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1 INTRODUCTION 

Prior to the nineties, stationarity was a common assumption in statistical analyses 

of hydrological time series. This assumption seems less and less reasonable as a 

growing number of studies reveal evidence of changes in hydrological time series, 

presumably caused by global warming [e.g. Salinger, 2005; Woo et Thome, 2003; 

Bum et Elnur, 2002]. Possible reasons of change in statistical characteristics of 

observed data series include natural or anthropogenic actions on the physical 

environment (deforestation, construction of hydraulic structures, pollution, etc.), 

and modifications in measurement equipment or operation protocol. Detection of 

eventual changes in collected data sets is obviously an important step before 

performing any descriptive or predictive analysis. 

The authors developed in a companion Report [Ouarda et al., 2005] a general 

Bayesian approach to changepoint detection in multiple linear regressions that 

generalizes the approaches of Perreault et al. [2000a,b,c] and [Rasmussen, 2001]. 

It is applied here to five different examples to illustrate its features and flexibility : 1) 

a single shift detection in univariate data, 2) a single shift detection in multivariate 

data, 3) a trend change detection in univariate data, 4) a changepoint detection in 

univariate data with several covariates, and 5) a case of shift detection and missing 

data estimation in a multivariate data set. The first three examples aim to prove 

that the proposed methodology gives the same results that the above mentioned 

approaches when applied to the same data sets with the sa me prior assumptions. 

The two last illustrate the additional features of the proposed approach and prove 



that it can be applied to cases where the other published methodologies are 

inadequate. 

The outline of the paper is as follows : in Section 2, we present a brief summary of 

the changepoint models that will be used in the examples : the single changepoint 

detection approach in the general linear model of Rasmussen [2001], the single 

changepoint detection approach in the univariate normal model of Perreault et al. 

[2000a,b], the single changepoint detection approach in the multivariate normal 

model of Perreault et al. [2000a,b] and the general changepoint detection approach 

in a multivariate linear regression developed in the companion paper by the 

authors. In Section 3, the five examples are described in detail and the results of 

the application of the methodology to each example as weil as a brief discussion 

are presented. Section 4 is a general discussion about the strength of the new 

methodology compared to the other approaches. A conclusion is finally presented 

in section 5. 
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2 THE BAYESIAN CHANGEPOINT DETECTION MODELS 

We focus here on three changepoint models that will be compared to the proposed 

methodology : the model of single shift detection in univariate data developed by 

Perreault et al [2000a, 2000b], the model of single shift detection in multivariate 

normal data of Perreault et al. [2000c], and the changepoint detection model in the 

general linear model developed by Rasmussen [2001]. A brief summary of the 

model developed in the companion paper is also presented. The reader is referred 

to the companion paper for a more complete survey of Bayesian changepoint 

models. 

2.1 SINGLE CHANGEPOINT DETECTION IN A NORMAL 
UNIVARIATE RANDOM SAMPLE 

The single shift in a normal random sample can be represented by the following 

model: 

[1 ] 

where r is the date of change, 0'2 the variance, /1! and /12 the mean before and 

after the change. This problem was first addressed in a Bayesian context by 

Chemoff and Zacks [1963], followed by several others [Smith, 1975; Lee and 

Heighinian, 1977; Booth and smith, 1982; Bruneau and Rassam, 1983; Perreault et 

al., 2000a, 2000b]. The differences in the above mentioned approaches Iy mainly 

in the prior distributions of the unknown parameters. Perreault et al. [2000a, 2000b] 

derived the exact analytical expression of the posterior probability of the time and 
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amplitude of the shift under the assumption of constant variance. Inferences are 

based on the analysis of posterior distributions and are conditional upon the fact 

that a change happened with certainty. The following additional assumptions were 

made about the prior distributions: 

• The prior distribution of the date of change p(r) is independent of that of 

• The prior distribution of JlI is normal with parameters <1>1 and Â,0-2, 

• The prior distribution of Jl2 is normal with parameters <1>2 and ~0-2, 

• The prior distribution of 0-2 is inverted gamma with parameters a and fJ . 

The posterior density of the changepoint is then : 

2.2 SINGLE CHANGEPOINT DETECTION IN A MULTIVARIATE 
RANDOM SAMPLE 

Perreault et al. [2000c] generalized the approach presented in section 2.1 to the 

case of a changepoint in a multivariate sam pie. The equations are quite similar 

except that the parameters are now p-dimensional. The multivariate normal 
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distribution replaces the univariate one and the inverse Wishart distribution is used 

instead of the inverse Gamma distribution. 

