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Figure S1. Concentration response curve for human angiotensin-converting enzyme 2 (ACE2) binding to immobilized
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor binding domain (RBD) N501Y
(0.5 pg/mL) using an increasing dose of human ACE2 protein (0.015 to 2 pg/mL). Results (mean + standard error) are
expressed as optical density (OD450) measurements using the Synergy HT multi-mode microplate reader with a 450

nm filter.
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Figure S2. Quality control of SARS-CoV-2 3-chymotrypsin like protease (3CLpro) and human transmembrane protease
serine 2 (TMPRSS2) enzymatic activity. Tannic acid (TA) was dissolved in water; 1,3,6-tri-O-galloyl-p-D-glucose (TGG)
and corilagin were dissolved in DMSO. Both water and DMSO, with 3CLpro or TMPRSS2 and fluorescent substrate,
were used as positive controls with no enzyme inhibition as indicated. (A) 100 uM GC367 served as the standard
inhibitor of 3CLpro enzymatic activity. (B) 10 uM camostat mesylate served as the standard inhibitor of TMPRSS2
enzymatic activity. The fluorescence units were converted to a percentage of enzymatic activity considering the positive
control wells as 100% activity. Blank values were subtracted from all the readings before calculating the percent activity.
Results are expressed as mean+SD (n = 3). Statistical analysis was performed using the one-way ANOVA followed

by the Tukey post hoc test with ***p <0.001 compared to positive control wells.
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Table S1. Kinetics of TA/protein association and dissociation as measured by the SPR method.

Protein K. M1 s1) Ka (s1) Ko (M)
RBD (N501Y) 2.541 <103 1.066 x 10 4.198 x 108
TMPRSS2 1.289 x 104 1.506 x 10 1.168 x 108
3CLpro 3.060 x 10 3 1.759 x 10+ 5.747 x 108

Binding kinetics of TA over the immobilized recombinant protein sensor chip were evaluated in phosphate buffered
saline (PBS) + 0.05% Tween buffer with increasing polyphenol concentrations (1 to 80 uM) at a flow rate of 20 puL/min.
Association time was set at 300 s and dissociation time was extended up to 1,200 s. The sensor chip surface was
regenerated by injecting 10 uL of 50 mM NaOH solution at a flow rate of 20 uL/min. Binding sensograms were obtained
by subtracting the reference flow cell (without protein). Experiments were performed at least in duplicate and data
analysis was performed using the BIA evaluation software package (GE Healthcare) and fit to a one-site (1:1 molecular

ratio) Langmuir binding model.
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Figure S3. Kinetics of TA adsorption to protein-coated surfaces as measured by quartz crystal microbalance with
dissipation monitoring (QCMD), expressed as the dimensionless molar ratio of adsorbed TA from solution to adsorbed
protein, for: (A) TA/RBD, (B), TA/TMPRSS2, and (C) TA/3CLpro systems. When particles adsorb to the QCMD sensor,
water molecules within (intrinsic) and between particles in the adsorbed layer are also sensed in the frequency shift
[63,83]. Here we hypothesize a similar water weight fraction for TA and protein to normalize and estimate the
dimensionless molar (TA:protein) ratio. The linear increase in adsorbed mass towards 30 minutes is due to bi- and
multilayer adsorption of TA.

A monolayer of adsorbed TA occurs at the intersection between the steepest initial slope of the molar ratio-time
curve (due to the adsorption of TA on protein) and the second slope (due to multilayer adsorption of TA on TA). It can
be seen from Figure S3 that the amount of adsorbed TA at monolayer coverage increases with TA concentration. A
likely explanation is that at low TA concentrations TA adsorbs in a flat configuration, whereas at high concentrations

TA adsorbs mainly edge-on and/or as aggregates.
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Table S2. Hydrogen bonds and other bond types between TA and protein residues. The first column lists the proteins and their
best poses. The second column indicates the residues of those proteins involved in the formation of H-bonds with TA, while the
third column indicates the donor/acceptor H-bond lengths. The last column shows additional bonds, including amino acids with
hydrophobic side chains, which are shown in bold. These bonds are from the 1000 ns molecular dynamics (MD) simulations.

