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Abstract 25 

Regional Frequency Analysis (RFA) relies on a wide range of physiographical and 26 

meteorological variables to estimate hydrological quantiles at ungauged sites. However, 27 

additional catchment characteristics related to its drainage network are not yet fully 28 

understood and integrated in RFA procedures. The aim of the present paper is to propose 29 

the integration of several physiographical variables characterizing the drainage network 30 

systems in RFA, and to evaluate their added value in predicting quantiles at ungauged 31 

sites. The proposed extended dataset (EXTD) includes several variables characterising 32 

drainage network characteristics. To evaluate the new variables, a number of commonly 33 

used RFA approaches are applied to the extended data representing 151 stations in 34 

Quebec (Canada) and compared to a standard dataset (STA) that excludes the new 35 

variables. The considered RFA approaches include the combination of two neighborhood 36 

methods namely the canonical correlation analysis (CCA) and the region of influence 37 

(ROI) with two regional estimation (RE) models which are the log-linear regression 38 

model (LLRM) and the generalized additive model (GAM). The RE models are also 39 

applied without the hydrological neighborhood. Results show that regional models using 40 

the extended dataset lead to significantly better flood quantile predictions, especially for 41 

large basins. Indeed, the variable selection performed with EXTD consistently includes 42 

some of the new variables, in particular the drainage density, the stream length ratio, and 43 

the ruggedness number. Two other new variables are also identified and included in the 44 

DHR step: the circularity ratio and the texture ratio. This leads to better predictions with 45 

relative errors about 29% for EXTD, versus around 42% for STA in the case of the best 46 
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combination of RFA approaches. Thus, the proposed new variables allow for a better 47 

representation of the physical dynamics within the watersheds. 48 

Keywords : Drainage network characteristics; Ungauged basin; Canonical correlation 49 

analysis; Region of influence; Generalized Additive Model, Regional frequency analysis.  50 
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Abbreviations 65 

BH Basin relief  
BIAS Mean bias  
CCA Canonical correlation analysis  
DD Drainage density  
DDBZ Mean annual degree days below 0 °C  
DEM Digital elevation model 
DHR Delineation of homogenous regions 
Edf Estimated smooth degree of freedom 
EXTD Extended dataset  
FS Stream frequency  
GAM Generalized additive model  
IF Infiltration number  
LATC Latitude of the centroid of the basin  
LLRM Log-linear regression model  
LONGC Longitude of the centroid of the basin  
LU Stream length 
MALP  Mean annual liquid precipitation 
MASP Mean annual solid precipitation 
MATP Mean annual total precipitation  
MBS Mean basin slope 
MCL  Main channel length 
MRB Mean bifurcation ratio   
MRL Mean stream length ratio  
NASH Nash efficiency criterion 

NHN  National Hydro Network 
PFOR Percentage of the area occupied by forest 
PLAKE Percentage of the area occupied by lakes  
PL1 Percentage of first-order stream lengths  
PN1 Percentage of first-order streams  
QST Specific quantile associated to the return period T   
QT At-site flood quantile corresponding to return period T   
R2 Coefficient of determination 
RB Bifurcation ratio  
RBIAS Relative mean bias  
RC Circularity ratio  
RE Regional estimation 
RFA Regional frequency analysis 
RL Stream length ratio  
RMSE Root-mean-square error  
RN Ruggedness number  
ROI Region of influence  
RRMSE Relative root-mean-square error  
RT Texture ratio 
STA Standard dataset 
U Stream order 
Var Explanatory variable 
WMRB Weighted mean bifurcation ratio  
ρ RHO coefficient  
ρWMRB RHO WMRB coefficient   

 66 
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1. Introduction  67 

Regional frequency analysis (RFA) procedures are commonly used in hydrology to 68 

estimate flood and low-flow quantiles at sites where little or no hydrological data is 69 

available. Generally, RFA includes two main steps: delineation of homogenous regions 70 

(DHR) and regional estimation (RE) (e.g. Chebana et al. 2014; Chebana and Ouarda 71 

2007; Ouarda 2016). In this context, climatic, morphometric and physiographic 72 

characteristics of the watershed are widely used to describe geomorphic processes (e.g. 73 

Baumgardner 1987; Hadley and Schumm 1961; Marchi and Dalla Fontana 2005; 74 

Tramblay et al. 2010) in order to predict hydrological variables using RFA approaches 75 

(e.g. Dawson et al. 2006; Dodangeh et al. 2014; Goswami et al. 2007; Seidou et al. 2006; 76 

Tsakiris et al. 2011). 77 

A number of physio-meteorological variables, such as basin area, basin slope, 78 

precipitation characteristics and land occupation are commonly used in the field of 79 

hydrology and more precisely in the RFA procedures. They are considered as the most 80 

relevant variables for these studies based on their high correlation with the hydrological 81 

variables (Chokmani and Ouarda 2004). In addition to the commonly considered 82 

variables (a more exhaustive list is in Table 1), drainage network characteristics (Jung et 83 

al. 2017) and tectonic setting (e.g. Ahmadi et al. 2006; Hamed et al. 2014) may have a 84 

strong impacts on hydrological dynamics, and are consequently related to flood quantiles. 85 

However, they are not yet well investigated and integrated in RFA studies. Indeed, the 86 

assessment of morphometric and physiographic variables requires the analysis of a 87 

number of stream characteristics (e.g. ordering of the streams, bifurcation ratio, texture 88 

ratio, stream length ratio, etc.). These variables characterize the basin shape as well as the 89 
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drainage system, and can be useful to model the hydrological dynamics. Youssef et al. 90 

(2011) also indicated that the circularity ratio, number of orders and drainage density 91 

have a direct impact on the hydrological risk. Hence, the integration of these variables in 92 

the procedures for the regionalization of extreme hydrological events may contribute to 93 

the enhancement of RFA results. Variables related to drainage network systems are 94 

already used in several morphometric and hydrologic studies (e.g. Ameri et al. 2018; 95 

Biswas et al. 1999; Kaliraj et al. 2015; Pareta and Pareta 2011; Rai et al. 2017; Ratnam et 96 

al. 2005; Reddy et al. 2004; Sivasena Reddy and Janga Reddy 2013; Vijith and Satheesh 97 

2006; Youssef et al. 2011) and they can eventually be useful in regionalization studies. 98 

These variables can be extracted based on classical approaches such as topographic maps 99 

and field examination or with advanced techniques using remote sensing and Digital 100 

Elevation Models (DEM). Remote sensing techniques coupled with the potential of GIS 101 

tools are increasingly popular. Indeed, they make it possible to calculate the various 102 

characteristics of the basin very quickly and more efficiently based on a DEM which is 103 

not possible in the past. 104 

During the last decades, the focus in RFA has been mainly on the development of 105 

new delineation and estimation methods (e.g. Durocher et al. 2015; Ouali et al. 2016; 106 

