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Abstract 

A large number of models in hydrology and c1imate SCIences rely on multivariate linear 

regression to explain the link between key variables. The relationship in the physical world may 

experiment sudden changes due to c1imatic, environmental or anthropogenic perturbations. To 

deal with this issue, a Bayesian method of multiple changepoint detection in multivariate linear 

regression is proposed in this paper. It is an adaptation of the recursion-based multiple 

changepoint method of Fearnhead [2005] to the c1assical multivariate linear mode!. A new c1ass 

of priors for the parameters of the multivariate linear model is introduced and useful formulas are 

derived that permit straightforward computation of the posterior distribution of the changepoints. 

The proposed method is numerically efficient and does not involve time consuming Monte-Carlo 

Markov Chain simulation as opposed to other Bayesian changepoint methods. It allows fast and 

straightforward simulation of the probability of each possible number of changepoints as weIl as 

the posterior probability distribution of each changepoint conditional on the number of changes. 

The approach is validated on simulated data sets and then compared to the methodology of 

Asselin and Ouarda [2005] on two practical problems: a) the changepoint detection in the 

multivariate linear relationship between mean basin scale precipitation at different periods of the 

year and the summer-autumn flood peaks of the Broadback River located in Northem Quebec, 

Canada; and b) the detection of trend variations in the streamflows of the Ogoki River located in 

the province of Ontario, Canada. 

Keywords: Bayesian analysis, changepoint, hydrology, streamflows, multivariate linear 

regresslOn. 
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1. Introduction 

An increasing number of papers point out shifts or trends in hydrologie time series [e.g. Burn and 

Elnur, 2002; Woo and Thorne, 2003; Salinger, 2005]. A change ofmentality is taking place in 

the whole scientific community and it is probable that hydrologie time series models which do 

not hold account of a possible change in the statistical distribution of the data will no longer be 

regarded as credible. Detection of eventual changes in collected data sets is thus obviously an 

important step before performing any descriptive or predictive analysis. 

Changepoint analysis is addressed both in Classical and Bayesian statistics. Methods in c1assical 

statistics usually consist ofperforming several kinds of tests to confirm or reject the hypothesis of 

change. Most ofthem address slope or intercept change in linear regression models [Solow, 1987; 

Easterling and Peterson, 1995; Vincent, 1998; Lund and Reeves, 2002; Wang, 2003]. 

In Bayesian statistics, one is interested in obtaining a statistical distribution for the dates of 

change and eventually a distribution for the other model parameters. Bayesian changepoint 

analysis models are the subject of a large number of papers [e.g. Booth and smith, 1982; Bruneau 

et Rassam, 1983; Gelland et al. 1990; Barry and Hartigan, 1992, 1993; Stephens, 1994; 

Perreault et al., 2000a,b,c; Rasmussen, 2001]. More recently, Asselin and Ouarda [2005] 

developed an approach to changepoint detection in multivariate linear relationships and 

Fearnhead [2005] proposed a recursion-based inference procedure based on the theory of 

product-partition models [Barry and Hartigan, 1992,1993] for multiple changepoint problems. In 

the latter paper, a set of recursive relations are used to infer the posterior probabilities of different 

numbers of changepoints. A particularity of this approach is that it focuses only on the number 

and positions of changes. 
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The aim of this paper is to adapt the methodology of Fearnhead [2005] to multiple changepoint 

detection in multivariate linear relations. In particular, a special class of priors for the parameters 

of the multivariate linear model is introduced and useful formulas are derived that permit 

straightforward computation of the posterior distribution of the changepoints. The proposed 

methodology is validated on simulated data sets to prove its ability to infer the number and 

location of changepoints. It is then applied to two case studies. In the first case study, the 

summer-autumn flood peaks of the Broadback River located in the province of Quebec, Canada, 

are investigated for the eventual changes due to forest fires. The second case study deals with the 

detection of eventual trend variations in the streamflow data of the Ogoki River located in the 

province of Ontario, Canada. 

As the first case study has aIready been investigated with a changepoint detection approach using 

Gibbs sampling [Asselin and Ouarda, 2005; Seidou and Ouarda, 2005], the results obtained with 

the two methodologies will be compared and discussed in this paper. The approach of Asselin and 

Ouarda [2005] will also be applied to the second case study in order to highlight the importance 

ofhaving a methodology designed to handle several changepoints. 

The outline of the paper is as follow: Section 2 is a quick survey of changepoint detection 

methodologies with an emphasis on Bayesian methodologies with application to hydrological 

problems. Section 3 is devoted to the methodology of Asselin and Ouarda [2005] which will be 

compared to the proposed approach. Recursion based changepoint inference models are 

introduced in Section 4, and the model of Fearnhead [2005] is adapted to multivariate linear 

regression. The simulation of changepoints given the conditional posterior probabilities of the 

dates of change is presented in Section 5. The simulation-based validation methodology is 

presented in section 6. Section 7 presents the results of the simulation studies and the applications 
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on real data are carried out in section 8. A conclusion and sorne recommendations are finally 

presented in Section 9. 

2. Changepoint models 

Changepoint detection has received a great de al of attention in statistical literature because 

modification of model structure and/or parameters is commonly encountered in applied statistics 

(e.g in finance, pharmacology, econometrics, hydrology, etc.). The change detection can be off­

line (or retrospective) or online (or sequential) when it is important that the change be detected as 

soon as it occurs. Examples of online changepoint detection methods can be found in [Lai, 1995; 

Beibel, 1997; Daumer and Falk, 1998; Gut and Steinebach, 2002; Daumer and Falk, 1997; 

Moreno et al, 2005]. 