[3] 

where Np stands for the multivariate normal distribution. 

As in the univariate case, the following assumptions are made about the prior 

distributions: 

• The prior distribution of the date of change peT) is independent of that of 

(ft,P), 

• The prior distribution of ft, is multivariate normal with parameters <1>, and 

~P, 

• The prior distribution of ft2 is normal with parameters <1>2 and ~P, 

• The prior distribution of P is inverse Wishart with parameters a and B. 

Under these assumptions, the posterior density of the changepoint 

Where ~ =~ +T, 

5 
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n y. 
Yn-r= 'L-' , 

;=T+' n-T 



2.3 SINGLE CHANGEPOINT DETECTION IN THE GENERAL 
LlNEAR REGRESSION 

Rasmussen [2001] considered the Bayesian estimation of changepoint in the 

general linear model for which the mean at a given time i is a linear combination of 

M basis functionsgk(i), i=k, .. ,M. The basis functionsgkO are function of the 

observation time, and may just represent a time series of explanatory variables 

such as precipitation or temperature. 

y~. 
1 

M 

N(Ib~gk(t),a2), t = 1, ... , r 
k=1 

M 

N(Ibigk(t),a2), t=r+l, ... ,n 
k=1 

[5] 

Rasmussen [2001] takes advantage of the fact that for a given value of r, equation 

[5] can be written in matrix form as a plain linear regression equation : 

[6] 

The values of FT and 0 are equivalent to those given in Asselin et al. [2005], 

equation [4] and appendix 1, keeping in mind that XI = (gl(t),g2(t), ... ,gM(t» , 

bl 
1 b2 

1 

bl 
2 b2 

2 

p; = and P; = 

bl 
M b2 

M 

Assuming a uniform distribution for the elements of 0, for logea) and for any 

parameter of the basis functions, the posterior distribution of the date of change is 

obtained: 
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[7] 

2.4 GENERAL CHANGEPOINT DETECTION IN MULTIPLE LlNEAR 
REGRESSION USING GIBBS SAMPLING. 

This model was developed in the companion paper and can be represented by : 

[8] 

where XI is a vector of explanatory variables, {uJ are independent and identically 

errors following N[O,2:;y] , and 

[9] 

Equation [8] is rewritten using the multivariate normal distribution to be consistent with the 

notations of the three other methods (equations [1], [3] and [5]) : 

[10] 

The models presented by Perreault et al. [2000a, 2000b, 2000c] and Rasmussen 

[2001] can ail be represented by equation [8]. Asselin et al. [2005] considered a 

general prior specification for regression parameters as weil as for the variance 

structure, so the posterior parameter distributions could not be obtained in a closed 

analytical form as in the above mentioned methodologies. Gibbs sampling is thus 

used to obtain empirical posterior distributions for each parameter. [To test the 

convergence of a given parameter, the standard t-test at 95% confidence level is 
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used to test if the trend of that parameter is significantly different from zero.] It is 

assumed that the parameter has converged if the test is negative. For extensive 

details on prior specification and MCMC inference for model [10] we refer the 

reader to the companion paper [Asse/in et al. 2005]. 
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3 APPLICATIONS 

ln this section five examples in hydrology are analysed using applicable methods 

among those that have been described in section 2. Some of the examples were 

presented in previous publications. These examples are considered to allow for a 

rational comparison of the original methodologies with the approach proposed in 

this paper. These examples are: 

• Example 1 : this example was drawn from Rasmussen [2001] and deals with 

a single shift detection in the St-Lawrence streamflows data at 

Ogdensbourg, New York. The analysis was performed using the 

methodology of Perreault et al. [2000a,2000b] (models [1]), Rasmussen 

[2001] (model [5]) and Asselin et al. [2005] (model [8]). 

• Example 2 : the same data set as in example 1 was considered, but the 

data is assumed to display a linear trend followed by a constant mean. This 

problem was also drawn from Rasmussen [2001] and inference was 

performed for models [5] (Rasmussen [2001]) and [8]. 

• Example 3 : Models [3] and [8] were used for the detection of a single shift 

detection in bivariate data using the data of the Moisie and Romaine rivers 

located in Northern Quebec. 