Wazneh et al. 2016). Meanwhile, the list of physiographical and meteorological variables 107 

used as predictors has seen little evolution. In the present study, a number of commonly 108 

used RFA approaches are applied to test and evaluate the potential improvements that 109 

may result from the adoption of new physiographic variables. 110 

The objective of this work is to propose the use of new physiographical variables 111 

related to the basin shape and drainage network and argue about their usefulness. To 112 
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evaluate their added value for quantile prediction in RFA, they are computed and used for 113 

a set of 151 basins in Quebec (Canada). More specifically, the objective is to use both the 114 

standard and extended databases to predict quantiles associated to several return periods, 115 

and compare their prediction performances. In this work, standard RFA methods are 116 

considered for quantile prediction, namely Canonical correlation analysis (CCA) (Ouarda 117 

et al. 2000) and the region of influence (ROI) (Burn 1990) for DHR, including a case 118 

with no DHR, as well as the log-linear regression model (LLRM) and the generalized 119 

additive model (GAM) (Hastie 1986) for RE. 120 

 The present paper is structured as follows: Section 2 offers a review of the new 121 

physiographic and morphometric variables proposed in this work by detailing their 122 

characteristics. Section 3 briefly presents the theoretical background of the CCA and the 123 

ROI approaches for the delineation of neighborhoods and the LLRM and the GAM for 124 

the regional estimation. The adopted methodology and the developed regional models are 125 

detailed in section 4. Section 5 describes the study area and the used datasets. The results 126 

are presented and discussed in section 6, and the conclusions of the work are summarized 127 

in the last section. 128 

2. Variables characterizing drainage networks 129 

Drainage network characteristics and evolution depend closely on the prevailing 130 

climatic, physiographic, and topographic conditions of the basin (Jung et al. 2015). These 131 

conditions determine the drainage network configuration which, in turn, can affect the 132 

hydrological response of the watershed (Howard 1990), and consequently hydrological 133 

quantile estimation. The new physiographical variables considered in this work are 134 
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presented herein. Table 2 summarizes the definitions and standard mathematical 135 

equations used to determine these variables. 136 

2.1  Stream order (U)  137 

The stream order of a basin is the highest stream order within the basin, where an 138 

order one is a stream starting at the source. A number of stream ordering systems are 139 

available in the hydrological literature. The simplest and most used one is the Strahler 140 

system originally introduced by Horton (1945) and then modified by Strahler (1952). 141 

This method is based on a hierarchical ranking of streams. When two first order streams 142 

join, an order two is formed and so on. Several researchers have directly correlated the 143 

stream order with stream flow (e.g. Blyth and Rodda 1973; Stall and Fok 1967). Blyth 144 

and Rodda (1973) also observed that during dry periods, first-order streams present less 145 

than 20% of the total length of the drainage network. At the maximum development of 146 

the drainage network, the total length of first-order streams constitutes over 50% of the 147 

total basin stream length. Thus, stream order frequency, especially the frequency of the 148 

first-order streams, may be well correlated with the hydrological response of the 149 

watershed.  150 

2.2 Texture ratio (RT)  151 

The texture ratio (RT) allows characterizing the basin drainage texture and is one of 152 

the most important factors in the drainage morphometric analysis due to its high 153 

relationship with the underlying lithology, the infiltration ability and the topographic 154 

characteristics of the terrain (Schumm 1956). High RT levels indicate the presence of soft 155 
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rocks with high sensitivity to erosion (Ameri et al. 2018), and consequently a high and 156 

speedy surface runoff.  157 

2.3 Circularity ratio (RC)  158 

The circularity ratio (RC) is defined as the ratio between the areas of a catchment to 159 

the area of the circle having the same perimeter of the catchment. It is an important 160 

variable that helps characterize the basin shape. It is affected by the length and frequency 161 

of streams, geological structures, land use and cover, and the slope of the catchment (Dar 162 

et al. 2014; Vijith and Satheesh 2006). RC values range between 0 and 1. Basins with RC 163 

values close to 1 are characterized by circular form and a low concentration time and then 164 

a high peak flow. Low RC values are associated with strongly elongated basins and with 165 

lower runoff. 166 

2.4 Stream length ratio (RL) 167 

The stream length ratio (RL) was defined by Horton (1945) as the ratio between the 168 

mean length of the streams of a given order and the next lower order. It is based on 169 

Horton's law (1945) of stream length that indicates the existence of a direct geometric 170 

relationship between the mean length of the streams of a given order and the next lower 171 

order. The RL between successive stream orders changes under the effect of the 172 

topographic and slope variability, and has a significant relationship with surface runoff 173 

and the erosional stage of the watershed (Sreedevi et al. 2005).  174 

2.5 Mean bifurcation ratio (MRB) and weighted mean bifurcation ratio (WMRB) 175 
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The bifurcation ratio (RB) is defined as the ratio between the stream’s number of a 176 

given order and those of the next-higher order in a drainage network. It permits the 177 

characterization of the impacts of the geological structures on the drainage network. 178 

Strahler (1957) indicated that the RB shows a slight range of variation for different 179 

regions except where the impact of the geological control is important. Chow (1964), 180 

Strahler (1964) and Verstappen (1983) indicated that, in general, the geological structures 181 

have a negligible impact on drainage networks, if the mean bifurcation ratio (MRB) of the 182 

watershed is comprised between 3 and 5. A higher value of this variable indicates a sort 183 

of geological control (Agarwal 1998). This variable can also characterize the watershed’s 184 

shape. A high RB value is, generally, associated with an elongated basin, while a low RB 185 

value is likely to be associated with a circular basin (Gajbhiye 2015; Taofik et al. 2017). 186 

Strahler (1953) proposed a more representative bifurcation number measure, called 187 

weighted mean bifurcation ratio (WMRB). It consists in multiplying the ordinary RB 188 

identified for each successive order by the total number of streams involved in the ratio 189 

and subsequently taking the mean of these values. Schumm (1956) used this approach to 190 

determine the WMRB of the drainage system of the Perth Amboy (N.J). Pareta and Pareta 191 

(2011) and Bajabaa et al. (2014) also used this variable in hydrologic and morphometric 192 

analysis studies.  193 

2.6 RHO coefficient (ρ) 194 

The RHO coefficient (ρ) is defined as the ratio between the RL and the RB of the 195 

watershed. It characterizes the relationship between the physiographic development of 196 

the watershed and the drainage density, and permits the assessment of the storage 197 
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capacity of the drainage network (Horton 1945). This variable is affected by several 198 

climatic, geologic, biologic, geomorphologic and anthropogenic factors (Mesa 2006).  199 

2.7 Drainage density (DD)  200 

The drainage density (DD) was introduced by Horton (1932) in the hydrological 201 

literature as the total length of stream networks per unit area. DD express the closeness of 202 

the spacing of streams, and provides a quantitative measurement of landscape dissection 203 

and runoff potential (Magesh et al. 2011). It is a result of interacting factors controlling 204 

the surface runoff such as, the infiltration capacity, the climatic conditions and the 205 

vegetation cover of the watershed (Máčka 2001; Patton 1988; Reddy et al. 2004; 206 

Verstappen 1983). 207 

2.8 Stream frequency (FS) 208 

The stream frequency (FS) is the number of stream segments of all orders per unit 209 

area (Horton 1932; Horton 1945). It depends on the rock characteristics, infiltration 210 

capacity, vegetation cover, relief, amount of rainfall and subsurface permeability (Hajam 211 

et al. 2013), and reflects the texture of the drainage network (Magesh et al. 2011). In 212 

general, a high FS is associated with impermeable subsurface, sparse vegetation, high 213 

relief conditions and low infiltration capacity (Reddy et al. 2004; Shaban et al. 2005).  214 