Most applications in hydrology are used for retrospective changepoint detection, except a few 

ones [e.g. Moreno et al, 2005]. Retrospective changepoint detection methods often use classical 

statistical methods to detect changes in slopes or intercepts of linear regression models [Solow, 

1987; Easterling and Peterson, 1995; Vincent, 1998; Rasmussen, 2001; Lund and Reeves, 2002; 

Wang, 2003]. Other curve fitting methods are used in sorne rare cases [e.g. Sagarin and Micheli, 

2001; Bowman et al., 2004]. 

A growing number of methodologies use Bayesian statistics. Gelfand et al [1990] discussed 

Bayesian analysis of a variety of normal data models, including regression and ANDV A-type 

structures, where they allowed for unequal variances. Barry and Hartigan [1992, 1993] used 

product-partition models to develop a Bayesian analysis for a multiple changepoint problem that 

can be exactly solved using a finite number of operations. The multiple changepoint component 

was introduced by a normal random variable that can be added anytime to the mean of the series, 

but only with a certain probability. Stephens [1994] implemented Bayesian analysis of a multiple 
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changepoint problem where the number of changepoints is assumed known, but the times of 

occurrence of the changepoints remain unknown. Other authors emphasized on the single 

changepoint problem. We cite for example Carlin et al. [1992] who applied a three-stage 

hierarchical Bayesian analysis to a simple linear changepoint model for normal data: 

~ON[al+blxl,JI2], t=l, ... ,r, ~DN[a2+b2xt'J~], t=r+l, ... ,n. Perreault et al. [2000a; 

2000b] gave Bayesian analyses of several changepoint models of univariate normal data. AIl of 

these authors implemented their analyses using Gibbs sampling. Rasmussen [2001] considered a 

single changepoint in a simple linear regression model with noninformative priors and derived the 

exact analytical posterior distribution of the regression parameters. His model assumes that the 

changepoint occurred with certainty, and does not allow a clear diagnosis of the existence of the 

change. Perreault et al. [2000c] developed an exact analytical Bayesian analysis of a changepoint 

in the mean ofa series ofmultivariate normal random variables. 

More recently, Asselin and Ouarda [2005] developed a practical and general approach to the 

single changepoint inference problem relying on Bayesian multivariate regression analysis. Their 

model can handle multivariate data and/or missing values and can be used with both informative 

and noninformative priors on the regression parameters. It was shown to be more performing than 

other approaches recently published in the hydrological literature [Seidou and Ouarda, 2005]. 

However, the approach presented in Asselin and Ouarda [2005] considers only one possible 

changepoint and involves relatively long MCMC simulations. The method presented in this paper 

is expected to handle theses two issues. 

3. The changepoint model of Asselin and Ouarda [2005] 

The model of Asselin and Ouarda [2005] is designed to infer the position of a change in the 

parameters of a multivariate regression equation. They assume that the (r x 1) response vector YI 
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is related to the (r x dO) matrix X
t 

by 

y = X 9(Tc) + l' 
t t t "t 

where 

l5:t5:z-c ' 

Z-c < t 5: n, 

under the constraints 

[la] 

[lb] 

[le] 

In these equations as well as in the remainder of the paper, bold letters indicate vectors and 

matrices while the superscript T indicates the transpose. In equation [lb], Z-c is the last point of 

the segment before the changepoint, and Z-c = n means that there is no change in the data series. 

The dimensions of the vectors 9~Tc), P;, p~ Po' PI' P
2 

are respectively (d" xl), (d" xl) , 

(d"xl), (d;xl), (d;xl) and (d;xl).Equation[lc]impliesthat d"=d;+d;.Itisalsoassumed 

that error terms {Ut} are independent and identically distributed following N[O,Ly ]' 

The model assumes a changepoint in the (d" xl) vector 9~Tc) from the (d; xl) subvector PI to 

the (d;xl) subvector P
2

' The (d;xl) subvector Po is assumed to remain part of 9~Tc) 

throughout the observation series. 

In Asselin et Ouarda [2005], sorne algebraic transformations allowed to apply sorne known 

results on Bayesian piecewise linear regression to Model [1] and to infer its parameters. The 

MCMC algorithm was also designed to account for missing data in the observations record and/or 

in the explanatory variables. Finally, they considered a general prior specification for regression 

parameters as well as for the variance structure, and used Gibbs sampling to obtain empirical 
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posterior distributions for each parameter. For extensive details on prior specification and MeMe 

inference for model [1] we refer the reader to the original paper. 

4. Recursion based changepoint inference 

Although recursions have been used to make inference on the number of changepoints [Yao, 

1984; Barry and Hartignan, 1992, 1993], this kind of approach has been less widely used than 

MeMe based inference. Yao [1984] was the first to show that Bayesian inference for a single 

shift in a normally distributed sample can be performed in a finite number of recursive 

operations. As the number of operations grows quickly when the length of the data series 

increases, he also proposed an approximate inference for which the number of operations is 

reduced to the order of sample size. Barry and Hartignan [1992, 1993] showed that the 

changepoint problem can be elegantly handled using product-partition models and generalized the 

results of Yao [1984] to multiple changepoints and more general prior assumptions. Product 

partition models assume that observations in a random partition of the data are independent, and 

allow the data to weight the partitions that hold. The methodologies presented in these papers 

under this approach allow for an efficient computation of the posterior probability of different 

number of changepoints using recursive relations. Fearnhead [2005] used this kind of recursive 

relations to develop a general inference procedure for the number and positions of the 

changepoints. 

4.1 General Inference procedure for the number and positions of the changepoints 

Fearnhead [2005] considered a class of multiple changepoint models for which the number of 

changes is unknown. Let {YpY2, ... ,Yn} be the sample, n the sample size, m the number of 

changepoints, rD = 0, rp ... , rm+l = n the changepoints and Y i:j the observations from time i to time 
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j. We also denote g(.) the probability distribution of the time interval between consecutive 

changepoints and go (.) the probability distribution of the first changepoint. The /h segment is 

then Y('r
j

_
1 
+)):<j with parameter <l> j . 

