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Anthropogenic influence 
on the changing risk of heat waves 
over India
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The overarching goal of this paper is to shed light on the human influence on the changing patterns 
of heat waves in India using the Heat Wave Magnitude Index daily (HWMId). The HWMId obtained 
from the observational data sets shows a large increase in the heat waves during the past decades. 
Investigating the effects of natural (e.g., solar variations and volcanic forcings) and anthropogenic 
(e.g., greenhouse gas emissions, anthropogenic, land use, and land cover) forcings revealed that 
the anthropogenic factors have cause a two-fold increase in the occurrence probability of severe 
heat waves in central and mid-southern India during twentieth century. The spatial distribution of 
maximum HWMId values under natural and all forcings (including anthropogenic) indicates that in 
most places human activities have increases the frequency, duration and intensity of extreme heat 
waves. Under the Representative Concentration Pathway (RCP) 4.5, the risk of heat waves is projected 
to increase tenfold during the twenty-first century. More than ~ 70% of the land areas in India is 
projected to be influenced by heat waves with magnitudes greater than 9. Furthermore, we find a 
significant relationship between heat waves and deficits in precipitation. Results show that concurrent 
heat waves and droughts are projected to increase in most places in India during the twenty-first 
century.

A heat wave is generally defined as a prolonged period of excessively hot weather. Prolonged and intense heat 
waves have become more frequent in many parts of the  globe1. This leads to short-term increases in mortality 
and negative impacts on infrastructure and on biophysical  systems2. The annual mean temperature over India 
has increased by 0.85 °C from 1901 to  20153. Based on climate model simulations, the surface temperature is 
expected to rise substantially by the end of this  century3. Increasing mean temperatures lead to more intense 
heat waves that last longer and/or occur more  frequently1,4. Several studies have showed evidence of change in 
the frequency and duration of heat waves over India and discussed the underlying  mechanisms5,6. Under a 2 °C 
mean temperature increase experiment, the frequency of heat waves is expected to rise by 2.5 times by the end 
of the twenty-first  century7.

While many studies have investigated anthropogenic influences on the frequency and/or severity of heat-
waves at the global  scale8–10, we are not aware of any India-specific study on natural and human influences on the 
changing patterns of heat waves using the Heat Wave Magnitude Index daily (HWMId) (see the “Methodology” 
section for details of HWMId estimation). Therefore, the main objective of the present study is to understand the 
influence of the Natural (NAT–e.g., solar variations and volcanic forcings) and Anthropogenic (e.g., greenhouse 
gas emissions, anthropogenic, land use, and land cover) forcings on the occurrence of heat waves as defined 
with HWMId. The future risk ratio during the historical period relative to the NAT forcings are estimated under 
the Representative Concentration Pathways (RCP) 2.6, 4.5, 6.0 and 8.0 scenarios during twenty-first century. 
Finally, we discuss cooccurrence of heat waves and droughts based on the Standard Precipitation Index (SPI).
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Results and discussion
Figure 1 shows the distribution of the observed Heat Wave Magnitude Index daily (HWMId) values estimated 
based on the gridded gauge data from the India Meteorological Department (IMD) during 1961–2015. Most 
extreme heat waves occurred during 2000 to 2015 in many parts of India (Fig. 1a), particularly the East Coast, 
North West, and central India. In recent decades, the East Coast (Orissa and Andhra Pradesh) and some parts 
of the West Coast (Mumbai and Gujarat) have been significantly affected by heat waves. These regions were 
heavily affected during the 2015 heat wave which resulted in more than ~ 2500 human deaths in a span of a few 
 days11–13. Most of the country has experienced HWMId values larger than 3 and a significant part values larger 
than 5 (Fig. 1b). This signifies the occurrence of heat waves are large throughout India. The HWMId values 
show positive trends in 80% of the grid cells (Fig. 1c). Significant changes are noted over Gujarat, Rajasthan, 
and the North East region of India. Negative trends are observed over West Bengal and Kerala (Fig. 1c). Due 
to increases in temperature, a large portion of the land now suffers from more frequent and intense heat waves. 
In particular, Fig. 1d shows significant increases in the areas affected by heat waves at different magnitudes 
(3 < HWMId ≤ 6, 6 < HWMId ≤ 9, HWMId > 9). The region affected by HWMId > 9 heat waves is significantly 
larger than those affected by other magnitudes of heat waves (Fig. 1d). Note that the area affected by heat waves 
expanded by threefold in the period 2000–2015 as compared to previous years. Furthermore, the land area was 
affected by HWMId > 9 heat waves during the period 1995–2005 (Fig. 1d) is large compared to previous years. 
Before investigating heat waves based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) under 
historical (including natural and anthropogenic) and natural only (NAT), we evaluated the consistency of the 
historical simulations with observations (see Fig. S1). Both data sets illustrate a similar distribution of heat waves 
spatially across India.