2.9 Infiltration number (IF)  215 

The infiltration number (IF) is defined by Faniran (1968) as the product of the DD 216 

and the FS. It allows the characterization of the watershed infiltration capacity (Hajam et 217 

al. 2013). This variable is inversely proportional to the infiltration capacity of the basin. 218 
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The higher the IF values, the lower will be the infiltration and the higher will be the 219 

runoff (Pareta and Pareta 2011).  220 

2.10  Ruggedness number (RN) 221 

The ruggedness number (RN) is often used to evaluate the flood potential of 222 

streams (Patton and Baker 1976) and it usually combines the impact of slope steepness 223 

with its length (Strahler 1964). This variable allows describing the structural complexity 224 

of the terrain. Watersheds characterized by high RN values are highly subject to erosion 225 

and therefore susceptible to an increased peak flow (Sreedevi et al. 2013).  226 

3. Theoretical background   227 

In this section, we briefly present the statistical approaches adopted in the present 228 

work. We define a RFA model as a two-step procedure beginning with a neighborhood 229 

identification method and then performing regional estimation. We hereby consider two 230 

different methods for each step, which are described below. 231 

3.1 Delineation of homogeneous regions 232 

3.1.1 Canonical correlation analysis (CCA)  233 

CCA method is detailed in Ouarda et al. (2001) in the context of RFA, and 234 

commonly used in this context to identify group of basins having the same hydrological 235 

response. This method consists of space reduction by establishing pairs of canonical 236 

variables based on a linear transformation of two groups of random variables. Let two 237 

sets of random variables X=(X1, X2,…,Xm) and Y=(Y1, Y2,…,Y𝑛𝑛) containing, 238 

respectively, the m physio-meteorological variables and the n hydrological variables of N 239 
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gauged sites. Based on these variables, the linear combinations Vi and Zi of the variables 240 

X and Y and the canonical correlation coefficients λ1, …, λp (with λi = corr (Vi , Zi)) can 241 

be computed. 242 

Using the CCA method, the considered basins can be represented as points in a spaces of 243 

the uncorrelated canonical variables (Vi , Zj); where i≠ j. Then, it will be possible to 244 

examine the similarity of the point patterns in these spaces, i.e., the ability of the physio-245 

meteorological canonical variables to predict the hydrological variables. The point 246 

patterns that are sufficiently similar are associated with sub-group of basins that belongs 247 

to the same statistical population and vice versa. The similarity between the basins are 248 

measured based on a Mahalanobis distance. 249 

3.1.2 Region of influence (ROI)  250 

As the CCA, the ROI method (Burn 1990) allows the identification of a 251 

hydrological neighborhood for a given target-site based on a Euclidean distance, 252 

generally a weighted Euclidean distance. This distance determines the similarity of 253 

watersheds in a multidimensional space of physio-meteorological variables. A more 254 

detailed description of the approach can be found for example in Burn (1990) and 255 

GREHYS (1996). 256 

3.2 Regional estimation approaches 257 

3.2.1 Linear Regression Model  258 

The linear regression model or the log-linear regression model (LLRM) is commonly 259 

used to  find a linear relationship between the hydrological variable (such as the flood 260 

quantile QT corresponding to a return period T) and the physio-meteorological 261 
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characteristics of a watershed (X1, X2, …, Xm), and it is defined as (e.g. Girard et al. 262 

2004; Pandey and Nguyen 1999) :  263 

log (E(Y/X))= β 0+� βj

m

j=1

log (Xj )+ ε 

 

(1) 

where X is a matrix whose columns correspond to a set of m explanatory variables, β0 264 

and βj are unknown parameters to be estimated using the least-square method (Pandey and 265 

Nguyen 1999) and ε is the model error.  266 

3.2.2 Generalized Additive Model  267 

GAM was developed by Hastie and Tibshirani (1986). It is an extension of the 268 

generalized linear model (GLM). This model allows for a response distribution other than 269 

Gaussian and for a non-linear relationship between response and explanatory variables 270 

through smooth functions (Hastie 1986; Wood 2006), which may lead to a more close 271 

description of the hydrological processes involved. The GAM formula is given by Wood 272 

(2006):  273 

g (E(Y/X))= β0 + �Sj

m

j=1

(Xj)+ ε 
  

(2) 

where g is a monotonic link function and Sj are smooth functions of explanatory 274 

variables Xj.  275 
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The estimation of the smooth functions Sj is carried out using splines, which are 276 

piecewise polynomial functions linked at points named knots. Generally, the smooth 277 

functions Sj are defined as follows:  278 

 Sj(x)= � βji

q

i=1

bji(x) 

  

(3) 

where βji are unknown parameters and bji are the spline basis functions. 279 

4. Methodology 280 

4.1 Regional models 281 

In this study, we apply all combinations of the two DHR methods (CCA, ROI) in 282 

conjunction with the RE models (LLRM and GAM) presented in section 3. The RE 283 

models are also considered with all stations (i.e. without defining any neighborhood). 284 

This result in six possible combinations for each dataset (STA and EXTD). Thus, the 285 

following regionalization approaches are evaluated (Fig.1):  286 

• ALL/LLRM (STA and EXTD): LLRM used without neighborhoods (all stations) and 287 

with variables selected from the STA and the EXTD datasets using the backward 288 

stepwise procedure. 289 

• ALL/GAM (STA and EXTD): GAM used without neighborhoods (all stations) and 290 

with variables selected from the STA and the EXTD datasets using the backward 291 

stepwise procedure. 292 

• CCA/LLRM (STA and EXTD): LLRM used with neighborhoods identified by the 293 

CCA method and with variables selected from the STA and the EXTD datasets using 294 

the backward stepwise procedure. 295 
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• CCA/GAM (STA and EXTD): GAM used with neighborhoods identified by the CCA 296 

method and with variables selected from the STA and the EXTD datasets using the 297 

backward stepwise procedure. 298 

• ROI/LLRM (STA and EXTD): LLRM used with neighborhoods identified by the ROI 299 

method and with variables selected from the STA and the EXTD datasets using the 300 

backward stepwise procedure. 301 

• ROI/GAM (STA and EXTD): GAM used with neighborhoods identified by the ROI 302 

method and with variables selected from the STA and the EXTD datasets using the 303 

backward stepwise procedure 304 

The CCA and ROI methods are used in the DHR considering two different sets of 305 

physio-meteorological variables. The first group includes variables from the STA dataset,  306 

namely the area (AREA), mean basin slope (MBS), percentage of the area occupied by 307 

lakes (PLAKE), mean annual total precipitation (MATP), mean annual degree days 308 

below 0 °C (DDBZ) and the longitude of the centroid of the catchment (LONGC). The 309 

second one comprises variables from the EXTD dataset, which are PLAKE, MATP, 310 

DDBZ, LONGC, RT and RC. The selection of these variables is carried out based on their 311 

correlation level with the hydrological variables (Table 3) as the principle of the CCA is 312 

based on correlations. For the aim of simplicity and to be consistent with the CCA, 313 

variables selected for the ROI are also based on correlation levels. 314 

The classical procedures of ROI and CCA lead to neighbourhoods with highly 315 

variable sample sizes from a target site to another. Indeed, considering a given threshold 316 

value, sites located near the centre of the cloud of points determined by the Euclidean 317 

space for ROI and the canonical space for CCA are expected to include more sites within 318 
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their neighbourhoods than sites located on the edge of the cloud of points (Leclerc and 319 