Assuming that the observations are independents conditional on the changepoints and parameter 

values, Fearnhead [2005] derived the posterior probability of the changepoints: 

{
prCl") 1 Y):n) = pel, T))Q(T) + 1)go(T))/ Q(1) 

pr(Tj 1 Tj_p Y):n) = P(Tj_) + 1, T1)Q(Tj + 1)g(Tj - Tj_l ) / Q(Tj_) + 1) 
[2] 

where P(t, s), s ;::: t is the probability that t and s be in the same segment: 

P(t,s) = Pr(Yt:s;t,s in the same segment) 
s 

= fITf(YÎ 1 <l»1l"(<l»d<l> 
[3] 

Î=t 

and Q(t) is the likelihood of the segment Y t:n given a changepoint at t -1. Q(t) t = 1, .. , n and 

P(t,s), s;::: tare linked by these recursive equations: 

n-I 

Q(1) = LP(1,s)Q(s + 1)go(s) + P(1,n)(1-Go(n -1)) 
s=1 

n-) 

Q(t) = LP(t,s)Q(s + 1)go(s + 1-t) + pet, n)(1- G(n -t)) 
s=1 

t t 

where G(t) = Lg(i) and Go(t) = Lgo(i). 
Î=I Î=) 

4.2. Adaptation of the changepoint inference procedure to multivariate linear 
regression 

[4] 

Consider the np+1 series of data Yj,j=1, ... n and xij,i=1, ... ,d*;j=1, ... n wherexijis thelh 

value of the lh series of explanatory variables. The multivariate linear relationship can be 

represented by 
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d' 

Yj = IBkxij +&i 
k=1 

or 

y= X9+& 

i = 1, ... ,n 

The parameter vector <1> is thus given by <1> = [BI B2 ••• Bd' a] and we have: 

1 
f(Yi 1 <1» = J2; exp -0.5 

a 27r 

d' 

Yi- IBjXij 
j=1 

a 

Following Rasmussen [2001], we have: 

From [3] and [8] we have: 

2 

s 

P(t,s) = Pr(Yt:s;t,s in the same segment) = fTIf(Yi 1 <1»7r(<1»d<1> 
i=t 

Assume that the prior depends only on a and has this particular form: 

-a ( c) a exp --2 

7r(<1»=7r(a)=p(ala,C)= a-3 a-I 2a ,a>l,c>O 
iT c-T r(a-1) 

2 

[5] 

[6] 

[7] 

[8] 

[9] 

[10] 

a-3 a-I 1 
In equation [10], the denominator 2-2 c-Tr(a- ) is only a normalizing constant that ensures 

2 

+00 

that f 7r(a)da = 1. Note that when a is very large, p(a) tends towards a multiple ofa-a
• 

o 
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Jeffrey's non infonnative prior for linear regression is p(O, 0-) oc. 0- 2 [Minka, 2001], and it is 

sometimes assumed in Bayesian linear regression that p(o-) oc. 0--
1 [e.g. Rasmussen, 2001). 

Unfortunately, these kinds ofpriors are improper contrarily to the one proposed in equation [10). 

Basic properties of p( 0- 1 a, c) are derived in Appendix 1. 

Finally, the expression of P(s,t) is obtained after substituting equation [10] in equation [9] and 

integrating out 0- and 9 in equation [9]: 

_(t-s+a) r(t -s + a) 
)

d' (ff(E~IEs:1 + c)) 2 2 
P(t,s) = (2ff 2 a-I 1 

( )--1 T 11/
2 a-Cff 2 XS:1XS:1 r(-2-) 

[11] 

Exhaustive details on how the expression of P(s,t) is obtained are given in Appendix 2. 

5. Simulation of changepoints given the conditional posterior probabilities of the 
changepoints 

The relations presented III Section 4 glve only the posterior probability mass of the first 

changepoint, and the conditional probability mass of subsequent changepoints. To make inference 

on the positions of changepoints, we simulate a set E = {Sk,k = 1: M} of M possible scatter 

schemes of the changepoints on the segment using the posterior probability mass of the first 

changepoint, and the conditional probability mass of subsequent changepoints. Indeed, M should 

be large enough to obtain a reliable distribution for the positions of the changepoints. The k1h 

e1ement of E is a set of mk changepoints Sk = gk ,12k , ... ,1~k }. An efficient simulation algorithm 

for E is given by Fearnhead [2005]: 

1. For a sample of size M, initiate M samples with a changepoint at t = O. 
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2. For t = 0, ... , n - 2, repeat the following steps: 

a) Compute the number ni of samples for which the last changepoint was at time t; 

b) If ni > 0, compute Pr(z- l 'j-l = t'YI:n ); 

c) Sample ni times from Pre, l 'j-l = t'YI:n ) and use the values to update the ni samples 

of changepoints which have a changepoint at time t; 

This algorithm is very efficient since Pre, l 'j-l = t,y l :n ) has to be computed only one time 

regardless of the number of samples required from it. Inference on the number and positions of 

the changepoints is readily carried out using the M samples. For instance, the probability of 

having i changepoints is approximated by: 

Pr(m = i) ~ card({k 1 card(Sk) = i})/ M [12] 

The posterior probability of having the kth changepoint at position t given m changepoints can be 

approximated by: 

card({kl(card(Sk)=m)&(~k =t)}) 
Pre ,. = t 1 m) ~ ---'--'-----.,-----------:-----''--'-

1 card ({ k 1 card (S) = m} ) 
[13] 

where card (S) stands for the number of elements of the set S. The estimators of the number and 

positions of changepoints are the modes oftheir posterior distributions, i.e: 

m = Max{card({k 1 cardk(S) =t})/ M} 
1 

[14] 

f. = Max {card ( {k 1 (card(Sk) = m )&(~k = t)} )} 

1 1 card({klcard(S)=m}) 
[15] 

Other estimators can be defined using the posterior distributions but in Bayesian analysis the 

mode ofthe posterior distribution is generally the best estimator. 
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6. Validation methodology 

The validation of the proposed method requires large data sets in which aU the characteristics of 

the changepoints are known. These data sets were obtained by simulation using a procedure that 

mimics the ranges of shifts and trends that are usuaUy observed in streamflow data. The ability of 

the method to correctly detect the number and position of changes was assessed using four 

perfonnance measures that are described further in the text. 

