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Abstract: The monitoring of cereal productions, mainly through yield estimations, has played an
important role in providing reliable information to decision makers in order to ensure the proper
management of agricultural markets. In this context, remote sensing, which allows the coverage
of large areas, is an important source of information that complements those obtained by other
methods. In this study, we aim to estimate the wheat yield at an early growth stage (spring season)
using only one Radarsat-2 (RS-2) polarimetric image. We propose an empirical statistical relationship
between the yield measured in situ and polarimetric parameters extracted from the RS-2 image. The
RS-2 image was acquired at the flowering stage as it is proved to be the most appropriate moment
for yield prediction. We selected the region of Boussalem in the northwest of Tunisia as the study
area. For experimental validation, the yield was determined in situ at the end of the wheat season.
Results showed that the polarization ratios are more correlated than the polarimetric parameters
with the grain yield with a significant correlation of the HH/VV ratio (r = 0.76) and the HV/VV ratio
(r = −0.75), while the most correlated polarimetric parameter was Alpha (r = −0.51). Finally, the
multiple regression has led to the development of a three-variable model (HH/VV, HV/HH, and
alpha) as the best predictor of the wheat grain yields. Validation results revealed a great potential
with a determination coefficient (R2) of 0.58 and root mean squared error (RMSE) of 0.89 t/ha.

Keywords: PolSAR; backscattering; polarimetric parameters; multiple regression; remote sensing

1. Introduction

In Tunisia, wheat is a strategic crop and is among the most important staple foods in
this semiarid country [1]. Its production deficit penalizes the country’s trade balance, as it
has to be covered by annual imports of varying quantities up to 50% of national demand [2].
Yield predictions for crop cereals are important when making decisions regarding food
security, especially in semiarid regions. In fact, the weather conditions of these regions are
characterized by large variations in temperature and precipitation, which directly affect
cereal production [3].

Over time, crop yield predictions have become an essential instrument for short-term
policymaking. It is very important in the development of the annual cereal program of
import and storage for a country. For this, over several years, different economic and geopo-
litical issues associated to agricultural yield predictions have made agricultural monitoring
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a priority in many research programs [4]. To predict cereal yield, many agrometeorological
models are available, with different levels of complexity and empiricism [5,6]. The agrom-
eteorological models face problems associated with the distribution of weather stations
and often the scarcity of climate data. Remote sensing data can be very useful in these
circumstances, due to their synoptic coverage, repetitiveness, and costeffectiveness. Remote
sensing can offer a viable method of agroclimatic zoning [7] and obtaining well-distributed
spatial and temporal multiscale information on critical crop parameters such as a real
statistics, grain weight, leaf area index (LAI), crop nitrogen uptake and biomass [8–10].
Optical remote sensing imagery is commonly used to control agricultural fields [11–15].
However, the quality of optical data can be affected by climatic conditions such as cloudy
weather, preventing their effective use in the vegetation monitoring.

Many theoretical and experimental studies in active remote sensing have shown
the sensitivity of the radar backscatter coefficient to vegetation [16–21]. Thus, Synthetic
Aperture Radar images are efficient to overcome some of the limitations of optical data [22].
Indeed, the existence of clouds does not influence radar acquisitions. Furthermore, SAR
imagery is sensitive to the moisture content and dry matter of the crops [16,23]. In fact,
the backscatter from agricultural targets is composed of surface scattering caused by the
soil, volume scattering caused by vegetation and the interaction of signals bouncing from
vegetation and soil. The relative contribution of each component depends on the system’s
parameters and target [23]. In C-band, the echoes are generally formed of a combination of
these components; in the beginning of the growing season, surface scattering is the most
intense, while during the period of maximum growth, volume scattering of vegetation
is the most intense. At the end of the season, there is a combination of echoes and the
most intense component comes from soil vegetation [23]. For this reason, classification
algorithms can be used, such as those derived from the H/A/α algorithm Cloude and
Pottier [24], to identify the scattering mechanism and to facilitate the interpretation of the
backscattered signal [25].

Several studies have used the relationship between polarimetric parameters and
vegetation, and applied polarimetric radar imagery to map the productivity of the wheat
crop. Wiseman et al. [16] investigated the polarimetric SAR response to monitor agricultural
production. Jiao et al. [25] used polarimetric SAR data to detect leaf area index. Liu et al. [26]
monitored the crop using the polarimetric RADARSAT-2 (RS-2) data.

