
Université du Québec
Institut national de la recherche scientifique

Centre Énergie Matériaux Télécommunications

Closing the gap between research and practice in the case of voice biometrics:
training improvements and similarity learning for more robust verification

Combler les lacunes entre la recherche et la pratique dans le cas de la biométrie
vocale: améliorations de l’entrainement et apprentissage par similarité pour

une vérification plus robuste
By

João Monteiro

A thesis submitted in fulfillment of the requirements for the degree of
Doctorate of Sciences, Ph.D

in Telecommunications

Evaluation Committee

Internal evaluator and committee president: Prof. Douglas O’Shaughnessy
INRS-EMT

External evaluator 1: Prof. Alessandro Koerich
École de Technologie Supérieure

External evaluator 2: Prof. Hemant A. Patil
Dhirubhai Ambani Institute of Infor-
mation and Communication Technology
(DA-IICT) Gandhinagar

Research advisor: Prof. Tiago H. Falk
INRS-EMT

Research co-advisor: Dr. Jahangir Alam
Centre de Recherche Informatique de
Montréal

© João Monteiro, 2021

Acknowledgements

I would like to acknowledge the support and supervision of Prof. Tiago Falk, and colleagues and
collaborators fromMuSAE lab: Anderson Ávila, Raymundo Cassani, Abhishek Tiwari, Shruti Kshir-
sagar, Marília Soares, Olivier Rosanne, Belmir Jesus, Marc-Antoine Moinnereau, Liviu Ivanescu,
Stefany Bedoya, João Felipe Santos, and Diana Tobón-Vallejo.

The bulk of the work discussed in this document was developed in collaboration with the Centre
de Recherche Informatique de Montréal (CRIM), via financial support and technical contribution
through my co-supervisor Jahangir Alam and my colleague Gautam Bhattacharya.

While working towards the Ph.D., I was lucky to be able to take on several research internship
roles within industry. I would like to thank colleagues from research labs within those companies
for their collaboration and guidance: (Huawei) Bharat Venkitesh, Alex Bie, Md Akmal Haidar, and
Mehdi Rezagholizadeh. (Google) Xavier Gibert, Jianqiao Feng, Vincent Dumoulin, Dar-Shyang
Lee, and Chen Xia. (Borealis AI) Mohamed Osama Ahmed, and Hossein Hajimirsadeghi. I also
thank Prof. Ioannis Mitliagkas, with whom I worked in a few projects, for being so supportive and
uplifting.

I would like to thank my family for their unconditional support, especially my parents João and
Ana, without which this work wouldn’t be possible. Lastly, I would like to largely thank my wife
(and research partner) Isabela Albuquerque for her unbounded support and care.

iii

Abstract

The field of representation learning, powered by deep neural networks, has shown to be highly effective
across several problems and domains, significantly outperforming classical approaches relying on feature
engineering. Specifically in the context of voice-biometrics and related tasks, i.e., the main focus of this work,
representations learned by neural networks have resulted in highly discriminative utterance-level features.
These have shown to perform well on both end-to-end settings as well as to define an embedding on top
of which simple classifiers can be trained. Learned features correspond to outputs of a model’s inner layers
obtained after training on a related auxiliary task. Choosing effective training strategies and classes of models,
however, is challenging and resource consuming, as it relies on a trial-and-error approach and is conditional
on the particular task of interest. Furthermore, in addition to the trial-and-error limitation of finding the
right architecture and training procedure for a given task/data of interest, robustness of the developed models
to attacks is another issue, particularly in the context of voice biometrics. For example, relatively simple
strategies, such as replaying a pass-phrase, the use of text-to-speech synthesis, and voice conversion systems
have shown to be able to fool speaker recognizers. This limitation can allow ill-intended attackers to gain
undue access to systems containing private data.

In this thesis, we propose several innovations to address these issues. First, we propose a more efficient
multi-task training strategy that combines maximum likelihood estimation with metric learning, and show
that the resulting models outperform those trained using either one of the two approaches. Experiments with
cross-language speaker verification and spoken language identification are performed to validate the proposed
method. Next, we propose an architectural change to the time delay neural network (TDNN) aiming to render
it more generally applicable. More specifically, we propose pooling across different levels of the convolutional
stack and a new approach to efficiently combine these multiple representations. The updated architecture is
shown to not only be more versatile (i.e., can be re-used across different tasks) but the learned representations
are also more discriminative. Third, to alleviate the threat of multi-style spoofing to voice biometrics systems,
we propose a detection framework based on a model ensemble, in which two models are trained jointly, while
a third model learns how to mix their outputs yielding a single decision score. Experimental results with
replay and text-to-speech/voice conversion attacks show the proposed ensemble method achieving similar or
superior performance when compared to systems specialized on each spoofing strategy separately. Finally,
we turn our attention to the definition of more versatile end-to-end training approaches. As such, we propose
a set of model components and a training algorithm which can be re-used across a number of different tasks.
To do so, we leverage recent metric learning approaches that parameterize semantic similarity measures
employing neural networks. We build upon such setting by introducing an extra component, corresponding
to a set of prototypes representing classes observed at training time. Inference schemes are discussed for cases
that require instance-to-instance comparisons, such as verification and retrieval, as well as those relying on
instance-to-sample similarity assessment, such as in the case of prototypical classification.

Keywords: Discriminative verification, learning templates, metric learning, prototypical classification,
speaker verification, spoken language identification, spoofing detection.

v

Résumé

Le domaine de l’apprentissage des représentations s’est avéré très efficace dans plusieurs problèmes et
domaines, surpassant considérablement les approches classiques. Plus précisément dans le contexte de la
biométrie vocale et des tâches connexes, c’est-à-dire l’objectif principal de ce travail, les représentations ap-
prises par les réseaux de neurones ont abouti à des projections de la parole de faible dimension hautement
discriminantes. Ceux-ci ont montré de bonnes performances dans les cas end-to-end ainsi que pour définir
un encodeur sur lequel des classificateurs simples peuvent être entraînés. Les représentations apprises corre-
spondent aux sorties des couches internes d’un modèle obtenues après apprentissage sur une tâche auxiliaire
connexe. Cependant, le choix de stratégies de formation et de classes de modèles efficaces est difficile et
demande beaucoup de ressources, car il repose sur une approche par essais et erreurs et est conditionné par
la tâche particulière d’intérêt. En plus de la limitation par essais et erreurs de trouver la bonne architecture
et la bonne procédure d’entraînement pour une tâche/données d’intérêt données, la robustesse des modèles
développés aux attaques est un autre problème, en particulier dans le contexte de la biométrie vocale. Par
exemple, des stratégies relativement simples telles que relecture d’une phrase de passe, l’utilisation de sys-
tèmes de synthèse et de conversion vocale se sont avérées capables de tromper les locuteurs. Cette limitation
peut permettre à des attaquants d’accéder indûment à des systèmes contenant des données privées.

Dans cette thèse, nous proposons plusieurs innovations pour répondre à ces problématiques. Première-
ment, nous proposons une stratégie d’entraînement multitâche plus efficace qui combine l’estimation du
maximum de vraisemblance avec l’apprentissage métrique, et montrons que les modèles résultants surpassent
ceux entraînés en utilisant l’une ou l’autre des deux approches. Des expériences de vérification du locuteur
inter-langue et d’identification de la langue parlée sont effectuées pour valider la méthode proposée. Ensuite,
nous proposons une modification architecturale du time delay neural network (TDNN) visant à le rendre
plus généralement applicable. Plus précisément, nous proposons une mutualisation à différents niveaux
de la pile convolutive et une nouvelle approche pour combiner efficacement ces multiples représentations.
L’architecture mise à jour s’avère non seulement plus polyvalente (c’est-à-dire qu’elle peut être réutilisée
dans différentes tâches), mais les représentations apprises sont également plus discriminantes. Troisième-
ment, pour atténuer la menace d’usurpation multi-style des systèmes de biométrie vocale, nous proposons un
cadre de détection basé sur un ensemble de modèles, dans lequel deux modèles sont entraînés conjointement,
tandis qu’un troisième modèle apprend à mélanger leurs sorties pour obtenir un seul score de décision. . Les
résultats expérimentaux avec les attaques de relecture et de conversion texte-parole/voix montrent que la
méthode d’ensemble proposée atteint des performances similaires ou supérieures par rapport aux systèmes
spécialisés dans chaque stratégie d’usurpation d’identité séparément. Enfin, nous tournons notre attention
vers la définition d’approches de formation de end-to-end plus polyvalentes. En tant que tel, nous proposons
un ensemble de composants de modèle et un algorithme d’apprentissage qui peuvent être réutilisés dans un
certain nombre de tâches différentes. Pour ce faire, nous utilisons des approches récentes d’apprentissage
métrique qui paramétrent des mesures de similarité sémantique utilisant des réseaux de neurones. Nous nous
appuyons sur un tel cadre en introduisant un composant supplémentaire, correspondant à un ensemble de
prototypes représentant les classes observées au moment de l’apprentissage. Les schémas d’inférence sont
discutés pour les cas qui nécessitent des comparaisons instance-to-instance, telles que la vérification et la
récupération, ainsi que ceux qui reposent sur l’évaluation de la similarité instance-to-sample.

Mots-clés: Vérification discriminatif, modèles d’apprentissage, apprentissage métrique, classification
prototypique, vérification du locuteur, identification de la langue parlée, détection d’usurpation.

vii

Contents

Acknowledgements iii

Abstract v

Résumé vii

Contents ix

List of Figures xv

List of Tables xvii

List of Abbreviations xix

Synopsis 1
0.1 Introduction . 1
0.2 Contexte et travaux connexes . 1

0.2.1 Le problème de vérification . 1
0.2.1.1 Le problème de vérification pour le cas de la biométrie vocale 3
0.2.1.2 Identification de la langue parlée . 3
0.2.1.3 Détection d’usurpation d’identité . 4

0.2.2 Architectures de modèles . 5
0.2.2.1 Time delay neural networks (TDNN) . 5
0.2.2.2 Architectures résiduelles . 6
0.2.2.3 Mécanismes d’attention . 7

0.2.3 Apprentissage des métriques . 8
0.3 Organisation de la thèse . 9
0.4 Chapitre 2: Améliorement de l’entraînement des réseaux neuronaux pour l’apprentissage de la

représentation au niveau de la phrase . 10
0.4.1 Mise en place experimentale . 10
0.4.2 Discussion . 12

0.5 Chapitre 3: Détection des menaces comme moyen d’obtenir une biométrie vocale robuste . . 12
0.5.1 Mise en place experimentale . 13
0.5.2 Discussion . 14

ix

0.6 Chapitre 4: TDNN auto-attentif à plusieurs niveaux: une approche générale et efficace pour
résumer la parole en représentations discriminantes au niveau de la phrase 15
0.6.1 Mise en place experimentale . 17
0.6.2 Discussion . 18

0.7 Chapitre 5: Apprentissage des (pseudo) espaces métriques pour la vérification discriminatif . 19
0.7.1 Mise en place experimentale . 20
0.7.2 Discussion . 21

0.8 Chapitre 6: Apprentissage des partitions pour définir des modèles d’apprentissage polyvalents 21
0.8.1 Mise en place experimentale . 23
0.8.2 Discussion . 24

0.9 Conclusions . 24

1 Introduction 27
1.1 Objectives . 30
1.2 Background and related work . 30

1.2.1 Problem definition . 31
1.2.1.1 The verification problem . 31
1.2.1.2 The verification problem for the case of voice biometrics 33
1.2.1.3 Language identification . 35
1.2.1.4 Spoofing detection . 37

1.2.2 Model architectures . 40
1.2.2.1 Time delay neural networks (TDNN) . 40
1.2.2.2 Residual architectures . 42
1.2.2.3 Attention mechanisms . 43

1.2.3 Metric Learning . 45
1.2.4 Datasets . 49

1.2.4.1 Speaker verification . 49
1.2.4.2 Language identification . 50
1.2.4.3 Detecting spoofing attacks . 51
1.2.4.4 Standard image benchmarks . 52

1.3 Summary of contributions . 52
1.4 Publications . 54
1.5 Open-source code . 58

1.5.1 Open-source code implementing experiments included in the thesis 58
1.5.2 Other open-source code . 58

1.6 Thesis organization . 58

2 Improving neural network training for utterance-level representation learning 61
2.1 Preamble . 61
2.2 Introduction . 61
2.3 Application to language identification . 63

x

2.3.1 Model used for evaluation of the proposed training scheme 63
2.3.2 Training details . 63
2.3.3 Evaluation details, results, and discussion . 67

2.4 Application to speaker verification . 72
2.4.1 Training loss . 74
2.4.2 Mini-batch construction and triplets selection . 76
2.4.3 Maximum Entropy Regularization . 77
2.4.4 Other training details . 78
2.4.5 Evaluation and Discussion . 79

2.5 Conclusion . 83

3 Detecting threats as a means for robust voice biometrics 85
3.1 Preamble . 85
3.2 Introduction . 85
3.3 An end-to-end setting for spoofing detection . 88

3.3.1 Model and training . 88
3.3.1.1 Speech representation . 88
3.3.1.2 Extraction of local descriptors . 89
3.3.1.3 Training . 91

3.3.2 Evaluation . 91
3.4 Scaling end-to-end detection to larger models via artifact-preserving data augmentations . . . 95

3.4.1 Augmentation approach . 95
3.4.2 Model description . 96
3.4.3 Training details . 97
3.4.4 Evaluation . 97

3.5 Attack-agnostic strategy to detect both logical and replay attacks 100
3.5.1 Proposed Model . 100
3.5.2 Training . 102
3.5.3 Experimental Setup and Evaluation . 104
3.5.4 Evaluating single models trained on pooled data . 104
3.5.5 Selecting the best approach to model the mixture coefficient 105
3.5.6 Evaluation of the proposed approach . 106

3.6 Conclusion . 108

4 Multi-level self-attentive TDNN 111
4.1 Preamble . 111
4.2 Introduction . 111
4.3 Proposed Model . 113
4.4 Experimental Setup . 115
4.5 Experimental Results and Discussion . 116

4.5.1 Detecting spoofing attacks . 116

xi

4.5.2 Spoken language identification . 118
4.5.3 Speaker Verification . 119

4.6 Conclusion . 120

5 Learning (pseudo) metric spaces for discriminative verification 123
5.1 Preamble . 123
5.2 Introduction . 123
5.3 The verification problem . 125
5.4 Learning pseudo metric spaces . 126

5.4.1 Different interpretations for the distance model . 127
5.4.2 Training . 129

5.5 Evaluation . 131
5.5.1 Proof-of-concept evaluation on CIFAR-10 and MiniImageNet 132
5.5.2 Large-scale verification with VoxCeleb . 133
5.5.3 Extra experiments . 134

5.5.3.1 Speaker verification under domain shift . 134
5.5.3.2 Checking for distance properties in trained models 137
5.5.3.3 Varying the depth of the distance model for verification on ImageNet 138

5.6 Implementation details . 140
5.6.1 Architecture of the distance model . 140
5.6.2 CIFAR-10 and MiniImageNet . 140

5.6.2.1 Hyperparameters . 140
5.6.3 Voxceleb . 141

5.6.3.1 Encoder architecture . 141
5.6.3.2 Data augmentation and feature extraction 141
5.6.3.3 Mini-batch construction . 142
5.6.3.4 Hyperparameters . 142

5.7 Conclusion . 143

6 Learning partitions to define versatile learning templates 145
6.1 Preamble . 145
6.2 Introduction . 145
6.3 Background . 146
6.4 Defining learning templates via trainable similarity measures 147

6.4.1 Model components . 148
6.4.2 Training . 148
6.4.3 Testing . 150

6.5 Evaluation . 152
6.5.1 ASV experiments on VoxCeleb . 153
6.5.2 Experiments on image benchmarks . 155

6.5.2.1 Robustness against adversaries . 155

xii

6.5.2.2 Robustness under domain shift . 157
6.5.2.3 Image retrieval . 158
6.5.2.4 Few-shot classification . 159
6.5.2.5 Ablation study . 161

6.5.3 Implementation details . 162
6.6 Conclusion . 163

7 Conclusions and Future Research Directions 165
7.1 Conclusions . 165

7.1.1 Applied contributions . 166
7.1.2 Fundamental contributions . 168

7.2 Future work . 169

Bibliography 173

Appendix A Background content 187
A.1 Chapter 2 . 187
A.2 Chapter 3 . 188
A.3 Chapter 4 . 188
A.4 Chapter 5 . 188
A.5 Chapter 6 . 188

xiii

List of Figures

1.1 The verification problem. 31
1.2 Hierarchical pipeline with a language recognizer streaming inputs into language-specific sub-

modules. 36
1.3 i-vectors front-end description [1]. 36

1.4 Illustration of a generic Automatic Speaker Verification (ASV) system. Red crosses indicate
parts of the system which can be potentially exploited by an attacker to bypass or fool the
verification process. We focus on microphone-level attacks, i.e., the attack is performed on the
input signal prior to being captured by the system. Figure is inspired by [2]-Fig. 1. 37

1.5 Scheme 1: The spoofing detector is invoked once inputs are classified as target with respect to
claimed identities. 38

1.6 Scheme 2: The spoofing detector is used first and only samples classified as genuine are passed
through to the speaker verification block. 38

1.7 Conventional TDNN overview [3]. 41

1.8 Residual block [4]. 43
1.9 Illustration of a siamese network setting. Model weights are shared across the two branches,

and pairs can be either positive or negative [5]. 47

1.10 Illustration of a triplet network setting. Model weights are shared across the three branches [6]. 48

2.1 Proposed residual convolutional neural network model with frame-wise attention employed for
language recognition. The shapes indicate the dimensionality of the processed data within
different parts of the model. N indicates the number of examples contained in a batch of data,
while T0, T1, and T2 stand for the dimensionality across the time dimension in different points. 64

2.2 Illustration of triplet losses under hard or soft margins. 66
2.3 2-dimensional t-SNE embeddings of test recordings obtained after the attention layer. Each

color stands for one different language. Better viewed in color. 68
2.4 Diagram representing our proposed system. Features are mapped into local descriptors, which

aggregated to yield final representations. 72
2.5 Statistics pooling. 74
2.6 Attentive pooling. 74
2.7 Recurrent attentive pooling. 74
2.8 Sampling training examples from the dataset. Speakers are selected sequentially and five

recordings are randomly selected for each such speaker so as to compose a training mini-batch. 76
2.9 Hard and easy triplets. Triplet loss minimizes the distance between anchor and positive ex-

amples while maximizing that between anchor and negative cases. 77

xv

3.1 Cepstral Coefficients are first shrunk through a convolutional layer and then fed into a LCNN29
modified with 1-dimensional time convolutions. Spectral features on the other hand are directly
fed into a standard time-spatial LCNN9, and have the frequency dimension shrunk later on.
The number of channels K of the last convolutional layers yields the dimensionality of the final
representation V , which is given by a linear projection of concatenated statistics of weighted
local descriptors. 87

3.2 Application of a 3/2 MFM activation on C channels of dimension H×W . Input set of channels
is split in 3 groups, the minimal element-wise element in each triplet is removed. 90

3.3 Sampling strategy for constructing mini-batches. Clean examples are sampled several times
per epoch so as to ensure mini-batches are balanced. 92

3.4 Data augmentation via speed perturbation, low pass, and high pass filtering of ASVspoof 2019
training data. 96

3.5 End-to-end detection of spoofing attacks. All convolutions maintain the time resolution. Sta-
tistical pooling corresponds to concatenated mean and variance, obtained across the time
dimension. N represents the dimension of feature vectors, which correspond to 90 and 257 for
LFCC and ProdSpec, respectively. 96