6.1. Simulated data sets 

Artificial shifts and trends with random magnitudes and positions were inserted in three sets of 

simulated nonnal series. The first set contains series which only display shifts in the mean. The 

series in the second set contain abrupt changes of trend, while the changepoints in the third set 

can be either shifts or changes in trend. 

The series in the first data set were simulated in the foUowing manner: 

1) Set the number of series to generate (N), the minimum number of points between 

changepoints (lmin) and the maximum magnitude of the shift 8max ; 

2) Set u to 1; 

3) Simulate a set {YL = {Ypi = l, ... ,n} of n random numbers from the nonnal distribution 

with mean 0 and standard deviation 1; 

4) Simulate the number of changes by unifonnly drawing a number min {O,l, ... ,mmax} ; 

5) For each i in {l, ... , m} , if n -lmin - Ti- 1 > 0, unifonnly draw a changepoint position Ti in 

{Ti - 1 +lmin, ... ,n}. Repeat this step until Tm is sampled; 

6) For each i in {l, ... ,m}, if n -lmin -TH> 0, unifonnly draw a shift magnitude 8i m 
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8) If u < N , increment u and retum to step 3, otherwise end the simulation procedure. 

The second data set is generated in the same manner except that trend changes rather than shifts 

are introduced in the series. In that case, if we denote tlj the trend in the (i+ 1 yh first segment, aIl 

the above listed steps ho Id, except the seventh step that should be replaced by this one: 

7.a) For each i in {O, ... ,m} , set Yv = Yv +tlj (xk -X,;+l)' v = Ti + 1, ... ,n . 

In the third data set, the changes can either be a shift in the mean or a change of trend. The type 

of change is randomly selected using a binomial distribution with parameter 0.5. 

6.2. Performance measures 

Let's denote mu the number of changepoints in the U
1h generated sample {YL and {tt,i = 1: mu} 

their positions. Let mu be the estimate of mu , and {i/, i = 1 : mu} the estimates of the positions of 

the mu detected changepoints. Two simple measures of the ability of the proposed approach to 

detect the number of changepoints are the Percentage of Correct Detections of the Number of 

changepoints (PCDN) and the Root Mean Square Error (RMSE) of the estimations of the number 

of changepoints defined as foIlow: 

1 M 

PCDN = -"1{ __ } 
M L...J mu-mu 

u=l 

[16] 

[17] 

Another measure of the capability of the method to correctly estimate the number of changepoints 

is the Ranked Probability Score (RPS): if Fu denotes the empirical cumulative probability 
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distribution of mu obtained with the application of the changepoint detection method, the RPS 

can be defined as follow: 

1 M n {1 if i ~ mu 
RPS =-II(Fu(i)-l i<:m

u
)2 where 1i ;:,m = .. 

M u=1 i=1 u 0 if 1 < mu 
[18] 

The RPS is usually used to rate ensemble forecasts [e.g Buiza and Palmer, 1998; Hamil, 2001]. 

The RPS values are within [0, n -1] and a value of zero is obtained for perfect forecasts. 

Unfortunately, the RPS is designed to rate the prediction for a single variable and cannot be easily 

applied to the estimators of the positions of changepoints, as the number of detected changepoints 

may be different from the real number of changepoints. A new performance measure was thus 

developed as follows: let {YL be a series generated as described in Section 6.1 with mu 

changepoints {t; ,j = 1: mu} . The application of the changepoint detection approach to {y} u will 

elements. mk may be different from the real number of changes mu in {y} u' Given k and u, 

mn( IÏIk ,mu) 2 

i "* j => bi "* bj and ~ (t;; - tb~) is minimal. The performance of the changepoint detection 

method when applied to the generated series {YL can be measured with the Multiple Change 

Detection Performance Index (MCDPl) defined as 
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MCDPlk = [19] 

The introduction of ai and bi is motivated by the need to associate as much as possible each 

e1ement of the set of reai changepoints to an e1ement of the set of detected changepoints. Note 

that {api = 1, ... , min(mk , mJ} and {bpi = 1, ... , min(mk , mJ} are different for each pair (u,k). 

This association is performed using a minimum square distance criterion. The penalty term for 

the faise detection of a change 'if is 'if ( n - 'if); the penalty for the non detection of the change 

t; is t; ( n - t; ). These penalty terms have the interesting property of not over-penalising faise 

detections at the beginning and at the end of the series. They are consistent with the practice of 

discarding detected changes that are close to the end or the beginning of the series [Beaulieu et 

al., 2005]. 

The overall performance is the mean of the criterion over the set of generated series 

MCDPI = J.-. iMCDPlk 
N k=l 

7. Settings and results of the simulation studies 

[20] 

The prior for (J' and the parameters for the data generation aigorithms were first chosen to have a 

noninformative prior. Three data sets were generated according to the procedure described in 

Section 6.1 and changepoints are identified with the proposed procedure. A two-column vector of 
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explanatory variables was considered, the first one containing only ones and the second 

containing the date of the observation. 

