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ABSTRACT 

Models based on canonical correlation analysis (CCA) and artificial neural networks (ANNs) are 

developed to obtain improved flood quantile estimates at ungauged sites.  CCA is used to form a 

canonical physiographic space using the site characteristics from gauged sites. Then ANN models 

are applied to identify the functional relationships between flood quantiles and the physiographic 

variables in the CCA space. Two ANN models, the single ANN model and the ensemble ANN 

model, are developed. The proposed approaches are applied to 151 catchments in the province of 

Quebec, Canada. Two evaluation procedures, the jackknife validation procedure and the split 

sample validation procedure, are used to evaluate the performance of the proposed models. 

Results of the proposed models are compared with the original CCA model, the canonical kriging 

model and the original ANN models. The results indicate that the CCA based ANN models 

provide superior estimation than the original ANN models. The ANN ensemble approaches 

provide better generalization ability than the single ANN models. The CCA based ensemble 

ANN model has the best performance among all models in terms of prediction accuracy. 

 





 1

1. INTRODUCTION 

Regional flood frequency analysis has been widely used to improve flood quantile estimation at 

catchments where streamflow records are either short or not available. A number of 

regionalization techniques have been developed for this purpose (see e.g., Wiltshire, 1986; Burn, 

1990a, 1990b; Cavadias, 1990; Zrinji and Burn, 1994; Castellarin et al., 2001; Ouarda et al., 

2001; Chokmani and Ouarda, 2004; Shu and Burn, 2004). GREHYS (1996a, 1996b) provided an 

extensive review and comparative evaluation of different regionalization techniques.  

Identification of homogeneous regions is one of the major steps in regional flood frequency 

analysis. The purpose of this step is to select a group of sites that are hydrologically similar to the 

target site. Traditionally, homogeneous regions are formed based on geographic or administrative 

boundaries (Matalas et al., 1975; Beable and McKerchar, 1982). However this approach is not 

hydrologically sound, since regions formed using this approach are seldom homogeneous in 

terms of their hydrologic response (Cunnane, 1988). 

“Site focused” regionalization techniques, where each site has a potential unique set of 

catchments forming the homogeneous region for the site, has received much attention due to its 

flexibility and effectiveness. The region of influence (ROI) method (Burn, 1990a, 1990b) laid the 

foundation for this technique. The site focused approach is also known as the hydrological 

neighbourhood approach (GREHYS, 1996a; Ouarda et al., 2000, 2001). The comparison studies 

by GREHYS (1996b) concluded that the neighbourhood approach has superior performance than 

the fixed region approach.  
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Canonical correlation analysis (CCA) (Ouarda et al., 2000; 2001) is also a frequently used 

approach to define hydrological neighbourhoods. CCA was introduced by Cavadias (1990) to 

flood quantile estimation where the regions are formed based on visual judgement of clustering 

patterns. Ouarda et al. (2000) applied the CCA approach to estimate extreme flood quantiles in 

Quebec, Canada. Ouarda et al. (2001) presented additional improvements to the method and 

proposed the detailed algorithms to delineate homogeneous regions for gauged and ungauged 

sites using CCA.  

Chokmani and Ouarda (2004) presented a CCA based kriging approach, named canonical 

kriging, for flood quantile estimation at ungauged sites. CCA is introduced by the authors to 

construct a projected physiographical space. Ordinary kriging is then used for the interpolation of 

flood quantiles over the physiographical space defined by CCA. The application of the method to 

data from the province of Quebec, Canada showed that canonical kriging can provide comparable 

results to the traditional CCA-based flood estimation method.  The physiographic space defined 

using the CCA method is more feasible to provide hydrological variable estimation than using 

other methods, such as principle component analysis (PCA). 

Different quantile estimation methods can be used with the CCA approach (GREHYS 1996a, 

1996b; Ouarda et al., 2001). Regional regression is frequently integrated with the CCA approach 

to provide quantile estimation, especially at ungauged sites, from site physiographic 

characteristics. The frequently used regional regression model has the following generalized form 

(Thomas and Benson, 1970) 

ni
niT xxxaxQ θθθθ

LL31
21=         (1) 
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where TQ  is the flood quantile at the site of interest; ix  is the ith site characteristic used for flood 

quantile estimation; iθ  is the ith model parameter which needs to be estimated using statistical 

analysis; n is the total number of site characteristics used in the model; and a is the multiplicative 

error term. A log-transformation is frequently used to estimate the parameters of Equation (1). 

The solution obtained by linear regression methods is theoretically unbiased in the logarithmic 

domain, but is biased in the real flood flow domain (McCuen et al., 1990). Pandey and Nguyen 

(1999) and Grover et al. (2002) compared a wide range of regression techniques applied to 

regional flood frequency analysis, and the results indicated that nonlinear regression methods 

directly solving Equation (1) can provide more precise estimates than linear regression 

techniques.  