H-Bond H-Bond length 1st/2nd/3rd

Protein (Pose) Other residues binding with TA

(Residue) (A)
Phe490 2.99
Ser494 3.15 Ser349, Tyr351, Ala352, GIn439, Gly447, Tyr449,
RBD-N501Y (1) Gly496 3.17 Ans450, Leu452, Leu455, Tyr473, Tyr489, Pro491,
Val503 3.22 Leu492, GIn498, Gly504 (X2)
Tyr505 3.08
Phe456, GIn474, Gly476, Asn487, Cys488,
RBD-N501Y (2) Ala 475 2.96 Tyrd89,Phed90, Pro491
Gln 474 3.30
RBD-N501Y (3) Leu 492 3.20 Leu452, Tyr473, Tyr489, Phe490, Pro491, GIn493
Ser 494 3.18/3.26
Arg346 3.14
Tyr351 2.97
Leud41 2.96/3.03
Lys444 3.07
RBD-N501Y (4) Val445 3.00/3.28 Phe347, Ala348, Asp442, Ser443, Asn448, Asn450,
Tyr449 3.04 Leu452, Val483, GIn484, Asn487, Tyr489, Ser494
Gly485 2.99/3.28
Cys488 3.05
Phe490 3.01/2.67
Leu492 3.33/3.03
Ser84 2.74/2.89
Lys85 2.78/2.89
Asp90 3.04 Alad0, His41, Cys(Cyx)42, Thr86, Lys87, Tyr159,
TMPRSS2 (1) GClul34 2.93/2.53 Val160, Leu164?,Gln}183, Gly184,5ery186, Tr};azoa
Lys135 3.23
Argl58 3.07
Lys212 2.80
TMPRSS2 (2) z};;z% 22451 Ser84, Lys85, Thr86, Lys87, Leu164, I1e165, Trp206,
Thrl66 3.01/2.82/3.18 Val218
Lys135 3.00/3.13 Lys85, Thr86, Asp162, Tyrl61Leul64, Thrl66,
TMPRSS2 (3) Val160 2.88 Ser181, Gly184, Asp185, Trp206, Gly207, Ser208,
Ser186 3.12 Gly209, Ala211, Ala213, Arg215
Val25 3.18
Gly68 2.77 Val20, GIn21, Asn22, Val23, His41, Cyx42, Lys45,
TMPRSS2 (4) GIn72 3.04/3.06/3.21 Pro46, His52, Trp53, Tyr67, Ala131, Gly136,
Lys135 2.90 Lys137, Thr138, Asp185
Gly184 295
CCy5512425 5 539/223 7 Gly23,Thr25, His41,Val42, Cys44,Thr45, Ser46,
3CLpro (1) Al}; 191 ’ 3.0 1 Met49, Leu50, Met165, Glul66,Leul67, Pro168,

Gln192 296 Asp187, Argl88, GIn189, Thr190
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(A)

Figure S4. Molecular structures of TA/RBD (N501Y) complexes after docking (poses 1-4) and VINA binding affinities:
(A) pose 1,-6.8; (B) pose 2, -6.7; (C) pose 3, -6.7; and (D) pose 4, -6.6 kcal/mol. The figures were generated using PyMOL
v2.5.0 [108].
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Figure S5. Molecular structures of TA/RBD (N501Y) complexes before (green) and after (turquoise) 1000 ns MD simu-
lations: (A) pose 1; (B) pose 2; (C) pose 3; and (D) pose 4. The figures were generated using PyMOL v2.5.0 [108].
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Figure S6. Tannic acid interaction maps: the interaction maps of TA/RBD (N501Y) complexes for the center of the four