7.1. Prior specification for cy 

As pointed out in Section 4.2, the prior variance of CY (equation 1.5 of Appendix 1) is infinite 

when a < 3. Any value lower than 3 is thus a relatively noninfonnative prior. We chose a = 2 to 

be consistent with the classical p(cy) oc cy-2 usually used in Bayesian linear regression. As in 

equation [11] chas the dimension of a variance, it was set to the variance obtained by least 

square estimates of the linear regression equations, i.e.: 

= T = yTy _ X (XT X )-1 yTy ) 
C E 1:n E 1:n l:n l:n l:n l:n l:n l:n l:n . [21] 

7.2. Parameters of the simulations 

The number of series in each of the three simulated data sets was set to 1000. The length of the 

series was fixed to 75. The number of changepoints varies from zero to three with at least ten 

epochs between changepoints, and the shifts were assumed to have a magnitude ranging between 

zero and five times the standard deviation of the data series. The magnitudes of the trends are 

assumed inferior to three standard deviations per ten epochs. These values are consistent with the 

authors experience with changes observed in streamflows data series. 

7.3. Performance of the proposed method on simulated ,data sets 

The changepoint detection method was applied to each simulated data set with a two-column 

vector of explanatory variables. The first column of this vector contains only ones while the 

second column contains the dates of the observations. Including the dates of observations in the 

vector of explanatory variables allows the detection of changes in trend in the data series. The 

perfonnance of the changepoint detection method on the first two simulated data sets was 
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compiled as a function of the number of real changepoints and the minimum magnitude of the 

change in a given series. Similar results were compiled for the third simulated data set, but only 

using the number of changepoints since the series contained two kinds of changes with different 

definitions of the magnitude. These results are summarized in Tables 1 and 2 (resp. Tables 3 and 

4) and plotted in Figure 1 (resp. Figure 2) for the first (resp. second) simulated data set. The 

same results are presented in Table 5 and Figure 3 for the third simulated data set. Analysis of 

these results aUows drawing the foUowing conclusions: 

a) The rate of false detection is very low since the PCDN is close to 100% when mu = 0 

(Figures la, lu, 2a, 2u and 3a). The PCDN is remains very high when there is only one 

real change mu = 1 (Figures 1 e, 2e) and, as expected, it increases when the minimum 

magnitude of the change increases. The same conclusions can be drawn from aU the other 

performance measures considering that a good forecast means smaU RMSE, RPS and 

MCDPlvalues. 

b) The performance indices (except the MC DPI) decrease with the number of changepoints 

(c.f. Figures 1 and 2); 

c) It seems easier for the method to detect shifts than changes in trend (Figure 1 vs Figure 2), 

although the relative performance depends on the range of change of magnitude in each 

set. This conclusion holds only if we consider that the range of magnitudes that were 

generated is representative of the real world. 

Results suggest that in this particular case (series of 75 years) the method can be trusted if the 

shifts in the data set have the order of magnitude of the standard deviation, and if the number of 

changes is known to be inferior to three. Indeed, the performance should not be the same for other 

data sets with different lengths and different statistical characteristics. However, since the data 
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sets were generated to cover the range of magnitudes generally encountered in streamflow 

records, the method proposed in this paper will be useful for detecting changes in river 

discharges. It can also be used in several other problems involving multivariate linear regression, 

such as data homogenization or signal processing. 

8. Application to cases studies 

The methodology is applied herein to two case studies to illustrate its behaviour on real data and 

to compare it to the approach of Asse/in and Ouarda [2005]. The first case study deals with 

change detection in the linear regression describing the relationship between Summer-Autumn 

flood peaks and precipitations on the Broadback River basin. Seidou and Ouarda [2005] studied 

this data set using the Bayesian single changepoint detection method of Asselin and Ouarda 

[2005] and found that the relation has significantly changed after 1972 (Tc = 1972). As in their 

paper, the changepoint Tc corresponds to the last point on the segment before the change and 

differs from the definition that was used in this paper (first point of the segment after the change), 

the expected value of T with the approach proposed in this paper should be 1973. 

The second case study is an example drawn from the Canadian Reference Hydrometrie Basin 

Network (RBHN) data base [Brimley et al., 1999]. The case was selected because it displayed a 

relatively large number of changes. 

8.1. Changepoint detection in the finear regression describing the relationship 
befween Summer-Autumn flood peaks and precipitations on the Broadback River 
basin 

8.1.1. The data 

The Broadback River has a catchment of 17100 km2 and experiences forest fire bursts from time 

to time (Figure 4). According to the Canadian Large Fire Database [Stocks et al., 2002; Natural 
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Resources Canada, 2005], major forest fires occurred during the summer of 1971, buming 506 

km2 in the upper parts of the catchment (1/34 of the total basin area). It can be hypothesized that 

the deforestation due to these fires can change the basin response function to meteorological 

inputs. In order to perform the analysis, the 1961-1981 daily flood discharges at station 80801 

were obtained from Quebec Ministry of the Environment. The Broadback River is subject to two 

types of floods: spring floods, which are dominated by snowmelt, and summer-autumn floods 

which are caused by direct liquid precipitations. Figure 5a presents the mean daily discharge at 

this station for the 1961-1981 period. It appears that the summer-autumn maximum flood peak is 

generally observed at the end of October (Figure 5a). Daily precipitations for the July-October 

period from 1961 to 1981 were obtained by interpolation from the neighbouring weather stations 

on a regularly spaced grid of 100* 100 points and averaged to have a time series representing 

precipitation at the catchment scale. This time series was then used to ob tain the mean 

precipitation on the Broadback river catchment for every halfmonth period from July to October. 

Exploratory analysis of the linear relationship between observed flood discharge and the obtained 

precipitation series led to the choice of four explanatory variables for the flood peak values: 1) 

the mean precipitations of the 16th -31 st of July period, 2) the sum of precipitations of the 1 st_15th 

of August period, 3) the sum of precipitations of the 16th -31 st of August period and 4) total 

precipitations for the September-October period. The values of the 1961-1981 summer-autumn 

flood peaks are presented in Figure 5b and those of the chosen explanatory variables in Figure 5c. 

