the morphology of the water table, leading to a possible
mixing between shallow and deep aquifers and to a hydrogeological imbalance between
the evaporation from lakes and the amount of precipitation [1].

South of Torino (Figure 1), a number of these water basins (totalizing > 10 million m3

of water) are found close to the Po riverbed, along a belt more than 30 km in length. These
flooded quarries are typically returned to the local community after the end of the mining
activity and most of them are going to end their operation, in the next decades.
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Figure 1. Location of the study area (the red square): artificial quarry lakes along the Po River south
of Turin (NW Italy) can be well identified.

According to national and local regulations, environmental restoration is mandatory
when a quarry ends its operation. These lakes are usually restored through renaturation,
converted to recreational and sports centers, or as lagoon basins for aqueducts. Options
demanding low-cost maintenance are often sought as public funds available for restoration
are often scarce and the choice of a sustainable solution is up to the local administrations.

Mining areas now have more and more attention hoping to improve their sustainability.
Land recovery planning and regulations are of great importance to guarantee sustainable
exploitation. There are several potential positive uses for shallower mines and for quarries
that are currently inactive [6–13], including the thermal exploitation of lake water as a low
enthalpy thermal energy source, as initially suggested by [14].
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This paper aims to investigate if areas nearby the lakes can be potential sites for
greenhouses or agri-business factories, particularly for Space Heating and Cooling (SHC),
domestic hot water, and food processes (e.g., vegetable and fruit dehydration).

2. Materials and Methods
2.1. The Concept: Exploiting the Quarry Lake as a Heat Source

Mining sites and quarries require significant capital investment to operate, but they
are considered to have little value after closure. During production or after the closure,
open-pit mines and quarries can become flooded by groundwater and surface runoff. The
thermal inertia of this water body can be exploited as a heat source, using heat pump
systems. This technology can be deployed in any type of geological environment for the
benefit of users that can obtain important energy savings. This is a feature that makes
quarry lakes an interesting alternative to well drilling. Indeed, well drilling represents a
major cost item for open-loop geothermal heat pump systems whereas, in the case of a
flooded quarry, water at an almost constant temperature is directly accessible through the
existing open pit (Figure 2).
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Figure 2. Ground-source heat pump systems using surface water from closed and flooded open-pit
mines. Adapted from Ref. [14].

There are at least two alternative methods to produce thermal energy: the abstracted
water can be disposed of in the same lake, maximizing the distance in order to avoid or
limit the occurrence of thermal recycling [15]; as an alternative, a heat exchanger can be
submerged into the lake, working like a pond loop [16,17].

Energy extracted can be used to heat and cool commercial, industrial, and institutional
buildings near these mines or to supply energy-intensive businesses, such as greenhouses
or data centers, where heating and cooling costs represent an important part of building’s
economic and energy budget [18–20]. Therefore, the use of surface water geothermal
energy available in the mine water would make it possible to reduce building operating
costs significantly.

2.2. The “Provana” Quarry Site: Geographical and Geological Setting

The alluvial Po Plain in Northern Italy hosts a high number of quarries located along
the Po River and its tributaries. Piedmont (NW Italy) hosts several of them, historically
located along the main rivers, with an average depth of 20–30 m and up to 60 m, with a
surface area ranging from 3 to 30 ha, and volumes ranging from 1 to 20 million m3.
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The study area is the “Provana” quarry, located about 30 km south of Torino, near the
Po River and a few km away from residential and industrial areas between Carignano and
Carmagnola localities, hosting a population of around 40,000 (Figure 1).

The area is part of the Western Po Plain and is one of the most important water
resources of Europe and of Italy. It is bordered by the Alps to the North and by the
Apennines to the South. The configuration of the Western Po Plain is formed by the W-
vergent arc of the Western Alps and the NE-vergent arc of the Northern Apennines [21].
The westernmost part of the Po Plain can be further divided into the northern and southern
sectors with respect to the Torino urban area (Figure 3). This physical division consists of
alluvial fans to the West and by an E-W belt formed by the Torino and Monferrato hills to
the East [22].
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Figure 3. Geological map of Piedmont (NW-Italy), modified from [22]: the red star highlights the
study area.