3.6 General scheme illustrating the proposed ensemble strategy. 101
3.7 Cepstral coefficients are first shrunk through a convolutional layer and then fed into a stack

of 1-dimensional time convolutions. Spectral features on the other hand are directly fed into
a set of time-spatial convolutions, and have the frequency dimension shrunk later on. The
number of channels K of the last convolutional layers yields the dimensionality of the final
representation V , finally projected into an output score y ∈ [0, 1]. The number of local feature
vectors N is a function of the number of input frames T . 102

4.1 Proposed TDNN with multi-level self-attentive temporal pooling. 114
4.2 Illustration of the use of the proposed model as an embedding encoder. Two embedding

layers are considered as indicated by “I” or “O” as a reference to the inner or outer dense
layers. Scoring trials independently and averaging the scores (I+O) was observed to yield
improvements in most cases. 120

5.1 MNIST embeddings on a 2-dimensional space. Each color represents test examples correspond-
ing to a digit from 0 to 9. 137

5.2 Evaluation of distance properties of trained models. 138
5.3 Effects of increasing depth of the distance model. 139

6.1 Components defining TEMPLE models. Implementing a model for a particular task simply
requires the definition of E . 151

6.2 Evaluation on retrieval tasks in terms of R@K. 159

xvi

List of Tables

1.1 Standard TDNN architecture. T indicates the duration of features in number of frames and
d the feature vector dimensionality. Batch normalization is further employed after each layer
except temporal pooling. 41

1.2 Numbers of speakers and utterances for each partition of the VoxCeleb corpus [7]. Our models
are trained on the training partition of VoxCeleb2 and evaluated on the three test partitions
described below. 49

1.3 Language identification dataset statistics [8]. 51
1.4 Number of genuine and spoofing recordings in training, development, and evaluation partitions

for logical and physical access attacks [9]. 51

2.1 Performance comparison of proposed system (last three rows) and benchmarks based on equal
error rate (%) and average cost performance (Cavg). A total of 220510 trials were processed
in both short-duration and full-length cases. 70

2.2 Performance comparison of proposed system (last three rows) and benchmarks based on equal
error rate (%) and average cost performance (Cavg). Confusing languages correspond to Can-
tonese, Korean, and Mandarin. A total of 214560, 22071, and 404160 trials were processed,
respectively, for each evaluation condition: short-duration, confusing-languages, and unseen
languages. 71

2.3 EER (lower is better) obtained for the same system trained with different losses. The combi-
nation of triplet loss and cross entropy yields speaker-dependent representations. 80

2.4 EER (lower is better) obtained using different pooling strategies to aggregate local descriptors
into embeddings. 81

2.5 Comparison of proposed systems with well-known baseline methods. Results correspond to
verification EER (lower is better). “ * ” indicates that models trained with the larger training
set are included. 82

2.6 Comparison of proposed systems with well-known baseline methods on SRE-16 evaluation set.
Results reported in terms of DCF10−2 and DCF10−3 (lower is better). “ * ” indicates that
models trained with the larger training set are included. 83

3.1 EER and min-tDCF for logical access attacks on development partition. Both scores are better
when closer to 0. 94

3.2 EER and min-tDCF for physical access attacks on development partition. Both scores are
better when closer to 0. 94

3.3 EER and min-tDCF for physical access attacks on evaluation partition. Both scores are better
when closer to 0. 94

3.4 The min-tDCF and EER(%) results for PA task on the development set. Lower values are
better. 98

3.5 The min-tDCF and EER(%) results for the LA task on the development set. Lower values are
better. 99

xvii

3.6 The min-tDCF and EER(%) results for PA task on the evaluation test set. Lower values are
better. 99

3.7 The min-tDCF and EER(%) results for LA task on the evaluation test set. The lower the
values of min-tDCF and EER the better is the performance. 100

3.8 EER obtained by pooling LA and PA training data. Models are trained on top of different
speech features. Column Privileged refers to the best performance we could obtain with a
privileged model, training on data corresponding to the same type of attack it would face at
evaluation time. Privileged systems correspond to 1-dimensional ResNet along with LFCCs
for LA attacks and 2-dimensional ResNets on top of ProdSpec for the case of PA attacks. . . 105

3.9 Analysis on the performance in terms of detection EER of MMIX models trained on top of
different features to discriminate LA and PA attacks. Reference performance for linear models
trained on top of the same features with the same computational budget are presented in
parenthesis for each evaluation case. 106

3.10 The t-DCF and EER results for the LA task on the development and evaluation sets. The
lower the values of min-tDCF and EER the better is the performance.. Training for ensemble
systems is performed on top of combined LA and PA data. 109

3.11 The t-DCF and EER results for the PA task on the development and evaluation sets. The
lower the values of min-tDCF and EER the better is the performance. Training for ensemble
systems is performed on top of combined LA and PA data. 110

4.1 Detection performance on the evaluation set of the logical access task of the ASVspoof 2019. 117
4.2 Detection performance on the evaluation set of the physical access task of the ASVspoof 2019. 117
4.3 Spoken language identification performance for the three evaluation conditions considered on

the AP18-OLR challenge. 119
4.4 Verification performance on the VoxCeleb test partitions reported in terms of EER (%). Per-

formance of our models is reported for representations obtained in different layers: (I)–Inner
or penultimate dense layer, (O)–Outer or last dense layer, (I+O)–their average. 121

5.1 Evaluation of models trained under the proposed approach on image data. 133
5.2 Evaluation of models trained under the proposed approach on VoxCeleb. 135
5.3 Evaluation of models under domain shift. Target data corresponds to speech spoken in Arabic.

Fine-tuning on datasets including target data yields an improvement in verification performance.136

6.1 Verification performance on the VoxCeleb test partitions reported in terms of EER (%). . . . 154

6.2 Adversarial robustness evaluation in term of accuracy (%) considering PGD and FGSM at-
tackers under L∞ budgets of 0.3 and 8

255 for the cases of MNIST and CIFAR-10, respectively.
The number of steps employed for each attack is represented within parenthesis. We consider
evaluations obtained with the similarity classifier as indicated by SIM as well as utilizing the
auxiliary output layer which we indicate by DOL. 156

6.3 Evaluation on the PACS benchmark in terms of accuracy (%) for the cases where each of the
available domains are left out of training. 157

6.4 R@K (%) evaluation of proposed methods on the CARS196 dataset. 159

6.5 R@K (%) evaluation of proposed methods on the CUB200-2011 dataset. 160
6.6 5-way few-shot classification on MiniImageNet. Results consist of average top-1 accuracy along

with confidence intervals considering 1000 randomly selected tasks. All evaluations consider a
ResNet-12 architecture. 161

6.7 Classification performance in terms of accuracy (%). 161

6.8 Verification performance in terms of EER (%) and 1-AUC (%). 162

xviii

List of Abbreviations

ASV Automatic Speaker Verification
AUC Area Under the operation Curve
Cavg Average Cost Performance
CNN Convolutional Neural Network
CQCC Constant-Q Cepstral Coefficients
DCF Detection Cost Function
EER Equal Error Rate
GMM Gaussian Mixture Model
LA Logical Access
LCNN Light Convolutional Neural Networks
LDA Linear Discriminant Analysis
LFCC Linear Frequency Cepstral Coefficients
LID Language Identification
LSTM Long Short-Term Memory
MFCC Mel Frequency Cepstral Coefficients
min-tDCF Minimum Tandem Detection Cost Function
ML-TDNN Multi-level Time Delay Neural Network
MLE Maximum Likelihood Estimation
MMD Maximum Mean Discrepancy
NIST National Institute of Standards and Technology
OLR Oriental Language Recognition
PA Physical Access
PCA Principal Component Analysis
PLDA Probabilistic Linear Discriminant Analysis
ProdSpec Product Spectra
ResNet Residual Neural Network
RNN Recurrent Neural Network
SGD Stochastic Gradient Descent
SRE Speaker Recognition Evaluation
SVM Support Vector Machine
TDNN Time Delay Neural Network
TEMPLE Template Learners
UBM Universal Background Model
VGG Visual Geometry Group

xix

Synopsis

0.1 Introduction

L’apprentissage de représentations utiles à partir de données structurées de grande dimension
est l’un des principaux objectifs de l’apprentissage automatique moderne. Les réseaux de neurones
profonds se sont révélés capables d’apprendre efficacement de telles représentations sans nécessiter
un pré-traitement spécialisé des données analysées, ce qui permet d’améliorer considérablement les
performances d’une gamme de tâches (par exemple, [10]). Malgré cette augmentation des per-
formances, les réseaux de neurones profonds présentent également plusieurs lacunes qui peuvent
limiter leur utilisation plus répandue dans les domaines appliqués. Ces limitations peuvent in-
clure: le manque de robustesse contre les changements de distribution et les attaquants générés par
l’adversaire, l’inefficacité des données et des procédures d’apprentissage trop spécialisées.

Les travaux de recherche discutés ici constituent une tentative d’aborder ces questions dans une
certaine mesure. Nous nous concentrons particulièrement dans le cadre de la biométrie vocale et
des tâches connexes. En particulier, nous introduisons des modèles et des algorithmes visant à
améliorer à la fois les performances de prédiction, la robustesse et la polyvalence.

0.2 Contexte et travaux connexes

0.2.1 Le problème de vérification

Considérons les instances de données x ∈ X telles que chaque x peut être associé à une étiquette
de classe c ∈ C via une fonction d’étiquetage f : X 7→ C. Nous définissons un essai comme une
paire d’ensembles d’exemples {Xi, Xj}, à condition que f(xk

i) = f(xl
i) ∀ k, l ∈ {1, 2, ..., |Xi|}2 et

f(xk
j) = f(xl

j) ∀ k, l ∈ {1, 2, ..., |Xj |}2, afin que nous puissions attribuer des étiquettes de classe à
de tels ensembles Xm définissant f(Xm) = f(xm) ∀ xm ∈ Xm. Le problème de vérification peut
être vu comme, étant donné un essai Ti,j = {Xi, Xj}, décidant si f(Xi) = f(Xj). Dans ce cas,
nous nous référons à T comme essai cible, ou f(Xi) 6= f(Xj) et le essai sera appelé non-cible. Nous

2

classons les essais en deux types en fonction des exemples pratiques du problème de vérification.
Les essais de type I sont ceux où Xi est appelé échantillon d’inscription, c’est-à-dire un ensemble
de points de données représentant une classe donnée, comme une galerie de photos de visage d’un
utilisateur donné dans une application de contrôle d’accès, tandis que Xj correspondra à un seul
exemple xtest à vérifier par rapport à la galerie d’inscription. Pour le cas de type II, à son tour,
Xi est simplement une réclamation correspondant à la classe contre laquelle xtest sera vérifié. Les
classes correspondant aux exemples dans les essais de test peuvent n’avoir jamais été présentées au
modèle, et les ensembles Xi et Xj sont généralement petits (< 10).

Dans l’approche Neyman-Pearson [11], la vérification est vue comme un test d’hypothèse, où
H0 et H1 correspondent à l’hypothèse telle que T est cible ou non, respectivement [12]. Le test est
effectué via le rapport de vraisemblance (LR) suivant:

LR = p(T |H0)
p(T |H1)

, (1)

où p(T |H0) et p(T |H1) correspondent aux modèles de cible, et non-cible essai. La décision est prise
en comparant LR avec un seuil δ.

On peut explicitement approximer LR par des approches génératives [13]; les modèles de mélange
gaussien étant les plus courants. Dans ce cas, le dénominateur est généralement défini comme un
modèle de fond universel (GMM-UBM, [14]), ce qui signifie qu’il est formé sur les données de toutes
les classes disponibles, tandis que le numérateur est un modèle affiné sur les données d’inscription.
De sorte que, pour essai {X1, X2}, LR sera:

LR = pX1(X2)
pUBM (X2)

= pXEnroll
(xtest)

pUBM (xtest)
. (2)

Alternativement, [15] a montré que les approches discriminative, c’est-à-dire des classificateurs
binaires entraînés au-dessus des paires de données pour déterminer s’ils appartiennent à la même
classe, ont donné des rapports de vraisemblance utiles pour la vérification. Dans leur cas, une SVM
binaire a été formée sur des paires d’i-vecteurs [1] pour la vérification automatique du locuteur. Plus
tard, nous nous appuierons sur un tel cadre discriminant, mais avec la différence que nous apprenons
un processus d’encodage avec le discriminateur (ici représenté comme un modèle de distance), et
montrons qu’il donne les rapports de vraisemblance requis pour la vérification grâce à des résultats
d’estimation contrastifs. Ceci est plus général que le résultat de [15], qui montre qu’il existe un
classificateur génératif associé à chaque discriminateur dont le rapport de vraisemblance correspond
à la sortie du discriminateur, ce qui nécessite que les hypothèses de ce classificateur soient vérifiées.

3

0.2.1.1 Le problème de vérification pour le cas de la biométrie vocale

La biométrie fait référence aux traits physiologiques ou comportementaux d’une personne qui
peuvent être utilisés pour l’identification automatique ou la vérification d’une identité revendiquée.
Les systèmes biométriques peuvent utiliser les empreintes digitales, la géométrie de la main, l’iris,
la rétine, le visage, la veine de la main, les thermogrammes faciaux, la signature et la voix, ou des
combinaisons de ceux-ci pour vérifier l’identité d’un utilisateur [16]. Ces caractéristiques ont été
largement utilisées, par exemple, comme contrôle d’accès à des bâtiments ou à des informations
sensibles et comme mécanisme d’autorisation dans les transactions financières.

Un système biométrique pratique doit répondre aux exigences de précision de reconnaissance,
de vitesse et de ressources spécifiées, être inoffensif pour les utilisateurs, être accepté par la popula-
tion visée et être suffisamment robuste contre diverses méthodes frauduleuses et attaques contre le
système [17]. Comme indiqué dans [18], la vérification du locuteur est une approche d’identification
biométrique populaire qui utilise le signal vocal comme signature de l’utilisateur. La principale
raison de sa popularité est double: (a) aucun contact direct avec l’individu n’est requis; et (b) des
microphones sont disponibles sur la plupart des appareils portables. De plus, des travaux antérieurs
ont prouvé que les propriétés de la parole diffèrent de manière pertinente d’un individu à l’autre et,
même pour les jumeaux, la similitude est peu probable.

Plus formellement, la vérification du locuteur consiste à accepter ou rejeter une identité re-
vendiquée en comparant deux énoncés, le premier de ces énoncés étant utilisé pour l’enrôlement
(produit par le locuteur avec l’identité cible) et le second énoncé est obtenu du locuteur vérifié [19].
Dans le cadre du cas indépendant du texte, la vérification du locuteur est effectuée sur des phrases
sans contrainte de contenu phonétique et de longueur arbitraires. La variabilité phonétique ajoutée
dans ce scénario représente un facteur défavorable supplémentaire par rapport aux variabilités de
la session et du locuteur, présentes dans le cas dépendant du texte [20].

0.2.1.2 Identification de la langue parlée

La tâche d’identification de la langue (LID) consiste à identifier les langues parlées à partir de
données vocales de contenu phonétique sans contrainte, ce qui est très utile dans plusieurs applica-
tions du traitement de la parole. Par exemple, des outils de reconnaissance de langue peuvent être
utilisés pour approximer les vraisemblances conditionnelles. Alternativement, ils peuvent également
être utilisés pour la modélisation hiérarchique, où un outil de reconnaissance de langue est placé
dans les premières étapes d’un pipeline qui est ensuite suivi par des sous-modules spécifiques à la
langue, comme illustré dans la figure 1.2. La reconnaissance vocale ou la vérification du locuteur
sont des exemples dans lesquels des informations préalables sur la langue parlée peuvent améliorer
les performances. De plus, les applications pratiques directes des dispositifs de reconnaissance de
langue peuvent inclure, par exemple, la direction d’appels dans les centres d’appels.

4

Comme indiqué dans [21], les approches classiques pour l’identification de la langue reposent
généralement sur des méthodes introduites à l’origine pour la reconnaissance du locuteur. Les appli-
cations des i-vecteurs dans la reconnaissance des langues, par exemple, peuvent être trouvées dans
[21] et [22]. Même si les i-vecteurs sont connus pour produire des performances satisfaisantes sur la
modélisation du locuteur et de la langue sur plusieurs ensembles de données, en particulier dans des
contextes dans lesquels la quantité de données d’entraînement est limitée de manière pertinente, il
est également connu que ses performances se dégradent lorsqu’elles sont confrontées à des conditions
de test de courte durée. De plus, sa nature non supervisée peut devenir un problème dans certains
scénarios, lorsque des données étiquetées disponibles peuvent produire des représentations de faible
dimension plus discriminantes. Des approches supervisées ont été introduites en conjonction avec
des réseaux de neurones de diverses familles pour l’identification du langage. Par exemple, les
approches de [23] et [24] utilisent des architectures neuronales résiduelles et différentes stratégies
d’entraînement, telles que la minimisation de la perte de centre [25] et le softmax angulaire [26],
tous deux inspirés des applications sur la reconnaissance faciale. Cependant, l’évaluation n’a été
effectuée que sur des enregistrements de plus longue durée, avec une dégradation des performances
significative observée lors du passage d’enregistrements de 30 secondes à ceux de 3 secondes. De
même, d’autres architectures ont été utilisées pour la modélisation de la dépendance temporelle
pour l’identification des langues, notamment les réseaux de neurones à retard temporel [27] et les
réseaux à mémoire à long terme (LSTM) [28]. Ceux-ci se sont avérés plus performants que les
i-vecteurs dans les scénarios de courte durée, tout en n’étant pas aussi performants dans le cas des
signaux de longue durée.

0.2.1.3 Détection d’usurpation d’identité

La voix est une biométrie populaire pour les approches d’identification [18, 29, 30]. Néanmoins,
la biométrie vocale n’est pas exempte de menaces et des stratégies d’attaque ciblant les systèmes de
reconnaissance du locuteur ont été décrites [31]. En tant que tel, la conception de contre-mesures
pour produire des applications plus robustes est devenue une direction de recherche populaire.
Comme discuté dans [2] et illustré dans la figure 1.4, les attaques peuvent être conçues à différentes
étapes d’un pipeline d’authentification basé sur la biométrie. Notamment, les attaques contradic-
toires récemment introduites ciblant les réseaux de neurones artificiels [32] peuvent agir au niveau
du modèle. Dans le cas particulier de la vérification du locuteur et des systèmes de biométrie vo-
cale, d’autres stratégies d’attaque existent également. Celles-ci sont appelées attaques d’usurpation
d’identité et représentent une personne ou un programme informatique qui tente de contourner un
système d’authentification en falsifiant les données d’un utilisateur légitime.

Dans ce travail, nous nous concentrons sur les attaquants agnostiques au niveau du microphone.
Les attaques au niveau du microphone peuvent être réalisées avec différentes méthodes [31, 33, 9]: (i)
l’usurpation d’identité d’un autre utilisateur, (ii) la parole synthétique et (iii) l’audio préenregistré
(rejoué) d’un utilisateur donné. Ici, nous considérerons (ii) et (iii), qui seront appelés respectivement

5

attaques d’accès logique (LA) et physique (PA). Les dernières attaques LA ont tiré parti des avancées
récentes en matière de synthèse vocale et de conversion vocale basées sur la modélisation de formes
d’onde auto-régressives ou sur des réseaux antagonistes génératifs [34, 35, 36, 37]. Compte tenu
des graves conséquences que les attaques d’usurpation d’identité peuvent avoir sur les systèmes
de vérification des locuteurs, des recherches récentes se sont concentrées sur le développement de
nouveaux algorithmes de détection d’attaques et plusieurs défis ont été organisés (par exemple,
[9, 33, 38, 39]).