Ouarda 2007). Since the accuracy of the estimates obtained by regression models is 320 

sensible to the sample size, it was decided to fix the neighbourhood size for all target 321 

stations. This size is chosen with a standard jackknife procedure and optimized using the 322 

optimization procedure of Ouarda et al. (2001) developed in the Matlab environment. 323 

LLRM and GAM are used in this study as RE models. GAM was developed based 324 

on the R package mgcv (Wood 2006). In this work, the thin plate regression spline is 325 

considered as basis bji (.) in the smoothing function Sj(. ) in equation (3). This basis 326 

function is considered due to its advantages. The thin plate regression spline is 327 

characterized by its reduced calculation time, its flexibility and it comprises a lower 328 

number of parameters compared to other smoothing functions (Wood 2006). The 329 

considered link function g in (2) is the identity function since the log-transformed 330 

quantiles are approximately normal (as in Ouali et al. (2017)). 331 

4.2 Selection of explanatory variables 332 

Variable selection procedure is different for the two RFA steps; a correlation-based 333 

selection is considered for DHR and a stepwise method is used for RE as a standard 334 

approach in the RFA studies.  Based on correlation level between physio-meteorological 335 

variables and hydrological variables (Table3), six variables are identified for DHR (see 336 

above).  337 

For the RE step, four variable selection methods are firstly tested namely forward, 338 

backward, stepwise and shrinkage approaches (Heinze et al. 2018) in this study. Table 4 339 

presents the results obtained from each variable selection approach applied for QS10 that 340 



18 
 

can be considered as the most reliable quantile. It can be seen that, regardless of the 341 

considered selection method, several new variables are selected in the final model. This 342 

suggests that new variables in the EXTD are potentially useful for RFA. 343 

To evaluate whether the new variables are predictive of target quantiles, the 344 

backward stepwise selection procedure is adopted for both LLRM and GAM. It has 345 

already been successfully applied previously with the same dataset (STA) and in the 346 

same context by Chebana et al. (2014), Ouarda et al. (2018) and more recently by Msilini 347 

et al. (2020). Backward stepwise selection procedure consists in a progressive elimination 348 

of variables having the highest p value (based on the hypothesis that the coefficients in 349 

equation (1) for LLRM or the smooth terms in equation (3) for GAM are null) from an 350 

initial model comprising all available variables. The procedure stops when the number of 351 

variables remaining in the model drops below a specific number (Fig.2). This number is 352 

chosen as the one minimizing the RRMSE estimated by jackknife.  353 

4.3 Models validation 354 

For each RFA model, a jackknife procedure (also called leave one-out cross 355 

validation procedure) is used to evaluate its performance. It consists in considering, in 356 

turn, each gauged site as an ungauged one and comparing thereafter the regional estimate 357 

to the observed value. This comparison is performed through several criteria:  first, the 358 

Nash criterion (NASH) gives an evaluation of the degree of adequacy and a global 359 

assessment of the prediction quality. Second, the root mean squared error (RMSE) 360 

provides information about the accuracy of the prediction in an absolute scale, and the 361 

relative RMSE (RRMSE) removes the impact of each site’s order of magnitude from the 362 
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RMSE values and gives information about the accuracy of the prediction in a relative 363 

scale. Finally, the bias (BIAS) and the relative bias (RBIAS) give a measure of the 364 

magnitude of the systematic overestimation or underestimation of a model. The 365 

formulations of these criteria are given as follows: 366 

Nash: 

NASH =1- 
∑ (yi-y�i)

2N
i=1

∑ (yi-y)2N
i=1

 

 

(4) 

Root-mean-square error : 

RMSE = �
1
N� (yi-y�i)

2
N

i=1

 

 

(5) 

Relative root-mean-square error : 

RRMSE= 100�
1
N� [

(yi-y�i)
yi

]
 2N

i=1

 

 

(6) 

Mean bias : 

BIAS =
1
N� (yi-y�i)

N

i=1

 

 

(7) 

Relative mean bias : 

RBIAS =100 
1
N�

(yi-y�i)
yi

N

i=1

 

 

(8) 

where 𝑦𝑦𝑖𝑖 and 𝑦𝑦�𝑖𝑖 are, respectively, the local and regional quantile estimates at site i,  𝑦𝑦 is 367 

the mean of the local quantile estimates, and N is the number of stations. 368 

5. Case study and datasets 369 
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The data used in this study includes two datasets, the STA and the EXTD, covering 370 

151 stations located in the southern part of Quebec, Canada (Fig. 3). The STA was 371 

considered in previous studies with geographical coordinates of the stations and 372 

commonly used physio-meteorological variables (e.g. Durocher et al. 2015; Shu and 373 

Ouarda 2007; Wazneh et al. 2016). The EXTD dataset combining STA dataset with less 374 

common variables representing drainage network properties. The stations are operated by 375 

the Ministry of Sustainable Development, Environment, and Fight Against Climate 376 

Change. 377 

The considered hydrological variables (𝑌𝑌 in the theoretical background) are at-site 378 

quantiles standardized by the basin area (specific quantiles), denoted by QS10, QS50 and 379 

QS100 with 10, 50 and 100 are the return periods. Descriptive statistics of hydrological 380 

and physio-meteorological variables of the STA (not presented here to avoid repetition) 381 

can be found for example in Durocher et al. (2015). The hydrological variables were 382 

identified in Kouider et al. (2002a) using a local Frequency Analysis in each gauged site. 383 

Data series with at least 15 years of measurement were considered for the analysis. The 384 

basic assumptions of stationarity, homogeneity and independence were verified and the 385 

appropriate statistical distributions were fitted to data. The appropriate probability 386 

distributions identified, are mainly the inverse gamma and Log-Normal with two 387 

parameters. For more details about this study, reader may refer to the report of Kouider et 388 

al. (2002b). The new physiographical variables, considered in the EXTD, are summarized 389 

in Table 5. These variables are identified from drainage networks extracted using the D8 390 

method based on the DEMs (Jenson and Domingue 1988; O'Callaghan and Mark 1984). 391 

This technique is implemented in Arc Gis (Arc Hydro). 392 
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The D8 method is based on a digital elevation model (DEM) which is basically a 393 

grid of elevation values. For each cell, it is considered that water flows in direction of the 394 

steepest slope among the eight neighbors of a given DEM cell. The direction grid can 395 

then be used to estimate flow accumulation which is obtained by summing the weight of 396 

all grid cells following into each downslope cell in the output grid, i.e. simulating the 397 

flow path. Based on the obtained flow accumulation grid, the drainage networks can be 398 

extracted with the stream head locations corresponding to accumulation values below a 399 

constant threshold value (see for instance (Tarboton et al. 1991)).  400 

 In this work, the DEMs were hydrologically corrected based on information from the 401 

National Hydro Network (NHN). This correction was carried out using the DEM 402 

Reconditioning process, which is an implementation of the “AGREE” method. It consists 403 

in adjusting the DEM by imposing linear features as a reference. The reference in this 404 

case is the (NHN).  405 

The used DEMs have a spatial resolution of ~ 20 m grid cells and are obtained from 406 

the Natural Resources Canada database (https://www.nrcan.gc.ca/earth-407 

sciences/geography/topographic-information/download-directory-documentation/17215 ). 408 