As an alternative to standard nonlinear regression methods, artificial neural networks (ANNs) and 

ANN ensemble models are introduced by Shu and Burn (2004) for index flood and flood quantile 

estimation. Seidou et al. (2006) applied ANNs to the regional estimation of lake ice thickness in 

ungauged sites. ANNs are nonparametric approaches which require no assumptions about the 

form of the true underlying function being estimated. The application to selected catchments in 

the United Kingdom (UK) indicates that the nonlinearity introduced by ANN models allows them 

to outperform multiple linear regression methods. The generalization ability of a single ANN can 

be improved by using a properly designed ANN ensemble. Dawson et al. (2006) applied ANNs to 

flood quantile and index flood estimation for 870 catchments across the UK. The results obtained 

from the ANNs are comparable in accuracy with those obtained by the Flood Estimation 

Handbook (FEH) (Reed and Robson, 1999) models.  
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In the present paper, regional flood quantile estimation methods based on CCA and ANN are 

proposed. CCA is used to define a transformed physiographical space. An ANN is then used to 

establish the nonlinear relationships between the site physiographical variables in the CCA space 

and hydrological variables to be estimated. To improve the generalization ability of a single 

ANN, the ANN ensemble technique is used. Since only physiographical and climatic data are 

required as input to the ANN models, the proposed approaches are feasible for flood estimation at 

ungauged sites. A comparison study is carried out between the proposed approaches and several 

other approaches using data from the province of Quebec, Canada. 

The remainder of this paper is organized as follows. In Section 2, a general introduction to CCA 

and ANNs is provided and the methodology for integrating the two techniques for flood quantile 

estimation is presented. In Section 3, the details for designing the ANNs, the estimation models to 

be compared, and the evaluation methodology are presented. In Section 4, a description of the 

study area is provided. In Section 5, the results obtained by applying the proposed approaches are 

presented and discussed. Finally, in Section 6, the conclusions of this work and recommendations 

for further research are presented. 
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2. ANN MODELS IN THE CCA PHYSIOGRAPHICAL SPACE 

In the proposed approach, site characteristics including physiographical and climatic data are 

projected in the canonical space. The canonical variables in the physiographical space are then 

fed to ANN models to generate flood quantile estimates. CCA preserves the character of the 

original data by omitting non-essential data (Razavi, et al., 2005). Models built upon the data 

processed using the CCA analysis could lead to better generalization ability.  Chokmani and 

Ouarda (2004) compared two dimensional reduction techniques, PCA and CCA, and the results 

indicate that CCA leads to a much better performance than PCA. A brief description of the CCA 

and ANN techniques is provided in Sections 2.1 and 2.2 respectively. The methodology of 

integration of the two techniques for regional flood frequency analysis at ungauged sites is 

provided in Section 2.3. 

2.1 Canonical correlation analysis 

Canonical correlation analysis (CCA) is a way of explaining the linear relationship between two 

sets of variables. Consider X and Y are two random variables, CCA computes two sets of basis 

vectors (canonical variables), one for X and the other for Y, such that the correlations between the 

projections of the variables onto these basis vectors are mutually maximized (Muirhead, 1982).  

The maximum number of canonical variable pairs is equal to or less than the smallest 

dimensionality of the two variables.  
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Let W and V be linear combinations of X and Y respectively 

XW 'α=  (2) 

YV 'β=   (3) 

Let ∑ be the covariance matrix of variables X and Y, defined as 
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The correlation between W and V can then be calculated as 

βαβα
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ρ

YX

XY

∑∑

∑
=

''

'

  (5) 

The goal of CCA is to find the vectors of α  and β  maximizing ρ subject to the constraint that W 

and V must have unit variances. Once the first pair of canonical variables is obtained, other pairs 

of canonical variables can be obtained in the uncorrelated directions to the previous ones by 

maximizing Equation (5) subject to the constraint of unit variance.  

CCA was recently used by Chokmani and Ouarda (2004) to construct a transformed space 

defined by the physiographical and meteorological characteristics. The hydrological variables 

(flood quantiles in our case) are generally not continuous in the geographical space. However, 

they are continuous in the canonical physiographical space (Chokmani and Ouarda, 2004). This 

characteristic is crucial for flood estimation at ungauged sites. Because the physiographic 

variables and the meteorological variables are generally available at the ungauged sites, one can 
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easily locate an ungauged site in the physiographical space constructed by these variables. For 

more detailed information regarding CCA, the readers are referred to Ouarda et al. (2001). 