biggest clusters (poses 1 (A), 2 (B), 3 (C), and 4 (D)) computed on the convergence interval using the protein backbone

atoms and ligand non-hydrogen atoms. The other contacts, defined by a distance smaller than 0.40 nm, between the

ligand and the protein are shown as red arcs. H-bonds and their donor/acceptor distances are shown in green. The

interaction map was generated using LigPlot [51,52].
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Figure S7. Convergence of the TA/protein complexes over the MD trajectory of TA/RBD (N501Y) (poses 1-4),
TA/TMPRSS2 (poses 1-4), and TA/3CLpro (pose 1). (A) Root mean square deviation (RMSD) on the backbone atoms (N,

Ca, C and O) from the protein structures as a function of time (1000 ns); and (B) the root mean square fluctuations

(RMSF) per residue for the 750-1000 ns interval.
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Figure S8. (A) Number of H-bonds of TA/RBD (N501Y) complexes (poses 1 to 4); and (B) the solvent accessible surface
area (SASA); both over 1000 ns MD simulations.
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Figure S9. (A) Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) binding free energy of TA/RBD

(N501Y) complexes over 1000 ns (poses 1 to 4); and (B) the binding free energy per residue over the convergence interval

(750-1000 ns) of MD simulations.
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Figure S10. Molecular structures of TA/TMPRSS2 complexes after docking (poses 1-4) and VINA binding affinities : (A)
pose 1, -2.2; (B) pose 2, -1.6; (C) pose 3, +0.9; and (D) pose 4, +1.5 kcal/mol. The figures were generated using PyMOL
v2.5.0 [108].
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Figure S11. Molecular structures of TA/TMPRSS2 complexes before (green) and after (turquoise) 1000 ns MD simula-
tions: (A) pose 1; (B) pose 2; (C) pose 3; and (D) pose 4. The figures were generated using PyMOL v2.5.0 [108].
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Figure S12. Tannic acid interaction maps: the interaction maps of TA/TMPRSS2 complexes for the center of the biggest
four clusters (poses 1 (A), 2 (B), 3 (C), and 4 (D)) computed on the convergence interval using the protein backbone
atoms and ligand non-hydrogen atoms. The other contacts, defined by a distance smaller than 0.40 nm between the
ligand and the protein are shown as red arcs. H-bonds and their donor/acceptor distances are shown in green. The

interaction map was generated using LigPlot [51,52].
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Figure S13. (A) Number of H-bonds of TA/TMPRSS2 complexes (poses 1 to 4); and (B) solvent accessible surface area

(SASA); both over 1000 ns MD simulations.
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Figure S14. (A) MMPBSA binding free energy of TA/TMPRSS2 complexes over 1000 ns (poses 1 to 4); and (B) the

binding free energy per residue over the convergence interval (750-1000 ns) of MD simulations.
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Figure S15. (A) Number of H-bonds of the TA/3CLpro complex (pose 1); and (B) the solvent accessible surface area
(SASA); both over 1000 ns MD simulations.
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Figure S16. (A) MMPBSA binding free energy of the TA/3CLpro complex over 1000 ns (pose 1); and (B) the binding free

energy per residue over the convergence interval (750-1000 ns) of MD simulations.
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Figure S17. (top left) Major RMSD conformational changes of the sugar ring of TA over a 500 ns MD simulation: (A)
chair at 100 ns, (B) chair at 260 ns and (C) skew-boat at 450 ns (calculated with GROMACS v2021.2).
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Figure S18.

Radius of gyration of RBD (N501Y) protein of approximately 1.825 nm (calculated with GROMACS
v2021.2).

Table S3. Sequences for recombinant RBD (N501Y), human TMPRSS2 and 3CLpro proteins used for

experimental and
theoretical (in-silico) assessment of TA/protein complexes.

Methods RBD (N501Y) TMPRSS2 3CLpro
Experimental (Enzymatic
assays/SPRIQCMD) 319-541 106-492 1-306

In-silico 333-526 1-234 1-306