Note that, drainage networks of six cross-border watersheds are extracted using the 409 

United States Geological Survey (USGS) data distributed with ~ 30 m grid cells 410 

(https://earthexplorer.usgs.gov/). 411 

CCA requires the normality of all variables. Hence, some variables need to be 412 

transformed. The normality of each variable is visually assessed with a normal 413 

probability plot. This technique plots empirical quantiles versus theoretical Gaussian 414 

https://www.nrcan.gc.ca/earth-sciences/geography/topographic-information/download-directory-documentation/17215
https://www.nrcan.gc.ca/earth-sciences/geography/topographic-information/download-directory-documentation/17215
https://earthexplorer.usgs.gov/
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quantiles and should be approximately linear in the case of actual normality. The 415 

logarithmic transformation is considered for the hydrological variables, AREA, MBS, 416 

MATP, DDBZ and RT, and a square root transformation for PLAKE and RC. The 417 

LONGC is used without transformation since it is approximately normal. 418 

 419 

6. Results and Discussion 420 

A correlation analysis is carried out in order to investigate the relationships 421 

between variables. Table 3 shows the list of the variables selected for the DHR step based 422 

on their high correlation level with the hydrological variables. One can see the existence 423 

of relatively high negative correlations between the hydrological variables and the 424 

AREA, PLAKE, DDBZ and RT. We also note the presence of important positive 425 

correlations between the response variables and the MATP and RC variables. The linear 426 

correlation coefficients between the variable RT, which is one of the most important new 427 

variables, and the specific quantiles QS10 and QS100 are -0.53 and -0.51 respectively. 428 

However, those between the RT variable and the at-site flood quantiles Q10 and Q100 are 429 

0.87 and 0.86 respectively. Positive and high correlation values indicate that the increase 430 

in RT is associated with a relatively fast and high hydrologic response and consequently 431 

an increased risk of erosion. This is consistent with what is stated in Ameri et al. (2018). 432 

The second important new variable in terms of correlation level is the RC characterizing 433 

the basin shape. Higher RC values (close to 1) are associated with circular basins with 434 

low concentration time and high hydrological response hence the positive correlation. 435 
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The identification of the neighborhood requires the determination of the optimal 436 

number of stations to be used in the RE step. To this end, the optimization procedure of 437 

Ouarda et al. (2001) is used. Based on a selected criterion such as RMSE, RRMSE, BIAS 438 

or RBIAS the optimal size of neighborhoods can be identified. The optimal size of the 439 

neighborhoods should be large enough to ensure that RE can be carried out effectively, 440 

but not too large in order to maintain an acceptable degree of homogeneity within the 441 

neighborhoods. In this study, we obtain nopt (STA) = 85 sites and nopt (EXTD) = 78 sites 442 

with respect to the RRMSE, which is the most important criterion (Hosking and Wallis 443 

2005), for the CCA approach. For the ROI method, the obtained optimum sizes are nopt 444 

(STA) = 54 sites and nopt (EXTD) = 44 sites with respect to the same criterion.  445 

The backward stepwise selection method is considered for each quantile (QS10, QS50 446 

and QS100) and for each model (LLRM and GAM). In the present study, the optimal 447 

number of variables in GAM, which is the most complex model, is found to be seven. 448 

Table 6 shows the seven selected variables for each quantile and model combination. We 449 

note the selection of three new variables (RN, MRL and DD).  450 

The jackknife procedure results for all considered combinations are presented in 451 

Table 7. The best overall performances are obtained with the EXTD, especially with 452 

ROI/GAM/EXTD followed by the CCA/GAM/EXTD approaches. Based on the high 453 

NASH values (0.79) and the lowest RRMSE values (29.24 % for QS100), the 454 

ROI/GAM/EXTD combination gives the most precise estimates compared to all other 455 

approaches. According to RBIAS, all models underestimate flood quantiles but the least 456 

biased model is ROI/LLRM/EXTD (-1.38 % for QS100). However, compared to the 457 

ROI/GAM/EXTD approach, the difference is low (around -1.8 % for QS100). 458 
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Note that, GAM applied to EXTD (with and without the neighborhoods) outperforms 459 

LLRM applied to EXTD and STA. This may be explained by the ability of GAM to take 460 

into account the possible nonlinear connections between predictor and response variables, 461 

and also by the important impact of the new variables.  462 

We also notice that the use of the EXTD leads to even more important improvements 463 

when adopting the ROI method compared to the CCA approach. Wazneh et al. (2016) 464 

have also obtained better results with the ROI than with the CCA approach. 465 

To further explain the previous results, the relative errors as a function of the stations 466 

ordered according to their area corresponding to the best combinations (ROI/GAM and 467 

CCA/GAM) are given in Fig. 4 and Fig. 5 respectively. It can be seen that the EXTD 468 

performs well especially for large basins. Indeed, for the large watersheds the relative 469 

errors decrease considerably with the EXTD. This result may also be confirmed by Fig. 6, 470 

where one can note that the lowest specific quantiles, which are usually associated to 471 

sites with large basin areas, are well estimated with the EXTD. A significant 472 

improvement can also be seen for some specific sites that have exceptionally large 473 

relative errors with STA. Four such sites (030401, 030402, 041903 and 042607) were 474 

identified previously by Chokmani and Ouarda (2004), Durocher et al. (2015) and Ouali 475 

et al. (2017) as particular stations with underestimated areas. The integration of more 476 

accurate variables dealing with the drainage network, improves considerably the quantile 477 

estimates corresponding to these sites.  478 

Jackknife estimates using the ROI/GAM and CCA/GAM approaches (for QS100) are 479 

illustrated, respectively, in Fig. 7 and Fig. 8. One can see that these models combined 480 

with the EXTD show better performances compared to the STA. The points associated to 481 
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the scatter diagram of the at-site and regional estimates are less dispersed when using the 482 

EXTD than the STA. In addition, the coefficient of determination R2 values show that the 483 

linearity between the local and the regional specific quantile estimates is better explained 484 

when using the EXTD than the STA.  485 

Results also indicate that sites with high specific quantile values (more than 0.7 486 

m3/s.km2), which are generally associated to small basins with an area less than 800 km², 487 

are underestimated using the two datasets. This may suggest the usefulness of developing 488 

specific regional models for small basins. This result can be explained by the fact that 489 

traditional neighborhood approaches (CCA and ROI) lead to an underestimation for sites 490 

with small basin areas as shown in Wazneh et al.(2016). This may be the cause of the 491 

obtained negative RBIAS values in this work.  492 

Fig. 9 and Fig. 10 present the smooth functions of the response variable log(QS100) as 493 

a function of the STA and the EXTD explanatory variables respectively. We notice that 494 

the variables PLAKE, DDBZ, AREA and DD show a complex nonlinear relationship 495 

(nonlinear smooth function curves and high edf values), while the variables LONGC; 496 