• Example 4 : this example deals with a single changepoint detection in the 

multiple linear regression between mean basin scale precipitation at four 

different periods of the year and the summer-autumn flood peaks of the 

Broadback River located in Northern Quebec, Canada. Inference was 
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performed for models [5] and [8]. 

• Example 5: the data of five rivers of the Côte-Nord region, Quebec is 

investigated for a single shift using model [8]. Model [3] [Perreault et al., 

2000c] could not be used in this case because of several gaps in the 

observations. 

3.1 SINGLE SHIFT DETECTION IN THE ST-LAWRENCE 
STREAMFLOW DATA 

We consider the 1861-1950 an nuai streamflows of the St-Lawrence River at 

Ogdensbourg, New York. This data set was analysed in Rasmussen [2001]. The 

data is plotted in Figure 1 a and seems to indicate that mean an nuai flow of that 

river displays either a downward trend of a negative shift. As this example is very 

simple, ail the models presented in section 2 can be used except that of Perreault 

et al [2000c] whish is intended to work on multivariate data sets only. Models [1], 

[5] and [8] were thus applied to the data set. 

3.1.1 PRIOR SPECIFICATION AND INFERENCES ON MODEl PARAMETERS 

The posterior distributions for model 3 [Rasmussen, 2001] were obtained using 

Jeffrey's non informative priors for the parameters. Consequently, no prior 

specifications are required for this particular approach. The prior distributions for 

the parameters of the two other models were thus set to be non informative in 

order to allow for a rational comparison of the various approaches. r was assumed 

to be uniformly distributed over {l, ... ,n} for ail models. The parameters a and fi 

for model [1] were set to 2 and 2 vareY) which corresponds to an inverse gamma 
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distribution of mean var(Y) and infinite variance [see Perreault et al., 2000b], while 

,.1, was set to 10000. For model [8], the prior mean for e was set to the sample 

mean, and the prior variance of e were to 10000 times the sample variance. 

The posteriors distributions of models [1] and [3] where obtained using their 

analytical expressions (equations [2] and [7]). To make inferences on the 

parameters of model [8], 10000 iterations of the Gibbs sampler were performed. 

Convergence was successfully assessed at iteration 100. Inferences on model 

parameters were performed using the 9900 last iterations. 

3.1.2 RESUL TS 

The posterior distributions of the date of change are plotted in Figures 1 b, 1 c and 

1d for models [1], [5] and [8] respectively. It appears that the three models display 

the sa me shape for the posterior prabability of the date of change. The mode and 

95% credibility interval for ail the three models are 1891 and [1886 1894]. The 

results of model [1] [Perreault et al., 2000a, 2000b] and [5] [Rasmussen, 2001] are 

particularly similar, although there are very small differences in the posterior 

distributions due different model parameterisations. Model [8] gives a posterior 

distribution that is also very close to the two others. Note that it was not necessarily 

expected that empirical distributions computed fram MCMC chains would fit exactly 

the analytical solution. Variability due to numerical errors and the limited size of 

MCMC chains will always be present. The results presented in Figure 1 are thus 

very satisfying and can be considered as a successful validation of the praposed 

methodology for the case of univariate normal data with a single shift. 
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3.2 LlNEAR TREND FOLLOWED BV A CONSTANT MEAN IN THE 
ST-LAWRENCE STREAMFLOWS DATA 

This example also uses the 1861-1950 annual streamflows of the St-Lawrence 

River at Ogdensbourg, New York and corresponds to the second example 

presented in Rasmussen [2001]. It is assumed that the data set displays a linear 

trend followed by a constant mean, with continuity of the mean at the changepoint. 

Due to the presence of a trend, models [1] and [3] could not be used. 

3.2.1 PRIOR SPECIFICATION AND INFERENCES ON MODEl PARAMETERS 

As mentioned before, priors for model [5] are always non informative. Non-

informative priors are thus required for model [8] for the results to be comparable. 