In radar remote sensing, three different categories of approaches were implemented
to estimate yields and parameters of vegetation cover. The first one contains theoretical
approaches based on radiative transfer models [27–29]. Generally, they are used in order
to estimate the backscattering coefficient using field data. This will help to understand
scattering mechanisms. The second category deals with semiempirical models such as the
“Water Cloud Model”, developed by Attema and Ulaby [30]. These models use other pa-
rameters, notably, leaf area index, height, biomass, and water vegetation content [21,29,31].
This type of model allows the estimation of surface moisture, and/or vegetation variables,
but their use involves the loss of architectural information regarding the vegetation cover
needed to detect the phenological stages of crops. The third category is fully empirical
and based on the relationships between explained variables and explanatory satellite data.
Their advantage lies in the fact that they can estimate spatial and geographical phenomena
with a high degree of accuracy, provided that a variety of explanatory variables sensitive to
the phenomenon under study is found. They are also inexpensive and easy to apply and
integrate into large-scale agricultural management tools.

In the last decade, space-based remote sensing empirical models have become an
essential tool for crop mapping and yield prediction, often based on multitemporal radar
and/or optical images or UAV hyperspectral imagery. For example, Jamil, et al. [32]
have shown the usefulness of UAV-based RGB imagery combined with the structure from
motion (SfM) method for estimating the individual plants height of barley, and wheat. In
addition, remote sensing data can be combined with meteorological data to predict cereal
yields using machine-learning algorithms [33]. Fieuzal and Baup [34] have assessed the
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capabilities of forecasting the yield of wheat using an artificial neural network combined
with multitemporal satellites, namely, the spectral reflectance (Formosat-2, and Spot 4–5
in the green, red, and near-infrared wavelength) and multiconfiguration backscattering
coefficients (TerraSAR-X and RS-2 in the X- and C-bands, at co- (HH and VV) and cross-
polarization bands (HV and VH)). Their results highlighted the effectiveness of using the
multitemporal SAR C-band (VV and VH) data instead of optical ones to early forecast the
yield before the harvest of wheat. However, few studies have explored single-date SAR
images to predict crop yield at an early date of the agricultural season. The idea behind
the use of one image instead of multitemporal data is that single-date image is easier to
process and gives an earlier crop yield prediction before harvesting.

In this context, the aim of this paper is to suggest a cost-effective model for wheat
yield estimation in the most important cereal production area in Tunisia, in the spring
season. Our approach is based on the development of an empirical relationship considering
a one RS-2 polarimetric SAR image at an earlier stage of the agricultural season for yield
prediction and using field measurements. The novelty of this work lies in the fact that
it is the first attempt to compare C-band RS-2 polarimetric data with wheat yields in an
extensive agricultural system. Then we are dealing in this attempt to find the simplest
and accurate model that can be easily applied by the users as well as to understand the
contribution of the C-band polarimetric variables of the RS-2 satellite before moving on in
future work to more complex modeling process that can combine other types of data such
as meteorological data and/or optical satellite images with RS-2 C-band polarimetric data.

2. Materials and Methods
2.1. Description of the Study Area

The study area is located at the region of Boussalem in the northwest of Tunisia
(36◦32′51.81′′ N 9◦78.00′57.91′′ E) (Figure 1). This region is considered to be a large cereal
zone and it belongs to the semiarid upper bioclimatic zone, which is characterized by an
average annual rainfall of approximately 424 mm/year. Average winter temperatures are
between 5 ◦C and 10 ◦C and summer temperatures are between 25 ◦C and 30 ◦C. The
landscape in this region is mainly flat and land use is dominated by cereal agriculture.
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2.2. Field Data Measurement

The field values of wheat grain yield used in this study were measured at the time
of harvest (June 2015). Field data was collected from 15 agricultural plots, the latitude
and longitude of which were collected with a Global Positioning System (GPS). For each
test plot, five replicates using the five-point sampling method was considered [35]. The
yield was calculated based on the ‘density squares’ objective method, which is a popular
method used in the Mediterranean region. This method is well described by Mehdaoui
and Anane [36]. The yields were calculated in g/m2 and converted to t/ha. In addition,
the number of stalks, the weight of the grain, and the weight of the straw were observed.