Des méthodes récentes ont exploré des méthodes de détection d’usurpation end-to-end où un
seul modèle est formé en une seule étape, et le modèle est capable de générer directement des scores
à partir d’exemples de test inédits. Dans [40], un modèle convolutif est entraîné au-dessus de l’audio
brut pour la détection des attaquants rejoués. Dans ce cadre, le modèle est capable d’apprendre des
représentations qui détecteront les attaques par rejeu. Dans [41], un schéma attentif est introduit de
telle sorte qu’une structure U-net est d’abord utilisée pour mapper les caractéristiques d’entrée dans
un ensemble de poids d’importance par élément. L’entrée pondérée est ensuite introduite dans une
pile de blocs d’anticipation avec des connexions résiduelles produisant des scores finaux. Les réseaux
de neurones convolutifs se sont également avérés efficaces pour la détection directe end-to-end dans
[42].

0.2.2 Architectures de modèles

0.2.2.1 Time delay neural networks (TDNN)

Les approches présentées dans les chapitres suivants utilisent ou améliorent l’architecture TDNN,
introduite dans le contexte de l’ASV par le framework x-vecteur [3]. Le modèle est illustré dans la
figure 1.7 et plus détaillé dans le tableau 1.1. Plus précisément, une séquence d’entrée de longueur T

est notée x[1:T], où chaque xi ∈ Rd, i ∈ [T], représente une caractéristique vecteur de dimension d à
un intervalle de temps donné. Par exemple, chaque xi pourrait correspondre à des caractéristiques
spectrales sur une courte fenêtre temporelle à partir du signal d’entrée. De manière équivalente,
nous notons l’ensemble des caractéristiques produites par la pile de couches de convolution par
y1:T ∈ RD, i ∈ [T], où D correspond au nombre de canaux de sortie de la dernière couche convolu-
tive. Nous les appelons des descripteurs locaux de l’audio global étant donné qu’ils correspondent à
des caractéristiques d’une fenêtre temporelle relativement courte. D est fixé à 1500 dans le modèle
d’origine et à 512 dans notre cas car, comme nous le verrons, notre paramètre nécessite des de-
scripteurs locaux de la dimensionnalité correspondante à travers le modèle. La couche de mise en
commun temporelle, également appelée mise en commun statistique, concatène les estimations par
élément des statistiques de premier et de second ordre de l’ensemble des descripteurs locaux sur l’axe
temporel (le symbole “ˆ” dans la figure 1.7 indique l’opération de concaténation). Nous définissons

6

ainsi le descripteur global V , c’est-à-dire le vecteur de caractéristiques résumant l’ensemble de la
séquence d’entrée x[1:T], par ce qui suit:

V = cat[µ(yi), σ(yi)], (3)

où l’opérateur v = cat[v1, v2] concatène v1, v2 ∈ RD tel que v ∈ R2D, et yi sont obtenus après la
dernière couche de convolution. Le descripteur global V est finalement introduit dans une séquence
de couches denses pour produire les sorties correspondant aux log-probabilités sur l’ensemble des
classes considérées (par exemple, des locuteurs ou des langues de formation).

0.2.2.2 Architectures résiduelles

Introduits pour la première fois dans [4], les ResNets constituent un ensemble d’architectures
composées d’une série de blocs dits résiduels, qui déterminent en quoi une transformation de car-
actéristiques doit différer du mappage d’identité, plutôt que de savoir comment il devrait différer
de zéro [43]. Les transformations de blocs résiduels présentent une forme de base qui, pour une
variable d’entrée générique X ∈ X et une certaine fonction des données F : X 7→ X , sera:

X ′ = F (X) + X. (4)

Le terme résiduel vient du fait que l’entrée est directement utilisée pour calculer la sortie de
la transformation, qui dans un réseau de neurones représente un chemin direct pour les gradients
vers le flux lors de la rétropropagation des gradients pour le calcul des mises à jour SGD, comme
illustré sur la figure 1.8. F (X) est généralement un ensemble de couches convolutives, suivies de
fonctions d’activation non linéaires et de couches de normalisation. Des variantes de ResNets ont
été proposées et utilisées dans différents contextes, tels que la ré-identification de personnes, la
détection d’objets et la segmentation, comme c’est le cas de MobileNet [44]. La littérature récente
a montré que les blocs résiduels contribuent à produire des pertes qui sont plus faciles à former,
dans le sens où les régions chaotiques mal conditionnées deviennent moins fréquentes lorsqu’une
telle caractéristique architecturale est utilisée [45]. De plus, les transformations quasi-identitaires
ont été étudiées en profondeur et des garanties ont été introduites pour les cas F (x) linéaires et non
linéaires dans [46] et [43], respectivement. Dans certains des chapitres qui suivent, nous utiliserons
les ResNets comme un réseau sur lequel des procédures d’apprentissage sont conçues de manière à
produire des représentations discriminantes au niveau de l’énoncé dépendant du locuteur ou de la
langue.

7

0.2.2.3 Mécanismes d’attention

Attention au niveau du cadre Plusieurs mécanismes d’attention ont été introduits récem-
ment dans des architectures visant à modéliser des propriétés globales de données temporelles,
comme dans le cas de la reconnaissance du locuteur ou de la langue. En termes généraux, les blocs
d’attention apprennent à peser conditionnellement les pas de temps en fonction des représentations
d’entrée sur une couche interne d’un modèle [47]. Considérez y1:T comme un ensemble de vecteurs
correspondant aux sorties d’un réseau de neurones donné pour une entrée x1:T – par exemple, une
séquence de caractéristiques acoustiques. Une transformation linéaire A est partagée sur tous les
pas de temps t, et appliquée à chaque yt résultant en un ensemble de scalaires a1:T , selon:

at = tanh (Ayt). (5)

Un ensemble de poids normalisés totalisant jusqu’à 1 est obtenu via l’opérateur softmax:

wt = eat∑T
t=1 eat

, (6)

et la sortie de la couche attention est finalement donnée par:

V =
T∑

t=1
wtyt, (7)

où V correspondra à une représentation globale au niveau de l’énoncé de la séquence d’entrée entière
x[1:t], qui peut être traitée ultérieurement par des couches entièrement connectées pour produire, par
exemple, des probabilités conditionnelles sur un ensemble des locuteurs. Une approche alternative
au calcul de V serait d’effectuer les opérations de regroupement statistique décrites précédemment
mais sur l’ensemble des représentations pondérées y′

t = wtyt.

Attention au produit scalaire Introduit dans [48] et également appelé self-attention, ce com-
posant correspond à une alternative aux modèles récurrents pour la modélisation de données séquen-
tielles et a été introduit avec l’architecture Transformer. En considérant le même ensemble de
représentations discuté ci-dessus et représenté par y[1:t], il fonctionne comme indiqué par ce qui
suit:

self-attention(Q, K, V ′) = softmax(QK⊺
√

dk
)V ′, (8)

où Q, K et V ′, dénommés respectivement requêtes, keys et values, correspondent chacun à une
transformation linéaire de y[1ă:t] (supposé être une matrice de dimension t×D), en supposant que

8

chaque yt ∈ RD, c’est-à-dire:

Q = y[1:t]W
Q, K = y[1:t]W

K , V ′ = y[1:t]W
V . (9)

Dans ce cas, chacune des matrices W Q, W K et W V a la dimension D × dk et leurs entrées sont
traitées comme des paramètres apprenables. Intuitivement, les produits scalaires à l’échelle QKT

√
dk

définissent des poids indiquant l’importance de chaque élément dans la séquence en fonction d’une
instance de données spécifique.

0.2.3 Apprentissage des métriques

Être capable d’évaluer efficacement la similitude entre les échantillons à partir des données en
cours d’analyse est un problème de longue date dans le cadre de l’apprentissage automatique. Les
algorithmes tels que les K-means, les classificateurs des plus proches voisins et les méthodes à noyau
reposent généralement sur la sélection d’une mesure de similarité ou de distance capable d’encoder
les relations sémantiques présentes dans les données de grande dimension en scores réels. Dans cette
optique, les approches communément appelées Distance Metric Learning, introduites à l’origine dans
[49], essaient d’apprendre une distance dite de Mahalanobis, qui, étant donné x, x′ ∈ RD, aura la
forme:

√
(x− x′)⊺M(x− x′), où M ∈ RD×D est semi-défini positif. Plusieurs extensions ont ensuite

été introduites [50, 51, 52].

Dans [53], par exemple, une version en ligne de l’algorithme dans [49] est proposée, tandis
qu’une approche basée sur les machines à vecteurs de support (SVM) a été introduite dans [54] pour
l’apprentissage de M . Dans [55], une approche théorique de l’information est fournie pour résoudre
M en minimisant la divergence entre les distributions gaussiennes associées aux distances apprises et
euclidiennes, montrant en outre qu’une telle approche est équivalente à l’apprentissage par noyau de
bas rang [56]. Des distances similaires ont également été utilisées dans d’autres contextes, tels que
la notation de similarité pour l’apprentissage contrastif [57, 58]. Outre la distance de Mahalanobis,
d’autres formes de distance/similarité ont été envisagées dans des travaux récents. Dans [59], par
exemple, une matrice de noyau est directement apprise, définissant implicitement une fonction de
similarité. Dans [60], des classes de réseaux de neurones sont proposées pour définir des pseudo-
distances qui satisfont l’inégalité triangulaire sans être nécessairement symétriques.

Pour le cas particulier de l’apprentissage métrique à distance de Mahalanobis, on peut montrer
que ∃ W :

√
(x− x′)⊺M(x− x′) = ||Wx −Wx′||2 [53], ce qui signifie qu’il existe une projection

linéaire des données après laquelle la distance euclidienne correspondra à la distance de Mahalanobis
sur l’espace d’origine. Dans [61], la projection linéaire est remplacée par un encodeur non-linéaire
appris E : RD 7→ Rd de sorte que ||E(x)−E(x′)||2 donne une mesure de distance (non Mahalanobis)
entre les points de données brutes produisant des propriétés utiles. Les travaux de suivi ont étendu
cette idée à plusieurs applications [62, 63, 64, 65]. Une variante supplémentaire de ||Wx−Wx′||2,

9

en plus de l’introduction de E , consiste à changer la distance euclidienne || · ||2 avec une alternative
mieux adaptée à la tâche d’intérêt. C’est le cas dans [66], où la distance de Hamming est utilisée sur
des données codées dans un espace binaire. Dans [67], à son tour, l’encodeur est entraîné de sorte
que les distances euclidiennes dans l’espace encodé se rapprochent des divergences de Wasserstein,
tandis que dans [68] une distance hyperbolique est utilisée qui est considérée comme adaptée à leur
cas d’utilisation particulier.

Sur la base de la littérature couverte, on peut conclure qu’il existe deux directions différentes
visant à atteindre un objectif similaire : apprendre à représenter les données dans un espace métrique
où les distances produisent des mécanismes d’inférence efficaces pour diverses tâches. Alors qu’une
direction correspond à l’apprentissage d’une distance ou d’une similitude significative à partir de
données brutes, l’autre correspond, étant donné une métrique de distance fixe, à la recherche d’un
processus de codage produisant un tel espace métrique souhaitable. Dans ce dernier cadre, des
approches telles que les réseaux siamois [5] ont été introduites dans le but d’apprendre explicitement
un modèle d’intégration paramétré par un réseau de neurones qui se traduit par un espace de
dimension inférieure où les propriétés pertinentes sont présentes, telles que la séparabilité des classes.
On suppose souvent que des informations concernant les échantillons de données qui doivent être
rapprochés et éloignés les uns des autres dans l’espace d’inclusion sont disponibles.

0.3 Organisation de la thèse

La suite de ce document est organisée comme suit: Le chapitre 2 décrit des propositions en termes
de procédures d’apprentissage visant à améliorer les représentations utilisées pour la vérification du
locuteur et l’identification de la langue. Les méthodes de détection des attaquants spoofing sont
décrites dans le chapitre 3. Des variantes de l’architecture TDNN utilisant des couches attentives à
plusieurs niveaux sont présentées avec une évaluation dans le chapitre 4. Dans le chapitre 5, nous
introduisons une approche discriminante pour la vérification générative approximative ou, dans
une autre perspective, une approche où les (pseudo) espaces métriques sont appris via à la fois un
processus d’encodage ainsi qu’une (pseudo) distance. Nous étendons l’approche discutée au chapitre
5 et introduisons l’idée de template d’apprentissage au chapitre 6 où nous discutons de la façon de
définir des composants de modèle et des procédures d’apprentissage réutilisables entre les tâches
et les ensembles de données en attendant un minimum d’implémentations spécifiques aux tâches;
dans ce cas, nous élargissons notre champ d’application et en plus d’envisager des évaluations dans
des contextes de biométrie vocale, nous testons notre proposition dans des référentiels d’images
standard correspondant à des tâches de reconnaissance d’objets et de récupération d’images. Enfin,
les conclusions sont résumées dans le chapitre 7 avec une discussion sur les travaux futurs s’appuyant
sur nos contributions.

10

0.4 Chapitre 2: Améliorement de l’entraînement des réseaux neu-
ronaux pour l’apprentissage de la représentation au niveau de
la phrase

Dans cette contribution, nous concevons une stratégie d’entraînement particulièrement adaptée
pour renforcer davantage la discriminabilité sur les sorties du modèle tout en évitant les problèmes
courants apparaissant dans les approches d’apprentissage métrique. Plus précisément, nous éval-
uons la combinaison des deux cadres décrits précédemment, à savoir: (i) estimation du maximum
de vraisemblance via la reconnaissance du locuteur ou de la langue, et (ii) apprentissage métrique.
Notre objectif principal est de combiner les avantages offerts par chaque schéma, c’est-à-dire la
facilité de l’apprentissage dans le cadre du maximum de vraisemblance ainsi que la discriminabilité
fournie par la minimisation de la perte de triplet. L’évaluation de la stratégie de formation pro-
posée est réalisée à l’aide du triplet-network [6] réalisé avec une architecture inspirée du modèle
ResNet augmenté d’un composant d’attention frame-wise. Pour le cas du LID, des expériences sont
effectuées sur les tâches introduites pour le défi AP18-OLR correspondant à des données contenant
des enregistrements de paroles téléphoniques de dix langues orientales dans différents contextes, y
compris une courte durée de parole et des langues confuses, montrant des améliorations pertinentes
en termes des performances de classification sur des bases de référence solides dans toutes les con-
ditions de test étudiées. De plus, une évaluation end-to-end est également effectuée, montrant que
l’utilisation directe des sorties du modèle en tant que scores, c’est-à-dire l’élimination du PLDA
post-formé, surpasse les résultats de i-vectors + PLDA. Pour l’ASV, le cas inter-langues introduit
pour le NIST SRE 2016 composé de la parole téléphonique est utilisé pour l’évaluation du schéma
proposé. De plus, différentes stratégies de mise en commun, utilisées pour agréger des ensembles
de descripteurs locaux dans un espace de représentation à dimension fixe, sont comparées, y com-
pris des statistiques simples de représentations de haut niveau dans la dimension temporelle et des
schémas attentifs plus complexes basés sur l’apprentissage.

0.4.1 Mise en place experimentale

Nous proposons l’utilisation d’une architecture convolutive visant à inclure des informations
contextuelles à long terme à chaque pas de temps. C’est une caractéristique inhérente aux couches
convolutives empilées [69]. Il est important de souligner que, contrairement aux autres approches
qui utilisent des convolutions causal pour la modélisation de la dépendance temporelle [70], le cas ex-
ploré ici suppose l’accès à l’enregistrement complet de la parole pour le calcul de chaque pas de temps
de sortie. Cela nous permet de calculer des plongements dépendants de la langue à dimension fixe en
s’appuyant sur des enregistrements complets. De plus, une architecture résiduelle est employée. A
savoir, un ResNet-50 légèrement modifié [4], c’est-à-dire un ensemble de 50 couches organisé comme
un empilement de blocs résiduels, est utilisé tout au long de nos expérimentations. Les entrées sont

11

des représentations temps-fréquence des données vocales, c’est-à-dire 13 MFCC, qui sont simple-
ment traités comme des images à un canal. Nous introduisons une couche convolutive avant la pile
résiduelle de ResNet qui réduit la dimension de fréquence à 1. De plus, un composant d’attention
par image est utilisé au-dessus de la dernière couche convolutive en remplacement de la couche
de sortie entièrement connectée d’origine. La dimension des canaux correspondant à la dernière
couche convolutive dans la pile résiduelle donnera la taille finale des plongements, qui sont ensuite
regroupés dans la dimension temporelle. Un schéma illustrant le modèle proposé est présenté dans
la Figure 2.1. Deux stratégies d’entraînement différentes sont utilisées ensemble. Tout d’abord,
nous entraînons directement le modèle pour la classification en projetant des représentations de
données sur une couche de sortie à l’aide d’une couche supplémentaire entièrement connectée, et
entraînons le modèle via l’estimation du maximum de vraisemblance, comme cela est généralement
fait pour la reconnaissance du locuteur [47, 22, 3]. De plus, dans le but d’imposer la discriminabilité
du langage dans y, la minimisation de la perte de triplet au-dessus des représentations est effec-
tuée conjointement avec l’estimation du maximum de vraisemblance, en utilisant une métrique de
distance basée sur la similarité en cosinus.

Spécifiquement pour le cas de la vérification du locuteur, le nombre d’enregistrements n’est pas
constant entre les locuteurs. Nous concevons une approche pour les exemples d’échantillons afin
de présenter des mini-batches équilibrés aux modèles tout au long de l’apprentissage. Les mini-
batches sont construits en sélectionnant séquentiellement des exemples de chaque locuteur. Plus
précisément, 5 enregistrements sont échantillonnés avec répétition. Nous illustrons un tel schéma
d’échantillonnage dans la figure 2.8. L’indice de locuteur i ∈ {1, 2, ..., NS} survole l’ensemble des
locuteurs et pour chaque valeur de i, un ensemble d’enregistrements choisis au hasard représentés
par xi,j est ensuite renvoyé. Une telle approche fournit des mini-batches de taille Ne = S · R, où
R et S correspondent respectivement au nombre de locuteurs par mini-batch et d’enregistrements
par locuteur. Alors que R est défini sur 5 comme dans l’exemple de la figure 2.8, S est défini sur
24, ce qui donne Ne = 120. Une époque d’entraînement est considérée comme terminée lorsque des
ensembles de 5 enregistrements sont échantillonnés à partir de chaque locuteur 3 fois, et un budget
de 500 époques est utilisé pour chaque cycle d’entraînement.

La littérature précédente a discuté en profondeur de la nécessité de trouver des ensembles de
triplets produisant une perte de triplet élevée, c’est-à-dire des triplets hard dans le sens où ||ya −
y−||2 < ||ya−y+||2 résultant en un LT informatif. Dans [71], les auteurs soutiennent que les modèles
de représentation sont capables d’apprendre rapidement à encoder correctement les triplets triviaux,
ce qui rend une grande partie des triplets possibles non informatifs. Ceci est illustré dans la figure
2.9 pour les triplets dans une sphère dans R2 qui représente un triplet hard sur la gauche, et ceux-ci
apparaissent très fréquemment au début de l’entraînement, et des triplets triviaux à droite, qui
représentent la majorité des ensembles d’exemples choisis au hasard après un nombre relativement
faible d’itérations d’apprentissage. Étant donné que notre schéma de construction de mini-batch
garantit que des enregistrements R par locuteur sont disponibles, nous utilisons donc une méthode
de sélection de triplet en ligne similaire à celle introduite dans [62]. La version la plus récente du

12

modèle intègre tous les exemples d’apprentissage Ne, et toutes les paires positives possibles sont
prises. Les paires négatives les plus dures sont ensuite sélectionnées de manière à correspondre au
nombre de paires positives. Cette procédure devrait donner Nt = S R(R−1)

2 , ce qui donne au plus
Nt = 240 étant donné que S = 24 et R = 5 dans notre cadre, et les triplets tels que LT = 0 sont
rejetés.

