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What this study adds

This study shows that the interannual variability of heat-related 
mortality might be partly driven by large-scale climatic tele-
connections, specifically the Atlantic Multidecadal Oscillation 
in the case of the province of Quebec. To do so, we provide a 
rigorous methodology that uses recent relevant statistical devel-
opment, in particular from functional data analysis that allows 
the consideration of several climate indices and lags. As far as 
the authors are aware, this study is the first of its kind, and 
we think it is valuable both for its informative results and its 
methodology.

Heat-related mortality prediction using low-frequency 
climate oscillation indices: Case studies of the cities 
of Montréal and Québec, Canada
Pierre Masselota, Taha B.M.J. Ouardab, Christian Charronb, Céline Campagnab,c, Éric Lavigned,e, André St-Hilaireb,  
Fateh Chebanab, Pierre Valoisf, Pierre Gosselinb,c,g      

Introduction
Heat-related mortality is an important public health burden in 
summer1 and is expected to increase with climate change.2,3 To 
inform adaptation policies, studies have focused on modeling 

the evolution of mortality attributable to heat4 or relating the 
vulnerabilities across the world to socio-economic drivers.5,6 
However, in addition to the long-term trend and to spatial vari-
ations, there is important interannual variability in summer heat 
and thus in heat-related mortality.7 It is therefore of interest to 
model and predict these inter-annual changes to inform short-
term action plans.

Temperature is widely driven by climatic teleconnections 
which contribute to define large-scale climatic variations. For 
instance, long-term cycles in sea surface temperature in the 
Atlantic Ocean are strongly linked to the North American 
and European summer climates. Climatic teleconnections and 
large-scale patterns are summarized by different climate indi-
ces that represent diverse variations across the globe, such as 
the Southern Oscillation Index (SOI) measuring the so-called 
El-Niño phenomenon or the Atlantic Multidecadal Oscillation 
(AMO) to represent variations of sea surface temperatures in 
the Atlantic.8 These indices can then be used to predict local 
climate characteristics like the frequency and intensity of heat-
waves.9–11 In addition to heat waves, these indices also predict 
variations of other weather variables such as precipitations,12–14 
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thus potentially affecting the vulnerability of populations to 
extreme meteorological events.

Given the strong links between climate indices and local 
weather, they are expected to be instrumental for the predic-
tion of heat-related mortality. As accurate forecasts of climate 
indices several months in advance are now a prospect,15 they 
can be used to provide heat-related health forecasts months in 
advance. This strategy is often considered for infectious diseases 
that are particularly climate-sensitive,16,17 but less so for heat-re-
lated mortality.

One limiting factor of integrating large-scale climate infor-
mation is the difficult statistical problem of predicting heat-re-
lated mortality by using potentially numerous interrelated and 
lagged climate indices. In the only contribution attempting it, 
Majeed et al.18 focused on two indices for the United-Stated: the 
ENSO phenomenon and the AMO. They used mortality causes 
defined a priori for heat-related mortality and performed a spec-
tral analysis of time series. However, such an approach does not 
necessarily represent accurately the mortality actually caused by 
heat, nor allow disentangling the different climate indices that 
could impact summer heat.

We propose here a two-stage statistical analysis that con-
sists in first estimating heat-related mortality for each year, and 
second to model annual heat-related mortality using values 
from climate indices. Similar two-stage methodologies have 
been employed to study adaptation to heat and cold4 as well as 
the differential vulnerability patterns over the world.5 The first 
stage uses state-of-the-art epidemiological models to estimate 
the part of mortality that can be attributed to heat. The second 
stage considers functional regression to efficiently integrate the 
whole information provided by several months of climate indi-
ces and predict the magnitude of upcoming heat-related mortal-
ity.19 Functional regression takes continuous functions as inputs 
and is thus particularly adapted to time-indexed processes. In 
particular, we use the functional linear array model recently 
proposed by Brockhaus et al.20 to manage the high-dimension-
ality of the model. Its boosting-based algorithm is efficient both 
for prediction and for variable selection.21 This allows to select 
the most predictive indices as well as understand how their 
variations can help predict heat-related mortality.