We then compared the probability of maximum HWMId values from all forcings to NAT forcing for each 
grid location using the so-called risk ratio [see Eq. (2) in “Methodology” section]. Large values (> 2.5) of risk 
ratio signify strong increases in heat waves when anthropogenic influences are included. Over central and 
mid-southern India, the anthropogenic factors cause a two-fold increase in the occurrence probability of severe 
heat waves (Fig. 2a). The decadal changes in HWMId values provides further evidence that the increase in heat 

Figure 1.  Spatial distribution of the observed Heat Wave Magnitude Index daily (HWMId) values estimated 
using IMD gridded data from 1961–2015. (a) Maximum heat waves occurred during the year based on HWMId 
values. (b) Maximum observed HWMId values. (c) Changes in HWMId values per decade. (d) Time series of 
percentage of the land area affected by heat waves over India (3 < HWMId ≤ 6; 6 < HWMId ≤ 9; HWMId > 9). 
(Figure was created using the Interactive Data Language (IDL) version 8.2 software, http:// www. harri sgeos patial. 
com/ docs/ whats_ new_ in_ 82. html).

http://www.harrisgeospatial.com/docs/whats_new_in_82.html
http://www.harrisgeospatial.com/docs/whats_new_in_82.html
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waves is primarily dominated by anthropogenic factors (compare Fig. 2b,c). The increase in anthropogenic 
influences has led the Indian region to experience a greater number of heat waves, particularly in the recent past 
(Fig. 2d). The deadly heat wave during  201512 was among one of the most devastating events in the recent past. 
The influence of anthropogenic forcing is significantly larger compared to NAT forcing. More than ~ 70% of 
India’s landmass experiences heat waves when all the forcings are included in the simulations. The distribution 
of maximum HWMId values (Fig. 2d, inset) shows the peak is larger under all forcings compared to NAT forc-
ing alone, indicating that human influences over India caused the increase in frequency, duration and intensity 
of extreme heat waves.

We used quantile regression analysis to investigate the relation between 3-month SPI (dry/wet conditions) 
and HWMId values (lagged by 1 month) at different quantiles (10 to 99%). The upper (bottom) panel of Fig. 3 
shows the scatter plot (quantile regression) results between HWMId and 3-month SPI. Results indicate that more 
heat waves occur during dry conditions (i.e., negative SPI events). Figure 3c,d summarize the quantile regression 
results across different quantiles highlighting the negative regression slopes between HWMId-SPI (for similar 
quantile regression analysis but for SPI values lagged by + 1 month see Fig. S2 in Supplementary Information).