As the methodology of Asselin at al. [2002] permits the use of informative priors, an 

equal weight for prior probability of the existence of a change ( r = 1, ... , n -1 ) and the 

absence of change (r = n) was also considered. Inferences for Model [8] were thus 

performed with two different prior assumptions on the date of change: a) a uniform 

prior probability of the changepoint on the interval 1, ... ,n (i.e.p(r)=,Yn,r=1, ... ,n) 

and b) an equal weight for prior probability of the existence of a change and the 

absence of change (i.e.p(r) = X(n-1)' r=1, ... ,n-l and p(n) = h)' The first 

prior assumption is adequate when the modeller is certain of the existence of a 

changepoint. The second one incorporates the ignorance of the modeller about this 

particular point, and corresponds to what happens in operational problems. 
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Inference for model [8] was performed with using 10000 iterations as in example 1 

Convergence was also successfully assessed at iteration 100, and the 9900 last 

iterations were used to compute the posterior probability densities. 

3.2.2 RESULTS 

The posterior distributions of the two models [5] and [8] in the case of fiat prior are 

compared in Figure 2a. The mode and 95% credibility interval for the posterior 

probability distribution of the date of change obtained with model [5] are 1899 and 

[1893 1939] respectively. Model [8] gives approximatively the same values: 1900 

for the mode and [1894 1939] for the 95% credibility intervals. It also appears that 

the posterior probabilities have the same shape. As mentioned earlier, it was not 

expected that empirical distributions computed from MCMC chains would fit exactly 

the analytical solution. The empirical posterior distribution of the date of change 

obtained from the 9900 iterations of the Gibbs sampler are fairly close to the 

analytical solution of [Rasmussen, 2001], and the result is considered satisfying. 

Figure 2.b compares the two approaches when equal weights are given to the 

hypotheses of change and no change. The result is essentially the sa me as in 

Figure 2a except that a weight of 0.07 is obtained for the absence of changepoint 

( 'r = n). The mode and the 95% credibility interval of the date of change given 

'r < n are the same as in the case of fiat prior. Since the weight for 'r = n is 

significantly lower than the prior probability of no change, the results pleads for a 

strong evidence of change in the data set. 

13 



For illustration purposes, the model mean is represented in Figure 2c along with 

the observed streamflows, considering a changepoint at the year 1900. Visual 

inspection of that figure shows the excellent fit of this model for the studied data 

set. 

3.3 SINGLE SHIFT DETECTION IN BIVARIATE STREAM FLOW 
DATA 

We now compare the methodologies of Perreault et al. [2000c] (model [3]) and 

Asselin et al. [2005] (model [8]) on two series of maximum flood peaks of two rivers 

in the Côte-Nord region of the Province of Quebec, Canada: the an nuai flood 

peaks of the Moisie river at station 72301, and those of the Romaine river at station 

73801 for which concomitant observations are available for the period 1966-1998. 

The characteristic of these rivers are listed in Table 1, along with three other rivers 

that will be used in further examples. The location of the hydrometric stations is 

also given in Figure 3. The flood peak time series are presented in Figure 4a. 

Inspection of that Figure strongly suggests that a decrease in flows magnitude may 

have occurred between 1978 and 1980. 

3.3.1 PRIOR SPECIFICATION AND INFERENCES ON MODEl PARAMETERS 

A uniform prior distribution of the date of change was considered for the two 

models Le. peT) = Yn T = l, ... ,n. For the prior specification of the other unknown 

parameters of both model [3], we proceeded as in Perreault et al. [2000c] and used 

the first five years of the data-sets (1966-1970) to estimate the parameters of prior 

distributions. For model [3], the use of the five first years led to <Pt = }'1966-1970 ' 
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~ = a = 5 (as pointed out in Perreault et al. [2000c] , Â and a can be considered 

as degrees of freedom and set equal to the number of years used for prior 

specification), and B = a x COV(Y1966-1970) . 

The following values were obtained for model [8] : 

v = p + 1 + number of degrees of freedom = 2 + 1 + 5 = 8 , 

and 2:0 = 0.5 x COV(Y1966-1970)' This is equivalent to attributing half of the prior 

variability to 9 and the other half to the random effect. Recall that the expectation 

of an Inverse-Wishart is E(2:) = S/(v - k -1) for v ~ k + 2 [Asselin et al. 2005, 

appendix 4]; these values of v and Ay lead to a prior expectation of 

0.5XCOV(Y1966_1970) for 2:y • 

Inferences for the two models were performed in the same way as in the preceding 

examples. The burn-in period was set to 100 and inferences on model [8] 

parameters were performed using the 9900 last iterations. 