The hydrogeological model of the Piedmont Po Plain is mainly characterized by:

• an Alluvial Complex, consisting of unconsolidated deposits, which can be assigned
to quaternary fluvial deposits with gravelly–sandy texture and silt–clay intercalation
hosting shallow groundwater;

• a “Villafranchiano” complex, with fluvio-lacustrine deposits of the late Pliocene to
early Pleistocene;

• a deeper Marine complex, deposits of the early Pliocene marked by sand deposits.

The study area was excavated in the Alluvial Complex, namely in the recent fluvial
deposits of the Upper Pleistocene–Holocene. They are characterized by a general decrease
in grain size towards the Po River, with high to medium porosity and hosting a shallow
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confined aquifer connected to the main River. The Alluvial Complex has a variable thick-
ness ranging between 20 and 50 m and a high hydraulic conductivity ranging from 10−3

and 10−4 m/s. The water table ranges from almost outcropping to more than −40 m
close to the Alps, ranging between 15 and 20 m nearby of the “Provana” quarry site. The
recharge of the shallow aquifer is dominated by rainfall infiltration and this, combined
with a relatively shallow water table and the intense agricultural and farming activities,
makes this area prone to nitrate contamination [23,24]. The continental climate of the study
area (Figure 4) consists of springs and autumns with maximum amounts of rainfall, while
winter and summer seasons are characterized by fewer rainfalls [25]. At the Provana lake,
the average annual temperature is 12.8 ◦C and the yearly rainfalls are 790 mm (the driest
month is January, with only 37 mm, while the rainiest is May with 97 mm). July is the
hottest month (23.4 ◦C) while January is the coldest (2.2 ◦C).
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Figure 4. Temperature distribution (monthly averages) at the “Provana” quarry lake (modified
from [25]).

2.3. Temperature Monitoring System

Knowing the spatial distribution and the time trend of the lake water temperature at
different depths and linked to the different weather conditions is of paramount importance
to characterize the resource and the potential of lake water for heating and cooling pur-
poses. Usually, two temperature profiles a year are requested as control from local public
authorities, but in this specific case, sensors were installed at different depths (Figure 5) to
monitor water properties over 2 years. In addition, two temperature sensors were placed
in piezometers around the lake. Data were compared to the “Arpa Piemonte” weather
stations measures [25], providing air temperature and rainfalls. Three additional field
surveys in different periods were carried out in August 2018, May 2019, and October 2020
when manual control of the equipment was performed. In August 2018, two temperature
logs were made. When completing the first log (L1; Figure 5), sensors measuring both
temperature and pressure were installed at different depths (at −1 m, −11 m, and −26 m).
The third sensor detecting temperature and electrical conductivity was installed at the
bottom of the lake (−26 m). In this last case, data were recorded with a time interval of 6 h.
A second temperature profile was made a few meters away from L1 (L2; Figure 5). Sensors
were installed at −5 m and −15 m, with a recording time interval of 1 h over a day.
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Figure 5. Aerial view of the “Provana” quarry. Keys: L1 and L2 are the locations of sensors for continuous monitoring of lake
temperature, Pz1 and Pz2 are the two piezometers where temperature sensors were installed. For each log and piezometer,
a schematic representation with sensors at different depths is shown on the left (T = water temperature, P = water column
pressure, and EC = electrical conductivity).

The devices used were submersible sensors and data loggers, designed for continuous
water monitoring with different characteristics and at different depths, as detailed in
Table 1.

Table 1. Main specifications of the used devices: Depth (m), kind of device, location (referred to Figure 5), recording time
(h), temperature accuracy (◦C), and pressure accuracy (mm H2O).

Depth (m) Device ID Recording Time (h) Temperature
Accuracy (◦C)

Pressure
Accuracy (mmH2O)

−1 Mini Diver (Van Essen
Instruments, Tucker, GA, USA) L1 6 0.1 2.5

−5 Levelogger Edge (Solinst
Canada LTD, Ontario, Canada) L2 1 0.05 1.5

−11 Mini Diver (Van Essen
Instruments, Tucker, GA, USA) L1 6 0.1 2.5

−15
Microtemp

(Madgetech Inc., Warner NH
USA)

Pz1 1 0.5 /

−15
Microtemp Madgetech

(Madgetech Inc., Warner NH
USA)