2.3. Synthetic Aperture Radar Data

The RS-2 image used for this work was acquired at the flowering stage (14 April
2015), as a single-look complex image, in Fine Quad Pol mode (HH, HV, VH, VV), with a
spatial resolution of 8 m (Table 1). The Fine Quad Polarization Beam mode provides full
polarimetric imaging with the same spatial resolution as the Fine Resolution Beam modes.
Fine Quad Polarization Beam mode products with swath widths of approximately 25 km
can be obtained over any area within the region from an incidence angle of 18 degrees to at
least 49 degrees.

Table 1. Detailed information of the RADARSAT-2 satellite image used in the study.

Acquisition
Date

Spatial
Resolution Polarization Incidence

Angle Mode Pass Product

14 April 2015 8 m HH-HV-VV-VH 20.9◦ FQ3 A SLC

The flowering stage corresponds to the stage of maximum growth of the plant, when
it develops three quarters of its total dry matter. The state of the plants at this stage closely
depends on mineral nutrition and perspiration, which influence the final number of grains
per spike. The incidence angle of the acquired image is 20◦. Generally, when the angle
of incidence is low, the radar is more sensitive to soil characteristics and its sensitivity to
vegetation decreases. Nevertheless, at flowering stage, the vegetation is very developed
and the soil component is almost absent. Moreover, according to Moran et al. [31], the radar
signal is not much influenced by variations of the incidence angle after the heading stage.

Before using the RS-2 image, it was processed and prepared for the derivation of
polarimetric variables. First, it was radiometrically calibrated to get the linear radar
backscattering coefficients (60). In order to reduce speckle noise, a 3 × 3 BoxCar filter was
used. Filtered images were formed into a scattering matrix (S2), and later converted to a
3 × 3 covariance matrix (C3), which averages the cross-polarization backscatter to a single
cross-polarization value. The ASTER digital elevation model [37] was used to orthorectify
the image. The image was then geocoded into a Universal Transverse Mercator (UTM)
map projection.

2.4. Selection of Radar Polarimetric Parameters

The vegetation landscape produces a volume scattering. This volume is formed by the
scatters of ears, leaves and stems. In order to give a precise description of vegetation, it
is required to integrate the information of all the scatters. Actually, the dimensions of the
scatters, their form, their orientation, their position and their dielectric properties determine
the backscattering provided by a volume of scatters. Therefore, multipolarized radar
measurements give a better explanation of the vegetated scene than the single-polarized
measurements. Several polarimetric parameters can be found in the literature [38]. It is
therefore required to evaluate their sensitivity to vegetation within a given test site. A
bibliographic review of the polarimetric parameters allowed us to select nine polarimetric
parameters based on their potential to be sensitive to crop biomass as mentioned in Table 2.
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Table 2. Description of the polarimetric parameters selected.

Polarimetric
Parameters Description Reference

Entropy (H) Represents the random behavior of the global scattering. [24]

Anisotropy (A)
Shows the distribution of the two smallest eigen values, in

other words, the importance of secondary scattering
mechanisms.

[24]

Alpha (α)
Represents the average dominant scattering mechanism. It
is calculated from values and eigenvectors of the coherency

matrix.
[24]

Radar vegetation
index (RVI)

RVI is a useful parameter to separate vegetated and none
vegetated areas. RVI values for agricultural regions range

from 0.3 to 0.6. It is important to mention that wheat shows
the highest RVI of around 0.6 within the crop classes.

[39]

Freeman-Durden Vol

A statistical model-based decomposition that has better
stability in convergence and preserves the dominant

scattering mechanism of each class. In this decomposition,
the image pixels are divided into three categories: surface

(s), volume (v) and double bounce (d) scattering. The
volume scattering component is used in this study.

[40]

Van Zyl Vol

Vanzyl has proposed this decomposition method of the
covariance matrix (C) as odd-bounce (surface, even-bounce
(double bounce) or diffuse (volume) scatters). The volume

scattering component is used in this study.

[41]

Pedestal height

Pedestal height is an indicator of the presence of an
unpolarized scattering component, and thus the degree of

polarization of a scattered wave. Signatures with significant
pedestals heights are described by targets that are

dominated with volume scattering or multiple-surface
scattering.