2.2 ANN and ANN ensemble 

An ANN is an information processing system which is designed to mimic certain structures and 

functions of biological neural networks of the human brain. Given sufficient parameters, an ANN 

can be used for creating non-linear mathematical models for universal approximation. This 

extraordinary capability has enabled ANNs to solve large complex problems such as pattern 

recognition, nonlinear modelling, classification, and control.  

Multilayer perceptrons (MLPs) represent the most commonly used and well researched class of 

ANNs, due originally to Rumelhart and McClelland (1986). This type of ANN implements a feed 

forward supervised paradigm. A MLP consists of an input layer, one or more hidden layers, and 

an output layer. The input layer receives values of the input variables for a given problem. The 

output layer provides the ANN prediction and represents model output. Layers lying between the 

input and output layer are called hidden layers. Nodes in each layer are interconnected through 

weighted acyclic arcs from each preceding layer to the following, without lateral or feedback 

connections.  

To improve the generalization ability and stability of a single ANN, an ANN ensemble can be 

used. To construct an ANN ensemble, a number of ANNs are trained to tackle a given problem, and 

the results produced by these individual networks are combined to generate a unique output. Each 

network in an ensemble is first trained using the training instances. Then, for each example, the 

predicted output of each of these networks is combined to produce the output of the ensemble. 
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Using ensemble ANN to improve model generalization performance is an active research topic 

(Dietterich, 1997).  For many real world problems, ensemble models can outperform the best base 

models. There have been some successful applications of ANN ensemble models in hydrology. 

Cannon and Whitfield (2002) used a bootstrap aggregated ANN ensemble to predict changes in 

streamflow conditions. Results showed that the prediction obtained by the ANN ensemble model 

was better than a stepwise linear regression model. Furthermore, by adopting the ensemble 

approach, some commonly encountered problems when applying ANNs in hydrology can be 

easily solved. Shu and Burn (2004) introduced the ANN ensemble methods to estimate the index 

flood and flood quantile at ungauged sites. Shu and Burn (2004) evaluated three methods 

(randomization, bagging and boosting) for generating the member networks and two methods 

(averaging and stacking) for integrating the member networks. The results showed that properly 

designed ANN ensemble models can significantly reduce prediction error when compared with 

parametric regression methods. Anctil and Lauzon (2004) compared five ANN generalization 

approaches for streamflow prediction: stop training, Bayesian regularization, stacking, bagging 

and boosting. The application to six selected catchments indicated that the performance of 

standard ANNs can be improved by using any of the generalization approaches. The ANN 

ensemble methods of stacking, bagging and boosting provided better improvement than the other 

two generalization approaches.  

The task of using ANN ensembles to model a given problem can be broken down into the 

following two questions: (1) how to generate the component ANN constructing the ensemble? 

and (2) how to combine the multiple outputs from the component networks to generate a unique 

output? (Merz, 1998).  To benefit from the ensemble approach, member networks in an ensemble 

should have diverse generalization ability. A number of methods have been proposed for this 
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purpose. The frequently used methods for generating ensemble ANNs include manipulating the 

set of initial random weights, using different network topology, training component networks 

using different training algorithms, and manipulating the training set (Sharkey, 1999). The 

methods of manipulating the training set using bagging (Brieman, 1996) and boosting (Schapire, 

1990; Freund and Shapire, 1996) have been most frequently used. Many approaches have been 

proposed for integrating the multiple outputs from the component networks (Sharkey, 1999; 

Ahmad and Zhang, 2002). The two frequently used methods are averaging and stacked 

generalization (Wolpert, 1992).  

The bagging procedure is selected in this paper to generate the individual member networks. 

Simple averaging is selected in this paper to combine the outputs from each individual ANN. 

This method is a simple and effective way to generate ensemble output (Shu and Burn, 2004).  

2.3 Integrating CCA and ANNs for regional flood frequency analysis at 
ungauged sites 

For ungauged sites, no historical flood records are available to directly estimate the hydrological 

variables such as flood quantiles. However, by establishing a functional relationship between the 

physiographical variables and the hydrological variables, the hydrological variables can be 

indirectly estimated. The model used for the estimation is usually calibrated using data from the 

gauged sites. In the approaches proposed in the present research work, the physiographical 

variables are projected into the canonical space, and the projected variables are then fed to the 

ANN models to generate estimates of the hydrological variables. 

Suppose a set of physiographic and climatic variables, X, and hydrological variables, Y, are 

associated with each gauged site.  Using CCA, canonical variables W and V can be obtained as a 
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linear combination of X and Y respectively. The coefficients used for the combination are 

computed so that the correlation between the variables W and V is maximized. Knowing the 

combination coefficients, the physiographical variable uX  for an ungauged site can be easily 

projected into the CCA space to obtain the physiographical variable uW  in the CCA space.  