Pz2 1 0.5 /

−20
Levelogger Edge Solinst
(Canada LTD, Georgetown,

Ontario, Canada)
L2 1 0.05 1.5

−26 CTD Diver (Van Essen
Instruments, Tucker GA USA) L1 6 0.1 2.5
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2.4. Evaluation of Heat Extraction Potential

The extraction of heat from the quarry lake water depends on the water temperature
and its volume, which are calculated as follows (Equation (1)):

E = v × ∆T × c (1)

where, E (MJ) is the energy available over the heating period, v (m3) is the volume of
water in the quarry, ∆T (◦C) is the change in water temperature, and c (MJ m−3 K−1) is the
volumetric heat capacity (water = 4.18 MJ m−3 K−1).

Note that the energy value is more conveniently expressed in MWh and was converted
by dividing the energy value in MJ by 3600 sh−1. The amount of energy was calculated
assuming maximum exploitation of the lake by lowering the overall quarry water tem-
perature by 1 degree (∆T = 1) during the heating need period. To estimate the volume
of the quarry water, a simplified quarry shape with a maximum depth of 30 m without
considering the submerged slopes, was assumed to evaluate temperature that is supposed
equal in each water layer. Then, the lake was divided into 5-m layers (Table 2), and the
total volume of water in the quarry was estimated to be 6,813,020 m3.

Table 2. Estimated area and volume for each 5-m-thick layer of quarry water.

Depth Slices Area (m2) Volume (m3)

0–5 m 325,000 1,625,000
5–10 m 281,718 1,408,591

10–15 m 241,528 1,207,640
15–20 m 204,429 1,022,146
20–25 m 170,422 852,111
25–30 m 139,507 697,533

6,813,020

This energy extracted from the volume of water can also be converted into power
(MW) according to Equation (2):

P =
E
t

(2)

where P (MW) is the thermal power, E (MJ) is the energy available over the heating period,
and t (s) is the time period during which this thermal energy (heat) is extracted.

In addition, the water flow rate (Q) required to extract the energy over a heating
period can be calculated. Note that this flow rate means continuous operation 24 h a day
for all this period. For this calculation, Equation (3) related to power (P) can be rearranged
to find Q (m3 s−1) the water extraction rate:

P = Q × ∆T × c (3)

Using a ground-source heat pump system, heat can be produced efficiently depending
on the water temperature at the inlet of the heat pump, according to a system-specific coeffi-
cient of performance (COP). Because of the entering water temperature for the exploitation
of the quarry lake, a conservative COP of four was set for heating (Figure 6).
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An energy source, usually electricity, is required to operate the compressor of the
ground-source heat pump system. The amount of energy required to operate the system
compressor is a function of the COP. This is calculated for the heating of a building
(Equation (4)):

COP = Heat provided(W)
Energy consumed(W)

= EnergyHeat water+EnergyHeat compressor
Energy compressor

Or, Energy compressor = Energy water
COP−1

(4)

In addition, electric energy consumed by pumping was subtracted from the thermal
energy that can be produced considering pumping head loss, i.e., the difference in height
between the quarry water level and the pump. For these calculations, the position of the
pump was determined at an elevation h of −10 m from the water level (Equation (5)).

E pump = Q × ρ × g × h (5)

where ρ (kg m−3) is the density of water (1000 kg m−3), g (m s−2) is the gravitational
acceleration (9.81 m s−2), and h (m) is the head loss.

Finally, the total power provided by the heat pump consists of the sums of the thermal
power extracted from the quarry lake water (Equation (3)) and the compressor power
(Equation (4)).

Energy demand was then determined, to compare with the heat extraction potential of
the quarry water. To complete this, the greenhouse energy consumption and associated CO2
emissions in southern Quebec were used [27] and adapted to Italy considering that energy
consumption is proportional to Heating Degree Days (HDD), which is a measurement
designed to quantify the heating energy demand of a building. HDD are defined relative to
the outside temperature below which a building needs heating. The heating requirements
for a given building at a specific location are directly proportional to the number of HDD
at that location.

Table 3 presents the energy consumption over the year of the best performing green-
house studied in southern Québec, which is a twin greenhouse made of double polyethy-
lene with north wall and perimeter insulation and the use of a thermal shield.
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Table 3. Heating Degree Days (HDD), energy consumption, and CO2 emissions for a greenhouse in Southern Quebec [27].