3.3.2 RE5U L T5 

Figures 4b and 4c present the results of the changepoint analysis using the two 

approaches. As in the two first examples, the two models gave almost exactly the 

posterior probability distributions. The mode and 95% credibility interval for ail the 

three models are 1979 and [1978 1982]. The date with the maximum posterior 

probability of change is 1979, which is five earlier lower than the change date of 

1984 that was obtained by Perreault et al. [2000c] on a data set of six rivers in the 

sa me region. However, this is not a contradiction since the results are data driven 
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and depends on the chosen priors. Furthermore, the rivers used by Perreault et al. 

[2000c] are spread out in the North-Eastern part of Ouebec and in Labrador while 

the two sites of this example are very close to each others. The two results support 

the evidence of a change of streamflow regimes in northern Ouebec between 1979 

and 1984. 

3.4 CHANGE DETECTION IN A MUlTIVARIATE REGRESSION 
MODEl : INFLUENCE OF FOREST FI RES ON SUMMER­
AUTUMN FLOOD PEAKS OF THE BROADBACK RIVER 

The changepoint detection methods will now be applied to the relationship between 

summer-autumn maximum flood discharge and precipitation at station 80801 

located on the Broadback River, Ouebec, Canada. This river has a catch ment of 

17100 km2 and experiences from time to time fo re st fire bursts (Figure 5). 

According to the Canadian Large Fire Database [Stocks et al., 2002; Natural 

Resources Canada, 2005], major forest fires occurred during the summer of 1971, 

burning 506 km2 in the upper parts of the catch ment (1/34 of the total basin area). 

It is hypothesized that the deforestation due to these fires has changed the basin 

response function to meteorological inputs. In order to perform the analysis, 1961-

1981 daily flood discharges at station 80801 were obtained from Ouebec Ministry 

of Environment. The Broadback River is subject to two types of floods: spring 

flood, which are dominated by snowmelt, and summer-autumn floods which are 

caused by direct liquid precipitations. Figure 6a presents the mean daily discharge 

at this station for 1961-1981. It appears that summer-autumn maximum flood peak 

is generally observed at the end of October (Figure 6.a). Daily precipitations of 

July-October from 1961 to 1981 were obtained by interpolation from the 
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neighbouring weather stations on a regularly spaced grid of 100*100 points and 

averaged to have a time series representing precipitation at the catchments scale. 

This time series was then used to obtain the mean precipitation on the Broadback 

river catch ment for every half month from July to October. Exploratory analysis of 

the linear relationship between observed flood discharge and the obtained 

precipitation series led to the choice of four explanatory variables for the flood peak 

values: 1) the mean precipitations of 16-31 July, 2) the sum of precipitations of 

1-15 August, 3) the sum of precipitations of 16-31 August and 4) the sum of 

precipitations of September-October. The values of 1961-1981 summer-autumn 

flood peaks are presented in Figure 6b and those of the chosen explanatory 

variables in Figure 6c. Figure 6d presents the burned areas on the catchment for 

each year of the period of study. The series of explanatory variables as weil as the 

maximum flood peaks are summarized in Table 2. 

3.4.1 PRIOR SPECIFICATION AND INFERENCES ON MODEl PARAMETERS 

An equal weight was set for the probability of change (r = 1, ... , n -1) and the 

absence of change (r = n). The prior for a was set as follow: since in this 

application ft t = Fta represents the expectation of the flood peak at date t, it seems 

reasonable to give to its mean a prior distribution which's 95% lower confidence 

interval is positive i.e. FtÔP -1.96~1::FtT > 0, t = 1, .. , n where ÔP and 1:: represent 

the prior mean and the prior variance for (). These consideration led to ÔP = Ôreg 

and t: = kt~eg where areg and t;g are the mean and variance of the regression 
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parameters obtained using ordinary least squares, and 

As for the first example, 10000 iterations of the Gibbs sampler were performed. 

Convergence was successfully assessed at iteration 100. Inferences on model 

parameter were performed using the 9900 last iterations. 

3.4.2 RESUL TS 

Figure 7a presents the posterior probability of the date of change obtained with the 

approach of Rasmussen [2001]. The maximum posterior distribution of the date of 

change is maximal at the beginning and at the end of the series, and displays no 

peak. This king of shape of posterior distribution of date of change is typical of 

model [5] when applied to homogeneous series. Thus the application of this 

approach leads to a 'no change' conclusion. 