The goal of the ANN model is to approximate the functional relationship between the canonical 

variables W and the hydrologic variables Y which act respectively as the input and output of an 

ANN. The canonical variables V are not used in the ANN training and estimation phase. To 

achieve this goal, the ANN must be trained using the samples from the gauged sites in the study 

area. During the training process, network parameters must be updated so as to minimize the 

estimation error made by the network. The error of a particular configuration of the network can 

be determined by running all the training cases through the network and comparing the actual 

generated output with the desired or target outputs. The differences are combined together by an 

error function to give the network error. Several learning algorithms exist for determining the 

network parameters. The most well known is the back propagation algorithm (see Haykin, 1994; 

Fausett, 1994). It uses gradient descent techniques to minimize the network error function. There 

are also other training algorithms which use techniques for non-linear function optimization. 

These methods include the conjugate gradient algorithm, the quasi-Newton algorithm and the 

Levenberg-Marquardt algorithm (see Bishop, 1995). They are collectively known as second order 

training algorithms. 

After an ANN model is trained using data from gauged sites, obtaining the estimation of 

hydrological variables for an ungauged site is straightforward. Applying the projected 
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physiographic data to the ANN input layer, the estimation can be obtained directly from the 

output layer. 

The approach described above uses a single ANN (SANN) to estimate flood quantiles at 

ungauged sites in the CCA physiographic space. The abbreviation SANN-CCA will be used in 

the remainder of the paper to represent this model.  

To improve the generalization ability and the stability of the single ANN, the ANN ensemble 

model is used. Component networks in the ANN ensemble are generated using the bagging 

approach and the resulting networks are combined using simple averaging. Bagging stands for 

bootstrap aggregation. The bagging approach was developed by Brieman (1996) to improve the 

accuracy of predictions in classification and regression problems. The algorithm is based on the 

bootstrap resampling technique (Efron and Tibshirani, 1993). Bagging can be implemented in 

parallel, and the method is easy to use and has been shown to effectively improve the 

generalization ability of the single network (Cannon and Whitfield, 2002; Shu and Burn, 2004; 

Anctil and Lauzon, 2004). Each member ANN of the ensemble is trained by only a subset of the 

training set. The subset is drawn from the original training set T with replacement using bootstrap 

sampling. Training instances in the training set have equal chance of being drawn. The number of 

training instances in the subset is the same as the training set. Thus, some data in the training set 

appear more than once in the subset, and the probability an individual training sample from T will 

not be part of a bootstrap resampled training set is 37.0)/11( ≈− NN , where N is the number of 

training samples in T. Suppose the process is repeated K times, and each time an ANN is trained 

based on the training subset. Then, K member networks can be generated with each network 

trained with a different random sampling of the original training set. After all the member 

networks are generated, a unique output for the ensemble can be derived by averaging the outputs 
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from member networks. Suppose, for the site i, that the predicted flood quantile using the kth 

member ANN is k
iq̂ (k=1,…K). The ensemble output can be calculated using 

∑
=

=
k

k
ii q

K
q ˆ1ˆ   (6) 

The approach described above uses an ANN ensemble to estimate flood quantiles at ungauged 

sites in the CCA physiographic space. The abbreviation EANN-CCA will be used in the 

remainder of this work to represent this model. 
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3. METHODOLOGY 

3.1 ANN model structure 

For the SANN-CCA approach, a MLP having one output layer, one hidden layer and one input 

layer is used. The system inputs are the canonical variables in the physiographical space derived 

using CCA. The outputs of the system are the specific quantiles. The tan-sigmoid transfer 

function is used for neurons in the hidden layers. The use of the nonlinear transfer function 

extends the nonlinear approximation ability of the ANN. A linear transfer function is used for the 

output layer. A linear transfer function for the output neuron has the advantage of a potentially 

unbounded output (Shu and Burn, 2004).  

Determining the number of hidden neurons in the hidden layer is an important task when 

designing an ANN. Too many hidden neurons may lead to the problem of overfitting which is 

caused by not having enough training cases to adequately train all the neurons in an ANN. Too 

few neurons in the hidden layer may cause the problem of underfitting which occurs when an 

ANN does not have sufficient complexity to fully represent the functional relationship between 

the system input and output. Thus some compromise must be made between too many and too 

few neurons in the hidden layer. As a rule of thumb, the number of hidden neurons should be less 

than twice the input layer size. In Shu and Burn (2004), a MLP with five hidden neurons in the 

hidden layer provided sufficient generalization ability when it is applied to provide flood 

estimation from catchment characteristics. In this paper, a sensitivity analysis is carried out to 

identify the optimal number of hidden neurons. By varying the number of hidden neurons from 
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three to eight, ANNs with five hidden neurons are identified to provide most accurate estimation 

when they are applied to estimate the selected specific quantiles. Five hidden neurons are finally 

used in the hidden layer. The training algorithm selected in this work is the Levenberg-Marquardt 