To investigate changes in future heat waves, we considered climate model simulations under RCP2.6, RCP4.5, 
RCP6 and RCP8.5. Results for RCP4.5 are presented in the paper whereas other RCPs are presented in Supple-
mentary Information. Under the RCP4.5 scenario, the land area affected by heat waves over India is projected 
to increase during the period 2006–2099 when HWMId > 9 (Fig. 4a). The total land area affected by heatwaves( 
3 < HWMId ≤ 6 and 6 < HWMId ≤ 6) is projected to decrease whereas area affected by heat waves with magnitude 
(HWMId > 9) is expected to increase by the end of the twenty-first century (Fig. 4a). The probability distribu-
tion functions (PDFs) of HWMId values for historical, NAT and future projections indicate not only anthro-
pogenic forcings have shifted the heat waves PDFs toward more extreme events but also more intense changes 
are expected in a warming climate (similar results are presented for other RCPs in Figs. S3b, S4b, and S5b). This 
indicates an increased probability of extreme (HWMId > 6) and very extreme (HWMId > 9) heat waves in the 
future. Further, we estimate changes to the risk ratio over the years. We first computed a moving average window 
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Figure 2.  Spatial distribution of simulated Heat Wave Magnitude Index daily (HWMId) values from natural 
forcing (NAT) and all forcings (historical). (a) Risk ratio for each grid location   from natural and all forcings 
during the period 1961–2005. Decadal changes in HWMId values in all forcings (b) and natural forcings (c) 
during the period 1961–2005 (absolute changes in HWMId values per decade). (d) Percentage of land area 
affected by heat waves with HWMId > 1 from natural and all forcings. Inset: Histogram of HWMId values from 
natural and all forcings. (Figure was created using the Interactive Data Language (IDL) version 8.2 software, 
http:// www. harri sgeos patial. com/ docs/ whats_ new_ in_ 82. html).

http://www.harrisgeospatial.com/docs/whats_new_in_82.html
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of 55-years to obtain a total of 30 risk ratio for the period 2006–2099 (55-year time periods, for 2016–2060, 
2017–2061…,2044–2098, 2045–2099). We then calculated the risk of future heat wave for each 55-year period 
and estimated the rate of change of the risk ratio at each grid. The risk ratio is expected to increase drastically with 
anthropogenic warming in all the coastal and western parts of India and over various other locations (Fig. 4c). 
Spatial differences between maximum HWMId risk ratio for the projection period (2045–2099) relative to the 
historical period (1961–2005) under RCP4.5 reveals 5- to 20-fold increase in the occurrence likelihood extreme 
heat waves (Fig. 4d). The projected increases are more pronounced under RCP8.5 (see Fig. S5). Figures S3, S4, 
and S5 in Supplementary Information present the same results as Fig. 4 but for RCP2.6, RCP6 and RCP8.5, 
respectively.

Understanding the interaction between the occurrence of heat waves and droughts is important for more 
accurate assessment of heat waves and their potential to become human disasters. Heat waves are projected to 
follow droughts in many parts of India (Figs. 5a and S6) under different RCP scenarios. Mishra et al. reported 
that frequency of heat waves will rise by 30 times by the end of twenty-first century if we do not take the necessary 
actions to limit the Earth’s  warming7. The probability of these extreme events is projected to increase significantly 
over the western and northern parts of India with a higher frequency of concurrent droughts and heat waves in 
the near future (2077–2099) relative to 2006–2030 (Fig. 5b).

Conclusions
Given the adverse effects of heat waves, understanding their variability and change are very important for densely 
populations regions with fragile ecosystems, such as India. In this study, we examined the occurrence of heat 
waves in India during the twentieth and twenty-first centuries using CMIP5 climate model simulations. The fac-
tors responsible for increases in heat waves were also studied with the help of NAT and anthropogenic forcing 
and historical observation through detection and attribution analysis. Observational data reveals a significant 
increase in land areas in India affected by intense heat in recent decades. Our attribution analysis indicates that 
heat wave frequency and intensity drastically increase in India during the twentieth century due to anthropogenic 
forcings. These heat waves are resulted in significant risk and detrimental effects on human health. Central India 

(a) (b)

(c) (d)

Figure 3.  Quantile regression analysis between heat waves and 3-month standardized precipitation index 
(SPI03) using data from all grids. Scatter plots of the maximum HWMId values for each grid location over 
India during the period 1961–2015 and the 3-month SPI preceding 1 month (a) and concurrent month (b). 
Inset figures display the spatial correlation maps of HWMId- SPI03. Panels (c) and (d) show the corresponding 
regression slopes for 0.1–0.99 quantiles of the maximum HWMId-SPI03. Black filled circles indicate the 
regression slope for different quantiles and shading indicates the associated uncertainty. The horizontal solid line 
represents the mean trend based on the ordinary least-squares method. (Figure was created using the Interactive 
Data Language (IDL) version 8.2 software, http:// www. harri sgeos patial. com/ docs/ whats_ new_ in_ 82. html).