The posterior probability of the date of change obtained the approach of Asselin et 

al. [2005] are given in Figure 7b. The mode and credibility interval for the posterior 

probability distribution of the date of change obtained with model [8] are 1972 and 

[1972 1978] respectively. It shows a clear peak at 1972 leading to a strong 

conclusion of change between 1972 and 1973. The mode and credibility intervals 

before and after the changepoint for each coefficient of the linear regression were 

computed from the MCMC chains and listed in table 3. The posterior probability 

distributions of these coefficients are given in Figure 8. Inspection of these 

distributions show that the weight of the sum of precipitations of July 16-31 

decreased to negative values while that of the sums of precipitations of August 1-
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15 and August 16-31 increased significantly. The negative values in the regression 

coefficients after the changepoint can be explained by dependence between the 

sums of precipitations of consecutive periods. This dependence could have been 

removed using techniques such as principal component analysis (CCA), but such 

task is beyond the scope of this paper and is not supposed to change the 

existence and date of change in the linear relationship. The uncertainty on the 

regression coefficients is also higher after the changepoint since the 95% credibility 

interval is wider in ail cases (Table 3). 

Since the two approaches give dramatically different results, an alternative 

procedures was sought to check whether there was a change in 1972 of not. It is 

simply a plot of the root mean square error (rmse) of model [5] for a given position 

of the date of change (Figure 9). If the rmse for a given date of change is 

significantly lower that the rmse at the beginning or the end of the series, it means 

that the model with a changepoint at that particular year give a betler fit to the data 

than the model with no changepoint. The plot in Figure 9 supports the hypothesis 

of change in 1972. 

The main reason for which model [5] failed to detect the changepoint is the prior 

specification. It considers a noninformative prior for the regression coefficients and 

thus give a prior weight to physically impossible values. The prior specification for 

model [8] takes advantage of the fact that flood peaks are positive values and 

leads to the detection of a change. 
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3.5 SINGLE SHIFT DETECTION IN A MULTIVARIATE DATAS ET 
WITH MISSING DATA. 

The two rivers presented in section 3.3 are located in the same hydrographical 

region of the province of Quebec and display a common date of change. Although 

the analysis could not explain the reason of the change, it seemed reasonable to 

think that the sa me cause have influenced the neighbouring rivers. As ail the other 

stations of the same hydrological region display a significant amount of missing 

data, only the approach of Asselin et al. [2005] could be used in this case. Five of 

these rivers were selected to have a sufficiently long common period of 

observation to set up the prior distributions. The selected rivers were the Godbout 

river (station 71401), the Moisie river (station 72301), the Magpie river (station 

73503), the Romaine river (station 73801) and the saint-Paul river (station 74601), 

which ail have observations during the period 1975-1987. The characteristics of 

these rivers are listed in Table 1, and their annual maximum flood peaks are 

plotted in Figure 10a. 

3.5.1 PRIOR SPECIFICATION AND INFERENCES ON MODEl PARAMETERS 

The prior specification for e and T are the sa me as in section 3.4.1 except that 

only the common period of observation was used to compute êreg
, :t;g and k. 

Jeffrey's non informative prior was first used for Ly (v ~ -1 and 1 A y I~ 0). The 

flood discharges times series were also standardized to verify the hypothesis of 

common variance assumed by Asselin et al. [2005]. 100000 iterations of the Gibbs 
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sampler were performed and convergence was successfully assessed after 

iteration 5000. 

3.5.2 RESULTS 

Figure 10.b presents the posterior probability distribution of the date of change for 

model [8]. The posterior probability is almost entirely concentrated in 1978. This 

result is one year lower than that obtained in section 3.3 with only two of the rivers. 

It could be concluded that there is an evidence of regional change in rivers flows of 

the Côte-Nord region in the province of Quebec between 1978 and 1979. 

The most interesting aspect of this application is the straight-forward estimation of 

missing data in a context of non-stationarity. As mentioned earlier, there was a 

significant number of gaps in the streamflow data of the Côte-Nord region. 

Estimation of the missing values is not an easy task even with a stationarity 

hypothesis. The methodology of Asselin et al [2005] addresses this issue in a 

straight-forward manner, and the obtained posterior distributions allow a full 

assessment of the uncertainty associated with the results. The reconstituted 

streamflows in which missing values are estimated by the mean of their posterior 

distributions are given in Figure 11. The credibility intervals for missing data are 

also provided on the same Figure. 
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4 DISCUSSION 

The five examples presented in this paper show that the approach of Asselin et al. 