0.4.2 Discussion

Nous avons évalué l’utilisation de procédures d’entraînement multitâches où l’estimation du
maximum de vraisemblance est combinée à l’apprentissage métrique afin de produire des représen-
tations dépendantes de la langue ou du locuteur. Des stratégies spécifiques sont conçues pour
chacune des deux tâches qui nous concernent: LID et ASV. Pour le cas du LID, l’évaluation sur des
conditions non triviales, telles que la courte durée de la parole, les langues déroutantes et les enreg-
istrements de tests correspondant à des langues non représentées dans les données d’apprentissage,
indique la robustesse de l’approche proposée par rapport à plusieurs des repères connus améliorant
de manière pertinente. Plus précisément, des améliorations de 28,51%, 36,83% et 39,88% ont été
observées en ce qui concerne les i-vecteurs lorsque la notation est effectuée avec PLDA, pour trois
conditions d’évaluation différentes, à savoir les langues de courte durée, déroutantes et l’ensemble
ouvert, respectivement.

Pour le cas de l’ASV, la méthode d’entraînement proposée ainsi que les stratégies de régular-
isation introduites ont été évaluées sur les conditions introduites pour le NIST SRE 2016, dans
lesquelles nous avons montré que : (i) Les modèles entraînés dans le cadre de plusieurs tâches sur-
passent ceux entraînés avec des pertes uniques. (ii) Les stratégies de mise en commun sophistiquées
donnent les meilleures performances dans nos expériences, cependant il faut faire face aux diffi-
cultés d’entraînement supplémentaires données par de tels systèmes. Nous avons constaté que la
pré-entraînement avec une méthode de mise en commun plus simple et enfin l’entraînement du mod-
èle complet aident à cet égard. (iii) Nos meilleurs systèmes offrent des performances de vérification
équivalentes ou supérieures par rapport aux méthodes de référence bien connues dans les conditions
d’évaluation considérées. La fusion avec les systèmes de base a encore amélioré les performances
finales.

0.5 Chapitre 3: Détection des menaces comme moyen d’obtenir
une biométrie vocale robuste

Il existe des stratégies d’attaque simples qui peuvent être appliquées à tout type de reconnais-
sance de locuteur. Un exemple consiste à rejouer la voix de quelqu’un, ce qui est communément
appelé attaque physique (PA). À titre d’exemple, on pourrait enregistrer la voix de quelqu’un

13

disant une commande pour obtenir un accès non autorisé à ses appareils portables. Une autre
stratégie d’attaque, appelée attaque logique (LA), peut être définie à l’aide de la parole synthétisée.
En fait, les avancées récentes dans les modèles génératifs conditionnels (par exemple, Wavenet [72])
peuvent être utilisées à cette fin pour les cas de conversion texte-parole ou de conversion vocale.
Les conséquences potentielles de telles vulnérabilités sont énormes et vont de la perte financière à
l’incrimination indue.

Étant donné que ces menaces décrites limitent l’utilisation de systèmes de hautes performances
dans des applications réelles, une direction de recherche populaire ces dernières années a été de
concevoir des contre-mesures contre de tels attaquants. Pour le cas spécifique de la reconnaissance
du locuteur et de l’authentification vocale, par exemple, les récents défis de détection d’usurpation
d’identité [38, 39, 9] ont été introduits dans le but de faire progresser l’état de l’art en matière de
détection d’attaques. En général, les contre-mesures peuvent être regroupées en deux catégories: les
méthodes defense et detection. Alors que les techniques de défense tentent d’améliorer la robustesse
du modèle ou de supprimer les taux de réussite des attaques, les méthodes de détection adoptent
une approche différente et tentent de déterminer si l’entrée est authentique ou a été manipulée d’une
manière ou d’une autre. Bien que les deux directions soient prometteuses, nous nous concentrons sur
l’approche de détection, car elle permet aux fournisseurs de services de savoir quand leurs systèmes
sont attaqués. Plus précisément, nous nous intéressons aux approches de détection qui fonctionnent
de manière end-to-end.

Nous remarquons en outre que, même si les données publiées pour les défis populaires de dé-
tection d’usurpation d’identité sont générées en s’assurant que les locuteurs et les types d’attaque
varient selon les ensembles de données d’entrainement, de développement et d’évaluation, les sys-
tèmes de détection développés reposent sur l’hypothèse forte (et irréaliste) selon laquelle et les
données de test sont distribuées à l’identique de sorte que la même stratégie d’attaque générale
(LA ou PA) apparaîtra à la fois sur les données d’entrainement et de test. Ce faisant, différents
modèles, architectures et représentations de l’audio sont utilisés pour les attaques PA ou LA. Cette
configuration spécifique à la stratégie, cependant, n’est pas alignée sur des scénarios pratiques et
réels où la stratégie d’attaque n’est pas connue a priori. Nous cherchons donc également à répondre
à cette limitation et à proposer des stratégies de détection agnostiques aux attaques.

0.5.1 Mise en place experimentale

La première étape de notre pipeline de modélisation après l’extraction de caractéristiques cor-
respond à la mise en correspondance d’un enregistrement donné dans un ensemble de descripteurs
locaux Vi ∈ RK , c’est-à-dire un ensemble de vecteurs représentant des parties d’entrées dans la
dimension temporelle. Pour obtenir un tel ensemble de descripteurs, nous considérons les résultats
récents de [70] montrant que les réseaux de neurones convolutifs sont bien adaptés à la modélisation
de la dépendance temporelle tout en évitant les problèmes d’entraînement courants observés dans

14

le cas des réseaux de neurones récurrents (par exemple, des gradients de disparition/explosion). À
savoir, les réseaux de neurones convolutifs légers [73] sont utilisés étant donné leur faible nombre
de paramètres par rapport à d’autres modèles convolutifs bien connus tels que les VGGs [74] ou les
ResNets [4].

Les réseaux de neurones convolutifs légers (LCNN) [73], initialement proposés pour la recon-
naissance faciale, et les ResNets sont utilisés dans notre cas avec des couches d’attention, visant à
permettre au modèle de traiter des enregistrements de longueur variable tout en se concentrant sur
des portions spécifiques d’entrées. Les modèles légers sont utilisés étant donné la quantité limitée
de données d’entrainement disponibles pour le paramètre d’évaluation considéré, ce qui pourrait
dégrader des performances. Nous avons en outre utilisé deux variantes LCNN distinctes et observé
que les modèles produisant les performances les plus élevées dépendent du choix des caractéristiques
d’entrée. L’évaluation est effectuée dans les conditions de défi ASVspoof 2019, qui fournissent des
partitions de données d’entraînement et de développement pour les attaques logiques générées avec
des systèmes de conversion texte-parole et voix, ainsi que pour les attaques physiques correspondant
à des enregistrements rejoués dans diverses configurations simulées.

Nous appliquons en outre quelques modifications aux modèles en fonction du type de représenta-
tion de la parole utilisé. Pour le cas des coefficients cepstraux, nous incluons une couche convolutive
d’entrée chargée de réduire la dimension des coefficients à 1, et procédons à un LCNN modifié à 29
couches (LCNN29) qui effectue des convolutions sur la dimension temporelle uniquement. Pour les
caractéristiques spectrales, d’autre part, nous saisissons directement des exemples dans un LCNN
spatio-temporel standard contenant 9 couches (LCNN9), et une couche convolutive de sortie est
ensuite utilisée afin de réduire la dimension de fréquence à 1. ResNet-18 a été utilisé à travers
types d’attaques. Dans tous les cas on se retrouve avec un ensemble de vecteurs de dimension K

correspondant au nombre de canaux de la dernière couche convolutive.

0.5.2 Discussion

Nous avons abordé le problème de la détection des attaques d’usurpation d’identité contre les
systèmes de vérification automatique des locuteurs end-to-end, c’est-à-dire que nos modèles map-
pent les caractéristiques vocales en scores. Tout d’abord, nous avons proposé des variations des
réseaux de neurones convolutifs légers compte tenu des limitations de la quantité disponible de
données d’entraînement. Les performances du paramètre proposé sont ainsi évaluées sur les don-
nées introduites pour le défi ASVspoof 2019, auquel cas nous sommes en mesure d’obtenir des
améliorations significatives des performances de détection par rapport aux systèmes de référence
bien connus. Nous nous sommes ensuite appuyés sur cette approche et avons introduit différentes
stratégies visant à augmenter les données d’entraînement afin de permettre l’utilisation de modèles
plus grands pour définir des détecteurs d’attaquants usurpateurs. Ce faisant, nous avons pu multi-
plier par cinq la taille des corpus disponibles, tout en les rendant plus diversifiés, introduisant ainsi

15

des effets de régularisation qui ont amélioré la généralisation à de nouvelles conditions. En fait,
contrairement aux travaux antérieurs, qui se concentraient sur de simples pipelines de classification
ou des réseaux de neurones relativement petits, nous avons pu, via l’augmentation des données,
entraîner efficacement des modèles convolutifs couramment utilisés tels que les TDNN.

Comme contribution principale, nous avons introduit une approche basée sur l’ensemble dans
le but de permettre aux détecteurs d’être efficaces contre différents types d’attaques d’usurpation
d’identité. Nous avons donc proposé un cadre contenant trois composants tels que deux d’entre
eux sont connus pour bien performer individuellement dans chacune des deux stratégies d’attaque
considérées. Le troisième est ensuite entraîné pour décider comment combiner la décision des autres
systèmes en fonction de l’entrée qui lui est présentée. L’évaluation nous a conduits à la conclusion
que l’approche proposée surpasse la procédure standard de mise en commun de diverses données
d’entraînement et d’entraînement d’un seul modèle, et atteint des performances compétitives par
rapport à des modèles spécialisés, entraînés sur des données organisées de manière à correspondre à la
condition d’évaluation connue à l’avance. En fait, pour le cas spécifique des attaques PA, nos modèles
ont surpassé les systèmes spécialisés privilégiés. Étant donné que la plupart des travaux actuels
sur les contre-mesures pour les attaques d’usurpation d’identité se concentrent sur des systèmes
spécialisés pour des types particuliers de stratégies d’attaque, nous pensons que l’approche proposée
ici est une première étape dans le sens de permettre le déploiement de systèmes de vérification
automatique du locuteur sans risque des failles de sécurité, car il fonctionne bien dans les différentes
stratégies d’attaque que nous avons prises en compte dans notre évaluation.

0.6 Chapitre 4: TDNN auto-attentif à plusieurs niveaux: une ap-
proche générale et efficace pour résumer la parole en représen-
tations discriminantes au niveau de la phrase

Les opérations de regroupement temporel dans les TDNN sont destinées à permettre le calcul
de représentations globales au niveau de la phrase de l’entrée audio et à produire un seul vecteur
représentant une séquence entière de caractéristiques acoustiques à partir du signal d’entrée. D’un
point de vue pratique, les représentations globales peuvent être utiles pour les tâches où la capacité
de traiter des séquences de longueurs variables est requise, telles que l’identification du locuteur
et/ou de la langue parlée. Cependant, l’inclusion d’une opération de mise en commun au sein d’une
architecture feed-forward entraîne des défis et des limites, notamment:

1. Architectures trop spécialisées: les représentations apprises de niveau inférieur (c’est-à-dire
plus proche des entrées) ou de haut niveau (c’est-à-dire plus proche des sorties) peuvent être
plus ou moins efficaces selon la tâche/les données sous-jacentes d’intérêt. Par exemple, il
est peu probable que le même type de représentation soit utile pour des tâches telles que la
vérification du locuteur et l’identification de la langue, car les indices dépendant du locuteur

16

sont généralement indépendants de la phonétique sous-jacente dans un signal, tandis que
la détermination des langues nécessite que les informations phonétiques soient saillantes.
Compte tenu de ces variations entre les tâches, nous soutenons que la détermination du bon
niveau d’abstraction des représentations apprises, principalement en décidant où effectuer
les opérations de regroupement global, dépend de la tâche et, en tant que telle, nécessite la
conception d’une architecture spécifique pour chaque tâche différente.

2. Ignorer les informations complémentaires: Les TDNN effectuent des opérations de regroupe-
ment uniquement après la sortie de la couche convolutive finale, ainsi les caractéristiques
globales des autres niveaux du modèle ne sont pas explicitement prises en compte. Une telle
opération pourrait éliminer des informations potentiellement discriminatoires pour les tâches
en aval. Nous soutenons qu’une solution qui tient compte simultanément des caractéristiques
regroupées dans différentes parties du modèle a le potentiel de produire des représentations
apprises plus discriminantes, résultant en des modèles plus généralisables.

Afin de remédier à ces limitations, nous proposons de modifier l’architecture TDNN et de cal-
culer l’opération de regroupement indépendamment sur les cinq couches de convolution du modèle.
De plus, nous proposons l’utilisation d’une couche auto-attentive [48] pour donner au modèle la
possibilité de sélectionner, au moment de l’apprentissage, le meilleur schéma de combinaison entre
les caractéristiques obtenues à différents niveaux et de calculer une nouvelle séquence de vecteurs
globaux comme fonction de l’ensemble des représentations. Enfin, une dernière opération de re-
groupement est appliquée sur la séquence résultante pour produire une représentation au niveau de
l’énoncé. Le schéma proposé offre les avantages suivants par rapport aux TDNN conventionnels:

1. Polyvalence: par opposition à la conception d’une nouvelle architecture pour chaque nouvelle
tâche, l’architecture proposée introduit une approche orientée aux données qui permet au
modèle d’apprendre quelles couches fournissent des informations plus discriminantes pour la
mise en commun globale. En tant que telle, une même architecture peut être réutilisée pour
différentes tâches.

2. Généralité: les facteurs globaux dans chaque couche sont explicitement pris en compte, par
opposition à la dernière couche convolutive uniquement. Ainsi, des informations complé-
mentaires obtenues à partir de différentes couches peuvent être exploitées. Nous soulignons
en outre qu’un tel schéma définit des classes de modèles qui contiennent des mécanismes
d’agrégation simples comme des cas particuliers; c’est-à-dire que des schémas simples tels
que la moyenne des représentations regroupées à différents niveaux ou la sélection d’une
couche spécifique peuvent tous être récupérés par le modèle proposé si ce sont les meilleures
solutions pour la tâche/les données à accomplir.

3. Apprentissage: L’opération de mise en commun entre les couches agit comme des connexions
de saut/résiduel, produisant ainsi des pertes qui sont plus faciles à entraîner contre [4, 45].

17

4. Transférabilité: Nous remarquons en outre que la stratégie de mise en commun proposée
peut être utilisée dans n’importe quelle architecture qui maintient la dimension des données
fixe dans tout l’encodeur (par exemple, ResNets [4]).

Nous mesurons ainsi la polyvalence de l’architecture proposée, appelée TDNN auto-attentif
multi-niveaux (ML-TDNN), sur deux tâches end-to-end: l’identification de la langue parlée et la
détection d’attaque par usurpation. De plus, nous évaluons davantage le modèle proposé lorsqu’il
est utilisé comme encodeur pour la vérification du locuteur. Dans tous ces cas, nous trouvons des
preuves soutenant l’affirmation selon laquelle les informations globales des couches de bas niveau
contiennent des informations complémentaires qui peuvent être exploitées à des étapes ultérieures
du modèle pour améliorer les performances.

0.6.1 Mise en place experimentale

Le modèle proposé s’appuie sur l’architecture TDNN originale discutée au chapitre 1, illustrée
à la figure 1.7, et plus détaillée dans le tableau 1.1. Dans ce cas, une séquence d’entrée de longueur
T est notée x[1:T] représentant des vecteurs de caractéristiques acoustiques ordonnées de dimension
d (par exemple, MFCCs), où chaque xi ∈ Rd, i ∈ [T],. L’ensemble d’entités généré par une pile
de couches est noté y1:T ∈ RD, i ∈ [T]. Pour le TDNN standard, l’opération de mise en commun
temporelle effectuée à la fin de la pile convolutive convertit la séquence y1:T en une représentation
au niveau de l’énoncé V , étant le seul composant du modèle capable de résumer le contenu du
séquence dans une représentation globale. Nous soutenons que c’est : i) trop restrictif, car il ignore
les informations précieuses disponibles dans les couches précédentes du modèle, et ii) trop spécifique,
car différentes tâches devraient obliger les concepteurs à rechercher la bonne couche où appliquer
l’opération de mutualisation. En tant que tel, nous proposons le schéma de pooling multi-niveaux
illustré à la figure 4.1.

Ensuite, nous employons une couche d’attention [48] afin que chaque Vk puisse être pris en
compte en fonction de sa pertinence afin d’aboutir à des représentations discriminantes. En d’autres
termes, nous tirons parti de l’ensemble en profondeur des résumés globaux de la séquence d’entrée
en incluant un composant de modélisation de séquence dans l’architecture. Dans notre cas, le
nombre de têtes d’attention est traité comme un hyperparamètre. Il est important de souligner que
même si le coût de calcul des couches d’auto-attention est proportionnel au carré de la longueur
d’entrée, le modèle proposé est favorisé par le fait que la longueur de séquence est fixe et modérée,
car elle correspond à la profondeur de la pile convolutive (c’est-à-dire 5). De plus, une telle couche
définit une classe de modèles qui incluent des schémas aussi simples que la moyenne/sélection à des
relations non linéaires plus compliquées entre les éléments. Cependant, n’importe quelle couche de
modélisation de séquence alternative peut être utilisée dans ce cas, produisant des variations du
modèle proposé.

18

Les évaluations empiriques réalisées ici visent à mettre en évidence la polyvalence de l’architecture
proposée; en tant que tel, nous montrons que sa réutilisation à travers les tâches ne nécessite pas
d’adaptations spécifiques aux données. Ainsi, nous évaluons délibérément le modèle proposé à
travers différentes tâches et ensembles de données. Les ensembles de données et les tâches utilisés
pour l’évaluation sont les suivants: détection des attaques d’usurpation d’identité, identification de
la langue parlée et vérification du locuteur.

0.6.2 Discussion

Nous avons introduit une variante de l’architecture TDNN dans laquelle les opérations de re-
groupement temporel sont effectuées sur toutes les couches de la pile convolutive plutôt que seule-
ment à son extrémité, comme dans l’architecture standard. Nous appelons l’architecture proposée
ML-TDNN. En particulier, nous proposons un composant de modèle visant à combiner des représen-
tations globales de différentes couches en traitant les statistiques globales calculées dans différentes
parties du modèle comme des séquences, et en traitant lesdites séquences à l’aide d’une couche
attentive multi-têtes. L’évaluation est effectuée sur deux tâches end-to-end (détection d’attaque
d’usurpation d’identité et identification de la langue) et une tâche d’encodage (vérification du locu-
teur). Les résultats expérimentaux ont montré que la méthode proposée surclassait systématique-
ment diverses références utilisant des caractéristiques globales obtenues à partir d’une seule couche,
soulignant ainsi que des informations complémentaires pouvaient être efficacement exploitées à par-
tir de couches de bas niveau proches de l’entrée. De plus, les lignes de base de chaque tâche
considérée consistaient en des modèles spécialisés pour ladite tâche. La méthode proposée a obtenu
de meilleurs (ou au pair) résultats que ces modèles spécialisés, montrant ainsi leurs capacités de
généralisation à travers les tâches. D’autres améliorations ont également pu être observées une
fois, au moment du test, l’auto-fusion appliquée à partir de représentations obtenues à partir de
différentes couches du même modèle.