http://www.harrisgeospatial.com/docs/whats_new_in_82.html
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Figure 4.  Spatial distribution of projected HWMId values under RCP4.5. (a) Percentage of land area affected 
by different heat wave severity levels (3 < HWMId ≤ 6; 6 < HWMId ≤ 9; HWMId > 9) under RCP4.5 for the 
period 2006–2099. (b) Maximum HWMId probability density functions estimated from each grid location from 
natural (1961–2005), Historical (1961–2005) and RCP4.5 (2045–2099) experiments. (c) Spatial distribution 
of decadal changes in absolute risk ratio calculated for each grid using a 55-year moving window over the 
period 2006–2099 from RCP4.5 scenario. (d) Spatial differences between maximum HWMId risk ratio for the 
projection period (2045–2099) relative to the historical period (1961–2005) under RCP4.5 (figure was created 
using the Interactive Data Language (IDL) version 8.2 software, http:// www. harri sgeos patial. com/ docs/ whats_ 
new_ in_ 82. html).

Figure 5.  Spatial change in the frequency of concurrent heat waves (HWMId ≥ 1) and drought (3-month 
SPI ≤ − 1) under RCP4.5 during 2070–2099 relative to 2006–2030. (a) Heat waves occurring one month after 
drought. (b) Heat waves occurring simultaneously with drought (figure was created using the Interactive Data 
Language (IDL) version 8.2 software, http:// www. harri sgeos patial. com/ docs/ whats_ new_ in_ 82. html).

http://www.harrisgeospatial.com/docs/whats_new_in_82.html
http://www.harrisgeospatial.com/docs/whats_new_in_82.html
http://www.harrisgeospatial.com/docs/whats_new_in_82.html
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and major parts of the eastern coast experienced deadly heat waves during 2015 that were likely intensified due 
to anthropogenic climate change.

This increased risk in the occurrence of heat waves is evident in the reported Heat Wave Magnitude Index 
(HWMId) values and their temporal variability. Our analysis shows that the land areas affected by heat waves 
with magnitude HWMId > 9 are projected to increase significantly compared to lower magnitudes by the end of 
the twenty-first century. Model simulations indicate occurrence of unprecedented heat waves in the future never 
observed in the observational period (e.g., see Figs. 4, S3, S4 and S5)4. Furthermore, we quantify the relationship 
between heat waves and SPI (for dry and wet conditions). Previous studies have shown that dry conditions affect 
the evolution of heat waves all over the  world12,13. Here we observed a negative correlation between SPI and heat 
waves through the use of quantile regression analysis. Drier conditions are associated with stronger heat waves 
throughout India. Future increases in summer dry conditions will most likely contribute to widespread, long-
lasting, severe heat waves across India. Considering the observed and projected changes in heat waves along with 
population and industrial growth, puts substantial pressure on the environment, human health, agriculture, and 
energy sector if adaption and mitigation measures are not put in place.

Data and methods
We used India Meteorological Department (IMD) surface temperature data available at a 1° × 1° gridded for 
the period 1961 to  201514. A total of 395 stations were gridded using a modified version of the Shepard angular 
distance weighting algorithm after applying quality  checks15.

Long-term historical simulations from CMIP5 are used in this  study16. The historical data spans the period 
1850–2005, which is forced by observed atmospheric composition changes (including GHGs, natural and anthro-
pogenic aerosols, and volcanic forcings), solar variations, land use, and land cover to simulate the observed 
climate of the recent historical period. Table S1 shows the CMIP5 models (Historical, NAT forcing and RCPs) 
used in the present study. An earlier study investigating the performance of 7 CMIP5 models against IMD grid-
ded temperature and Climate Research Unit (CRU) data found that only 8 models perform well over  India3. The 
same CMIP5 models (i.e., CNRM-CM5, CanESM2, GFDL-CM3, IPSL-CM5A-LR, MIRCOC5, MPI-ESM-LR, 
NorESM1-M, and bcc-csm1-1) are used in the present study. The selected CMIP5 models have been averaged 
for all historical and future projections of and used for estimating the HWMId. The same models from all RCPs 
were also considered for estimating HWMId projections in a warming climate.