[2005] is very flexible and can be applied to a wide range of problems in hydrology. 

ln Examples 1 to 3, it is compared to published changepoint detection approaches 

with the sa me priors and data and it gave exactly the same results. In example 4, it 

is shown that it gives better results than Rasmussen [2001] on the problem of 

changepoint detection in summer-autumn flood peaks of the Broadback River 

probably because it allows for a more realistic but still vague prior specification on 

regression parameters as weil as on the variance parameter. 

This flexibility leads to non explicit solutions for the posterior probability 

distributions, thus to lengthy MCMC simulations. While the approaches of 

Rasmussen [2001] and Perreault [200a, 2000b, 2000c] elegantly provide posterior 

distributions in closed forms, and do not experience convergence problems. 

However, model flexibility is a requirement for a realistic analysis of hydrological 

data sets and the proposed methodology can be applied to a much broader range 

of problems : for instance, example 5 is of particular importance for hydrologists 

since it also allows the estimation of missing data estimation in a non-stationnary 

context, along with a full uncertainty assessment of the results. The posterior 

probability distribution of each missing data holds account of the uncertainty on the 

date of change, on regression parameters as weil as on the variance-covariance 

structure. The results are thus much more informative than any classical estimation 

with confidence intervals often based on unverified regularity hypotheses. 
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Number of other hydrological problems can be analysed with the changepoint 

detection methodology su ch as homogenization of historical data, hydrological 

neighbourhood delineation or estimation of missing data in the explicative 

variables. While multiple changes in rivers streamflows are relatively rare due to 

the sm ail length of historical series, some of these problems can easily display 

more than one changepoints. An interesting but quite straightforward topic of 

further work would be the generalisation of the approach to multiple changepoints 

problems. This topic was briefly discussed in Section 6 of the companion paper 

and should be the next step in the development of the methodology. 

Another interesting development is the extension of the approach to the analysis of 

series of unequal variances. Such developments would broaden the range of 

problems that can be analysed. 
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5 CONCLUSION 

The general approaeh to the Bayesian analysis of the multivariate regression 

model of Asselin et al. [2005] was eompared to reeently published ehangepoint 

methodologies on five seleeted examples. The results show that a) the proposed 

model ean handle multivariate data an/or missing values, b) it can be used with 

both informative and noninformative priors on the regression parameters and e) it 

is able to reproduee the results of Rasmussen [2001] as weil as those of Perreault 

et al. [2000a, 2000b, 2000e]. Furthermore, it is shown that it ean be readily applied 

to hydrologie problems that are addressed by none of the above mentioned 

approaehes. 
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Table 1 : characteristics of the five rivers of Northern Quebec 

Station Station Long. Lat. catchment Observation Number of 
number na me area period missing 

(km2) values 
between 
1957 and 
2001 

71401 Godbout -67.65 49.33 1 570 1972-2000 19 
72301 Moisie -66.18 50.35 19000 1966-2001 12 
73503 Mag~ie -64.58 50.68 7230 1971-2001 22 
73801 Romaine -63.62 50.30 13000 1957-2001 1 
74601 Nabissi~i -62.21 50.25 2060 1963-1987 20 

Table 2: Basin scale precipitation and summer-autumn flood peaks time series for the 
Broadback river basin. 

Year Sum of Sum of Sumof Sum of Summer-
precipitations precipitations precipitations precipitations Autumn 
of July 16-31 of August 1- of August 16- of maximum 
(mm/day) 15 (mm/day) 31 (mm/day) September- flood 