MALP, MCL, MBS and MRL present linear relations. 497 

A particular case of interest from the EXTD that can be observed concerns the 498 

relationship between the hydrological variable and the DD values. One can see that the 499 

higher the DD values are the lower the hydrological response will be. This result is in 500 

contradiction with what is commonly observed in practice (Melton 1957). In fact, the 501 

correlation between the DD variable and specific quantile is negative (-0.11) while the 502 

correlation between flood quantile and the variable DD is positive (0.13). Thus, this 503 
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variable depends on the size of the watershed, for this reason its effect is reversed in this 504 

study case because the specific quantile is used. 505 

We also notice that the MRL and MCL variables are found to be inversely 506 

proportional to the hydrological response. An increase of these variables is associated 507 

with a decrease of the MBS and hence a decrease of the hydrological response.  508 

It can also be seen that the relationship between log(QS100) and PLAKE is decreasing 509 

for the majority of PLAKE values, but increases for the highest values of PLAKE. 510 

However, the number of points is very limited in the high PLAKE range and more effort 511 

will be required to understand the effect of this variable on the flow regime for this range. 512 

In general, lakes act as a sponge absorbing the excess water during extreme events, which 513 

explains the decreasing relationship between log(QS100) and PLAKE. 514 

The LONGC in this study is an indicator of the station proximity to the Atlantic 515 

Ocean and thereafter reflects the influence of the ocean on the local climate. Finally, the 516 

variability in the relationship between the DDBZ values and the hydrological response 517 

may indirectly reflect the seasonality impact of the temperature on the flow regime. The 518 

same patterns were observed previously by Chebana et al. (2014) for the DDBZ and 519 

PLAKE variables. 520 

7. Conclusions 521 

Through a case study in the province of Quebec, the present study shows the 522 

relevancy of considering drainage network characteristics for quantile prediction in RFA. 523 

This result is outlined by the variable importance in RFA models which shows that five 524 
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new variables, namely RT, RC, DD, MRL and RN are found particularly useful for the 525 

specific case of Quebec. Prediction accuracy is also improved using the new variables, 526 

especially when considering small neighbourhoods and nonlinear models as shown by the 527 

superior accuracy of the ROI/GAM/EXTD combination. This result seems also more 528 

important for large basins. 529 

By focusing on the drainage network and basin shape, the new physiographical 530 

variables allow integrating more information about the underlying hydrogeological flows 531 

and thus, indirectly, to make the link between the groundwater and the surface water 532 

flows. This added information allows for a better description of the hydrological 533 

dynamics involved and consequently to better flood quantile estimates.  534 

The present study paves the way for several perspectives. In particular, drainage 535 

network characteristics should be evaluated further in a wider variety of settings 536 

including different climate and catchment geology. The increasing complexity of 537 

databases used in RFA to which this research participate, also outlines the need for 538 

methodological development that allow a more efficient use of this extensive 539 

information, as classical approaches may be limited in this regard. Future research should 540 

thus focus on studying how to take advantage of the interaction between the newly 541 

proposed variables on quantile estimation, as well as the potential nonlinear impact of the 542 

considered variables. 543 

 544 

 545 

 546 
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Table 1 Predictor variables used in a number of previous regionalization studies.  873 

References Country Predictor variables adopted 
(Muttiah et al. 1997) USA Catchment areas, mean annual rainfall, and mean basin elevation. 
 
(Rahman 2005) 

 
Australia 

Catchment area, design rainfall intensity, mean annual rainfall, mean annual rain days, mean annual Class A pan 
evaporation, mainstream slope, lemniscate shape, river bed elevation at the gauging station, maximum elevation 
difference in the basin, stream density, forest cover, and fraction quaternary sediment area. 

 
 
(Dawson et al. 2006) 

   
 
United Kingdom 

Catchment area, base flow index, standard percentage runoff, index of flood attenuation attributable to reservoirs and 
lakes, standard period (1961-1990) average annual rainfall, median annual maximum 1-day rainfall, median annual 
maximum 2-day rainfall, median annual maximum 1-h rainfall, mean Soil Moisture Deficit for 1941–1970, proportion of 
time when Soil Moisture Deficit <6 mm during 1961–1990, longest drainage path, mean distance between each node (on a 
regular 50 m grid) and catchment outlet, mean altitude of catchment above sea level, mean of all inter-nodal slopes in the 
catchment, invariability of slope directions, extent of urban and suburban land cover in 1990. 

(Leclerc and Ouarda 2007) 
 

Canada Catchment area, gauging station latitude, gauging station longitude, mean total winter/spring precipitation, mean 
winter/spring maximum air temperature. 

(Leclerc and Ouarda 2007) USA Catchment area, mean annual rainfall, runoff measured, mainstream slope, main-channel length, forest cover, and storage 
measured as the percent of the catchment area. 

(Griffis and Stedinger 2007)  
Canada 

Catchment area, mean annual rainfall, mean basin slope, the fraction of the basin area covered with lakes and annual mean 
degree days below 0 °C. 

(Shu and Ouarda 2008) 
(Alobaidi et al. 2015) 
(Durocher et al. 2015) 
(Ouali et al. 2016) 
(Wazneh et al. 2016) 

Mexico Drainage area, mean annual precipitation, final altitude of the mainstream and slope of the main stream. 

(Castiglioni et al. 2009) Italy Drainage area, main channel length, the percentage of permeable area, maximum, minimum and mean elevations, average 
elevation relative to the minimum elevations, concentration time, mean annual temperature and mean annual temperature 
precipitation. 

 
 
(Wan Jaafar et al. 2011) 

 
 
England 

Catchment area, longest flow path, basin length, basin perimeter, form factor, average slope, maximum relief, relief ratio, 
drainage density, stream frequency, bifurcation ratio, length of overland flow, land use (agriculture), land use (forest), 
land use (residential), land use (water and wetland), soil type (coarse), soil type (medium), soil type (medium fine), soil 
type (fine), soil type (peat soil) and rainfall. 

(Seckin 2011) Turkey Drainage area, elevation, latitude, longitude and return period. 
(Flavell 2012) Australia Catchment area, mean annual rainfall, mainstream slope, main-channel length, and 12 and 24 h statistical rainfall totals. 
 
(Haddad and Rahman 2012) 

 
Australia 

Catchment area, design rainfall intensity, mean annual rainfall, mean annual evapotranspiration, stream density, 
mainstream slope, stream length, and forest cover. 

 
(Beck et al. 2013) 

 
3394 basins 
around the world. 

Humidity index, mean annual precipitation, precipitation seasonality, mean annual potential evaporation, potential 
evaporation seasonality, seasonal correlation between water supply and demand, mean annual air temperature, mean snow 
water equivalent depth, mean elevation, mean surface slope, fraction of open water, fraction of forest, mean Normalized 
Difference Vegetation Index (NDVI), mean permeability of consolidated and unconsolidated geologic units below the 
soil, mean gravel content, mean sand content, mean silt content, mean clay content. 

 
(Aziz et al. 2014) 

Australia Catchment area, design rainfall intensity values I(tc) with where ARI = 2, 5, 10, 20, 50 and 100 years return period (tc = 
time of concentration), mean annual rainfall, mean annual areal evapotranspiration, and mainstream slope. 

 
(Castellarin 2014) 

 
 
Italy 

Drainage area, mainstream length, maximum, mean, and minimum elevations, mean annual temperature, net annual 
precipitation, annual potential evapotranspiration, coefficients of L variation of the net annual precipitation, annual 
potential evapotranspiration, percentage of previous area, the long-term mean daily stream flow standardized by the 
catchment area, and the daily stream flow associated with a duration of 355 days standardized by catchment. 