The objective of the present article is to relate mortality 
attributable to heat with large-scale climate indices using the 
two-stage methodology sketched above. As climate indices, we 
consider both the AMO and the SOI measuring the ENSO phe-
nomenon, as well as five additional potentially predictive cli-
mate indices: the Arctic Oscillation (AO), the North Atlantic 
Oscillation (NAO), the Oceanic Niño Index (ONI), the Pacific 
Decadal Oscillation (PDO), and the Pacific North American 
Index (PNA). The obtained model can then be used to predict 
the magnitude of upcoming heat-related mortality and inform 
heat early warning systems several months in advance.

Methods
Data

We consider data from two metropolitan areas (MA) in the 
province of Québec, Canada: Montréal and Québec. These com-
munities correspond to the extended urban areas that include 
neighbor municipalities such as Laval for Montréal and Lévis 
for Québec as shown in Figure 1. For both MAs, we consider 
daily mean temperature and all-cause mortality counts as well 
as monthly climate indices over the period 1981–2018.

Daily time series are herein restricted to the five warmest 
months of the year which are May to September. All-cause mor-
tality counts are provided for each MA by the National Institute 
of Public Health of Québec (Institut national de santé publique 
du Québec). Mean temperature is constructed as the average 
between minimum and maximum temperature, both extracted 
from the Daymet database (daymet.ornl.gov). Daymet is a 

gridded weather database with a resolution of 1 km over North 
America.22 It is bias-corrected and validated using ground obser-
vations and its high resolution allows for an accurate represen-
tation of exposure to temperature.23 Daily time series of mean 
temperature are obtained by averaging over all grid points that 
cover each MA.

Monthly values of the seven climate indices given above 
are obtained from the National Oceanic and Atmospheric 
Administration (NOAA) Earth System Research Laboratory 
(https://psl.noaa.gov/data/climateindices/list/). These seven indi-
ces are suspected to influence the climate of Southern Québec to 
different degrees.24 Each index is detailed in Appendix A; http://
links.lww.com/EE/A184.

Statistical analysis

To study the ability of climate indices to predict heat-related 
mortality, we consider a two-stage approach applied to each MA. 
In the first stage, we estimate annual heat-attributable fractions 
(AF) of mortality through a distributed lag nonlinear model. In 
the second, AF estimates are considered as the response in a func-
tional regression model with climate index curves as predictors.

Estimation of heat attributable fractions

To estimate heat AF in the first stage, we apply a time-vary-
ing distributed lag nonlinear model. It consists in a quasi-Pois-
son regression with a cross-basis to represent the nonlinear 
and delayed effect of temperature on all-cause mortality.25 The 
cross-basis is parameterized following previous studies on 
heat-related mortality,26 i.e., through a quadratic B-spline with 
knots at percentiles 50% and 90% on the temperature dimen-
sion, and a cubic natural spline with two interior knots uni-
formly distributed on the log scale on the lag dimension, up 
to a maximum lag of 10 days. To allow the exposure-response 
function to evolve along the study period, and thus account 
for potential long-term adaptation, we add an interaction term 
between the cross-basis and the date as described by Gasparrini 
et al.26 The model also includes a day-of-week factor to control 
for weekend effects, a natural spline component of year with 
one degree of freedom per decade to control for a long-term 
trend and a natural spline of day-of-season with four degrees of 
freedom to control for seasonality.

The fitted model is then used to compute daily AFs for heat 
using classical formulas.27 The daily AFs are then aggregated by 
years including only heat days, defined as days for which mean 
temperature exceeds a specific threshold. Several such thresh-
olds are considered to test whether overall heat or only the most 
extreme events can be predicted by climate indices (see examples 
in Appendix B; http://links.lww.com/EE/A184).28 First, we con-
sider the minimum mortality temperature (MMT) for each year, 
i.e., we retrieve the overall cumulative exposure-response func-
tion29 at the first of July of each year and extract the tempera-
ture at which the risk is the lowest, with the constraint that it is 
between its 10th and 90th percentile.30 We also consider percen-
tiles 95%, 97.5%, and 99% of summer temperature, computed 
on the whole period. We focus on AF instead of attributable 
number (AN) as it is less prone to confounding by population.