Figure 5d presents the bumed areas on the catchment for each year of the period of study. The 

series of explanatory variables as weIl as the maximum flood peaks are summarized in Table 6. 
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8.1.2. Results 

The application of the changepoint detection method leads to a probability of 0.2 for the absence 

of changepoints and 0.8 for the existence of a unique changepoint (Figure 6a). A small weight 

«0.01) is attributed to the existence oftwo changes. The posterior probability distribution of the 

changepoint , is illustrated in Figure 6b. The posterior probability distribution of 'c obtained 

with the same data set by Seidou and Ouarda [2005] with the Bayesian method of Asselin and 

Ouarda [2005] is also presented in Figure 6c. The two methods agree that the changepoint 

occurred probably between 1973 and 1974, with however different weights for these two dates. 

The weight differences may be due to the differences in the prior specifications of the two 

methods, and to the uncertainty introduced by the use of limited samples when computing the 

posterior distribution with the two approaches. 

8.2. Shifts and trend change detection in the flood peaks of the Ogoki river 

8.2.1. The data 

The Ogoki River is a 480 km long river located in the province of Ontario, Canada. It flows 

northeast from lakes west of Lake Nipigon to join the Albany River which ends into the James 

Bay. Station 04GB004 (Ogoki River above Whiteclay Lake) is part of the Canadian Reference 

Hydrometric Basin Network (RHBN) which comprises stations that have been carefully selected 

for climate change detection and assessment studies [Brimley et al., 1999]. The RHBN network 

comprises stations that are pristine. Station 04GB004 was selected because it displays a relatively 

large number of changepoints. The location of this station is given in Figure 7. 
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8.2.2. Results 

The results of the changepoint analysis of the Ogoki River streamflows with the method proposed 

in this paper are presented in Figure 8. The results obtained with the approach of Asselin and 

Ouarda [2005] are provided in Figure 9. The posterior probability distribution of the number of 

changepoints obtained with the proposed method is plotted in figure 8a. Up to 4 changepoints are 

plausible (Pr(m = 4) > 0), but the most probable number of changepoints is two. Figures 8b and 

8c provide the posterior probability distributions of the first and second changepoints, conditional 

to m = 2 . The position of each of these changepoints is chosen to be the mode of the posterior 

distribution: 1961 for the first changepoint and 1971 for the second changepoint. Given these 

positions, the posterior means of the three segments in the data series are readily computed 

(Figure 8d). According to the analysis, the flows of the Ogoki River displayed a negative 

downward trend from 1951 to 1961, and increased regularly from 1960 to 1970. From 1960 to the 

present date, the streamflow record displayed a small downward trend. 

Figure 9a illustrates the posterior probability distribution of the changepoint obtained with the 

methodology of Asselin and Ouarda [2005]. This method gives less than 0.01 probability of no 

change (with this method, the probability of no change is equal to the probability that the 

changepoint is at the end of the data series). The mode of the posterior distribution of the date of 

change corresponds to 1967. This date corresponds grossly to the mean of the two changepoints 

detected with the methodology presented in this paper. This indicates that the results of the two 

methods are consistent. Although the method of Asselin and Ouarda [2005] is designed to detect 

only one change, a multimodal posterior distribution is often the sign of the existence of more 

than one changepoint. In this example, the fact that the posterior distribution is bimodal suggests 
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that there may be another changepoint in 1955. However, this seems to have been caused rather 

by the high discharge observed in 1954 than by a real change of trend in the data series. 

Since the causes of trend change in the streamflow record are not known, it is impossible to 

decide whether the results of one or the other of the two methods correspond to the reality. The 

main advantage of the proposed approach is that it has less constraints and gives a larger chance 

for the data to influence the posterior distributions. The proposed approach is thus preferable in 

cases where there is only one response variable, where no data is missing and where more than 

one change is plausible. The results presented in this work are also easier to interpret than those 

of the approach proposed by Asselin and Ouarda [2005] 

9. Conclusions and recommendations 

A Bayesian method of multiple changepoint detection in multivariate linear regresslOn IS 

developed and validated with both simulated data and real data sets. The paper also proposes a 

new c1ass of priors for the parameters of the multivariate linear model, as weIl as useful formulas 

that permit straightforward computation of the posterior distribution of the positions of 

changepoints. Results suggest that, in the particular case of series with 75 observations, the 

proposed method can be trusted if the shifts in the data set have the order of magnitude of the 

standard deviation, and if the number of changes is known to be inferior to three. It is also shown 

that in cases where there is only one response variable, where no data is missing and where more 

than one change is plausible, it is better to use the proposed methodology instead of Asselin and 

Ouarda [2005]. 

The extension of the work presented in this paper to much more general models is straightforward 

since the most important equations were obtained without assumptions on model structure. An 

interesting direction for future work is the development of similar approaches for hidden Markov 
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chain Models. Much more complex changepoint problems can be handled in the framework of 

hidden Markov chain models, especially those which display seriaI dependence structure in the 

observations [e.g Thyer and Kuczera, 2003a,b]. 
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of Asselin and Ouarda [2005] 
Regression parameters after the changepoint in the methodology of 
Asselin and Ouarda [2005] 
Component of the vector of regression parameter that do es not 
change in the methodology of Asselin and Ouarda [2005] 
Component of the vector of regression parameter that change to P2 
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Vector of random errors in the linear regression equation (one 
response variable) 
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Parameters of the linear regression equation 
Variance-covariance matrix of the distribution of 1)/ 

Last point of the segment before the change (methodology of 
Asselin and Ouarda [2005]) 
kth changepoint in the proposed methodology 

Vector of regression parameters 
Vector of regression parameters at date t given Tc (methodology of 

Asselin and Ouarda [2005]) 
Parameter of the prior distribution of <l> 
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Set of generated scatter schemes 
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Probability distribution of the time interval between consecutive 
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Multiple Change Detection Performance Index 
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Number of changes in the kth generated scatter scheme during the 
simulation of the changepoints 
Length of the data series 
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Percentage of Correct Detections of the Number of changepoints 
Likelihood of the segment Y t:n given a changepoint at t-1 

Number ofresponse variables (methodology of Asselin and Ouarda 
[2005]) 
Root Mean Square Error 
Ranked Probability Score 
kth scatter scheme generated with the posterior distributions ofthe 
positions of changepoints 
Time 
Estimate of the i th change in the kth generated scatter scheme 
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Vector of explanatory variables 
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Table 1 : Performance of the changepoint detection procedure as function of the number of 
real changepoints and the minimum magnitude of the shift for the first simulated set. 