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

HHD (<18 ◦C) 884 766 641 363 156 38 9 23 117 305 501 768
Energy needs (kWh m−2) 135 117 98 56 24 6 1 4 18 47 77 118
kg CO2e from oil [m−2] 37 32 27 15 7 2 0 1 5 13 21 32
kg CO2e from natural gas [m−2] 24 21 18 10 4 1 0 1 3 8 14 21
kg CO2e from propane [m−2] 30 26 21 12 5 1 0 1 4 10 17 26

3. Results
3.1. Temperature Monitoring

More than two years of monitoring, from August 2018 to October 2020, are presented
in Figure 7. Two behaviors can be distinguished:

• from November to March, the lake below five meters’ depth had a rather homogeneous
temperature, gradually decreasing from 14 to 7 ◦C (reached at the end of wintertime),
usually higher than the air;

• from March to November, stratification occurred and the temperatures in the up-
per five meters of the lake exceeded 25 ◦C, whereas they remained 14–16 ◦C below
10 m depth.
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This process was progressive: peaks in temperature were reached with some weeks of
delay at different depths, highlighting that the water mixing process was quite low. The
bottom of the quarry lake behaves similarly to the groundwater, even if its temperature is
usually lower (in the range of 2–4 ◦C). Groundwater temperatures in the aquifer are almost
(well Pz1) or completely (well Pz2) unaffected by seasonal variations while in the lake,
changes are progressively more evident with increasing distance from the lake’s coastline
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due to a slow and continuous water exchange between the aquifer and the lake. From about
10 m depth, the temperature is more stable and rarely exceeds 15 ◦C, while the first meters
of water are in equilibrium with the air temperature. The delay between temperature peaks
in the atmosphere (and in the higher part of the lake) compared to the bottom of the lake
(and the surrounding groundwater) is around three months.

The deepest sensor (−26 m) showed a constant temperature when compared to the
others, displaying a slight influence of weather conditions. It seems to be in continuity
with Pz1 because it is very close to the lake; this sensor, however, was lost due to mining
operations after the first data download, so only the first 10 months of monitoring are
available. The data logger installed at −26 m of depth also measured the specific Electrical
Conductivity (EC) of water, with values slightly oscillating between 0.86 and 1.1 mS/cm
(Figure 8), apparently not correlated with weather conditions (rainfall events).
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Of course, due to the short measurement period, any assumption based on these data
(i.e., possible correlations between water temperature and the electrical conductivity over
different seasons and weather conditions) can be questionable.

3.2. Thermal Energy Potential of the Quarry Lake

Table 4 shows the average water temperature of the quarry lake obtained through
interpolation from the collected data to define an average value for each five-meter-thick
layer of the quarry. Thus, based on the average monthly temperatures, the heating need
period was determined to be from November to April (six months). The average water
temperature in the deeper layers of the lake was 10–11 ◦C and, hence, the choice of a COP
= 4 based on a water temperature of 10 ◦C (see Figure 6) proves a reasonable one.
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Table 4. Average monthly temperature values of the quarry according to the ambient air and water depth, from high (red
color) to low (in green) temperature.

m JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
AVERAGE

YEAR NOV to APR
air 2.6 6.3 8.9 13.8 16.6 22.6 23.8 23.6 19.3 13.9 6.7 2.3 13.4 6.8
Pz1 13.9 12.4 11.9 12.0 12.7 13.3 14.4 15.2 16.1 16.3 15.9 15.0 14.1 13.5
Pz2 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.5 13.6 13.6 13.6
0–5 8.9 8.2 10.8 14.3 18.3 22.0 25.4 26.4 23.4 21.5 15.7 11.0 17.2 11.5

5–10 8.7 7.7 8.6 10.9 13.9 16.5 18.8 20.9 19.4 19.2 15.3 11.0 14.3 10.4
10–15 8.9 7.9 8.4 9.6 10.9 12.2 13.4 14.8 14.9 15.0 14.1 11.3 11.8 10.0
15–20 8.9 7.8 8.2 9.1 10.1 11.0 12.1 12.9 13.4 13.9 13.8 11.2 11.0 9.8
20–25 9.4 8.9 9.5 9.9 10.7 11.1 11.6 11.8 12.1 12.9 12.9 11.1 11.0 10.3
25–30 10.2 10.5 11.4 11.4 11.9 11.6 11.3 11.0 11.0 11.8 11.9 11.1 11.3 11.1

The monthly energy gains and losses of sensible heat over the year using Equation (1)
were calculated (Table 5), considering that ∆T is the difference between the monthly and
the yearly average temperature of the water depth of the quarry water lake (Table 4).