Uncertainty of reported MMTs and AFs is assessed by 95% 
empirical confidence intervals (eCI) that simulate new first-stage 
coefficients from a multivariate normal distribution and com-
putes the MMT and AFs for each set of simulated coefficients.27

Prediction by climate indices

For each MA and each heat threshold, estimated AFs are pre-
dicted by climate index curves through a functional regres-
sion model in which the response is scalar and the predictors 
are functional.31 This model estimates the effect of each 

https://psl.noaa.gov/data/climateindices/list/
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considered month of the climate indices on AF through the 
following model:

	

AF l x l dl s ii
j

j ij i= ( ) + ( ) +
=
∑ ∫

1

7

0

16

β ε( ) ,

�
(1)

where AFi  is the heat AF of year i, x lij ( )  is the curve of the 
jth  climate index ( j = …1 7, , ) for year i with the associated 
functional coefficient βj l( ) . This coefficient indicates the change 
in AF induced by x lj. ( )  at each lag l. As the impact of climate 
indices on the local climate can be delayed by up to two years,12 
in this study x lj. ( )  spans a period of 16 months from January of 
year i − 1  to May of year i. Finally, s i( )  is a smooth component 
of the year expanded by P-splines, i.e., a dense cubic B-spline 
with 20 interior knots that is penalized to control its smooth-
ness.32 The last component εi  represents the residuals.

To estimate model (1), we consider the functional linear array 
model representation with associated boosting optimization 

developed by Brockhaus al.20 In the linear array representation, 
the functional variables βj l( )  and x lij ( )  are expanded by spline 
tensor products to map discrete data to the continuous domain 
of l.  Using this expansion, the model is then estimated through 
gradient boosting, which iteratively constructs the model by 
adding a very simple component of a single variable at each 
step to reduce the residual sum of squares.21 This algorithm 
served the double purpose of optimization as the residual sum 
of squares is iteratively reduced while the model gains in com-
plexity, and variable selection as only the most strongly predic-
tive explanatory variables are added in the model. The number 
of iterations is chosen by 10-fold cross-validation. More details 
on the estimation procedure and chosen number of iterations 
are given in Appendix C; http://links.lww.com/EE/A184.

To evaluate the predictive power of each model, we compute 
the R2 through 10-fold cross-validation, a procedure that does 
not favor more complex models, in contrast with its training 
sample counterpart.33 As an additional sensitivity analysis, we 
apply a model that adds the average summer temperature as an 

Figure 1.  Map of the considered metropolitan areas: Montréal (green) and Québec (blue).

http://links.lww.com/EE/A184
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additional term in model (1) for each outcome and each loca-
tion. Results of this sensitivity analysis are reported in Appendix 
D (http://links.lww.com/EE/A184) and show consistency with 
the main results reported below.

The analysis is performed using R 4.1.034 with the addition of 
packages dlnm35 for first-stage heat-related mortality estimation 
and FDboost36 for the second-stage functional regression.

Results
Summary statistics of deaths and temperature are reported in 
Table  1 for each MA. The study covers more than 400,000 
deaths, with five times more deaths reported in Montréal than 
Québec. Montréal also shows a higher average temperature 
than Québec, being on average 3°C warmer. MMTs are also 
much warmer in Montréal, ranging from 16.3°C (95%eCI: 
13.8–18.8) in 1981 to 19.1°C (95%eCI: 11.2–23.2) in 2018, 

compared to MMTs of 8.0°C (95%eCI: 8.0–20.0) in 1981 that 
increased to 14.3°C (95%eCI: 10.3–16.3) in 2018 for Québec.

Figure 2 shows AF estimated for both MAs and different per-
centiles defining heat-related mortality, with detailed numbers 
and eCI in Tables S1 and S2; http://links.lww.com/EE/A184. 
Related results such as dose-response curves and summary sta-
tistics are reported in Appendix C; http://links.lww.com/EE/
A184. On average 2.42% (95%eCI: 2.02–3.48) of mortality 
is attributed to heat above the MMT in Montréal and 2.84% 
(95%eCI: 1.32–5.88) in Québec, and the AF decreases with 
the percentile considered with an average of 0.40% (95%eCI: 
0.36–0.45) in Montréal and 0.24% (95%eCI: 0.15–0.34) in 
Québec for heat defined with the 99th percentile. In both MAs, 
AF widely varies from year to year with a downward trend visi-
ble for MMT-related AFs. This downward trend is accompanied 
by an increase of MMT in recent years (see Figure S2; http://
links.lww.com/EE/A184 in Appendix B) and suggests a possible 
diminution of the overall vulnerability to heat, consistently with 
previous studies.4,26 Figure 2 also highlights years with peaks for 
both mortality attributed to heat and AMO values such as 1983, 
1988, 1999, 2005, and 2010.