Methodology
Heat waves can be defined differently. Here, the notion of HWMId is used to quantitatively define duration and 
intensity of heat waves. HWMId denotes the number of heat waves with durations ≥ 3 consecutive days above 
a defined temperature threshold. In this study, a heat wave is defined as three or more consecutive days with 
daily maximum temperature higher than the 90th percentile of 30 or 31-day (depending on the month) run-
ning windows during the baseline period (1961–1990). This window size produces a reasonable sample size to 
calculate meaningful percentile  values17. Heat waves are then classified into weak (1 < HWMId < 2), Moderate 
(2 ≤ HWMId < 3) and Intense (HWMId ≥ 3). The HWMId estimation procedure is available in the ‘extRemes’ 
R-package (open source) code.

The robust regression technique is used for estimating the trends and decadal changes based on Iteratively 
Reweighted Least Squares  Regression18. The t-test analysis is used to estimate the statistical significance of the 
decadal trends throughout this paper at 0.05 significance level (e.g., Figs. 1c, 2b,c, and 4c)—i.e., only statistically 
significant trend values are considered.

Attribution analysis. We used the risk ratio concept for attribution of heat waves. To determine the influ-
ence of climate change on the risk of heat waves, the probability of the maximum heat wave occurring under an 
all-forcings scenario vs. a natural forcing scenario is estimated and compared. The contribution of anthropo-
genic influence of climate changes to the risk of heat waves is estimated as follows:

where  Pnat and  Pall are the probabilities of the observed events occurring under the NAT forcing and all forcings, 
respectively. This index compares the probability of extreme events occurring between the real world (including 
human influences) relative to that of the natural world without human influence.

A previous  study19 reported the greatest warming in the second half of the twentieth century in the Northern 
Hemisphere and found it to be warmer than in any other 50-year period in the last 500 years. So, we opted for 
a 55-year moving window for the period of 2016–2099, which yields a total of thirty 55-year time periods (e.g., 
2016–2060, 2017–2061,…2044–2098, 2045–2099) to estimate heat wave risk ratio for each 55-year period at 
each grid location during twenty-first century.

Estimation of probability ratios and risk ratio (e.g., Figs. 2a and 4d) rely on fitting the Generalized Extreme 
Value  (GEV20) distribution to HWMId. The GEV distribution provides insights into the behavior of extremes 
and their reoccurrence  intervals21,22. The goodness-of-fit was verified using the Kolmogorov–Smirnov (K-S) test 
at 0.05 significance  level23,24.

Standardized Precipitation Index (SPI). We have also used the Standardized Precipitation Index (SPI)25 
to measure the dry/wet conditions based on the IMD gridded monthly precipitation and CMIP5 simulations 

(1)Risk Ratio =
Pall

Pnat
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(using the same models as in the case of temperature). In this study, we opted for the 3-month scale SPI (SPI3) 
for detecting drought events and severe drought events, defined as SPI < − 1.0, and SPI < − 1.5, respectively.

Quantile regression analysis was used to investigate the relationship between heat waves and 3-month SPI 
(see Fig. 3). Quantile regression is a well-defined statistical framework for regression analysis on quantiles rather 
than the mean. Quantile regression aims to estimate conditional quantile values across a distribution  function26. 
For a more detailed information on quantile regression the reader is referred to Ref.27.

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary 
Materials. Additional data related to this paper may be requested from the authors. The author would like to 
thank IMD for providing observational data and the GCM modeling groups, the Program for Climate Model 
Diagnosis and Inter-comparison (PCMDI), and the WCRP’s Working Group on Coupled Modeling for their 
roles in making available the WCRP CMIP5 multi-model datasets.
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