(LM) algorithm (Hagan and Menhaj, 1994). This algorithm is much faster than the gradient 

descent method to find optimal solutions for various problems. The scalar parameter μ  is 

required to implement the algorithm (Demuth and Beale, 2003). When the value of μ  is large, 

the LM algorithm behaves as a gradient descent method with a small step size. However, when 

the value of μ  is small, the optimization follows Gauss-Newton method which is faster and more 

accurate near an error minimum. An initial value must be set for μ , and it is given as 0.005. The 

value of μ  changes during the ANN training process based on the performance function of the 

ANN. If a training epoch decreases the performance function, the value of μ  is multiplied by 

0.1dμ = . If a training epoch increases the performance function, the value of μ  is multiplied by 

10iμ = . A maximum value of 6
max 101×=μ  is set for μ  to stop the training algorithm.  During 

the ANN training, the transfer functions of the hidden neurons operate increasingly in nonlinear 

parts of the sigmoid functions which enables the network to produce more and more nonlinear 

mapping. In the same time, the number of the effective parameters and number of degrees of 

freedom in the network also increase which could lead to the problem of overtraining. To avoid 

the overtraining problems in ANN, one of the two effective approaches, regularization and early 

stopping, can be generally applied (Bishop, 1995). However two problems are triggered if early 

stopping is used (Shu and Burn, 2004). Firstly, a validation set needs to be extracted from the 

training set, which may lead to insufficient data being available to successfully train an ANN. 

Secondly, how to optimally separate the validation set still remains a major challenge. The 

regularization technique, which is free of these problems, is selected in this paper. In the 
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regularization algorithm, the error function which is minimized during the training phase is 

augmented with additional terms that penalize the complexity of the model. Shu and Burn (2004) 

provided the background information related to the implementation of the regularization 

technique.  

For the EANN-CAA approach, each component ANN uses the same configuration as the SANN-

CAA model; however it is trained on bootstrap sampled data. The identification of the size of an 

ensemble is important. If the size is too small, the improvement in generalization is not apparent; 

if the size is too large, it will increase the training time and the effort to establish the ensemble. 

Previous studies by Hansen and Salamon (1990) and Agrafiotis et al. (2002) suggested that using 

ten networks can achieve significant reduction in classification error. Experiments conducted by 

Opitz and Maclin (1999) showed that, when the ensemble size increases to ten or fifteen, the 

generalization ability of the ensemble can be noticeably improved. Recent studies by Shu and 

Burn (2004) suggest that a network size of ten is necessary to attain sufficient generalization 

ability. The authors also found out that a network size of fourteen achieved best results when 

applied to the United Kingdom data. Different ensemble sizes ranging from two to twenty are 

applied to the study area, and results indicate that estimation error gradually decreases when the 

ensemble size increases to eleven, while with further increase of  the ensemble size, very little 

change in the estimation error can be observed. Beyond a size of 14, virtually no improvement in 

the estimation is observed. An ensemble size of 14 is used in this paper. 
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3.2 Selection of methods for the comparison 

The SANN-CCA model and EANN-CAA model described in Section 2 are used to estimate the 

10, 50 and 100 year flood quantiles at the study area catchments. To evaluate the relative 

performance of these two models, they are compared to the following four models: 

(1) The traditional CCA model (Tradition-CCA) (Ouarda et al., 2001). Based on CCA 

analysis, the optimal hydrological neighbourhood for each individual site is determined. 

Multiple regression is used for regional flood estimation. 

(2) The canonical Kriging model (Kriging-CCA) (Chokmani and Ouarda, 2004). The CCA 

method is used to define the physiographical space, and the geostatistical method of 

ordinary kriging is used to obtain regional flood estimates by interpolating the flood 

quantile over the canonical physiographical space. The method was shown to produce 

flood estimates as precise as the traditional CCA model; however the computation is less 

complicated (Chokmani and Ouarda, 2004). 

(3) The original single ANN model (SANN-Origin) (Shu and Burn, 2004).  An ANN model 

is used to directly establish the relationship between site characteristics and the flood 

quantile of interest. As opposed to the implementation of SANN-CCA approach, the 

physiographical and meteorological variables are not projected into the CCA space, but 

are directly fed to the inputs of an ANN. 

(4) The original ensemble neural network model (EANN-Origin) (Shu and Burn, 2004). In 

this approach, an ensemble ANN model is used to improve the generalization ability of 

the SANN-Origin model. The component ANNs composing the ANN ensemble are 
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created using the bagging approach. The ensemble output is generated by combining the 

outputs from the individual networks using simple averaging. 