[42]

DERD
Derived from the eigenvalues of the coherence matrix and
used to describe the relative relationship between two types

of scatters.
[43]

SERD
Derived from the eigenvalues of the coherence matrix based
on the reflection symmetry hypothesis and used to describe

a single type of scatters.
[43]

The results of the polarimetric decomposition RGB images of Freeman–Druden are
shown in Figure 2 as blue = surface scattering, red = double bounce scattering and
green = volume scattering. The green pixels represent crops with very high leaf mass,
arboriculture and forest due to their high-volume backscatter, while the blue pixels repre-
sent flat surfaces, bare soil and crops with low leaf mass. The cereal plots studied represent
a mixture of surface and volume backscatter.
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Figure 2. Polarimetric decomposition of Freeman–Druden over the study site (Boussalem); back-
ground image RGB = (Freeman_Dbl, Freeman_vol, Freeman_surf) derived from the SAR image
acquired on 14 April 2015.

In addition, we took into account the other parameters generated by linear and
quadratic combinations of different polarizations (HH, HV, and VV). Thus, the following
combinations were also included: HH*VV, HH/VV, HH+VV, HH-VV and HV/HH. Indeed,
HH/VV, HV/HH and HH*VV better highlight structural differences and reduce environ-
mental contingencies due to variations in humidity and roughness [44–46] HH-VV and
HH+VV can discriminate scattering [47] and better characterize vegetation [48].

In total, 20 parameters were extracted from the Radarsat-2 SLC image. The corre-
lation between the values extracted from the various polarimetric parameters and field
measurements of grain yield is performed using regression tools.

2.5. Developpement of Wheat Yield Estimation Model

In the case where the number of observations is low (between 10 and 20), we must
check the normality hypothesis by a quantile–quantile (Q-Q) to have a robust model. In the
case where the data do not follow a normal distribution, a data transformation (e.g., log)
will be necessary.
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The Q-Q plot was used to check if the measured yield was normally distributed. Let Z
be the number of random variables, the jth quantile is a number q(j) such that:

P [Z ≤ q(j)] =
(j−

1
2 )

n
, (1)

if Z is standard normal, the quantiles are found by solving Equation (2):

∫ q(i)

−∞

1√
2π

e−
1
2 Z2

dZ =
(j−

1
2 )

n
. (2)

The Pearson’s r correlation coefficient was computed to analyze the relationship
between the grain yield and the polarimetric parameters and to understand the contribution
of the RS-2 C-band polarimetric variables in wheat yields estimation.

Several kinds of modeling techniques can be used depending on the complexity of
the phenomenon to be estimated and the available observation data and the nature and
quantity of the available explanatory data; for example, deep learning models require a very
large amount of training data. Other complex machine learning methods such as Partial
least squares regression require a lot of predictor variables, which is not always feasible;
also, some complex regression models require a particular control of the autocorrelation
between the predictor variables and between these variables and other environmental
variables other than crop yields, such as, in our case, plant and soil moisture content. The
stepwise multiple linear regression has the advantage to be able to fine-tune the model to
choose the best predictor variables from the available variable in addition to be faster. It is
also able to manage both small and large amounts of predictor variables.

Then, stepwise multiple linear regression analysis was used to develop a wheat
yield estimation model by exploiting the maximum information extracted from the RS-2
polarimetric parameters. The coefficient of determination (R2), relative root mean square
error (RMSE), Bias, and Nash criterion (Nash) between measured grain yield and estimated
grain yield were computed to assess the performance of the model.

3. Results and Discussion
3.1. Field Data Analysis

The obtained grain yield is illustrated in Table 3. The variability of grain yield is due
to agricultural treatment applied for each plot (irrigation, fertilization, weed management).

Table 3. Summary of the plots feature.