La principale limitation de la méthode proposée est le fait que la polyvalence obtenue a un
coût de calcul supplémentaire, car la mise en commun des opérations sur plusieurs couches et la
combinaison des représentations résultantes entraînent des calculs supplémentaires. En tant que
tels, les cas à ressources limitées, tels que les applications sur l’appareil (de périphérie) peuvent ne
pas bénéficier directement de ce type de modèle. Néanmoins, des mécanismes pour la compression
du modèle ou la distillation des connaissances [75] pourraient être utilisés pour atténuer ce problème.

19

0.7 Chapitre 5: Apprentissage des (pseudo) espaces métriques
pour la vérification discriminatif

Ici, nous nous intéressons au cas d’apprentissage métrique, et plus important encore, nous
tournons notre attention vers son application au problème de vérification, c’est-à-dire celui de com-
parer des paires de données et de déterminer si elles appartiennent à la même classe. Le problème
de vérification se pose dans les applications où des comparaisons de deux petits échantillons sont
nécessaires, telles que la vérification faciale/empreinte digitale/vocale [76], la récupération d’images
[77, 78], et ainsi de suite. Au moment du test, l’inférence est souvent effectuée pour répondre à
deux types de questions :

1. Deux exemples donnés appartiennent-ils à la même classe?
2. Un exemple de test appartient-il à une classe revendiquée spécifique?

Dans les deux cas, les exemples de test peuvent appartenir à des classes qui n’ont jamais été présen-
tées au modèle lors de l’apprentissage. Les approches de vérification actuelles sont généralement
composées de plusieurs composants formés de manière gourmande [79, 3], et une approche end-to-
end fait toujours défaut.

Les espaces euclidiens ne conviendront pas, en général, pour représenter tout type de structure
souhaité exprimé dans les données (par exemple, asymétrie [60] ou hiérarchie [80]). Pour éviter
d’avoir à sélectionner une distance adéquate compte tenu de chaque nouveau problème auquel nous
sommes confrontés, ainsi que pour faire face aux difficultés d’apprentissage mentionnées précédem-
ment, nous proposons d’augmenter le cadre d’apprentissage métrique et d’entraîner conjointement
un encodeur (qui intègre des données brutes dans un espace de dimension inférieure) et un (pseudo)
modèle de distance adapté au problème d’intérêt. Une approche de vérification de bout en bout est
ensuite définie en utilisant une telle pseudo-distance pour calculer les scores de similarité. Les deux
modèles ensemble, paramétrés par des réseaux de neurones, définissent un (pseudo) espace métrique
dans lequel l’inférence peut être effectuée efficacement puisque désormais les propriétés sémantiques
des données (par exemple, les écarts entre les classes) sont codées par des scores. Ce faisant, nous
avons constaté que plusieurs interprétations apparaissent à partir d’une telle pseudo-distance ap-
prise, et cela peut être interprété comme un rapport de vraisemblance dans un test d’hypothèse
de Neyman-Pearson, ainsi qu’une mesure approximative de divergence entre les distributions con-
jointes des paires d’exemples positifs (mêmes classes) et des paires d’exemples négatives (classes
différentes). De plus, même si nous n’appliquons pas de modèles pour satisfaire les propriétés d’une
métrique réelle, nous observons empiriquement l’apparition de telles propriétés.

20

0.7.1 Mise en place experimentale

Nous considérons le cadre où à la fois un mécanisme de codage, ainsi qu’un certain type de
similitude ou de distance entre les points de données doivent être appris. Supposons que E : RD →
Rd et D : Rd×Rd → (0, 1) soient des mappages déterministes auxquels on se référera comme codeur
et modèle de distance, respectivement, et seront tous deux paramétrés par des réseaux de neurones.
De telles entités ressemblent à un espace métrique, nous l’appellerons donc pseudo espace métrique.
Nous avons observé empiriquement que l’introduction de propriétés de distance dans D, c’est-à-dire
en le contraignant à être symétrique et en l’obligeant à satisfaire l’inégalité triangulaire, n’a pas
entraîné d’amélioration des performances, mais a rendu l’entraînement instable. Cependant, étant
donné que les modèles entraînés se comportent approximativement comme une distance réelle, nous
utilisons l’analogie, mais fournissons en outre des interprétations alternatives des sorties de D.

Tant E que D sont implémentés en tant que réseaux de neurones. Dans nos expériences, E sera
convolutif (2-d pour les images et 1-d pour l’audio) tandis que D est un empilement de couches
entièrement connectées qui prennent en entrée des representations concaténés de paires d’exemples.
Nous effectuons des étapes de mise à jour simultanées pour E et D car nous avons observé que cela
était plus rapide que les mises à jour alternatives, tout en offrant les mêmes performances. Des
stratégies de régularisation standard telles que la décroissance du poids et le lissage des étiquettes
[81] sont également utilisées. Nous avons constaté empiriquement que l’utilisation d’une perte de
classification auxiliaire multi-classes accélère considérablement l’entrainement. Étant donné que
notre approche nécessite des étiquettes pour déterminer quelles paires d’exemples sont positives ou
négatives, nous utilisons davantage les étiquettes pour calculer une telle perte auxiliaire.

Pour évaluer le cadre décrit, nous nous appuyons sur trois ensembles d’expériences : (i) une
analyse de preuve de concept, (ii) un benchmark ASV à grande échelle, et (iii) des expériences
supplémentaires où nous analysons le comportement de la méthode proposée en termes de présence
de propriétés de distance, ses performances sous des décalages de distribution, et sa sensibilité au
choix d’architecture pour le modèle de distance. Dans la première partie de notre évaluation, nous
menons des expériences de validation de principe qui tirent parti d’ensembles de données d’images et
de modèles bien établis pour simuler les cas de vérification et valider notre proposition par rapport
à l’apprentissage métrique sous des distances standard. Pour cela, nous rapportons les résultats de
tous les essais créés pour les ensembles de tests de CIFAR-10 et MiniImageNet. Dans le premier,
les mêmes 10 classes d’exemples apparaissent pour les partitions d’entrainement et de test, dans ce
que nous appelons la vérification en closed-set. Pour le cas de MiniImageNet, étant donné que cet
ensemble de données a été conçu pour des applications d’apprentissage à few-shot, nous avons une
évaluation open-set pour la vérification puisqu’il existe 64, 16 et 20 classes disjointes d’entraînement,
de validation et de test.

Nous passons ensuite à une évaluation réaliste à grande échelle. Pour cela, nous utilisons le
corpus VoxCeleb [82, 7], correspondant à des enregistrements audio d’entretiens extraits de vidéos

21

youtube, ce qui signifie qu’il n’y a aucun contrôle sur les conditions acoustiques présentes dans
les données. De plus, alors que la majeure partie du corpus correspond à la parole en anglais,
d’autres langues sont également présentes, de sorte que les enregistrements de test proviennent de
locuteurs différents par rapport aux données d’entrainement, et potentiellement aussi de langues
et d’environnements acoustiques différents. Nous utilisons spécifiquement la deuxième version du
corpus afin que les données d’entraînement soient composées d’enregistrements de 5994 locuteurs
tandis que trois ensembles de tests sont disponibles : (i) VoxCeleb1 Test set, qui est composé
d’énoncés de 40 locuteurs, (ii) VoxCeleb1-E, c’est-à-dire la première version complète des données
contenant 1251 locuteurs, et (iii) VoxCeleb1-H, correspondant à un sous-ensemble des essais dans
VoxCeleb1-E afin que les non-cible essai soient conçus pour être difficiles à discriminer en utilisant
les métadonnées pour faire correspondre des facteurs tels que la nationalité et le sexe des locuteurs.
Nous rapportons ensuite les expériences réalisées pour observer si les sorties de D présentent des
propriétés de distances réelles, et enfin vérifier l’influence de l’architecture de D sur les performances
finales.

0.7.2 Discussion

Nous avons introduit un cadre dans lequel des tests à 2 échantillons sur petits échantillons
peuvent être effectués efficacement. Cela convient et compare les paires de données pour déterminer
si elles appartiennent à la même classe. Plusieurs interprétations d’un tel cadre sont fournies, y
compris l’apprentissage conjoint d’un encodeur et d’un métrique, ainsi qu’une estimation contrastive
sur des paires de données. Nous avons utilisé des résultats d’estimation contrastifs pour montrer
que les solutions du problème posé produisent des règles de décision optimales dans des cas de
vérification, résultant en des décisions correctes pour tout choix de seuil. En termes de contributions
pratiques, la méthode proposée simplifie à la fois l’entrainement dans le cadre d’apprentissage
métrique, car elle ne nécessite aucun schéma pour sélectionner des paires négatives d’exemples,
et simplifie également les pipelines de vérification, qui sont généralement constitués de plusieurs
composants individuels, chacun un contribuant à des défis spécifiques lors des phases de formation
et de test. Nos modèles peuvent être utilisés end-to-end en utilisant les sorties de D pour noter les
essais de test produisant de solides performances même dans des conditions ouvertes à grande échelle
et réalistes où les classes de test sont différentes de celles observées au moment d’entrainement.

0.8 Chapitre 6: Apprentissage des partitions pour définir des mod-
èles d’apprentissage polyvalents

Dans cette contribution, nous nous appuyons sur le cadre introduit au chapitre 5 pour définir
l’idée de TEMPlate LEarners (TEMPLE): un ensemble de composants de modèle et une procédure
d’apprentissage qui peuvent être réutilisés à travers différents scénarios pour atteindre des perfor-

22

mances similaires à celles des modèles spécifiques à une tâche, produisant un cadre de modélisation
polyvalent à usage général. Pour ce faire, nous utilisons à nouveau des méthodes d’apprentissage
métrique, mais considérons également les approches géométriques introduites à l’origine pour abor-
der la classification à few-shot; réseaux prototypes en particulier [83]. Plus précisément, nous nous
concentrons sur les cas d’apprentissage métrique où à la fois un encodeur et un modèle de similarité
ou de distance sont entraînés conjointement [84, 85, 86], mais nous introduisent un ensemble de pro-
totypes de classe utilisés afin d’attribuer des points aux classes. Les modèles TEMPLE comprennent
trois composants principaux:

1. Un encodeur qui mappe des données dans un espace de dimension inférieure;
2. Un modèle de similarité qui mappe une paire de représentations concaténées en un score de

similarité;
3. Un ensemble de prototypes de classe où chacun résume une classe entière en un vecteur.

Sur la base de modèles définis par lesdits composants, nous pouvons alors concevoir différents
mécanismes d’inférence en fonction de la tâche d’intérêt. Pour le cas de la classification multi-
classe, par exemple, on peut prédire la classe d’une instance de test particulière en mesurant sa
similarité par rapport à chaque prototype et en l’attribuant à la classe dont le prototype est le plus
similaire. De même, des tâches reposant sur des comparaisons par paires peuvent être effectuées,
telles que la vérification (comparer deux instances de données et déterminer si elles appartiennent
à la même classe) ou la récupération (comparer une instance de test à une galerie et déterminer les
éléments k dans la galerie le l’instance de test considérée est la plus similaire). De plus, à chaque fois
que de nouvelles classes apparaissent, l’adaptation du modèle consiste simplement à mettre à jour
la liste des prototypes, tout en gardant l’encodeur et la similarité inchangés, permettant ainsi une
adaptation rapide et évitant des problèmes tels que l’oubli des classes passées ou le surapprentissage
des nouvelles.

Nous soulignons que, étant donné la large applicabilité de TEMPLE, contrairement aux chapitres
précédents, nous élargissons ici notre champ d’application et évaluons nos propositions sur des
tâches au-delà des applications liées à la biométrie vocale. En particulier, nous utilisons à la fois
des expériences ASV et des références standard sur les images pour fournir des preuves empiriques
et soutenir l’affirmation selon laquelle les modèles définis par TEMPLE fonctionnent à égalité avec
les modèles spécialisés spécifiques à une tâche dans différents scénarios et types de données. En
plus de cela, nous avons observé que les classificateurs définis dans ce cadre améliorent la robustesse
contre les attaques et les changements entre les distributions de données d’entraînement et de
test. De plus, l’approche proposée prend en charge l’inclusion de nouvelles classes apparaissant une
fois la formation terminée, ce qui nécessite simplement d’inclure de nouveaux prototypes (ou de
repartitionner l’espace) obtenus à partir de petits échantillons. Cela donne un mécanisme simple
mais compétitif pour la classification à few-shot.

23

0.8.1 Mise en place experimentale

L’apprentissage du modèle est effectué pour appliquer les propriétés suivantes:

1. La similarité mesurée entre un exemple particulier et le prototype correspondant à ses éti-
quettes de classe doit être élevée par rapport aux similarités mesurées entre des prototypes
représentant des classes différentes.

2. Les similitudes mesurées entre les exemples de la même classe doivent être élevées, tandis
que les exemples de classes différentes doivent donner un faible score de similitude.

Nous concevons des objectifs d’entraînement visant à faire respecter ces propriétés. Pour la
première propriété, nous considérons un échantillon d’apprentissage de taille m et utilisons le
critère d’entropie croisée standard, mais utilisons la similarité mesurée entre une instance
d’apprentissage et chaque prototype comme ensemble de logits, comme par opposition aux
couches de sortie définies par une transformation affine, couramment utilisées dans les classificateurs
standard. Pour que la similarité apprise soit significative pour les comparaisons par paires, nous
utilisons un objectif de classification binaire également utilisé par [87] et [86]. Cette classification
vise à discriminer des paires d’exemples de la même classe et de classes différentes

Dans l’évaluation que nous effectuons, nous cherchons à tester l’approche proposée à travers une
variété de tâches et de modalités de données puisque notre objectif principal est de montrer que
les instances TEMPLE fonctionnent au moins à égalité avec les méthodes spécialisées considérant
différents cas. À savoir, nous commençons par des tâches qui reposent sur des comparaisons par
paires d’instances de test et exécutons des évaluations sous le paramètre de vérification en nous
concentrant sur une tâche ASV sur le paramètre de vérification à grande échelle défini par le corpus
VoxCeleb [82, 7]. Nous procédons ensuite à des benchmarks d’images auquel cas, en plus de véri-
fier les performances de prédiction, nous évaluons différentes notions de robustesse des classifieurs
induites par TEMPLE. De telles références d’images couvrent les tâches suivantes: classification
multi-classes, auquel cas nous évaluons les classificateurs basés sur TEMPLE à l’aide de MNIST [88]
et CIFAR-10 [89], et observe une précision robuste améliorée. Nous effectuons en outre une évalu-
ation sur des tâches de reconnaissance d’objets en considérant des images à plus grande résolution
et sous un décalage de domaine. Pour cela, nous utilisons le benchmark PACS [90] où nous con-
statons que les stratégies de classification proposées introduites ici surclassent les alternatives
récemment introduites, et plus important encore, c’est le cas dans les conditions les plus diffi-
ciles (par exemple, s’entraîner sur des images naturelles et évaluer sur des croquis). Nous évaluons
ensuite notre approche proposée sur les tâches de récupération d’images en utilisant des références
populaires telles que CARS196 [91] et CUB200-2011 [92]. Enfin, nous discutons des stratégies pour
repartitionner facilement l’espace afin que de nouvelles classes puissent être évaluées au moment du
test, auquel cas nous rapportons des expériences utilisant MiniImageNet [93]. Les ablations sont
également rapportées en utilisant ImageNet [94] pour montrer l’importance de l’utilisation de la
perte de classification auxiliaire.

24

Nous remarquons que la procédure d’entraînement présentée dans l’algorithme 2 est utilisée
pour les modèles d’entraînement utilisés pour toutes les tâches discutées ci-dessus, et
qu’aucune spécialisation pour aucune tâche d’intérêt n’est effectuée puisque nous cherchons des
preuves concernant l’efficacité de la l’approche proposée consiste à produire un ensemble suffisam-
ment général de composants (c’est-à-dire E , S et C) et un algorithme d’entraînement qui fonctionnent
au même niveau ou mieux que les alternatives. En tant que tel, à travers différents ensembles de
données et tâches, l’encodeur E est le seul composant spécifique à chaque évaluation dans le sens
où son architecture nécessite une spécification pour chaque source de données spécifique.

0.8.2 Discussion

Nous avons introduit TEMPLE: un ensemble de composants de modèle et une procédure de
formation qui simplifie la réutilisation des procédures d’apprentissage à travers différents types de
tâches et de données. Les composants du modèle sont donnés par les éléments suivants: un encodeur
responsable de mapper des données vers un espace de dimension inférieure, un modèle de similarité
qui génère un score de similarité lorsqu’une paire d’intégrations est donnée, et un ensemble de
prototypes de classe où chacun représente une classe observée pendant la formation. Au moment
du test, différents schémas d’inférence peuvent être définis au-dessus desdits composants afin de
permettre son utilisation dans différents cas. Nous avons présenté des preuves empiriques montrant
que les classificateurs définis sous TEMPLE produisent des améliorations, notamment : (1) une
meilleure robustesse à l’adversaire, puisque de petites perturbations de la norme ont été observées
pour avoir un effet moindre sur l’inférence basée sur la distance par rapport aux classificateurs
standard. (2) une robustesse améliorée contre les changements de distribution, ce qui indique
que la stratégie de formation proposée est plus efficace pour éviter les modèles qui reposent sur des
corrélations entre des facteurs et des étiquettes spécifiques au domaine. Dans ce cas, les informations
de domaine ne sont pas aussi utiles qu’elles peuvent l’être pour le cas de l’estimation du maximum de
vraisemblance avec des classificateurs standard. De plus, les performances d’un ensemble de tâches
telles que la vérification et la récupération d’images ont en outre montré que les modèles TEMPLE
étaient compétitifs ou meilleurs que les alternatives conçues pour ces applications particulières.

0.9 Conclusions

Nous avons proposé plusieurs méthodes pour améliorer les performances des modèles basés sur
les réseaux de neurones ciblant spécifiquement la biométrie vocale et d’autres tâches connexes,
telles que l’identification de la langue parlée. De plus, nous considérons en outre la tâche de
détecter les attaquants usurpateurs de tels systèmes. De plus, des propositions plus largement
applicables sont discutées dans les derniers chapitres, et celles-ci ont des applications potentielles en
dehors du domaine de la parole, donc des applications d’images sont également explorées, y compris

25

la reconnaissance d’objets à partir d’images, la récupération d’images et la robustesse contre les
perturbations. A ce titre, nous présentons les conclusions de la thèse sous deux parties: contributions
appliquées comprenant les chapitres 2-4 se concentrant sur les cas de vérification automatique du
locuteur (ASV), identification de la langue (LID) et les contre-mesures d’usurpation d’identité. La
deuxième partie correspond à davantage de contributions fondamentales dans le sens où elles sont
applicables à tous les domaines et comprennent les chapitres 5 et 6.

Contributions appliquées: Nous avons apporté des contributions en termes à la fois de
conception de formation et d’architectures de modèles, ce qui a permis d’améliorer les représen-
tations des niveaux d’énoncé dépendant de la langue et du locuteur. En particulier, nous avons
introduit un schéma multi-tâches où une combinaison d’apprentissage métrique et d’estimation de
vraisemblance maximale est utilisée comme signal d’apprentissage pour les réseaux de neurones. Des
stratégies de formation pratique supplémentaires sont également introduites, notamment des sché-
mas d’augmentation des données et des approches d’échantillonnage résultant en des mini-batches
contenant des paires d’exemples informatifs.