3.3 Evaluation criteria 

Each regional flood frequency analysis model is assessed using the following five indices: the 

Nash criterion (NASH), the root mean squared error (RMSE), the relative root mean squared error 

(RMSEr), the mean bias (BIAS), and the relative mean bias (BIASr). The indices are computed 

according to the following equations: 
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where n is the total number of sites being modeled, iq  is the at-site estimation for site i, iq̂  is the 

estimation obtained from the regional flood frequency model for site i,  and q  is the mean of at-

site estimation of the n sites. 

3.4 Evaluation procedure 

The jackknife resampling procedure is used to compare the relative performances of the regional 

flood estimation methods.  

In the jackknife resampling procedure, the flood records of each catchment in the study area are 

temporarily removed from the database, thus the site is assumed to be “ungauged”. Then each 

regional flood frequency analysis model is calibrated using the data of the remaining sites. 

Regional estimates can be obtained for the “ungagued site” using the calibrated models, and they 

are evaluated against its at-site estimates.  
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4. CASE STUDY 

The hydrometric station network of southern Quebec, Canada is chosen as case study for this 

work. According to the following three criteria, 151 hydrometric stations managed by the 

ministry of the environment of Quebec (MENVIQ) services are selected:  

(1) To get reliable at-site estimation, a historical flood record of 15 years or longer is 

required.  

(2) The gauged river should present a natural flow regime.  

(3) The historical data at the gauging stations must pass the tests of homogeneity, 

stationarity and independence.  

The selected stations are located between 45°N and 55°N. The area of these catchments ranges 

from 200 2km  to 100000 2km . The locations of these hydrometric stations are shown in Figure 1. 

Figure 2 illustrates the distribution of the number of years of observations for the stations of the 

case study. 
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Figure 1. Hydrometric stations across the province of Quebec, Canada 
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Figure 2. Length of data series 

 

Three types of data, physiographical, meteorological, and hydrological are used in this study. The 

physiographical and hydrological data were extracted from the MENVIQ hydrological database 

and from the topographic digital maps of Quebec. Meteorological variables were obtained using 

interpolated historical data from the MENVIQ meteorological network across the province of 

Quebec.  

Five variables including three physiographical variables and two meteorological variables are 

selected in this work based on the previous study by Chokmani and Ouarda (2004). The three 
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physiographical variables are basin area (AREA), mean basin slope (MBS) and the fraction of the 

basin area covered with lakes (FAL). The two meteorological variables are annual mean total 

precipitations (AMP) and annual mean degree-days over 0°C (AMD). The summary statistics of 

these variables are presented in Table 1.  

Table 1. Descriptive statistics of hydrological, physiographical 
and meteorological variables 

 

 

 

 

 

 

 

At-site flood quantile estimates for all the gauging stations in the study area were extracted from 

the database compiled by Kouider et al. (2002). The flood quantile estimates for each site were 

computed by fitting the most appropriate statistical distribution to the historical flood record. 

Scale effects may have a negative impact on modeling the underlying physical mechanism of 

drainage systems and should be eliminated from experiment data (Eaton et al., 2002). Thus, 

specific quantiles (flood quantiles standardized by basin area) are used to minimize the scale 

effect. Three typical specific flood quantiles, the 10-year (q10), the 50-year (q50), and the 100-

year (q100) specific quantiles are selected for this study. 

Variables Min Mean Max STD 

MBS [%] 0.96 2.43 6.81 0.99 

FAL [%] 0.00 7.72 47.00 7.99 

AMP [mm] 646 988 1534 154 

AMD [degree-day] 8589 16346 29631 5382 

AREA[km2] 208 6255 96600 11716 

q10 [m3/s.km2] 0.03 0.22 0.53 0.13 

q50 [m3/s.km2] 0.03 0.28 0.77 0.18 

q100 [m3/s.km2] 0.03 0.31 0.94 0.20 
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The scatter plots between the specific quantiles and the selected physiographical and 

meteorological variables are shown in Figure 3. From Figure 3, we can observe that the 

catchment descriptors MBS and AMP are positively correlated with the specific quantiles; while 

the catchment descriptors AREA, FAL and AMD are negatively correlated with the specific 

quantiles. CCA requires all variables be transformed for normality and standardized. Significant 

asymmetry exists in the physiographical, meteorological and hydrological variables in the study 

region (Chokmani and Ouarda, 2004). Thus a logarithmic transformation is used for the variables, 

q10, q50, q100, AREA, MBS, AMP and AMD, and a root transformation is used for FAL. All 

variables were also standardized prior to CCA. 
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Figure 3. Scatter plot of site characteristics and specific flood quantiles 
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5. RESULTS AND DISCUSSION 

The two approaches proposed in this paper and the four models used for comparison purposes are 

applied to the study area database. The results obtained using the jackknife validation procedure 

are presented in Table 2.  For each cell of this table, bold fonts denote the best performing 

approach.  