Nwnber Minimum magnitude PCDN RMSE RPS MCDPI 
of of the shift (%) 
changes 
0 96.62 0.28 0.08 28.54 

1 0.50- 82.50 0.57 0.23 27.31 
1 10- 85.94 0.51 0.18 23.58 
1 
1 

1.50- 92.35 0.38 0.10 16.28 

1 20- 95.24 0.30 0.07 12.49 

1 2.50- 97.20 0.23 0.05 10.35 
1 30- 97.39 0.23 0.05 8.62 
1 3.50- 97.78 0.21 0.04 7.47 
1 
1 40- 99.42 0.11 0.03 6.93 

4.50- 99.07 0.14 0.03 7.21 

50- 100.00 0.00 0.01 6.37 

2 0.50- 61.63 0.96 0.55 22.97 
2 10- 68.43 0.81 0.43 18.87 
2 
2 

1. 5 0- 74.90 0.70 0.34 16.02 

2 20- 81.81 0.58 0.25 13.65 

2 2.50- 88.41 0.47 0.17 11.04 
2 30- 91.77 0.40 0.13 9.63 
2 3.50- 91.50 0.40 0.14 8.99 
2 
2 40- 95.12 0.31 0.09 6.79 

4.50- 100.00 0.00 0.01 4.55 

50- 100.00 0.00 0.00 3.63 
3 0.50- 37.28 1.53 1.06 22.62 
3 10- 43.08 1.40 0.92 20.45 
3 
3 

1.50- 48.30 1.23 0.79 18.67 

3 20- 60.82 1.00 0.57 15.35 

3 2.50- 67.29 0.91 0.48 14.22 
3 30- 72.76 0.75 0.38 12.08 
3 3.50- 55.47 0.83 0.45 13.20 
3 

40- 70.71 0.71 0.37 10.04 

4.50- 100.00 0.00 0.00 3.37 
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Table 2 : Performance of the changepoint detection procedure as function of the number of 
real changepoints for the first simulated set. 

Number of PCDN (%) RMSE RPS MCDPI 
changes 
0 96.62 0.28 0.08 28.54 

1 82.50 0.57 0.23 27.31 

2 6l.63 0.96 0.55 22.97 

3 37.28 l.53 l.06 22.62 
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Table 3: Performance of the changepoint detection procedure as function of the number of 
real changepoints and the minimum magnitude of the shift for the second simulated set. 

Number Minimum magnitude of PCDN RMSE RPS MCDPI 
of the trend (per ten (%) 
changes epochs) 
0 97.33 0.23 0.06 27.03 

1 0.5 a 80.71 0.59 0.26 33.56 
1 la 88.95 0.46 0.15 25.86 
1 
1 

1.5 a 93.42 0.36 0.09 20.38 

1 20' 96.80 0.25 0.06 16.97 

1 2.5 a 98.13 0.19 0.05 13.42 

30' 97.65 0.22 0.04 12.31 
2 0.5 a 36.59 1.10 0.74 28.03 
2 la 42.64 1.04 0.65 25.22 
2 
2 

1.50' 54.29 0.93 0.54 21.80 

2 20' 56.11 0.89 0.49 19.78 

2 2.5 a 63.96 0.77 0.40 17.56 

30' 91.29 0.41 0.19 17.27 
3 0.5 a 12.57 1.82 1.47 27.27 
3 la 16.55 1.71 1.35 25.80 
3 
3 

1.5 a 18.79 1.61 1.26 23.64 

3 20' 17.96 1.56 1.21 21.60 

3 2.5 a 44.72 1.61 1.04 20.78 

30' 70.71 1.41 0.88 20.41 
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Table 4 : Performance of the changepoint detection procedure as function of the number of 
real changepoints for the second simulated set. 

Nwnber of PCDN (%) RMSE RPS MCDPI 
changes 
0 97.33 0.23 0.06 27.03 

1 80.71 0.59 0.26 33.56 

2 36.59 1.10 0.74 28.03 

3 12.57 1.82 1.47 27.27 
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Table 5 : Performance of the changepoint detection procedure as function of the number of 
real changepoints for the third simulated set. 

Number of PCDN (%) RMSE RPS MCDPI 
changes 
0 97,19 0,26 0,05 26,08 
1 80,85 0,59 0,27 31,46 
2 53,61 1,06 0,66 26,85 
3 21,74 1,74 1,30 26,20 
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Table 6: Basin scale precipitation and summer-autumn flood peak time series for the 
Broadback river basin. 