October peak 
~mm/da~} {m3/s} 

1961 47.60 24.99 29.85 110.71 535 
1962 79.61 45.34 70.96 90.98 714 
1963 46.52 55.41 55.76 101.69 433 
1964 69.96 30.52 36.23 132.00 762 
1965 56.37 49.07 53.60 146.21 572 
1966 44.56 59.93 33.27 213.33 796 
1967 37.91 34.25 13.84 216.20 847 
1968 49.04 52.02 54.45 152.14 745 
1969 102.94 88.15 57.50 157.51 702 
1970 53.04 55.06 68.32 102.24 586 
1971 38.67 38.29 76.19 157.44 399 
1972 29.98 61.48 50.26 137.10 552 
1973 75.31 39.16 71.57 135.31 612 
1974 33.14 59.81 48.58 168.72 1140 
1975 66.11 43.33 59.15 104.56 493 
1976 42.46 41.89 60.29 69.45 603 
1977 57.16 61.02 41.64 126.90 759 
1978 56.95 57.92 37.51 97.12 632 
1979 59.22 49.73 73.62 143.59 1060 
1980 66.02 20.74 61.98 124.47 478 
1981 70.38 27.73 88.40 123.76 705 
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Table 3 : Mean value and credibility intervals before and after the changepoint for the 
coefficients of the linear regression describing the relationship between Summer-Autumn 
flood peaks and precipitations on the 8roadback River's basin 

Coefficient of the 
sum of 
precipitations of 
July 16-31 
Coefficient of the 
sum of 
precipitations of 
August 1-15 
Coefficient of the 
sum of 
precipitations of 
August 16-31 
Coefficient of the 
sum of 
precipitations of 
September­
October 

Before the changepoint 
Mode 95% credibility 

interval 
4.69 [0.527.98] 

-0.18 [-5.25 4.30] 

-0.32 [-3.89 3.00] 

2.99 [1.87 4.26] 

32 

After the changepoint 
Mode 95% credibility 

interval 
-6.83 [-12.250.83] 

6.90 [1.61 11.92] 

6.43 [-0.50 10.82] 

3.38 [1.05 5.94] 



a) 

b) 

c) 

d) 

300 

Ji! 
<.> 
g 260 

~ 
C 240 
~ 

E' 

-5 220 
.!'1 
0 

200 

180 
1870 1880 1890 1900 1910 1920 1950 

Year 

1870 1880 1900 1910 1920 1930 
Year 

0.5r-~---'~~---'-~~--'--~~.--~~'---~--r~~---'~~---'-~-

" '0 

~ 
.ll 
e 
"-
·8 

* o 
"- 0.1 

1900 1910 
Year 

900 1910 
T (no change when r=1950) 

1920 1930 1940 1950 

1920 1930 1940 1950 

Figure 1 : Comparison of the methodologies of Asselin et al [2005] , Rasmussen[2001] 
and Perreault [2000a] on a single shift detection in the St-Lawrence streamflow data: 
a) discharge; b) Perreault [2000a]; c) Rasmussen [2001]; c) Asselin et al. [2005]. 
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Figure 2 : Comparison of the methodologies of Asselin et al. [2005] and Rasmussen 
[2001] on a trend change detection in theSt-Lawrence streamflow data: a) Posterior 
distributions obtained with the approaches of Rasmussen [2001] and Asselin et al. 
[2005] with fiat prior on 1.; b) Posterior distributions obtained with the approaches of 
Rasmussen [2001] and Asselin et al. [2005] with 50%/50% prior probability of 'change' 
and 'no change'; c) Discharge and simulated expected value with a changepoint at 
year 1891. 
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Figure 3 : Location map of the five studied rivers in the province of Quebec, Canada. 
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Figure 4 : Comparison of the methodologies of Asselin et al. [2005] and Perreault et al. 
[2000a,2000b] on a single shift detection in a bivariate data set (flood peaks data at 
stations 73301 and 73801) : a) discharge; b) Perreault et al. [2000a]; c) Asselin et al. 
[2005]. 
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Figure 5 : Location map of station 080801. 
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Figure 6 : Data for changepoint detection in summer-autumn flood peaks of the 
Broadback river: a) mean hydrograph; b) flood peaks time series; c) precipitation time 
series; d) burned area time series. 
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Figure 7 : Changepoint detection in summer-autumn flood peaks of the Broadback 
river: a) posterior probability of changepoint obtained with the methodology of 
Rasmussen [2001]; b} posterior probability of changepoint obtained with the 
methodology of Asselin et al. [2005]. 
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Figure 8 : Posterior probability distributions of the coefficients of the linear 
regression describing the relationship between Summer-Autumn flood peaks and 
precipitations on the Broadback River's basin. 
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Figure 10 : Changepoint detection on the five rivers of Northern Quebec : a) flood 
peak time series; b) posterior probability of changepoint. 
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Figure 11 : Estimations and credible intervals for missing data a) station 74601; b) station 73801; c) station 73503; 
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