For both MAs and all heat definitions, results from the sec-
ond-stage functional regression model are similar. Details on 
intermediate results are shown in Appendix D; http://links.lww.
com/EE/A184. In all cases, AMO was the single climate index 
selected, except for Québec and the MMT-related AF for which 
the model selected only the time component due to the important 
trend. Figure 3 shows the estimated functional coefficients β�j .()  
from Equation 1. In all cases, the coefficient is positive for lags 
0 to 5, i.e., in the same year, winter and spring, and are close to 

Table 1.

Total number of deaths and mean temperature summary by 
area.

Area Deaths

Daily mean  
temperature  

(mean) (range)

Annual minimum  
mortality temperature  
(MMT) range (95%eCI)

Montréal 354 764 17.6 (1.3–29.2) 16.3 (13.8–18.8)
19.1 (11.2–23.2)

Québec 73 199 14.4 (−1.4–26.6) 8.0 (8.0–20.0)
14.3 (10.3–16.3)

Figure 2.  Estimated attributable fractions (AF) for each year, area and percentile (top), and the average of the same year March to May AMO (bottom). Grey 
areas indicate periods when both AF and AMO peak.

http://links.lww.com/EE/A184
http://links.lww.com/EE/A184
http://links.lww.com/EE/A184
http://links.lww.com/EE/A184
http://links.lww.com/EE/A184
http://links.lww.com/EE/A184
http://links.lww.com/EE/A184
http://links.lww.com/EE/A184
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zero afterward, with negative values during winter of the previous 
year. Therefore, a low AMO value in winter and spring is often 
followed by an important AMO value in winter and spring of the 
following year and then higher than usual heat-related mortality 
in summer. This is visually confirmed in Figure 2 which shows 
a similar pattern between AFs and the average of the same year 
January to May AMO. Figure  3 also indicates a higher ampli-
tude of scaled β�j .()  for when AFs are defined with the MMT in 
Montréal. This suggests a link between the AMO and the overall 
heat-related mortality, not only with the most extreme heat waves.

Table  2 indicates the cross-validated R2 statistic for each 
model. The prediction of AF is better in Québec than in Montréal 
with R2 values decreasing from 21.8% for MMT-related AF to 
2.0 % for the 99th percentile AF for Montréal and decreasing 
from 51.9% to 14.5% for Québec. These numbers are higher in 
Québec because of the important decreasing trends of AF that 
are mainly predicted by the time component while the AMO 
predicts the year-to-year variations.

Discussion
In the present work, we predicted summer heat-related mortal-
ity in two MAs of the province of Québec using climate indices. 
Results indicated that a non-negligible part of heat-related mor-
tality can be well predicted by the AMO index, especially its 
values in the late winter and spring of the same year. Predictions 
are also better for the whole heat-related AF than for the most 
extreme cases. These results suggest that monitoring the AMO is 
relevant for public health authorities in the province of Québec 
to anticipate and adjust emergency preparedness for heat-re-
lated mortality on an annual basis.

The AMO index measures north-Atlantic sea surface tempera-
tures, which shows an important impact on the North American 
weather.37,38 For instance, positive (warmer) AMO phases are 

associated with a decrease in rainfalls as well as an increase 
in droughts in the United States.39 In the province of Québec, 
AMO has been associated with generally hotter summers,24 as 
well as longer and warmer heat spells.11 Therefore, it is natural 
that AMO is partly predictive of heat-related mortality.