Year Total Total Total Total Summer-
precipitation precipitation precipitation precipitation Autumn 
for the July for the for the for the maximum 
16th_31 st August 1st_ August 16th_ September- flood peak 
period (mm) 1Sth period 31st period October (m3/s) 

(mm) (mm) (!eriod ~mm) 
1961 47.60 24.99 29.85 110.71 535 
1962 79.61 45.34 70.96 90.98 714 
1963 46.52 55.41 55.76 101.69 433 
1964 69.96 30.52 36.23 132.00 762 
1965 56.37 49.07 53.60 146.21 572 
1966 44.56 59.93 33.27 213.33 796 
1967 37.91 34.25 13.84 216.20 847 
1968 49.04 52.02 54.45 152.14 745 
1969 102.94 88.15 57.50 157.51 702 
1970 53.04 55.06 68.32 102.24 586 
1971 38.67 38.29 76.19 157.44 399 
1972 29.98 61.48 50.26 137.10 552 
1973 75.31 39.16 71.57 135.31 612 
1974 33.14 59.81 48.58 168.72 1140 
1975 66.11 43.33 59.15 104.56 493 
1976 42.46 41.89 60.29 69.45 603 
1977 57.16 61.02 41.64 126.90 759 
1978 56.95 57.92 37.51 97.12 632 
1979 59.22 49.73 73.62 143.59 1060 
1980 66.02 20.74 61.98 124.47 478 
1981 70.38 27.73 88.40 123.76 705 
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Figure 1: Performance of the changepoint detection procedure as function of the number of 
real changepoints and the minimum magnitude of the shift for the first simulated set. 
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Figure 2: Performance of the changepoint detection procedure as function of number of 
real changepoints and the minimum magnitude of the shift for the second simulated set. 
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Figure 3: Performance of the changepoint detection procedure as function of the number of 
real changepoints for the third simulated set. 
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Figure 5: Data for changepoint detection in summer-autumn flood peaks for the Broadback 
river: a) me an hydrograph; b) summer-autumn flood peak time series; c) precipitation time 
series; d) burned catch ment area time series. 
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Figure 6 : Changepoint detection in summer-autumn flood peaks of the Broadback river: a) 
posterior probability of the number of changepoints; b) posterior probability of the first 
point of the segment after the changepoint obtained with the proposed methodology; c) 
posterior probability of the last point of the segment before the change obtained with the 
methodology of Asselin and Ouarda [2005]. 
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Figure 7: Location of station 04GB004 (Ogoki River above Whiteclay Lake). 
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Figure 8: detection of trend changes at station 04GB004 (Ogoki River above Whiteclay 
Lake) with the proposed methodology. 
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Figure 9: detection of trend changes at station 04GB004 (Ogoki River above Whiteclay 
Lake) with the methodology of Asselin and Ouarda [2005]. 
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Appendix 1: properties of p(er 1 a,e) oc er-a exp(--;-), a> 1,e > 0 
2er 

'" 
Let I(a) = f er-a exp( --;-)der 

a=O 2er 

a-3 I-a '" a-3 a-I 1 
I(a) = 22 e 2 f t(a-3)/2 exp ( -t)dt = 2--2 e -2 r(a; ) 

a=O 

x 

[1.1 ] 

[1.2] 

[1.3] 

[1.4] 

[1.5] 

[1.6] 

The case a < 3 leads to an infinite variance for er, i.e. lim fp(er)der = +00. Any value of a less 
X~+oO 0 

than 3 can thus be used as a non informative prior. Note that when er is very large, p( er) oc er-a. 

Appendix 2: Derivation of P(t,s) 

In this section we will derive the expression for P(t,s). Let 00 be the ordinary least square 

solution of the equation YI:S = Xt:sO and &I:S = YI:S - Xt:sOo ' Note that &S:I does not depend on ° or 

er. It' s well known from linear algebra that 00 = (X~SXI:S rI X~s Y I:S ' We also suppose that 
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-a ( c) CY exp--
2cy2 

p(cyla,c)= a-3 a-I ,a>l,c>O. Wehave: 
22 c-2 r(a-l) 

2 

f f [(Y -X Of(Y -X a)} P(t,s) = (21l'cy2r(t-S+ll/21l'(CY) exp - t:s t:s 2 2 t:s t:s CYdO 
(J b CY 

Equation [2.1] can be simplified since 

(Yt:s - Xt:sO)T (Yt:s - Xs:tO) _ (Et:s - X t:s (0 -Oo)f (Et:s - Xt:s (0 -00 )) 

2cy2 - 2cy2 

= 2~2 (E;'sEt:s - E;'sXt:s (0 -00 )(0 -OO)TX;'sEt:s + (0 - oof (X;'sXt.J(O -00 )) 

and 

thus: 

( 

T ) (O_O)T (xT X )(0-0) 
P(t, s) = J (2JrO' 2 f(t-Hl)/2 Jr( 0') exp - Et:sEt:s J _ 0 t:s t:s 0 d O'dO 

20' 0 20' 

f N._,+I (0100 ,I:)=l 

• 

T 

P(t,s) = (2Jrf(t-Hl-d')/2!X;'sXtl1l2 JO'-(t-Hl) exp( - E2t:sE~s )p(O')dO' 

(1' 0' 
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[2.1] 

[2.2] 

[2.3] 

[2.4] 

[2.5] 

[2.6] 

[2.7] 



[2.8] 

· 1 1-1
/
2 

( 2tr)-(I-HI-d )/2 XT X I-Ha-2 JI-Ha) (_ ) 
_ I:s I:s 2 (T ) 2 r t s + a 

P(t,S) - a-3 _a-I -1 2 EI:sEI:s + C 2 
2 2 C 2 rc-a-) 

2 

[2.9] 

_(I-Ha) r(t-s+a) 
_ ( )-'f (tr( E:'sEI:s + C) ) 2 2 

P(t,s) - 2tr a-I 1 
( )--1 T 1112 a -ctr 2 XI:SXI:S rc-

2
-) 

[2.10] 

as E~sEt:s = ~~~:s -Xt:s(Xt~sXt:srl~~~J we finally obtain the expression for P(s,t): 

_(t-Ha) r(t-s+a) 
_( )-'f(tr(E:'sEt:s+C») 2 2 

P(t,s) - 2tr a-I 1 
( )--1 T 11/

2 a -ctr 2 XI:sXI:S rc-
2
-) 

[2.11] 
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