A model can be claimed to produce perfect estimation if the NASH criterion is equal to 1. 

Normally a model can be considered as accurate if the NASH criterion is greater than 0.8. The six 

models, ranked according to their performance in the NASH criterion from the highest to lowest, 

are listed as follows: EANN-CCA, SANN-CCA, Kriging-CCA, EANN-Origin, Tradition-CCA, 

and SANN-Origin. The NASH values obtained using the SANN-CCA and EANN-CCA 

approaches for the estimation of the three specific quantiles are all very close to or above 0.8. 

This indicates that the ANN models in the CCA space can provide satisfactory estimates.  

RMSE and RMSEr indices provide assessment of prediction accuracy in absolute and relative 

scale respectively. The EANN-CCA model has the best performance among all the models 

according to these two indices. The CCA based ANN approaches show significantly better 

generalization ability than the ANN approaches applied in the original physiographical space. 

The proposed approach which combines the advantages of linear and nonlinear methods seems to 

lead to a performance improvement. Furthermore, ANNs are nonparametric approaches which 

have strong limitations for the extrapolation beyond the range of observed data. The combination 

with a parametric approach seems to help the performance of the ANNs. The relative 

performance of all models ranked using both RMSE and NASH indicators are the same. A similar 
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Table 2. Jackknife validation Results 

 Hydrological 
variables 

SANN-CCA 

 

EANN-CCA 

 

Kriging-CCA Tradition-CCA SANN-Origin 

 

EANN-Origin 

  

NASH q10 0.82 0.84 0.78 0.78 0.75 0.78 

 q50 0.78 0.80 0.72 0.72 0.69 0.72 

 q100 0.77 0.78 0.70 0.68 0.66 0.69 

RMSE [m3/s.km2] q10 0.053 0.050 0.050 0.059 0.060 0.058 

 q50 0.082 0.079 0.093 0.094 0.098 0.093 

 Q100 0.095 0.093 0.110 0.112 0.115 0.109 

RMSEr [%] Q10 38 37 51 43 47 44 

 Q50 44 43 64 49 55 53 

 Q100 46 45 70 51 64 60 

BIAS [m3/s.km2] Q10 0.006 0.005 -0.004 0.001 0.006 0.004 

 Q50 0.009 0.009 -0.007 0.005 0.010 0.009 

 q100 0.013 0.012 -0.008 0.007 0.015 0.013 

BIASr [%] q10 -5 -5 -16 -9 -7 -7 

 q50 -7 -5 -21 -11 -8 -8 

 q100 -7 -6 -23 -11 -11 -10 
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pattern can generally be observed using the RMSEr indicator. The Kriging-CCA model 

underperforms the Tradition-CCA model with the RMSEr indicator, however it outperforms the 

Traditional-CCA model with the RMSE and NASH indices. This indicates that the Traditional-

CCA model and the CCA based ANN models provide optimal estimates to minimize the absolute 

prediction error as indicated by the RMSE indicator, without sacrificing the performance in the 

relative measure as indicated by the RMSEr indicator. 

The BIAS and BIASr indices provide indication on whether a model tends to overestimate or 

underestimate. The analysis based on the BIAS index suggests that ANN models generally 

overestimate flood quantiles and the magnitude is larger than the Tradition-CCA model. 

However, when the BIASr index is used, both the ANN models and the Tradition-CCA model 

underestimate flood quantiles. Estimates obtained by ANN models in the CCA physiographical 

space have the lowest bias.  

Overall, the SANN-CCA model leads to a much better performance with NASH, RMSE, RMSEr 

indices than the SANN-Origin model. The EANN-CCA model shows better performance than the 

EANN-Origin model. These results indicate that applying ANN models in the CCA 

physiographical space can greatly improve the performance of ANN models than in the original 

physiographical space. Chokmani and Ouarda (2004) concluded that the CCA technique is more 

capable to characterize the physiographical space for conducting flood quantile estimation. The 

research results of this paper are consistent with their conclusions. 

The ANN ensemble approaches outperform the single ANN approach in both the original 

physiographical space and the CCA physiographical space according to most performance 
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indices. These results are not surprising, as the ensemble approach can be used to improve the 

generalization ability of a single ANN (Shu and Burn, 2004). 

The regional estimates using the jackknife validation procedure for specific quantiles q10, q50, 

q100 using the SANN-CCA and EANN-CCA are shown in Figure 4 and Figure 5 respectively. 