AMO is predictive of heat-related mortality in both Montréal 
and Québec, despite strong geographical and adaptation trends 
disparities between the two cities. Indeed, the MMT differs by 
approximately 6°C which confirms previous works indicat-
ing higher risks for similar temperature in Québec compared 
to Montréal.40 A variety of factors can explain this difference, 
including generally lower temperatures in Québec, a less pro-
nounced urban heat island effect being a more spread and less 
dense city, as well as closer proximity to the Atlantic Ocean.41 
First-stage results also indicate a decreasing heat-related risk 
during the study period, which is in line with previous results in 
Québec42 and across the world.26

Results suggest that AMO is not only predictive of extreme 
heat waves-related mortality but of the whole heat-related 
mortality. Indeed, in Québec, the whole temperature distribu-
tion seems correlated to climate teleconnections.24 Besides, the 
number of extreme events is still low over less than forty years 

Figure 3.  Scaled functional coefficients β�j .()  with their 95% confidence intervals in Montréal and Québec for all heat definitions. The curves span 16 months 
lag from the beginning of summer (lag 0) on the left to January of the previous year on the right (lag 16).

Table 2.

Cross-validated R2 (standard deviation) expressed in percentage 
for each second-stage model.

Percentile defining heat Montréal Québec

MMT 20.1 (1.9) 51.8 (0.8)
95th 1.8 (0.4) 21.5 (2.7)
97.5th 2.0 (0.5) 26.0 (4.7)
99th 2.0 (0.4) 13.2 (1.7)
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of data, meaningless data to properly train predictive models. 
Therefore, further research is needed to be able to predict the 
deadliest heatwave events.

The main strength of this work is the statistical methodol-
ogy that uses state-of-the-art approaches in both stages. First, 
heat AFs are estimated by time-varying distributed lag nonlin-
ear models, a methodology recently used to highlight long-term 
adaption phenomena across the world.4,26 Second, the associa-
tions between climate indices and heat AF are estimated through 
functional regression, an increasingly popular methodology in 
many fields. It has been considered a few times in epidemiology,43 
including environmental epidemiology,44,45 as well as in climatic 
studies to forecast temperature.46 Its efficient use of intrinsically 
continuous variables allows the inclusion of monthly records of 
climate indices, without the need to remove the highest frequen-
cies and select specific months beforehand as was done before.18,24

The present work shows several shortcomings, due to the 
complexity of climate and health relationships. The number of 
years considered is still low to fully apprehend the impact of 
teleconnections on heat-related health, especially for the most 
extreme events. Indeed, many teleconnections represented by the 
considered climate indices present low-frequency patterns that 
cannot be fully captured by only 38 years of data. For instance, 
one of the main periodicities of AMO is several decades long 
and this mode is not captured by our dataset, although the 
smaller scale oscillations of AMO predict well heat-related mor-
tality. In addition, the second stage model is fitted with only 38 
individual records, preventing the fitting of very complex mod-
els with several indices and potential interactions. Therefore, 
studies relating large-scale climate patterns and heat may gain 
strength as data accumulates in the upcoming years.

The second shortcoming, as suggested by the prediction criteria 
computed here, is that many factors that drive the variation in 
heat-related mortality could not be accounted for in this study. 
These include the prevalence of air conditioning6 or the introduc-
tion of early heat-health warnings in the province of Québec.47,48 
In addition, the already complex time-varying DLNM fitted in this 
work does not capture short-term variations in the heat-related 
risk such as seasonal adaptation, that could alter the true AF.49

More research is needed to better understand how climatic 
teleconnections can predict heat-related mortality and how to effi-
ciently integrate such information in heat-wave warning systems. 
This includes studies with much longer time series of mortality 
and temperature. As the present work focuses on the province of 
Québec, it is important to replicate it in locations with different 
climates in which other climatic indices will be better predictors 
of heat-related mortality. In addition, the present work focuses on 
all-cause mortality and specific mortality causes could be best pre-
dicted by teleconnections. Finally, the present work could also be 
extended to cold-related mortality, as winter extreme cold and pre-
cipitations are also widely linked to the different climatic patterns.50

The main conclusion of the present work is the possibility to 
predict summer heat-related mortality using climate indices rep-
resenting large-scale teleconnections. For the specific case of the 
Québec province, it was found that the best index for this task 
is the AMO. This information can help inform public health sea-
sonal heat action plans.
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