Plot Field Size Biomass
(g)

Number of
Stalks

Grain
Yield (t/ha) Min Max CV * SD *

P1 40 m × 30 m 1184 87 3.238 3.05 3.42 0.05 1.62
P2 40 m × 30 m 1136 77 3.544 3.11 3.95 0.08 2.88
P3 40 m × 30 m 660 63 1.722 1.62 1.92 0.11 0.86
P4 50 m × 50 m 800 42 1.459 1.03 1.94 0.20 3.05
P5 50 m × 70 m 1128 92 3.890 3.54 4.44 0.06 2.41
P6 20 m × 50 m 1368 84 4.861 4.39 5.27 0.06 2.96
P7 30 m × 60 m 1104 70 3.580 3.29 4.65 0.06 2.37
P8 40 m × 30 m 1200 78 4.681 3.78 4.22 0.03 1.24
P9 40 m × 60 m 1208 87 3.990 3.72 4.72 0.08 3.53

P10 40 m × 70 m 1188 93 4.262 3.98 4.57 0.05 2.21
P11 50 m × 40 m 1108 100 5.394 4.97 5.78 0.05 2.88
P12 50 m × 30 m 1320 90 3.093 2.68 3.49 0.07 2.2
P13 40 m × 30 m 1396 90 3.558 3.26 3.91 0.05 2.09
P14 40 m × 30 m 1580 129 6.157 5.71 6.83 0.07 4.41
P15 50 m × 30 m 1928 102 5.560 5.22 5.94 0.05 3

* SD = standard deviation; * CV = coefficient of variation.
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For the field measurement, we first verified the normality of the measured variable.
Figure 3 shows the results of the normality test as a histogram of grain yields distribu-

tion and a normal Q-Q plot.
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Figure 3. Histogram of the grain yields distribution and Q-Q plot.

In conjunction with the histogram and Q-Q plot, a Shapiro–Wilk test was used
to determine whether the underlying distribution was normal. Results show that the
p-value = 0.785, so the null hypothesis is retained at the 0.05 level of significance. Therefore,
normality can be assumed for this dataset. Additionally, the Q-Q plot shows that the
grain yield data follow a normal distribution. The quantiles xi are associated with the
Gaussian model.

3.2. Correlation between Polarimetric Parameters and Grain Yield

Before calibrating the estimation model, we first tried to test the correlation between
grain yield and polarimetric parameters. Figure 4 shows the Pearson correlation coefficient
between the polarimetric parameters extracted from the image and grain yield. The results
show HH, HH+VV, HH*VV, HH/VV, HV/VV, HV/HH and alpha were significantly
correlated with grain yield. All correlations were significant with p < 0.05 except HV,
HH-VV, RVI, DERD, Freeman Vol, PDR, entropy/anisotropy. The best correlation was
observed for the HH/VV ratio (r = 0.76) and for the HV/HH ratio (r = −0.75). These results
corroborate well with the work of Canisius et al. [49], who found a strong correlation of
HH/VV with wheat height and wheat LAI with an R2 of 0.59 and 0.69, respectively. In
their research, several polarimetric parameters (e.g., the Entropy, the Alpha angle, HH/VV
and VH/VV) are strongly correlated with wheat height and LAI.

The sensitivity of the signal to the grain yield is attributed to the presence of the ear
at this stage. In addition, fields with the highest grain yields had the highest number of
ears per plant and the highest number of grains per ears. These two elements combined
to a larger leaf area leads to increased backscattering. Furthermore, at this stage, the ear
structure changes, which influence the SAR backscattering signal. According to McNairn
and Brisco [17] and Patel et al. [50], the structure of vegetation influences the penetration of
the wave into the canopy. The penetration proportionally increases with the wavelength and
may be dependent on polarization if the canopy has components with specific orientations
such as vertical needles, leaves or stalks.
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3.3. Wheat Yields Modeling