Pour la détection de l’usurpation d’identité, nous avons introduit des architectures de modèle,
ainsi que des procédures d’entraînement résultant en des prédicteurs qui fonctionnent end-to-end,
c’est-à-dire que nos modèles mappent directement les caractéristiques vocales dans les scores. Nous
avons proposé des variantes à l’architecture de réseau de neurones convolutifs légers en ajoutant une
couche d’attention pour détecter les attaques de durée arbitraire. Les performances ont été validées
sur les données du défi ASVspoof 2019, où nous avons montré des améliorations significatives des
performances de détection par rapport aux systèmes de référence bien connus. Nous avons également
observé empiriquement que la meilleure représentation de la parole pour la détection d’usurpation
d’identité dépendait de la stratégie d’usurpation d’identité utilisée. En tant que tel, nous avons
proposé une approche basée sur l’ensemble dans le but de permettre aux détecteurs d’être efficaces
contre différents types d’attaques d’usurpation d’identité contre les systèmes de vérification des
locuteurs. L’ensemble reposait sur trois composants, dont deux étaient optimisés par attaque et le
troisième pour décider de la meilleure façon de combiner leurs décisions en fonction du signal vocal
d’entrée. L’évaluation a montré que la méthode proposée (i) surpassait les méthodes qui combinent
les données des deux types d’attaques (entraînement multi-conditions) et entraînent un seul modèle,
ainsi que (ii) atteint des performances compétitives par rapport aux modèles spécialisés formés sur
des données organisées pour correspondre à la condition d’évaluation connue à l’avance. En fait,
pour le cas spécifique des attaques PA, notre modèle proposé a surpassé les systèmes spécialisés
privilégiés.

Enfin, nous avons introduit une variante de l’architecture TDNN - omniprésente dans le contexte
de la biométrie vocale - où les opérations de regroupement temporel sont effectuées sur toutes les
couches de la pile convolutive, plutôt que seulement à son extrémité. Nous appelons l’architecture
proposée ML-TDNN (multi-level self-attention TDNN). En particulier, nous proposons un com-
posant de modèle visant à combiner des représentations globales de différentes couches en traitant

26

les statistiques globales calculées dans différentes parties du modèle comme des séquences. Nous
utilisons ensuite une couche attentive pour traiter ces séquences et finalement obtenir une représen-
tation au niveau de l’énoncé à partir de la séquence traitée des statistiques globales.

Contributions fondamentaux: Nous avons proposé un cadre d’apprentissage de métrique
augmentée où un encodeur et une (pseudo) distance sont entraînés conjointement. Cette paire de
composants définit un (pseudo) espace métrique où l’inférence peut être effectuée efficacement pour
la vérification. Nous utilisons le terme pseudo pour indiquer qu’un tel composant doit seulement
ressembler à une distance, alors que l’approche proposée ne l’oblige pas à satisfaire les propriétés
des distances réelles. Nous posons ensuite un problème d’estimation qui résulte sur des (pseudo)
espaces métriques où les relations sémantiques entre les points de données, telles que définies via
des étiquettes, peuvent être évaluées via des mesures de distance. En particulier, nous exploitons
les résultats d’estimation contrastive pour montrer que les solutions optimales du problème posé
sont telles que: (i) le modèle de distance optimal pour tout encodeur fixe donne le rapport de
vraisemblance pour un test de rapport de vraisemblance de Neyman-Pearson, et (ii) l’encodeur
optimal induit une forte divergence Jensen-Shannon entre les distributions conjointes des paires
d’exemples positives et négatives. Ces résultats impliquent que, pour des modèles d’encodeur et
de distance optimaux, l’utilisation de mesures de distances induites par les modèles appris aboutit
à des règles de décision optimales pour les paramètres de vérification, entraînant des décisions
correctes pour tout choix de seuils positifs. Pour une mise en oeuvre pratique de notre méthode
proposée, nous avons paramétré les deux composants en tant que réseaux de neurones. De plus,
un algorithme d’apprentissage simple a été proposé, qui ne nécessite pas d’étapes lourdes, telles
que le minage dur-négatif, souvent nécessaire dans les cas d’apprentissage métrique standard. Les
évaluations sur les tâches de vérification à grande échelle fournissent des preuves empiriques de
l’efficacité de l’utilisation directe des sorties de la distance apprise pour l’inférence, surpassant les
classificateurs en aval couramment utilisés.

Enfin, nous avons tiré parti de l’approche décrite ci-dessus et l’avons étendue afin que d’autres
types de tâches puissent être pris en charge, en plus de la vérification. En particulier, nous avons in-
troduit un troisième composant correspondant à un ensemble de prototypes de classes: un ensemble
de vecteurs, chacun représentant une classe particulière. Avec les trois composants, nous avons in-
troduit TEMPlate LEarners (TEMPLE), un ensemble de composants de modèle accompagné d’une
procédure d’apprentissage qui peut être réutilisé pour différentes tâches et types de données. Sous
TEMPLE, la définition d’un modèle sur une source de données particulière nécessite simplement
la mise en oeuvre d’une procédure d’encodage pour ce cas particulier. Des schémas d’inférence ont
ensuite été introduits au-dessus des modèles TEMPLE, permettant leur utilisation pour les cas qui
nécessitent des comparaisons d’instance à instance, telles que la vérification et la récupération, ainsi
que ceux qui reposent sur l’évaluation de la similarité d’instance à échantillon, comme dans le cas
de la classification prototypique.

Chapter 1

Introduction

Learning useful representations from high-dimensional structured data is one of the main goals

of modern machine learning. So-called deep neural networks have shown to be able to efficiently

learn such representations without requiring specialized pre-processing of the data under analysis,

yielding substantial performance improvements across a range of tasks (e.g., [10]). Despite this

increase in performance, deep neural networks also have several shortcomings that can limit their

more widespread usage in applied domains. These limitations can include:

Lack of robustness against distribution shifts Common variations across training and testing

data represent a direct violation of the i.i.d. assumption (i.e., that training and testing data are

independently observed from a fixed distribution). This assumption is behind most of the supervised

learning generalization guarantees built within the empirical risk minimization framework. Consider

as an example the case of an object recognizer trained on natural images. In this case, it will likely

observe a performance degradation if testing data consists of drawings from the same classes, for

instance. Similarly, a speaker recognizer trained on audio predominantly in English will likely have

its performance affected if trials containing speech in some other language are presented to the

model at testing time.

Recent literature in domain adaptation/generalization has introduced more general settings,

thus relaxing the i.i.d. assumption to some extent to help cope with practical situations [95, 96].

However, there is still much room for improvement, as most approaches require data from a par-

28

ticular target data distribution or some assumption over the test data relating it to the training

domains. This requirement is unpractical given that a large number of possible unseen conditions

might appear for a deployed model. In the context of this work, domain shifts will mainly oc-

cur through variations across training and testing conditions for the case of speaker verification,

including different languages and/or channel conditions.

Lack of robustness against adversarially-generated attackers Current state-of-the-art deep

learning-based predictors have also been shown to be vulnerable to adversarial examples [97, 98].

In fact, it is a known property of neural networks that it is possible to impose large variations in

their outputs by only slightly changing their inputs. This is because neural networks often define

non-smooth mappings and their outputs might vary sharply by moving in a small neighborhood 1

around a given point. Attackers might exploit this property to fool deployed models into making

certain (erroneous) decisions. Several methods have been proposed in the recent literature and

shown to fool highly performing classifiers with slight changes to the inputs that are imperceptible

to humans.

Such threat can be critical in context of voice biometrics, as private data could be accessed

without the necessary credentials. In fact, it has been observed that simple attack strategies, such

as replaying someone’s voice or synthesizing audio with the voice of a target speaker, suffices to

fool an otherwise well-performing speaker recognizer [99, 100]. However, both replay and synthetic

attacks can introduce artifacts in the signal that, despite being imperceptible to the human ear,

can be detected by a machine. As such, approaches to detect replayed or synthesized audio have

emerged as a research thread. One issue with existing spoofing detection approaches is that they

are commonly optimized for one particular attack type. In practice, however, it is not known what

attack type will be used, hence a attack-agnostic approach is needed. In this thesis, we address this

issue via conditional modeling based on an ensemble of specialized predictors.

Data inefficiency A popular recipe for training neural networks is the combination of large

architectures in terms of number of parameters and massive datasets. In fact, performance scaling

laws (e.g., relating prediction accuracy with model/data size) were recently studied for the case of

language modeling [101, 102], as well as more generally [103, 104]. However, large scale models

1In the sense of some Lp-norm.

Chapter 1. Introduction 29

and datasets are not practical in several real-world scenarios. As a matter of fact, collecting and,

more importantly for the case of supervised settings, labeling data is quite often prohibitively costly

or even infeasible. As such, devising data-efficient learning strategies is a stepping-stone towards

practical machine learning.

For the case of speaker verification, data-efficiency is a built-in requirement given the open-

endedness feature of the problem itself, i.e., trials from speakers not presented to the model during

training appear at testing time. As such, devising efficient approaches able to ‘zero-shot’ verify

unseen speakers is at the core of the verification problem. We tackle this issue by devising new

architectures and training procedures allowing predictors to better generalize across scenarios.

Overly specialized learning procedures A less technical, yet relevant issue preventing the

broad application of machine learning in practice is the fact that state-of-the-art learning procedures

are too specialized to particular downstream applications. Engineering teams need to be able to

use and maintain very different models for different tasks, even in cases where tasks are related. As

an example, consider the cases of object recognition and image retrieval: while the two tasks seem

somewhat related in terms of inference procedures used to solve them, state-of-the-art approaches

designed to tackle those tasks vary significantly. We argue that more versatile learning procedures

that perform close to state-of-the-art across a range of tasks would reduce the engineering burden

related to using machine learning in the real-world. In order to alleviate this issue, we introduce

the idea of learning templates, i.e., standardized training procedures and model components that

require minimal steps in order for them to be used in a new task/dataset. As will be shown, models

resulting from instances of such templates perform on par or better than state-of-the-art predictors

across a number of tasks.

Given the described limitations of current machine learning technology, the research work dis-

cussed herein constitutes an attempt towards addressing these issues to some extent. We focus

particularly in the context of voice biometrics and related tasks. In the remainder of this Chapter,

we will introduce the specific objectives of this work and present a discussion on background topics

and past work related to the approaches that will be discussed in later chapters. In particular, we

formally define our problems of interest, model architectures and attention mechanisms used in the

discussed approaches, the metric learning framework which will be used across different cases, and

30

datasets considered in the empirical evaluations. We then summarize our contributions, present the

publications related to this thesis, and finally discuss the organization of this document.

1.1 Objectives

The research work described in this thesis has as its main objective closing the gap between

machine learning research and practice. In particular, we focus on applications to the domain of

voice biometrics and related tasks. In further detail, specific objectives are summarized in the

following:

1. Design training strategies yielding discriminative utterance-level representations of audio,

useful for voice biometrics and spoken language identification applications.

2. Design versatile architectures that can be re-used across different tasks within the context

of voice biometrics.

3. Introduce effective approaches to detect spoofing attackers to speaker recognizers. Those

should should be agnostic to the attack strategy and able to perform well under replays or

synthesized attacks.

4. Define more efficient approaches to verification based on the metric learning framework.

Those should rely less on costly approaches such as hard-negative triplet mining.

5. Define versatile learning procedures. That is, training strategies which are re-usable across

cases.

1.2 Background and related work

In what follows, we present background content required for the following chapters. Those

include notation and content that we directly use and build upon. Pointers to additional information

covering topics that are mentioned in the thesis are presented in the Appendix A.

Chapter 1. Introduction 31

Verification Reject

Accept

Non-target

Target

Xenroll , xtest

Claimed
Class , xtest

Type I trial:

Type II trial:

Figure 1.1 – The verification problem.

1.2.1 Problem definition

1.2.1.1 The verification problem

Given data instances x ∈ X such that each x can be associated to a class label c ∈ C through a

labeling function f : X 7→ C, we define a trial as a pair of sets of examples {Xi, Xj}, provided that

f(xk
i) = f(xl

i) ∀ k, l ∈ {1, 2, ..., |Xi|}2 and f(xk
j) = f(xl

j) ∀ k, l ∈ {1, 2, ..., |Xj |}2, so that we can

assign class labels to such sets Xm defining f(Xm) = f(xm) ∀ xm ∈ Xm. The verification problem

can be thus viewed as, given a trial Ti,j = {Xi, Xj}, deciding whether f(Xi) = f(Xj), in which case

we refer to T as target trial, or f(Xi) 6= f(Xj) and the trial will be called non-target.

The verification problem is illustrated in Figure 1.1. We categorize trials into two types in

accordance to practical instances of the verification problem. Type I trials are those such that Xi is

referred to as enrollment sample, i.e., a set of data points representing a given class, such as a gallery

of face pictures from a given user in an access control application, while Xj will correspond to a

single example xtest to be verified against the enrollment gallery. For the type II case, in turn, Xi is

simply a claim corresponding to the class against which xtest will be verified. Classes corresponding

to examples within test trials might have never been presented to the model, and sets Xi and Xj

are typically small (< 10).

32

Under the Neyman-Pearson approach [11], verification is seen as a hypothesis test, where H0

and H1 correspond to the hypothesis such that T is target or otherwise, respectively [12]. The test

is performed through the following likelihood ratio (LR):

LR = p(T |H0)
p(T |H1)

, (1.1)

where p(T |H0) and p(T |H1) correspond to models of target, and non-target (or impostor) trials.

The decision is made by comparing LR with a threshold δ.

One can explicitly approximate LR through generative approaches [13]; Gaussian mixture mod-

els (GMM) being the most common. In this case, the denominator is usually defined as a universal

background model (GMM-UBM, [14]), meaning that it is trained on data from all available classes,

while the numerator is a fine-tuned model on enrollment data so that, for trial {X1, X2}, LR will

be:

LR = pX1(X2)
pUBM (X2)

= pXEnroll
(xtest)

pUBM (xtest)
. (1.2)

Alternatively, authors in [15] showed that discriminative settings, i.e., binary classifiers trained

on top of data pairs to determine whether they belong to the same class, yielded likelihood ratios

useful for verification. In their case, a binary SVM was trained on pairs of i-vectors [1] for automatic

speaker verification. Later on, we will build upon such discriminative setting, but with the difference

that we learn an encoding process along with the discriminator (here represented as a distance

model), and show it to yield likelihood ratios required for verification through contrastive estimation

results. This is more general than the result in [15], which shows that there exists a generative

classifier associated to each discriminator which likelihood ratio matches the discriminator’s output,

requiring such classifier’s assumptions to hold.

We remark that current verification approaches are composed of complex pipelines containing

several components [1, 79, 3], including a pretrained data encoder, followed by a downstream clas-

sifier, such as probabilistic linear discriminant analysis (PLDA) [105, 106], and score normalization

[87], each contributing practical issues (e.g., cohort selection) to the overall system. This renders

both training and testing of such systems difficult. Some of the approaches proposed herein are

Chapter 1. Introduction 33

a step towards end-to-end verification, i.e., from data to scores via a single forward pass, thus

simplifying inference.

1.2.1.2 The verification problem for the case of voice biometrics

Biometrics refer to physiological or behavioral traits of a person which can be employed for

automatic identification or verification of a claimed identity. Biometric systems can make use of

fingerprints, hand geometry, iris, retina, face, hand vein, facial thermograms, signature, and voice,

or combinations thereof to verify a user’s identity [16]. Such traits have been widely used, for

example, as access control to buildings or sensitive information and as an authorization mechanism

in financial transactions.

In [17], a list is given of required features that must be satisfied in order for a physical/behavioral

characteristic to be used as a biometric. The list includes:

• Universality - all individuals have the characteristic;

• Distinctiveness - individuals differ with respect to this characteristic;

• Persistence - acceptable variability over time;

• Collectability - measurable;

• Performance - of the systems relying on it;

• Acceptability - willingness of individuals to have this characteristic measured;

• Circumvention - how easily the system can be fooled using fraudulent methods.

In summary, a practical biometric system should meet the specified recognition accuracy, speed,

and resource requirements, be harmless to the users, be accepted by the intended population, and

be sufficiently robust to various fraudulent methods and attacks to the system [17]. As pointed out

in [18], speaker verification is a popular biometric identification approach which uses the speech

signal as a user’s signature. The main reason for its popularity is twofold: (a) no direct contact

with the individual is required; and (b) microphones are available on most portable devices. More-

over, authors argue that previous work has proven that speech properties differ relevantly across

individuals and, even for twins, similarity is unlikely [29, 30].

More formally, speaker verification consists of accepting or rejecting a claimed identity by com-

paring two utterances, the first of these utterances being used for enrollment (produced by the

34

speaker with the target identity) and the second utterance is obtained from the verified speaker

[19]. Under the text-independent setting, speaker verification is performed on top of unconstrained

phrases of arbitrary phonetic content and length. The added phonetic variability in this scenario

represents an extra adverse factor when compared to the session and speaker variabilities, present

in the text-dependent case [20].

Classical approaches for automatic speaker verification (ASV) divide the problem into two dis-

tinct phases: (i) compute low-dimensional speaker representations; and (ii) perform binary classifi-

cation on top of pre-computed representations of enrollment and test utterances. So-called i-vectors

[1] are known to be the state-of-the-art representations for ASV. Generally, i-vectors are obtained by

firstly training what is usually referred to as universal background model, consisting of a Gaussian

mixture model (GMM-UBM) (typically in the form of a Gaussian mixture model, GMM-UBM) [14]

trained with the expectation-maximization algorithm. After doing so, statistics of latent variables

are concatenated to form supervectors, which, when subjected to factor analysis reduce in dimen-

sionality and result in i-vectors. Factor analysis aims at obtaining a low-dimensional representation

which embeds both channel- and speaker-dependent information. The described algorithm is il-

lustrated in Figure 1.3. Inferences can then be made via either discrimninative approaches using,

for example, support vector machines and logistic regression, or generative approaches, such as

PLDA [106]. One of the shortcomings of the i-vector+PLDA approach is its lack of robustness to

short-duration recordings [47, 107]. Recent approaches [3] substituted i-vectors by the output of

some inner layer of a 1-dimensional convolutional model commonly referred to as time-delay neural

network (TDNN) [108], trained under the multi-class classification setting to recognize a training

set of speakers. Representations obtained from TDNNs training as speaker recognizers are often

referred to as x-vectors.

Several subsequent proposals re-used the idea of performing speaker recognition so as to enforce

speaker dependency in inner layers, varying the types of architectures and training settings. This is

the case of [109], for instance, which compared different architectures based on the Visual Geometry

Group (VGG) model [74], first introduced for objects recognition in images, as well as combinations

with intra-loss [110], which minimizes the variance of the embedding of each speaker within a training

minibatch. Moreover, in [111], the authors evaluate a very deep neural network under the described

speaker recognition training setup, and combined the cross-entropy with the center-loss [25]. This

approach accumulates first order statistics of the average embeddings of each speaker within the

Chapter 1. Introduction 35

training data throughout training, aiming at enforcing a low variability in the representations of a

given speaker.

Another direction was adopted in proposals based on the metric learning framework. Such

approaches aim at explicitly learning representations for which class-discriminability is ensured.

The metric learning approach was first explored in large scale for face verification applications [62].

However, training difficulties involved in this setting are commonly reported [71] and several stabi-

lizing strategies have been proposed, such as hard triplets mining, pre-training, and combination of

triplets loss with center- or intra-losses. A large-scale speaker verification setting in which triplet

loss is employed along with mining strategies can be found in [112]. Finally, variations of the

maximum likelihood estimation training strategy, where some geometric structure is imposed over

learned representations, was proposed. A notable example of such a case is the additive margin

softmax approach [113].