Chokmani and Ouarda (2004) provided the results using other CCA based approaches. From 

Figures 4 and 5, we can observe that the estimation error and bias tend to increase with the return 

period. The CCA based ANN models and the Tradition-CCA model tend to provide a better 

estimation than the Kriging-CCA approach for sites with specific quantiles lower than 0.15 

m3/s.km2. All models underestimate at sites with higher values of specific quantiles (over 0.45 for 

the q10 estimate, over 0.6 for q50 and over 0.65 for q100).  These sites generally represent 

smaller basins for which the hydrological response is very sharp (large specific quantiles). These 

basins are under-represented in this case study. Indeed, there are only 9 sites in the database that 

represent basins with an area smaller than 500 km2. Thus, less training data is available in the 

variable space occupied by these smaller sites, which also increases the difficulty to provide 

precise estimation for small basins. 
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Figure 4. Jackknife estimation using the SANN-CCA approach 
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Figure 5. Jackknife estimation using the EANN-CCA approach 
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In order to evaluate the contribution of each individual variable to flood quantile estimation, an 

additional experiment is conducted. A number of methods (Olden et al., 2004) have been 

developed over the past few years to evaluate the relative importance of each input variable on 

the contribution to the estimation of the outputs in ANNs. Olden et al. (2004) compared nine 

methods for quantifying variable importance in ANN, and the results indicated that the 

connection weight approach (Olden and Jackson, 2002) is the best methodology. This approach is 

adopted in this paper. In this approach, the products of the input-hidden and hidden-output 

connection weights between each input neuron and output neuron are first calculated, then the 

products are summed across all hidden neurons to generate the importance of each input. Since 

the ANN model in the CCA physiographical space involves an input space projection, calculation 

of the contribution of each input variable to the estimation can be very complicated, and the 

connection weight approach can not be used directly to provide the measurements. Thus the 

SANN-Origin model is selected to do the analysis. The relative importance of each input variable 

for the estimation of each specific flood quantile is presented in Table 3. FAL and AMP are 

identified as the most important variables, and are followed by the variable MBS. AREA ranks 

fourth among the five input variables, and its relative importance ranges between 13.8% and 

14.5%. The relative importance of AREA increases with the increase of the return period. AMD 

is the least important variable among all inputs.  
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Table 3. Relative importance of the five input variables for the estimation 
of the specific flood quantiles 

Relative importance  

Input variables q10 q50 q100 

 

Rank 

MBS 15.7% 15.9% 16.8% 3 

FAL 34.6% 35.3% 35.9% 1 

AMP 22.5% 21.9% 20.7% 2 

AMD 13.4% 12.7% 12.1% 5 

AREA 13.8% 14.2% 14.5% 4 
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6. CONCLUSIONS 

The methodology of integrating the CCA technique and ANNs for flood quantile estimation 

at ungauged sites is presented in this paper. CCA is used to project the site characteristics into the 

canonical physiographic space. ANN models are then used to approximate the functional 

relationship between flood quantiles and the projected physiographic variables. Two CCA based 

ANN models, using respectively a single network and an ensemble network, are developed and 

applied to the data of the case study. 

The jackknife validation is used to assess the performance of each model. The comparison 

with the other four regional flood frequency models shows that the proposed approaches can 

provide an estimation with relatively higher accuracy.  The proposed CCA based ANN models 

lead to a much better performance than the original ANN models, which tends to indicate that the 

CCA space is more appropriate for flood quantile estimation. The ensemble ANN approach 

outperforms the single ANN approach, which demonstrates that the generalization ability of a 

single ANN can be improved using the ensemble approach. 

Compared with the traditional CCA approach, the CCA based ANN approaches are much 

easier to apply. In the traditional CCA approach, a procedure is required to optimally determine 

the value of the parameter α  for each site which is directly related to the size of a hydrological 

neighbourhood (Ouarda, et al., 2000). In the CCA based ANN approaches, once the ANN 

structure is specified, no interference is required in the training and estimation phase of the 

models. 
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Although the CCA based ANN approaches proposed in this paper lead to a better performance 

than the other methods, all methods tend to underestimate flood quantiles for catchments with 

very high specific quantiles (catchment with a small drainage area). Close inspection of these 

sites indicates that they locate in the variable space where less training data is available. Future 

attention should focus on the estimation of extreme basins (very small and very large) for which 

regional methodologies do not generally lead to very reliable estimates. To correctly estimate 

flood quantiles at these sites, further research is still required to increase the extrapolation ability 

of the current models.  

Six models for regional flood frequency analysis are compared in this work. These models are 

developed using three estimation techniques (ANN, kriging, multiple regression) in two 

physiographical spaces. The research results indicate that diverse generalization abilities are 

demonstrated in these models. For example, the EANN-CCA model shows better prediction 

accuracy than the Tradition-CCA model, while the Tradition-CCA model leads to a less biased 

estimation than the EANN-CCA model.  

The research in this paper is based on one type of ANN model, the MLP model. The method 

developed in this paper can be extended to use other types of ANNs such as the Radial Basis 

Function (RBF) network and the generalised regression network. 
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