(Latt et al. 2015) Myanmar Catchment area, mean basin elevation, basin slope, basin length, shape factor, soil conservation curve number, time of 
concentration, mean annual rainfall. 

(Smith et al. 2015) Several basins 
across the world. 

Catchment area, average annual rainfall and the upstream catchment slope. 

(Ridolfi et al. 2016) Italy Catchment area, the previous area, the maximum and mean altitudes, the gauge elevation, the mean slope, the length and 
the slope of the longest drainage path (LDP), annual mean precipitation, and the coordinates of each site. 

 
 
(Odry and Arnaud 2017) 

 
 
 
France 

Aridity index, annual mean evapotranspiration, annual mean solid precipitation, annual mean liquid precipitation, 
annual mean temperature, annual mean soil moisture, mean soil moisture prior to a rainy event (>20 mm), mean 
duration of rainfall events, mean number of rainfall events per season, mean intensity of rainfall events, river 
network density, mean elevation, mean slope, capacity of the production reservoir of a lumped rainfall-runoff model, 
presence of sand bedding, presence of rock bedding, low infiltration capacity class, medium infiltration capacity 
class, high infiltration capacity class, forest cover, arable cover, grassland cover, catchment area, catchment 
eastening (X) and catchment northening (Y).  
 

(Hailegeorgis and Alfredsen 
2017) 

Mid-Norway  Catchment area,  

 
(Requena et al. 2018) 

 
Canada 

Catchment area, fraction of the catchment controlled by lakes, fraction of the catchment occupied by forest, annual mean 
degree-days below 0 °C, summer mean liquid precipitation, curve number and average number of days with mean 
temperature greater than 27 °C. 

 
(Rahman et al. 2018) 

 
Australia 

Catchment area, catchment shape factor, main stream slope, stream density, percentage of catchment covered by forest, 
rainfall intensity (6 h duration and 2 year return period), mean annual rainfall and mean annual potential 
evapotranspiration. 

 874 

 875 

 876 
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Table 2 Morphometric variables definitions. 877 

 

Morphometric variables 
 
Formula /  Relationship 

 
Reference 

 

Stream order (u) ( * )   
 

Hierarchical order (Horton 1945; Strahler 1957) 

Stream Length (Lu) ( * )  

Length of stream 
 

(Horton 1945) 
 
Texture ratio (RT)  RT = N1

P
, where N1= the number of first 

order streams and P = perimeter (km). 

 

(Schumm 1956) 

 
Circularity Ratio (RC)   ( * ) 

RC = 4 π ( A
P2 ), where A = area of the basin 

(km2), P = perimeter of the basin (km) and  
π = 3.1415. 

 

(Miller 1953) 

 
 

Stream length ratio (RL) 
RL = MLu

Lu -1
, where MLu = the average 

stream length of a given order u (km) and 
MLu-1 = the average stream length of the 
next lower order (km). 

 

 (Horton 1945) 

 
Mean stream length ratio (MRL)   

MRL = Average of the stream length ratio 
of all orders 

 
(Horton 1945) 

  
 
Bifurcation ratio (RB)    
 

RB = Nu
Nu+1

, Nu = the number of stream 
segments of order u, Nu + 1 = the number 
of stream segments of the next higher order. 

 

 (Horton 1945) 

Mean bifurcation ratio (MRB) ( *)  MRB = Average of bifurcation ratios  
of  all orders 

 
(Strahler 1957) 

 

 
 
Weighted mean bifurcation 
ratio (WMRB)   

WMRB= 
∑RB� u

u+1�
(Nu+Nu+1)

∑N
, where  

RB� u
u+1

� = the bifurcation ratio between each 

successive pair of orders, Nu = the total 
number of stream segments of order u and 
∑N = the total number of streams involved 
in the ratio. 

 
 
 
(Schumm 1956; Strahler 1953) 
 

RHO coefficient (ρ) ρ = 
RL
RB (Horton 1945) 

RHO WMRB  coefficient  (ρWMRB)    ρWMRB= 
RL

WMRB (Horton 1945; Schumm 1956; 
Strahler 1953) 

 
Drainage density (DD)     ( * ) 

DD= L
A
, where L = total stream length of all 

orders (km), A = area of the basin (km2). 

 
(Horton 1932; Horton 1945) 

 
Stream frequency (FS)   ( * )  

FS = N
A
 , where N = total number of streams 

of all orders and A = area of the basin 
(km2). 

 

(Horton 1932; Horton 1945) 

Infiltration number (IF)  IF=DD × FS (Faniran 1968) 
 

Basin Relief (BH) The highest elevation of the basin - Lowest 
elevation of the basin (km) 

 

(Schumm 1956; Strahler 1957) 
 

Ruggedness number (RN)  RN = BH × DD, where BH = Basin relief 
and DD = Drainage density. 

 

(Melton 1957) 

PN1  Percentage of first-order streams  (Patton and Baker 1976) 
PL1  Percentage of first-order stream lengths (Blyth and Rodda 1973) 
 878 

 ( * ) Variables previously used in regional hydrological frequency analysis studies, but not 879 
used with the Quebec data base. 880 

 881 

 882 

 883 
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Table 3 Correlation between hydrological and physiographical variables. 884 

 QS10 QS50 QS100 
AREA -0.46 -0.45 -0.44 
MBS 0.47 0.46 0.46 
PLAKE -0.67 -0.65 -0.63 
MATP 0.68 0.64 0.62 
DDBZ -0.60 -0.60 -0.59 
LONGC 0.47 0.45 0.44 
RT -0.53 -0.52 -0.51 
RC 0.68 0.66 0.65 

 885 

Table 4 Variables selection results for QS10 case (with different methods). 886 

  STA EXTD 
         Models          

Variables 
LLRM GAM LLRM GAM 

Fd Bd Sw Sh Fd Bd Sw Sh Fd Bd Sw Sh Fd Bd Sw Sh 

AREA  * * * * * * * * * * * *     
MCL     *    *    *  *  * 
MCS    * *       *     
MBS * * * * *  * *     *    
PFOR  * * * * *  * * * * * * * * * * 
PLAKE * * * * * * * * * * *  *  *  *  *  * 
MATP *    *   * *     *  *   
MALP * * * * * *  * * * * * *  *  
MASP     *    * * *     * 
MALPS    *   *     *    * 
DDBZ * * * * * *  * * * * *  *   
LATC              *   
LONGC * * * * * * * * * * * *   * * 
RT         *  *  *  * * 
RC            *  * *  *  * 
MRL         * * * * *  * * * 
MRB         * * *  *    
WMRB         * * * * *  * * 
ρWMRB                 
DD         * * * * * * * * 
FS          *    *   
IF          *   * *   
RN         * * * * * *  * 
PN1            *  *  * 
PL1          *   *    

Fd is Forward ; Bd is backward; Sw is stepwise selection and Sh is shrinkage approach selection. 887 

 888 
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Table 5 Descriptive statistics of new physiographical variables. 889 