The simple regression between the grain yield and polarimetric parameters highlighted
a weak relationship, the best univariate model implies HH/VV with an R2 of 0.58. Therefore,
we used the multiple stepwise regression method to improve the results by exploiting the
complementary information that may arise from several variables. The stepwise function
allows us to calculate the correlation between the grain yield and all explicative variables
(polarimetric parameters) at the same time. The variables are added to the equation one by
one, using the statistical criterion to optimize the R2 of the included variables. Indeed, this
step allowed us to calibrate the equation of the wheat yields estimation model using the
least intracorrelated variables contributing to the most correlated regression with the yield
data Figure 5 shows the results of the model calibration.
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The best model implies three variables, namely HH/VV, HV/HH and alpha, as
explanatory variables with a determination coefficient of 0.88. Thus, among the 20 polari-
metric parameters, 3 of them explained the grain yield well at the flowering stage for the
test site of Boussalem. In the case of wheat crops, grain yield is determined by several pa-
rameters, particularly at the flowering stage. In fact, flowering is a distinctive phenological
event in wheat production that marks the start of grain growth in ears. Ear biomass per unit
area increases over time through the increase in the number of flowering plants. Growing
ears significantly affect radar backscatter signals, as their presence and increasing biomass
at the top of the canopy modify crop geometry and crop moisture distribution [50–52].
Hence, SAR backscatter can be considered as a composite of its interaction with ears, leaves
and stems, along with the moisture content of the underlying soil. At the same time, the
distribution of the volume and moisture of each component of the wheat plant determines
the depth of penetration of a signal into a wheat crop [21]. This justifies the explanatory
variables selected by the stepwise regression. Our results are in agreement with the results
of Canisius, et al. [49], when they have performed a linear regression between 25 polarimet-
ric parameters and the 2 wheat parameters, the plant height and LAI. Only Alpha, HH/VV,
VH/VV and Entropy have shown a significant correlation with both canopy parameters,
while the other polarimetric parameters do not, including Anisotropy, Pedestal height,
Freeman_vol, and HV/HH. By contrast, HV/HH showed a good correlation in our case
with wheat grain yield, which may be due to the differences between both studies in terms
of Radarsat-2 data time acquisition, soil and crop conditions. In fact, some polarimetric
parameters, such as HH, VV and the surface scattering component, are influenced by the
incidence angle, soil and crop conditions [49].

The alpha parameter could explain the yield because it presents the dominant mech-
anism and, in this case, volume backscatter is the dominant. Thus, it can be used as a
good predictor for crop height and yield estimation in the late growing stages, when the
backscattering are less influenced by soil and surface conditions [53], and also at the flow-
ering stage as revealed by our study. The HH/VV ratio explained the yield well thanks to
its relationship with the leaf area and biomass. According McNairn and Brisco [17], the
C-band polarization ratio HH/VV at a 23◦ incident angle is highly related to wheat biomass
during the growing season and can be used as an indicator of wheat biomass. This could
be explained by the inferior sensitivity of the polarization ratio to soil moisture [17,54].
According to Balenzano, et al. [55], HH/VV and HV/HH can be used for discriminating
bare soil and different vegetation heights. The results of Lin, et al. [56] showed the good
estimation of sugarcane LAI using the HV/HH polarization ratio using ASAR C-band data.
Using such a ratio reduces the effect of factors that may influence the absolute backscatter
on the relationship with the grain yield unless these factors affect HH and HV with the
same magnitude.

Figure 6 shows the validation of the model using a one-leave-out cross-validation
method. Results showed a satisfactory performance of the model in grain yields estimation
with an R2 of 0.58 and Nash equal to 0.52 and polarimetric parameters (R2 = 0.8). The
relative RMSE is a value of 34.7%, showing that the model should be further improved in
the future for operational applications in wheat program management in the study area.

In Figure 6, we noticed a slight overestimation of the model especially for two plots
P3 and P7. This can be due to the variability between measured grain yield and corre-
sponding measured biomass and stalks according to the agricultural treatment applied for
each plot (irrigation, fertilization, weed management). For example, P3 and P7 showed
biomass (g)/stalks measurements of 660 g/63 and 1104 g/70, respectively, which is rela-
tively low compared to measured grain yield of 1.73 t/ha and 3.85 t/ha, respectively. This
can influence the model calibration step and lead to an overestimation in the model output.
Thus, we plan to design an experimental protocol in future work, to perform uncertainty
analysis of the model by further controlling factors related to agricultural practice and by
increasing the number of plots for calibration and for independent model validation. Our
results are close to other studies used SAR data to predict wheat yield. In fact, Fieuzal
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and Baup [34] used C-band SAR data to forecast of wheat yield and found a R2 of 0.76.
Canisius et al. [49] used Radarsat2 data and polarimetric parameters to predict wheat yield
and found R2 = 0.88. Moreover, the results of our modeling are very satisfactory compared
to the results of other studies in the same geographical context and using optical data,
such as Mehdaoui and Anane [36]. They have used Sentinel-2 to predict yield and found a
coefficient of determination R2 between 0.55 and 0.73. In addition, Chahbi et al. [15] have
used Spot/HRV images to predict yield and found R2 = 0.66.
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3.4. Model Application for Wheat Yields Mapping