1.2.1.3 Language identification

The language identification (LID) task consists of identifying spoken languages from speech data

of unconstrained phonetic content, which is highly useful across several applications within speech

processing. For instance, language recognizers can be employed to approximate conditional likeli-

hoods. Alternatively, they can also be used for hierarchical modelling, where a language recognizer

is placed in early stages of a pipeline which is then followed by language-specific sub-modules, as

illustrated in Figure 1.2. Speech recognition or speaker verification are examples in which prior

information about the spoken language can boost performance. Moreover, direct practical applica-

tions of language recognizers can include directing calls in call-centers, as an example.

As pointed out in [21], classical approaches for language identification commonly rely on methods

originally introduced for speaker recognition. Applications of i-vectors in language recognition, for

instance, can be found in [21] and [22].

Even though i-vectors are known to yield satisfactory performance on both speaker and lan-

guage modeling across several datasets, especially in contexts within which the amount of training

data is relevantly constrained, it is also known that its performance degrades when faced with

short-duration test conditions. Moreover, its unsupervised nature might become an issue in cer-

36

Pre-processingInput Speech Language
Recognizer

Language 2
Sub-module

Language 1
Sub-module

Language N
Sub-module

Outputs

Language-specific modules

Figure 1.2 – Hierarchical pipeline with a language recognizer streaming inputs into language-specific
sub-modules.

Input Speech Pre-processing SupervectorsGMM-UBM i-vectorsTotal Variability
Analysis

Figure 1.3 – i-vectors front-end description [1].

tain scenarios, when available labeled information may yield more discriminable low-dimensional

representations.

Supervised approaches have been introduced in conjunction with neural networks of various

families for language identification. For instance, the approaches in [23] and [24] employ residual

neural architectures and different strategies for training, such as center-loss minimization [25] and

angular softmax [26], both inspired from applications on face recognition. However, evaluation

has been performed only on longer duration recordings, with relevant performance degradation

observed when moving from 30-second recordings to 3-second ones. Similarly, other architectures

were employed for time-dependency modelling for language identification, including time delay

neural networks [27] and long short-term memory (LSTM) networks [28]. These have shown to

outperform i-vectors in short-duration scenarios, while not performing as well in the case of long-

duration signals.

Chapter 1. Introduction 37

Test
utterance

Database
(spk. models)

Microphone Feature
extraction Embedding Scoring

Claimed
Identity

Target /
Non Target

Figure 1.4 – Illustration of a generic Automatic Speaker Verification (ASV) system. Red crosses
indicate parts of the system which can be potentially exploited by an attacker to bypass or fool the
verification process. We focus on microphone-level attacks, i.e., the attack is performed on the input
signal prior to being captured by the system. Figure is inspired by [2]-Fig. 1.

1.2.1.4 Spoofing detection

As discussed above, voice is a popular biometric for identification approaches [18, 29, 30].

Nonetheless, voice biometrics are not free from threats and attack strategies targeting speaker

recognition systems have been described [31]. As such, the design of counter-measures to yield

more robust applications has become a popular research direction.

As discussed in [2] and illustrated in Figure 1.4, attacks can be designed at various stages of a

biometrics-based authentication pipeline. Notably, recently-introduced adversarial attacks targeting

artificial neural networks [32] can act at the model-level. In the specific case of speaker verification

and voice biometric systems, other attack strategies also exist. These are termed “spoofing attacks”

and represent a person or a computer program that tries to overcome an authentication system by

forging the data of a legitimate user.

In this work, we focus on microphone-level model agnostic attackers. Microphone-level attacks

can be realized with different methods [31, 33, 9]: (i) impersonation of another user, (ii) synthetic

speech, and (iii) pre-recorded (replayed) audio from a given user. Herein, we will consider (ii)

and (iii), which will be referred to as logical access (LA) and physical access (PA) attacks, respec-

tively. The latest LA attacks have taken advantage of recent advances in speech synthesis and

voice conversion based on auto-regressive waveform modeling or generative adversarial networks

[34, 35, 36, 37].

38

Feature
Extraction

Spoofing
Detector

Speaker
Verification

Claimed
Identity

Reject Reject

Accept

Non-target

Target

Spoofing

Genuine

Figure 1.5 – Scheme 1: The spoofing detector is invoked once inputs are classified as target with
respect to claimed identities.

Feature
Extraction

Speaker
Verification

Spoofing
Detector

Claimed
Identity

Reject Reject

Accept

Non-target

Target

Spoofing

Genuine

Figure 1.6 – Scheme 2: The spoofing detector is used first and only samples classified as genuine are
passed through to the speaker verification block.

Given the serious consequences that spoofing attacks can have on speaker verification systems,

recent research has focused on the development of new attack detection algorithms and several

challenges have been organized (e.g., [9, 33, 38, 39]). Figures 1.5 and 1.6 present block diagrams

of two possible settings, where spoofing detectors are used in tandem with speaker verification

systems. In both the cases, the input corresponds to an audio signal along with a claimed identity.

The spoofing detector can be used if the claimed identity is verified as target, i.e., true and claimed

identities match, or the opposite can be done so that only samples classified as genuine by the

spoofing detector will be verified against the claimed identity.

In terms of countermeasures aimed at detecting spoofing attackers, a generative classifier was

introduced in [99] following a similar approach to that of linear discriminant analysis (LDA), such

that one generative model is trained per class. However, in this case, GMMs are employed for

modelling the class-conditional features rather than simple Gaussians with shared covariances as in

the LDA case. Given a sequence of feature vectors denoted by O corresponding to a speech signal,

the genuine vs. spoofed speech decision is thus made based on the following likelihood ratio l(O):

l(O) = log p(O|θg)− log p(O|θs), (1.3)

Chapter 1. Introduction 39

where θg and θs correspond to the parameters of independently trained frame-level GMMs on

only genuine or spoofing data, respectively, while log p(O|θg) and log p(O|θs) are the average log-

likelihood across all frames in O for genuine and spoofing data, respectively.

A common spoofing attack detection method has been to find speech representations or features

that emphasize the artifacts introduced by spoofing methods, and employ such representations

along with GMM-based classifiers to detect them. Various low-level speech representations have

been investigated for this purpose, including: (i) spectral amplitude and phase [114, 115, 116, 117,

118, 119], and (ii) combined amplitude-phase [115, 116, 117]. More specifically, the authors in [114]

employ a GMM classifier on top of cepstral coefficients computed after a constant Q transform,

called constant Q cepstral coefficients (CQCC). In [115], features tailored for anti-spoofing based

on the infinite impulse response constant Q-transform spectrum (IIR-CQT) were introduced, such

that cepstral coefficients were extracted by filtering the speech signal spectrum with an infinite

impulse response and decorrelating using either a discrete cosine transform or principal component

analysis. Cochlear filter cepstral coefficients and excitation source-based features are evaluated

in [118] and [119], respectively. GMM-based detectors are evaluated in [120] for a setting where

LA and PA training data are pooled together while the detector is evaluated on top of each data

partition. However, as will be further discussed, doing so is not enough to recover the performance

of specialized models in each type of attack.

Another strategy employed in recent work is usually referred to as tandem representations. In

such case, a frame-level neural network is trained for spoofing detection, and finally a GMM classifier

is trained on top of inner layers outputs, predicted posteriors, and speech features [115, 116]. A

similar approach to that of tandem features is proposed in [121]. In that case, a neural network

is trained in a supervised manner at the frame-level. Statistics of intermediate representations

are used as global descriptors of full recordings, on top of which scoring can be performed. The

supervised training is carried out so as to determine whether individual frames correspond to an

attack or not. Moreover, independently trained fully-connected neural networks on top of different

speech features have been explored in [122] and [123]. Models receive concatenated frames as inputs

and classify a full recording as genuine or spoofing. A score-level fusion of the set of detectors is

then employed for final decision.

40

Finally, more recent methods have explored end-to-end spoofing detection methods where a

single model is trained in one step, and the model is able to directly output scores given unseen test

examples. In [40], a convolutional model is trained on top of raw audio for the detection of replayed

attackers. In this setting, the model is able to learn representations which will detect replay attacks.

In [41], an attentive end-to-end scheme is introduced such that a U-net structure is first employed

to map the input features into a set of element-wise importance weights. The weighted input is then

fed into a stack of feed-forward blocks with residual connections yielding final scores. Convolutional

neural networks were also shown to be effective for direct end-to-end detection in [42].

1.2.2 Model architectures

1.2.2.1 Time delay neural networks (TDNN)

Approaches presented in the following chapters either use or improve upon the TDNN archi-

tecture, introduced in the context of automatic speaker verification by the x-vector framework [3].

The model is illustrated in Figure 1.7 and further detailed in Table 1.1. More specifically, an input

sequence of length T is denoted as x[1:T], where each xi ∈ Rd, i ∈ [T], represents a feature vector

of dimension d (e.g., mel frequency cepstral coefficients) at a given time frame. Equivalently, we

denote the set of features output by the stack of convolution layers by y1:T ∈ RD, i ∈ [T], where

D corresponds to the number of output channels of the last convolutional layer. We refer to those

as local descriptors of the overall audio given that they correspond to features of a relatively short

time window. D is set to 1500 in the original model and to 512 in some of our cases since, as

will be discussed, our setting might require local descriptors of matching dimensionality across the

model. The temporal pooling layer, also referred to as statistical pooling, concatenates element-wise

estimates of first- and second-order statistics of the set of local descriptors across the temporal axis

(the symbol “ ˆ ” in Fig. 1.7 indicates the concatenation operation). We thus define the global

descriptor V , i.e., the feature vector summarizing the entire input sequence x[1:T], by the following:

V = cat[µ(yi), σ(yi)], (1.4)

where the operator v = cat[v1, v2] concatenates v1, v2 ∈ RD such that v ∈ R2D, and yi are obtained

after the last convolution layer. The global descriptor V is finally fed into a sequence of dense layers

Chapter 1. Introduction 41

y1

y2

y3

yT

. . .

y4

𝞼
(y

i)
𝞵

(y
i)

𝞵 ^ 𝞼

V

x1

x2

x3

xT

. . .

x4

Convolution
Layers

Temporal
Pooling

Figure 1.7 – Conventional TDNN overview [3].

Table 1.1 – Standard TDNN architecture. T indicates the duration of features in number of frames
and d the feature vector dimensionality. Batch normalization is further employed after each layer
except temporal pooling.

Layer Input Dimension Output dimension
Conv1d+ReLU d × T 512 × T
Conv1d+ReLU 512 × T 512 × T
Conv1d+ReLU 512 × T 512 × T
Conv1d+ReLU 512 × T 512 × T
Conv1d+ReLU 512 × T 1500 × T

Temporal Pooling 1500 × T 3000
Linear+ReLU 3000 512
Linear+ReLU 512 512
Linear+ReLU 512 # classes

to yield the outputs corresponding to log-probabilities over the set of classes under consideration

(e.g., training speakers or languages).

Past work has considered several modifications of the original TDNN architecture in order to

improve performance in tasks such as speaker verification. In [124], for instance, several practical

considerations were evaluated, such as the differences in performance given by applying batch nor-

malization before or after activation functions were applied. Model variations focusing specifically

in the pooling strategy were proposed in [125], where a learnable gating mechanism was employed

in order to assign more or less importance to specific frames prior to pooling. Similarly, a linear

layer was used in [126] to learn how important individual frames are. These approaches, however,

42

are limited in that each frame is evaluated by itself, and a better informed pooling strategy should

leverage the sequence structure in order to decide which frames matter more or less.

Alternatively, approaches such as the model discussed in [127] consider higher order statistics

during pooling, but similarly to the base case, only representations from a given layer are used to

compute the overall utterance-level representation used by top layers of the model. Closer to our

work is the approach discussed in [128] where global statistics of different layers are concatenated

prior to the TDNN dense layers close to the outputs. While such direction is an improvement

compared to other approaches, given that bottom layers are considered as well, we hypothesize

that simply concatenating low-level representations is sub-optimal in that the sequential nature

of such set of feature vectors is not leveraged. We argue that some type of sequence processing

mechanism can enrich the final pooled vector and yield lower-dimensional pooled features, thus

saving on parameters and computations in higher layers. While any sequence model could be used

(e.g., RNNs), we focus on self-attention given its efficiency and ease of training.

1.2.2.2 Residual architectures

Firstly introduced in [4], ResNets constitute a set of architectures made up of a series of so-

called residual blocks, which determine how a feature transformation should differ from the identity

mapping2, rather than how it should differ from zero [43]. Residual block transformations present

a basic form that, for a generic input variable X ∈ X , is given by:

X ′ = F (X) + X. (1.5)

The residual term comes from the fact that the input is directly used to compute the transfor-

mation’s output, which in a neural network represents a direct path for gradients to “flow” during

backpropagation of gradients for computation of SGD updates, as illustrated in Figure 1.8. F (X) is

generally a set of convolutional layers, followed by nonlinear activation functions and normalization

layers. Variations of ResNets have been proposed and used in different contexts, such as person

re-identification, object detection, and segmentation, as is the case of MobileNet [44].

2The identity mapping outputs its inputs.

Chapter 1. Introduction 43

Convolution

Normalization

Activation

X

X’

F(X)

Figure 1.8 – Residual block [4].

Recent literature has shown that residual blocks contribute to yielding loss landscapes which

are easier to train, in the sense that ill-conditioned chaotic landscape regions become less frequent

when such an architectural feature is employed [45]. Moreover, near identity transformations were

studied in depth and guarantees were introduced for the linear and nonlinear F (x) cases in [46] and

[43], respectively. In some of the chapters that follow, we will use ResNets as a backbone network

on top of which training procedures are devised so as to yield discriminative speaker- or language

dependent utterance-level representations.

1.2.2.3 Attention mechanisms

Frame-wise attention Several attention mechanisms have been introduced recently in architec-

tures aimed at modeling global properties of temporal data, as in the cases of speaker or language

recognition. In general terms, frame-wise attention blocks learn to conditionally weigh time-steps

given input representations on some inner layer of a model [47]. Consider y1:T as a set of vectors

corresponding to the outputs of a given neural network for some input x1:T – e.g., a sequence of

acoustic features, such as mel filterbanks. A linear transformation A is shared across all time-steps

t, and applied to each yt resulting in a set of scalars a1:T , according to:

at = tanh (Ayt). (1.6)

44

A set of normalized weights summing up to 1 is obtained through the softmax operator:

wt = eat∑T
t=1 eat

, (1.7)

and the attention layer output is finally given by:

V =
T∑

t=1
wtyt, (1.8)

where V will correspond to a global utterance-level representation of the entire input sequence

x[1:t], which can be further processed by fully-connected layers to yield, for instance, conditional

probabilities over a set of training speakers. An alternative approach to computing V would be to

perform statistical pooling operations described previously but over the set of weighted representa-

tions y′
t = wtyt.

Scaled dot product attention Introduced in [48] and also referred to as self-attention, such

component corresponds to an alternative to recurrent models for modeling sequential data and was

introduced along with the Transformer architecture. Considering the same set of representations

discussed above and represented by y[1:t], it operates as indicated by the following:

self-attention(Q, K, V ′) = softmax(QK⊺
√

dk
)V ′, (1.9)

where Q, K, and V ′, denominated queries, keys, and values, respectively, each correspond to a

linear transformation of y[1:t] (assumed to be a matrix of dimension t×D), assuming each yt ∈ RD

i.e.,:

Q = y[1:t]W
Q, K = y[1:t]W

K , V ′ = y[1:t]W
V . (1.10)

In this case, each of the matrices W Q, W K , and W V , have dimension D × dk and their entries are

treated as learnable parameters. Intuitively, the scaled dot-products QKT
√

dk
define weights indicating

the importance of each element in the sequence given a specific data instance.

Additionally, a multi-head setting is often employed such that the self-attention operation de-

scribed above is applied multiple times using independent sets of parameters. The final sequence

Chapter 1. Introduction 45

is finally given by a linear projection of the concatenation of the outputs of each head to the

space of dimension dk. The number of self-attention heads as well as dk are usually treated as a

hyperparameters.

1.2.3 Metric Learning

Being able to efficiently assess similarity across samples from data under analysis is a long

standing problem within machine learning. Algorithms such as K-means, nearest-neighbors clas-

sifiers, and kernel methods generally rely on the selection of some similarity or distance measure

able to encode semantic relationships present in high-dimensional data into real scores. Under

this view, approaches commonly referred to as Distance Metric Learning, introduced originally in

[49], try to learn a so-called Mahalanobis distance, which, given x, x′ ∈ RD, will have the form:√
(x− x′)⊺M(x− x′), where M ∈ RD×D is positive semidefinite. Several extensions of that setting

were then introduced [50, 51, 52].

In [53], for instance, an online version of the algorithm in [49] is proposed, while an approach

based on support vector machines (SVM) was introduced in [54] for learning M . In [55] an

information-theoretic approach is provided to solve for M by minimizing the divergence between

Gaussian distributions associated with the learned and the Euclidean distances, further showing

such an approach to be equivalent to low-rank kernel learning [56]. Similar distances have also

been used in other settings, such as similarity scoring for contrastive learning [57, 58]. Besides the

Mahalanobis distance, other forms of distance/similarity have been considered in recent work. In

[59], for example, a kernel matrix is directly learned, implicitly defining a similarity function. In

[60], classes of neural networks are proposed to define pseudo-distances which satisfy the triangle

inequality while not being necessarily symmetric.

For the particular case of Mahalanobis distance metric learning, one can show that ∃ W :√
(x− x′)⊺M(x− x′) = ||Wx−Wx′||2 [53], which means that there exists a linear projection of the

data after which the Euclidean distance will correspond to the Mahalanobis distance on the original

space. In [61], the linear projection is substituted by a learned non-linear encoder E : RD 7→ Rd so

that ||E(x)−E(x′)||2 yields a (non-Mahalanobis) distance measure between raw data points yielding

useful properties. Follow-up work has extended such an idea to several applications [62, 63, 64, 65].

One extra variation of ||Wx − Wx′||2, besides the introduction of E , is to switch the Euclidean

46

distance ||·||2 with an alternative better suited for the task of interest. That is the case in [66], where

the Hamming distance is used over data encoded to a binary space. In [67], in turn, the encoder

is trained so that Euclidean distances in the encoded space approximate Wasserstein divergences,

while in [68] a hyperbolic distance is employed which is argued to be suitable for their particular

use case.

Based on the covered literature, one can conclude that there are two different directions aimed

at achieving a similar goal: learn to represent the data in a metric space where distances yield

efficient inference mechanisms for various tasks. While one direction corresponds to learning a

meaningful distance or similarity from raw data, the other corresponds to, given a fixed distance

metric, finding an encoding process yielding such desirable metric space. Under the latter setting,

approaches such as Siamese Networks [5] have been introduced with the aim at explicitly learning

an embedding model parameterized by a neural network which results in a lower-dimensional space,

where relevant properties hold, such as class separability. It is often assumed that information

regarding which data samples should be close together and far apart in the embedding space is

available.

Training is performed such that examples are presented in pairs in which case xa is referred to as

anchor and its pair can be either positive or negative, represented as x+ or x−, indicating whether

the pair belongs to the same or different classes, respectively. Such setting is illustrated in Figure

1.9 for a model with parameters W .

The loss LS will be thus given by the following, for a set of n pairs of examples, and a transfor-

mation y = E(x)RD 7→ Rd defined by the neural network from data to embedding space:

LS =
n∑

i=1
Zi||E(xi

1)− E(xi
2)||p, (1.11)

where Zi will be 1 if xi
1 and xi

2 belong to the same class and -1 otherwise, and the operator || · ||p
defines a metric on the embedding space.