Variable Min Mean Max STD.dev  
DD (Km-1) 2.41 2.96 4.73 0.34 
FS (Km-2) 7.34 9.74 11.86 0.97 
IF  (Km-3) 17.69 29.26  67.09 6.56 
RT (Km-1) 8.09 32.11 131.84 21.41 
MRB 1.67 2.40 17.27 2.08 
WMRB  1.95 2.08 4.14 0.24 
MRL 0.85 0.97 1.11 0.05 
ρWMRB 0.23 0.47 0.55 0.04 
RN 0.20 1.89 7.48 1.03 
RC 0.06 0.18 0.46 0.08 
PN1 (%) 50.12 50.41 52.50 0.30 
PL1 (%) 44.09 52.89 66.36 4.10 

 890 

Table 6 Explanatory variables selected for the various regression models. 891 

Regional models Quantile Selected predictor variables 
 
ALL/LLRM/STA,CCA/LLRM/STA,ROI/LLRM/STA 

QS10 

QS50 

QS100 

AREA, MBS, PFOR,  PLAKE, MALP, DDBZ, LONGC 
AREA, MBS, PFOR,  PLAKE, MALP, DDBZ, LONGC 
AREA, MBS, PFOR, PLAKE, MATP, MALP, LONGC 

 
ALL/LLRM/EXTD,CCA/LLRM/EXTD,ROI/LLRM/EXTD 

QS10 

QS50 

QS100 

AREA, PFOR,  PLAKE, MALP, DD, MRL, LONGC 
AREA, PFOR,  PLAKE, MALP, DD, MRL, LONGC 
AREA, PFOR,  PLAKE, MALP, DD, MRL, LONGC 

 
ALL/GAM/STA,CCA/GAM/STA,ROI/GAM/STA 

QS10 

QS50 

QS100 

AREA, MBS,  PLAKE, MALP, MASP, DDBZ, LONGC 
AREA, MCL,  MBS,  PLAKE,  MALP, DDBZ, LONGC 
AREA, MCL,  MBS,  PLAKE,  MALP, DDBZ, LONGC 

 
ALL/GAM/EXTD,CCA/GAM/EXTD,ROI/GAM/EXTD 

QS10 

QS50 

QS100 

MCL,  PLAKE,  MATP,  DDBZ,  DD, RN, LATC 
MCL, PLAKE, MALP, DDBZ, DD, MRL, LONGC 
MCL, PLAKE, MALP, DDBZ, DD, MRL, LONGC 

Variables dealing with drainage network characteristics are in bold character. 892 
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Table 7 Jackknife Validation Results. 893 

 
 

                                Quantile 

 

ALL/LLRM 

 

ALL/GAM 

 

CCA/LLRM 

 

CCA/GAM 

 

ROI/LLRM 

 

ROI/GAM 

 

STA 

 

EXTD 

 

STA 

 

EXTD 

 

STA 

 

EXTD 

 

STA 

 

EXTD 

 

STA 

 

EXTD 

 

STA 

 

EXTD 

 

NASH 
QS10 0,669 0.641 0.774 0.802 0.799 0.808 0.797 0.837 0.807 0.804 0.829 0.865 
QS50 0,620 0.587 0.745 0.754 0.731 0.743 0.762 0.775 0.754 0.750 0.796 0.816 
QS100 0.609 0.556 0.715 0.725 0.680 0.706 0.723 0.742 0.703 0.720 0.762 0.791 

  

RMSE 

[(m3/s)km-2] 

QS10 0,073 0.076 0.060 0.056 0.057 0.056 0.057 0.051 0.056 0.056 0.053 0.047 
QS50 0,109 0.113 0.089 0.087 0.092 0.089 0.086 0.080 0.087 0.088 0.080 0.076 
QS100 0.125 0.133 0.107 0.105 0.113 0.108 0.105 0.101 0.109 0.106 0.097 0.091 

 

RRMSE 

(%) 

QS10 43.528 41.202 40.937 34.970 37.412 32.760 37.163 30.619 34.418 31.584 34.690 27.974 
QS50 48.518 44.891 49.420 36.659 42.232 36.520 43.333 35.086 39.251 34.034 39.365 27.818 
QS100 50.682 46.918 51.832 38.630 46.259 38.426 45.678 37.416 41.497 35.214 41.661 29.235 

 

BIAIS 

[(m3/s)km-2] 

QS10 0.004 0.003 0.005 0.005 0.007 0.008 0.006 0.007 0.008 0.009 0.003 0.004 
QS50 0.008 0.006 0.008 0.008 0.015 0.017 0.015 0.015 0.013 0.015 0.006 0.009 
QS100 0.011 0.007 0.011 0.011 0.020 0.022 0.020 0.020 0.015 0.019 0.009 0.012 

 

RBIAIS 

(%) 

QS10 -6,161 -5.936 -5.461 -4.179 -6.023 -4.587 -5.555 -3.871 -3.040 -0.932 -4.177 -2.836 
QS50 -7,338 -6.892 -7.047 -4.954 -6.293 -4.238 -5.632 -3.513 -4.358 -1.175 -5.487 -2.892 
QS100 -7.782 -7.431 -7.663 -5.472 -6.623 -4.305 -5.780 -3.714 -4.881 -1.381 -5.816 -3.172 

Best results are in bold character. 894 

 895 

 896 
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 897 

 898 

 899 

 900 

 901 

 902 

 903 

 904 

 905 

 906 

 907 

 908 

 

STA/EXTD 

DHR  

• ALL/LLRM/STA 

• ALL/GAM/STA 

• CCA/LLRM/STA 

• CCA/GAM/STA 

• ROI/LLRM/STA 

• ROI/GAM/STA      

+ RE  = Regional models 

• ALL  

• CCA 

• ROI 

 

• LLRM 

 
• GAM 

• ALL/LLRM/EXTD 

• ALL/GAM/EXTD 

• CCA/LLRM/EXTD 

• CCA/GAM/EXTD 

• ROI/LLRM/EXTD 

• ROI/GAM/EXTD 

Fig.1 Different combinations and considered models. 
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 909 

 910 

 911 

 912 

 913 

 914 

 915 

 916 

 917 

 918 

 919 

 920 

 921 

 922 

Select a significant level P-value: 
usually p-value =0.05 and/or select 
maximum number of variables to be 

retained in the model (Nmax). 

 

Fit the model with all available 
explanatory variables 

 

Identify the explanatory variable with 
the highest p-value (less significant) 

 

Is the highest p-value > the 
significant level and/or the number of 
remain variable > Nmax 

Remove this variable and re fit the 
model with the remaining explanatory 

variables 

YES 

NO 

DONE ! 

Fig.2 Backward elimination process. 
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 925 

 926 
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 931 

932 
ROI/GAM/EXTD. 933 

 934 

935 
CCA/GAM/EXTD. 936 

 937 

938 
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 939 

940 
approaches for QS100. 941 

 942 

 943 

944 
approaches for QS100. 945 
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 946 

947 
ALL/GAM/STA, CCA/GAM/STA and ROI/GAM/STA. The dotted lines represent the 95% confidence 948 

intervals. The vertical axes denote the spline of each explanatory variable. 949 
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 950 

951 
ALL/GAM/EXTD, CCA/GAM/EXTD and ROI/GAM/EXTD. The dotted lines represent the 95% 952 

confidence intervals. The vertical axes denote the spline of each explanatory variable.  953 

 954 

 955 

 956 

 957 

 958 


	Fig. 3  Geographical location of the studied stations in Quebec, Canada.