In the last step, we applied the model to other wheat plots for which we had no
yield data. We used the same Radarsat-2 images acquired in April 2015 and showing the
extent of the wheat crops. Figure 7 shows the extract of the wheat yield map obtained in
the Boussalem area. The wheat plots are of different soil types and agricultural practices.
However, the yield map gives us an idea of the spatial distribution of the yield and the
general average of the region. The yield map shows a maximum of 7.1 t/ha, a minimum
of 1.76 and an average of 3.7 t/ha over 59 plots including the 15 plots used in the model
calibration. The average yield of wheat obtained by our model on 59 plots is relatively in
agreement with the official statistics of the governorate of Jendouba of which the region
Boussalem is part of, the average yield was 2.08 t/ha in 2015 and 2.79 t/ha and 2.89 t/ha in
2014 and 2016 respectively, on all plots of the governorate.

In this study, it was shown that the use of C-band polarimetric parameters is a promis-
ing method in the development of an operational system for monitoring wheat yield in
Tunisia. In addition, stepwise regression analysis using multiple polarizations appears to be
a more robust approach than a simple linear regression analysis. We can therefore conclude
that multipolarized radar measurements provide more information than single-polarized
measurements, and that there is a high interest for polarimetry in agricultural studies. In
addition, our research confirms that the flowering stage is an appropriate stage to estimate
wheat grain yield in the Tunisian agricultural landscape.
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The radar signal from a vegetation crop canopy depends on biomass and plant water
content, plant element structure, canopy structure and underlying soil contribution [54]. All
those factors are responsible for a particular polarimetric behavior, which usually changes
along the growing season. Hence, multiple crop variables are required to fully explain
variations in backscatter, as explained by Kim et al. [51] and Patel et al. [50]. Furthermore, a
large number of wheat plots with different geographical profiles (region, farming practices
and soil type) can be explored for developing a robust and regional estimation model.

4. Conclusions

The prediction of wheat yields plays an important role in providing reliable infor-
mation to decisionmakers in order to ensure the proper management of the gap between
annual production and consumption in Mediterranean semiarid countries, where wheat is
a strategic crop and one of the most important staple foods for the population.

The aim of this study was to develop a costeffective estimation approach of the
wheat yield in the flowering stage through a possible relationship between C-band RS-2
polarimetric data and grain yield. The studied SAR parameters included copolarization,
cross-polarization ratios, and polarimetric variables including pedestal height, RVI, Cloude–
Pottier parameters, Vanzyl and Freeman–Durden decomposition parameters. A correlation
analysis between polarimetric parameters and grain yield was conducted and the Pearson’s
r was computed. Results showed an interaction between the quad-polarization RS-2 data
and grain yield. A correlation was observed between grain yield and several polarimetric
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parameters, which allowed us to investigate the sensitivity of the radar backscattering to
grain yield. The highest correlation was observed for the HH/VV ratio (r = 0.76), which
can be explained by the sensitivity of this parameter to the crop height and biomass. In
addition to HH/VV, the results show that among the co-polarization and cross-polarization
ratios, HV/HH, HH*VV, HH+VV, HH, HH/VV, and HV/VV were significantly correlated
with grain yield in descending order. Concerning the polarimetric parameters, only alpha
showed a strong correlation with grain yield. Furthermore, we used a stepwise regression
approach to calibrate a grain yield estimation model as a function of the RS-2 polarimetric
data. The result of the model calibration reveals that HH/VV, HV/HH, and alpha give the
best explanatory variables combination with a coefficient of determination (R2 = 0.8). The
validation of the yield estimation model with in-situ measurements by one-leave-out cross-
validation shows that the result is satisfactory with a lower RMSE error (34.7%, equivalent
to 0.89 t/ha), but still needs to be improved.

This study provides a new in-season tool for wheat crop yields estimation with SAR
data in Boussalem region, which further improves wheat crop monitoring capability. Fur-
thermore, the output of such kind of model can be complementary to the agrometerological
forecasting models for the better crop management of Tunisian agricultural production.
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