Table 5. Energy gains (in red) and losses (in yellow) of the quarry lake over the year.

E (MWh)

m JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
0–5 −15,624 −16,930 −12,080 −5471 2139 9218 15,471 17,540 11,877 8284 −2704 −11,721
5–10 −9108 −10,699 −9207 −5511 −523 3711 7446 10,882 8406 8152 1721 −5270

10–15 −4019 −5472 −4756 −3042 −1205 523 2290 4166 4440 4532 3258 −714
15–20 −2532 −3796 −3309 −2317 −1167 −11 1242 2219 2812 3394 3260 205
20–25 −1580 −2050 −1475 −1055 −328 104 584 806 1110 1843 1916 123
25–30 −877 −579 106 131 493 261 28 −204 −188 434 506 −111

TOTAL −33,740 −39,526 −30,721 −17,266 −590 13,807 27,062 35,409 28,457 26,638 7957 −17,488

By using Equations (1)–(5), the heat extraction potential of the quarry lake water over
a period of six months (from November to April) was calculated: assuming a volume of
6,813,020 m3 and a ∆T of 1 ◦C, the energy produced is 7918 MWh. An output of 1.81 MW
can be obtained for every 1 ◦C extracted from the mine water (expressed as Volume, in
m3) assuming that all this energy is recovered during the summer months, from May to
October.

Based on the ambient air temperature data at the quarry lake, the HDD (<18 ◦C) for
each month was calculated. This allowed us to estimate the amount of energy needed
to heat a greenhouse in the Turin urban area (Table 6), based on greenhouse data from
southern Quebec (Table 3) and considering a proportional correlation with the HDDs.

Table 6. Heating degree days (HDD), energy consumption, and CO2 emissions in greenhouse production for the quarry
lake under study, based on data from southern Quebec. Moreover, the use of heat pumps saves 89 kg CO2e per m2 of
greenhouse, compared to the use of fuel oil for heating. The heating period in the Turin area corresponds from November
to April.

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

HHD (<18 ◦C) 482 363 270 159 104 0 0 0 23,9 130 372 481
Energy needs (kWh m−2) 74 55 41 25 16 0 0 0 4 20 57 74

kg CO2e for oil [m−2] 20 15 11 7 5 0 0 0 1 6 16 20
kg CO2e natural gas [m−2] 13 10 8 4 3 0 0 0 1 3 10 13

kg CO2e propane [m−2] 16 12 9 5 3 0 0 0 1 4 13 16
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Thus, it was established that 326 kWh are required to heat 1 m2 of greenhouse for the
Turin area, which corresponds to the total heating needs from November to April. Table 7
shows the result of the thermal energy generated by the ground-source heat pump.

Table 7. Capacity to generate thermal energy from the quarry water according to the overall temper-
ature extracted.

Parameters ∆T = 1

Thermal power extracted from the lake (MW) 1.808
Pumping rate (m3 s−1) 0.432

Coefficient of performance (COP) 4.00
Compressor power (MW) 0.603

Pumping power (MW) −0.042
Total power provided by the heat pump (MW) 2.410

Efficiency ratio (%) 73
Total energy (MW h) 10,558

Energy for 1 m2 of greenhouse (MWh) 0.326
Heatable greenhouse area (m2) 32,385

CO2e emissions with oil (kg) 2,879,770

For each degree of temperature extracted from the quarry water over a period of six
months, from November to April, 10,558 MWh can be made available for heating. Using
the energy consumption and CO2 emissions values from Table 6, this amount of energy
can supply 32,385 m2 of the greenhouse, which corresponds to a saving of 2.9 tons of CO2
e per year if the heat pumps use green electricity.

