A cold-health watch and warning system, application to the province of Quebec

Bixun Yan^{1*}, Fateh Chebana¹, Pierre Masselot¹, Céline Campagna^{1,2}, Pierre Gosselin^{1,2}, Taha B.M.J. Ouarda¹, Éric Lavigne^{3,4}

¹Instiut National de la Recherche Scientifique, Centre Eau-Terre-Environnement, Québec, Canada ²Institut National de Santé Publique du Québec, Québec, Canada

³School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada

⁴Air Health Science Division, Health Canada, Ottawa, Canada

*bixun.yan@ete.inrs.ca

Background & Objective

INRS

Université d'avant-garde

- Extreme cold weather has serious impacts on human life and health.
- Almost no studies focused on cold warning systems to prevent those health effects.
- Nordic regions, winter mortality is generally higher than the rest of the year such as in the province of Quebec in Canada.

RSS clustering :

Step 1: lag for cold indicators

• **Objective**: establish a watch and warning system specifically for health impacts of cold, applied to different climatic regions of the province of Quebec.

Data

- Location: 16 heal regions (denoted RSS) of Québec.
- **Period:** December to March, 1994-2015
- Weather variables: daily temperatures (max, min, mean), wind speed (max, min, mean) and vapor pressure.
- Health variables: daily all-cause mortality and the daily all-cause hospitalization data for each RSSs.

Fig. 1 a Grouping of the 16 RSSs of the province of Quebec for the winter period. **b** Quebec climatic map based on the average temperature of 1981-2010 (winter period only)

The final clustering (Fig. 1a) is geographically homogeneous and shows good agreement with the climatic map (Figure 1b)

Fig. 2 a) DLNM surfaces between Tmax and mortality. b) DLNM surfaces between Tmin and mortality. Lag-response relationships between daily mortality and *Tmax* (c) and *Tmin* (d) for winter period of class 1, at *Tmax*=-12 °C / *Tmin*=-23 °C, grey bars show 95% CI. A lag of L=4 is chosen for Tmax and Tmin

Step 2-3: calculate OH series and determine cold related historical episodes

Results

Fig. 3 Total exceedance function and the cold-related exceedance function. For mortality data and for class 1.

Fig. 4: Temperature series and OH (mortality) series for class 1. a) *Tmax* series and preliminary threshold. **b)** *Tmin* series and preliminary threshold. c) OH series and the detected episodes with OHT=25%.

Considered mthods

hierarchical RSS clustering: use a agglomerative clustering (HAC) on the daily climatic variables of the 16 RSSs of Quebec.

Cold warning system

The objective is to estimate temperature indicators and thresholds for each class of RSS. The considered method contains four main steps:

1. Choose appropriate lags for cold indicators, by a distributed lag non-linear model (DLNM). The cold indicators are define as $S_t = \sum_{l=0}^{L} \alpha_l X_{t-l}$, where X_t are the forecast temperatures of *Tmax* and *Tmin* at day t, and α_l are the weightings such that:

$$\alpha_i \ge \alpha_j, for \ i < j < L$$

$$\sum_{k=1}^{L} \alpha_k = 1$$

 \sim

Step 4: final indicators and corresponding thresholds

	RSS	Nom RSS	Episodes #	Optimal weight		Throsholds (°C)	Soncitivity (%)	EA (par year)
				a0	a1	Thresholds (C)	Sensitivity (70)	rA (par year)
ass 1	5	Estrie	Л	0.5	0.5	(-15 -23)	100	0.68
	6	Montréal		0.5	0.5	(15, 25)	100	0.00
	13	Laval	5	1	0	(-14 -24)	100	0.75
	16	Montérégie		-	Ŭ	(14,24)	100	0.75
ass 2	3	Capitale-Nationale						
	4	Mauricie	4	0.5	0.5	(-16,-28)	100	0.68
	7	Outaouais						
	12	Chaudière-Appalaches						
	14	Lanaudière	7	0.7	0.3	(-13,-26)	100	1.10
	15	Laurentides						
ass 3	2	Saguenay	5	0.7	0.3	(-20,-29)	67	1.05
	8	Abitibi	6	0.7	03	(-17 -30)	100	1 30
	10	Nord-du-Québec	Ŭ	0.7	0.5	(17, 30)	100	1.50
ass 4	1	Bas-Saint-Laurent	4	0.5	0.5	(-15,-23)	100	1.27
	9	Côte-Nord	5	1	0	(-12 -22)	100	1 95
	11	Gaspésie	5	-	U	(13,-23)	100	1.55

Tab. 1 Results of optimal indicator weightings and thresholds for classes 2-4. Results of mortality data showed in orange color.

2. Compute the over-health (OH, includes) over-mortality and over-hospitalization) series from the daily mortality and hospitalization: $OH_t = \frac{OD_t - ExpD_t}{ExpD_t} * 100$ (%). Determine the threshold of OH (OHT).

3. Determine the cold-related historical episodes of OH

4. Choose the appropriate indicators and corresponding thresholds, sensitivity and false alarms (FA) are used to evaluate the performance of results.

- For over-mortality, the final health-related thresholds proposed are between (-15 °C, -23 °C) and (-20 °C, -29 °C) according to the climatic region

Conclusion

- For over-hospitalisation, the fina thresholds proposed are between (-13 °C, -23 °C) and (-17 °C, -30 °C).
- The results suggest that the current system model has a high sensitivity and an acceptable number of false alarms.
- This could also help the public health authority to establish the cold-health watch and warning system with valid indicators and thresholds for each climatic region of Quebec.
- It can be seen as a complementary system to the existing one for heat warnings, in order to help the public health authorities to be well prepared during an extreme cold event.

Further informations : Yan et al. 2020, A cold-health watch and warning system, applied to the province of Quebec (Canada)