4. Discussions and Conclusions

Heat pumps systems are among the most energy-efficient solutions for heating/cooling
purposes. Heat pumps can exchange heat with air, water, or the ground with different
performances and initial costs. According to [28], Ground Source Heat Pumps (GSHP) are
more performant than Air Source Heat Pumps (ASHP), so that the Coefficient of Perfor-
mance (COP) associated with heat pump systems is expected to be variable and low if
fed with air, even if cheaper units can be installed [29]. On the other hand, among GSHP
systems, it is possible to distinguish closed-loop systems (i.e., Borehole Heat Exchangers)
and open-loop ones (i.e., groundwater, lake, river, and sea), of which the latter has the
highest efficiency [30,31], also reaching a COP higher than 5.

Focusing on the reuse of quarry lakes for geothermal purposes, we proposed the
thermal exploitation of quarry lakes for heated greenhouses as a solution for using them
during and after the quarry extraction phase, and we applied this concept to an active
quarry close to Turin, NW Italy. We assessed that using a GroundWater Heat Pump (GWHP)
system in this context over a period of six months (November to April) would allow for
saving 2.9 tons of CO2 per year as well as supplying heat for 32,385 m2 of greenhouse if
the heat pumps use green electricity. This is a very important topic to be addressed when
deciding on a geothermal solution as well as when facing the environmental recovery of
abandoned quarry lakes in defined hydrogeological contexts. In addition, this confirms the
better performance of using a GWHP than a GSHP system, especially when a great heat
exchange occurs, and the COP stands at around 4.00 at the end of the heating season [30–33],
providing a total power of 2.410 MW. This also fits with the temperature profile inside
quarry lakes, testifying to a well-defined stratification during summertime according to [33],
where a higher temperature at the top (about 30 ◦C) and a lower temperature at the bottom
(around 14 ◦C) occur.

Aimed at understanding the thermal behavior of the artificial lakes, the obtained
results show how the quarry lake water is affected by atmospheric temperatures changes,
although a delay for water to warm or cool was verified. Even if more pronounced within
the first −5 m depth, a strong influence of the weather conditions on the lake’s waters was
observed until −20 m in depth. This confirms a homogenous temperature reservoir in
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wintertime, while water stratification occurs in the summertime and could be compared
with the thermal behavior of natural lakes [34,35]. Relationships between quarry lake water
and groundwater have been qualitatively highlighted. A stable quarry lake water at its
base confirms an exchange between these two kinds of water even if this process can affect
only the surrounding groundwater volume. In fact, it is noted that about 90 m away from
the border of the lake, the groundwater follows a linear trend with a constant temperature
over the whole year. The study thus demonstrated a more stable condition in groundwater
outside the quarry lake.

The recovery of dismissed quarries or mines lakes can lead to the following important
questions:

(1) what are the environmental procedures to be followed?
(2) can quarry lakes be used to obtain low-cost thermal energy, especially for agricultural

needs (i.e., greenhouses or agribusiness factories)?
(3) is this process sustainable and are there additional benefits?

At first, the investigated quarry lake and the surrounding ones face environmental
risks that need to be addressed before being abandoned; this can entail high costs. Therefore,
a sustainable and active restoration is recommended. The obtained results show how the
use of GWHP in these contexts, as a low-cost and sustainable energy alternative, can play
an important role in restoration activities and could be addressed to agricultural, industrial,
or civil uses.

An environmental recovery of abandoned or ending mining activities falls within the
main objectives of local authorities to contribute to a virtuous territorial circular economy.
For example, there could be an incentive to choose these local foods over those coming
from far away. In this way, the restored area remains under societal and civil controls, and
marginal activities (often recorded in abandoned mining sites) could be avoided.

In conclusion, when dealing with low enthalpy geothermal open-loop systems, the
absence of seasonal fluctuations ensures better performances. Water pumping for a heat
pump operation should take place at different depths mainly depending on the different
hydrogeological conditions, but, usually, temperature stability can be reached between −15
and −30 m below the ground. In an alluvial context, such as this one, seasonal fluctuations
do not occur from −15 to −20 m in depth. This is very interesting for geothermal purposes
and hence for the recovery of dismissed quarry lakes.

Our study provided a first assessment of the potential of quarry lakes to provide
sustainable heating. The methodology proposed could be extended to several other quarry
lakes, some of them located close to settlements: in these cases, district heating could also
be considered as an option. Quarry lakes could be also considered as an ideal place for
cooling; however, due to the large quantity of water available, a good performance for
heating is also ensured.
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