Follow-up work has exploited and extended the scheme introduced with siamese networks for

several applications. Triplet networks represent an alternative to C in which, during training,

triplets of examples are drawn from the dataset such that an anchor sample xa is selected along

with corresponding positive and negative examples x+ and x−, respectively. The embedding model

Chapter 1. Introduction 47

W

xa

W

ya

x+,-

y+,-

Contrastive Loss

Sh
ar

ed
 w

ei
gh

ts

Figure 1.9 – Illustration of a siamese network setting. Model weights are shared across the two
branches, and pairs can be either positive or negative [5].

is thus trained to minimize or maximize some Lp norm of the difference between samples in the

embedding space depending on whether they should be close or distant, given the available prior

information. Classifiers trained on embeddings obtained from trained triplet networks were shown

to achieve high performance on object recognition tasks [6]. An illustration of triplet-networks is

shown in Figure 1.10.

The triplet loss LT for a given set of triplets of size n is given by:

LT =
n∑

i=1
max(||E(xi

a)− F (xi
+)||p − ||E(xi

a)− F (xi
−)||p + α, 0), (1.12)

48

W

x+

W

y+

xa

ya

||ya-y+||2

W

x-

y-

Triplet Loss

||ya-y-||2

Sh
ar

ed
 w

ei
gh

ts

Figure 1.10 – Illustration of a triplet network setting. Model weights are shared across the three
branches [6].

where α is a user-defined hyperparameter, and the operator max(·, 0) is intended to avoid solutions

which achieve low loss by simply maximizing the term ||E(xi
a)− E(xi

−)||p, avoiding minimizing the

term corresponding to the positive pair.

Several applications of triplet networks were proposed in recent years. The problem of finding

correspondences between images via local descriptors was tackled in [129], where authors trained an

embedding model using a variation of triplet loss in which anchor and positive pairs are swapped

in case the distance between anchor and negative samples in the embedded space is greater than

the distance between positive and negative samples. Furthermore, such representation learning ap-

proaches have been employed in biometrics applications, such as Google’s FaceNet face recognizer

[62] and Baidu’s Deep Speaker recognizer [112]. In both FaceNet and Deep Speaker, triplets selec-

tion, and in particular, finding close anchor and negative pairs, showed to have a major impact on

training. As such, having strategies to mine such pairs is crucial to achieve low test error rates.

In this thesis, we will introduce an alternative where both the encoder and distance are learned

jointly. Close to such an approach is the method discussed in [85] where, similarly to our setting,

Chapter 1. Introduction 49

Table 1.2 – Numbers of speakers and utterances for each partition of the VoxCeleb corpus [7]. Our
models are trained on the training partition of VoxCeleb2 and evaluated on the three test partitions
described below.

Partition Data
Description # Speakers # Utt. # Trials (target)

Train VoxCeleb2 5994 1092009 –

Test
VoxCeleb1 (test) 40 4715 37720 (18860)
VoxCeleb1 (ext) 1251 145375 581480 (290743)
VoxCeleb1 (hard) 1190 138137 552536 (276270)

both encoder and distance are trained, with the main differences lying in the facts that our method is

fully end-to-end3 while in their case training happens separately. Moreover, training of the distance

model in that case is done by imitation learning of cosine similarities.

1.2.4 Datasets

1.2.4.1 Speaker verification

The VoxCeleb corpus, more specifically its second release [7], is employed for evaluation under

the speaker verification setting. The corpus is comprised of audio collected from YouTube videos

corresponding to interviews under unconstrained acoustic environments. Evaluation is carried out

under the open-set verification condition where test data correspond to speakers unseen during

training. Moreover, while the bulk of the data is represented by speech in English, speakers of

different nationalities are present in the data and, as such, varying languages appear within the

recordings. Three evaluations are made available, namely: the test set of the first release of the

corpus, the full training set of the first release (unseen during training) referred to as extended,

and a hard set of trials where available meta-data was used to create trials likely to be difficult

to discriminate. While the training data is comprised of audio from 5994 speakers, each of the

described test partitions are represented by 40, 1251, and 1190 speakers, respectively, all disjoint

from the set of speakers present in the training data. The hard partition contains trials from a

subset of the same 1251 speakers as in the extended test data. A summary of data statistics is

reported in Table 1.2.

3What authors refer to as end-to-end requires pretraining an encoder in the metric learning setting with a standard
distance.

50

In addition to VoxCeleb, we further consider the evaluation case introduced for the 2016 and

2018 editions of the NIST Speaker Recognition Evaluation (NIST-SRE), corresponding to a cross-

language setting. The NIST SRE 2016 evaluation focuses on telephone speech recorded over different

types of handsets and in different languages. For example, training data was available in English,

whereas test and enrollment partitions correspond to languages such as Mandarin, Cantonese, Ce-

buano, and Tagalog. Moreover, duration variability in the test data is also introduced to make

the task more challenging, as is the addition of unlabeled in-domain training data, and imbalanced

single- and multi-enrollment trials [130, 131]. With the 2018 edition, on the other hand, training

data is spoken predominantly in English while the evaluation data (both enrollment and test data)

is in Tunisian Arabic. Besides the language mismatch, variations due to different codecs are further

observed (PSTN versus PSTN and VOIP). This evaluation further introduces an additional task

corresponding to performing speaker verification on audio from video, under a multi-speaker test

scenario [132].

1.2.4.2 Language identification

For the language identification task, we consider the data and evaluation conditions introduced

for the AP18-OLR Challenge [8]. The data corresponds to audio from ten languages, and the

following evaluation conditions were defined:

1. Short-duration: Considers only test recordings with duration lower than 1 second.

2. Confusing languages: Test trials correspond to pairs of languages known to be to difficult to

distinguish, i.e., Cantonese, Korean, and Mandarin.

3. Unseen languages: Test recordings correspond to languages not observed within the training

sample.

A total of 214560, 22071, and 404160 test trials (i.e., a pair claimed language/test recording)

were made available for each of the evaluation conditions discussed above. Class-wise statistics of

train and evaluation data are reported in Table 1.3.

Chapter 1. Introduction 51

Table 1.3 – Language identification dataset statistics [8].

Language Train Evaluation
Speakers Utt./Speaker # Speakers Utt./Speaker

Cantonese 24 320 6 300
Mandarim 24 300 6 300
Indonesian 24 320 6 300
Japanese 24 320 6 300
Russian 24 300 6 300
Korean 24 300 6 300

Vietnamese 24 300 6 300
Kazakh 86 50 86 20
Tibetan 34 330 34 50
Uyghur 353 20 353 5

Table 1.4 – Number of genuine and spoofing recordings in training, development, and evaluation
partitions for logical and physical access attacks [9].

Speakers
Recordings

Logical Access Physical Access
Bona fide Spoof Bona fide Spoof

Train 20 2580 22800 5400 48600
Development 20 2548 22296 5400 24300
Evaluation 67 7355 63882 18090 116640

1.2.4.3 Detecting spoofing attacks

For the case of spoofing detection, the evaluation setting introduced for the ASVspoof 2019

challenge [9] is considered. In particular, two independent sub-tasks relative to the detection of two

different classes of attacks are used for evaluation:

1. Logical access attacks: Consisting of synthetic speech created using both voice conversion

and text-to-speech systems.

2. Physical access attacks: Consisting of simulated replays of genuine audio clips exhaustively

considering varied acoustic conditions, such as three different room sizes, three distances to

the microphone, and three levels of reverberation.

The interested reader is referred to [9] for more details about the dataset and attacks creation.

In turn, statistics regarding the amount of data in each class/condition can be found in Table 1.4.

We further highlight that a disjoint set of speakers is used to generate different data partitions and

the algorithms make no use of speaker identity information.

52

1.2.4.4 Standard image benchmarks

In Chapters 5 and 6, in addition to evaluations on voice biometrics tasks, we further employ

standard image-based benchmarks since, in those cases, our proposals have a broader scope and

thus require an evaluation on tasks other than those that compose the focus of this thesis. Such

benchmarks are listed below:

1. MNIST [88]

2. CIFAR-10 [89]

3. ImageNet [94]

4. MiniImageNet [93]

5. CARS196 [91]

6. CUB200-2011 [92]

7. PACS [90]

1.3 Summary of contributions

The contributions of the research work reported in this thesis can be summarized as follows:

1. A multi-task training scheme is proposed with the goal of enforcing speaker- or language-

dependency into learned utterance-level representations. This is mainly achieved by a com-

bination of speaker/language recognition training under a maximum likelihood setting com-

bined with triplet loss minimization. Additional techniques are further introduced in order

to enable effective training, such as a particular scheme to sample training examples and

construct mini-batches, and a maximum entropy regularizer, used to enforce embeddings

not to concentrate.

2. As a countermeasure to attacks targeting voice biometrics systems, we propose an end-to-end

setting for independent detection of either logical or physical presentation attackers. By end-

to-end, we mean that the proposed models are able to output a score indicating how likely

it is that its input is an attack when inputs correspond to general-purpose time-frequency

representations of speech data. Modified light convolutional neural networks (LCNN) [73],

originally proposed for face recognition, are employed in our case along with an attention

Chapter 1. Introduction 53

layer, aimed at enabling the model to process varying length recordings while focusing on

specific portions of inputs. We further discuss data augmentation strategies able to render

the training data more diverse while conserving artifacts that give away attackers, which

allows moving to larger architectures such as TDNNs.

3. We extend end-to-end spoofing detection approaches previously introduced and propose at-

tack agnostic detection systems effective in detecting both LA and PA spoofing attacks. We

do so via ensembling specialists so as to detect both replays and synthetic attackers using

a single system. We additionally carry out empirical evaluations to determine which speech

representation is more suitable for performing detection under each type of attack. We fur-

ther evaluate which speech representation is more suitable for detecting which type of attack

was presented to the model.

4. A TDNN variation able to account for global representations at various levels of the convo-

lutional stack is introduced, referred to as ML-TDNN. Such architecture uses self-attention

as a mechanism for combining global statistics obtained from different layers. The proposed

approach allows for the aggregation component to be incorporated by any model that keeps a

fixed dimensionality throughout depth, and also allows for simpler aggregation mechanisms,

such as direct averaging or selecting a specific layer, to be reachable by the training algo-

rithm. Moreover, such layers are efficient since short sequences are formed by combining

representations across model depth. In doing so, we end up with a more versatile model in

the sense that a fixed architecture can now be used across tasks, which further results in

more discriminative features, indicating that complementary information can be efficiently

extracted from different layers of a model. We report evidence showing that model architec-

tures that directly rely on global statistics extracted from early layers perform better than

those that only account for features of a given top layer. We found this to be the case across

a number of tasks.

5. We propose an augmented metric learning framework where an encoder and a (pseudo) dis-

tance are trained jointly and define a (pseudo) metric space where inference can be done

efficiently for verification. We show that the optimal distance model for any fixed encoder

yields the likelihood-ratio for a Neyman-Pearson hypothesis test, and it further induces a

high Jensen-Shannon divergence between the joint distributions of positive and negative

pairs. The introduced setting is trained in an end-to-end manner, and inference can be per-

formed with a single forward pass, greatly simplifying current verification pipelines which

54

involve several sub-components. Evaluation on large scale verification tasks provides empir-

ical evidence of the effectiveness in directly using outputs of the learned pseudo-distance for

inference, outperforming commonly used downstream classifiers.

6. As a final contribution, we build upon our proposals to introduce a set of model components

accompanied by a training procedure that can be re-used for different tasks and types of

data. Given that tasks other than verification are now supported, we enlarge our scope to

tasks such as multi-class classification and retrieval, and evaluate models on standard image

benchmarks. Under such setting, defining a model on a particular data source requires

simply implementing an encoding procedure for that particular case. Empirical evidence is

provided to support the claim that models defined by the proposed framework perform on

par with task-specific specialized models. In addition to that, we observed object recognizers

defined under this setting to result in improved robustness against adversarial attackers

and covariate shift between training and testing data distributions. The proposed approach

further supports the inclusion of new classes appearing posterior to training, which we do

by simply including new prototypes obtained from small samples. Doing so yields a simple,

yet competitive mechanism for few-shot classification.

1.4 Publications

Publications included in the thesis

Articles published in refereed journals

J. Monteiro, J. Alam, T. Falk, “Generalized End-to-End Detection of Spoofing Attacks to

Automatic Speaker Recognizers”, Computer Speech and Language.

J. Monteiro, J. Alam, T. Falk, “Residual convolutional neural network with attentive feature

pooling for end-to-end language identification from short-duration speech.”, Computer Speech and

Language.

Chapter 1. Introduction 55

Under review

J. Monteiro, J. Alam, T. Falk, “Multi-level Self-attentive TDNN: A General and Efficient Ap-

proach to Summarize Speech Into Discriminative Utterance-level Representations”, Speech Com-

munication.

J. Monteiro, I. Albuquerque, J. Alam, T. Falk, “TEMPLE: defining versatile TEMPlate LEarn-

ers via prototypical classifiers with learned similarities”, IEEE Transactions on Pattern Analysis and

Machine Intelligence.

Conference workshops

J. Monteiro, J. Alam, T. Falk, “A versatile and efficient approach to summarize speech into

utterance-level representations”, Efficient Natural Language and Speech Processing Workshop at

NeurIPS 2021. Oral presentation

Conference proceedings

J. Monteiro, I. Albuquerque, J. Alam, R. D. Hjelm, T. Falk “An end-to-end approach for

the verification problem: learning the right distance”, 37th International Conference on Machine

Learning (ICML), 2020. arXiv:2002.09469

J. Monteiro, J. Alam, T. Falk, “A Multi-condition Training Strategy for Countermeasures

Against Spoofing Attacks to Speaker Recognizers”, The Speaker and Language Recognition Work-

shop (Odyssey), 2020.

J. Monteiro, J. Alam, T. Falk, “On The Performance of Time-Pooling Strategies for End-

to-End Spoken Language Identification”, 12th Language Resources and Evaluation Conference

(LREC), 2020.

J. Monteiro, J. Alam, T. Falk, “An Ensemble Based Approach for Generalized Detection of

Spoofing Attacks to Automatic Speaker Recognizers”, 45th International Conference on Acoustics,

Speech, and Signal Processing (ICASSP), 2020.

56

J. Monteiro, J. Alam, T. Falk, “End-to-end Detection of Attacks to Automatic Speaker Rec-

ognizers with Time-attentive Light Convolutional Neural Networks”, IEEE MLSP, 2019.

J. Monteiro, J. Alam, T. Falk, “Combining Speaker Recognition and Metric Learning for

Speaker-Dependent Representation Learning”, Interspeech, 2019.

J. Monteiro, J. Alam, G. Bhattacharya, T. Falk. “End-to-end language identification using

a residual convolutional neural network with attentive temporal pooling”, 27th European Signal

Processing Conference (EUSIPCO), 2019. Oral presentation

Other publications

Articles published in refereed journals

X. Liu∗, J. Monteiro∗, I. Albuquerque, Y. Lai, C. Jiang, S. Zhang, T. Falk, J. Liang, “Single-

shot real-time compressed ultrahigh-speed imaging enabled by a snapshot-to-video autoencoder”,

Photonics Research. ∗Equal contribution

Under review

I. Albuquerque, J. Monteiro, M. Darvishi, T. Falk, I. Mitliagkas “Generalizing to unseen do-

mains via distribution matching”, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

arXiv:1911.00804

I. Albuquerque, J. Monteiro, O. Rosanne, T. Falk “Estimating Distribution Shifts for Predict-

ing Cross-Subject Generalization in Electroencephalography based Mental Workload Assessment”,

IEEE Transactions on Human-Machine Systems.

Conference workshops

J. Monteiro, M. O. Ahmed, H. Hajimirsadeghi, G. Mori, “Not too close and not too far: en-

forcing monotonicity requires penalizing the right points”, XAI 4 Debugging Workshop at NeurIPS

2021. Oral presentation

Chapter 1. Introduction 57

I. Albuquerque, J. Monteiro, T. Falk, “Randomly projecting out distribution shifts for im-

proved robustness”, Workshop on Distribution Shifts: Connecting Methods and Applications at

NeurIPS 2021.

A. Bie, B. Venkitesh, J. Monteiro, M. A. Haidar, M. Rezagholizadeh “Fully quantizing

transformer-based ASR for edge deployment”, Workshop on Hardware Aware Efficient Training

at ICLR 2021.

Conference proceedings

J. Monteiro, X. Gibert, J. Feng, V. Dumoulin, D.S. Lee “Domain Conditional Predictors for

Domain Adaptation”, Pre-registration workshop at NeurIPS, 2020.

M. Ravanelli, J. Zhong, S. Pascual, P. Swietojanski, J. Monteiro, J. Trmal, Y. Bengio, “Multi-

task self-supervised learning for Robust Speech Recognition”, 45th International Conference on

Acoustics, Speech, and Signal Processing (ICASSP), 2020. arXiv:2001.09239

I. Albuquerque∗, J. Monteiro∗, T. Doang, B. Considine, T. Falk, I. Mitliagkas, “Multi-objective

training of Generative Adversarial Networks with multiple discriminators”, 36th International Con-

ference on Machine Learning (ICML), 2019. arxiv:1901.08680 ∗Equal contribution

T. Doan, J. Monteiro, I. Albuquerque, B. Mazoure, A. Durand, J. Pineau, R. D. Hjelm.

“Online Adaptative Curriculum Learning for GANs”, The 33rd AAAI Conference on Artificial

Intelligence, 2019. arXiv:1808.00020

J. Monteiro, J. Alam, “Development of Voice Spoofing Detection Systems for 2019 Edition of

Automatic Speaker Verification and Countermeasures Challenge”, IEEE ASRU, 2019.

J. Monteiro, I. Albuquerque, Z. Akhtar and T. Falk. “Generalizable Adversarial Examples

Detection Based on Bi-model Decision Mismatch”, IEEE SMC, 2019.

G. Bhattacharya, J. Monteiro, J. Alam, and P. Kenny. “Generative Adversarial Speaker

Embedding Networks for Domain-Robust End-to-End Speaker Verification”, 44th International

Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2019.

58

1.5 Open-source code

Here, we list and link to open-source code produced within research projects reported in this

document.

1.5.1 Open-source code implementing experiments included in the thesis

1. https://github.com/joaomonteirof/multitask_asv

2. https://github.com/joaomonteirof/e2e_LID

3. https://github.com/joaomonteirof/e2e_antispoofing

4. https://github.com/joaomonteirof/e2e_verification

5. https://github.com/joaomonteirof/sim_learn

1.5.2 Other open-source code

1. https://github.com/joaomonteirof/hGAN

2. https://github.com/joaomonteirof/SMART_COUSP_Reconstruction

3. https://github.com/BorealisAI/monotonicity-mixup

1.6 Thesis organization

The remainder of this document is organized as follows: Chapter 2 describes proposals in terms

of training procedures aimed at improving representations used for speaker verification and language

identification. Methods for detection of spoofing attackers are described in Chapter 3. Variations

of the TDNN architecture using multi-level attentive layers are presented along with evaluation

in Chapter 4. In Chapter 5, we introduce a discriminative approach to approximate generative

verification or, in other view, an approach where (pseudo) metric spaces are learned via both and

encoding process as well as a (pseudo) distance. We extend the approach discussed in Chapter 5

so that it can perform tasks other than verification, and introduce the idea of learning templates

in Chapter 6. In this case, we discuss how to define model components and learning procedures

that are re-usable across tasks and datasets, pending minimal task-specific implementations; in this

case, we enlarge our scope and besides considering evaluations in voice biometrics contexts, we

https://github.com/joaomonteirof/multitask_asv
https://github.com/joaomonteirof/e2e_LID
https://github.com/joaomonteirof/e2e_antispoofing
https://github.com/joaomonteirof/e2e_verification
https://github.com/joaomonteirof/sim_learn
https://github.com/joaomonteirof/hGAN
https://github.com/joaomonteirof/SMART_COUSP_Reconstruction
https://github.com/BorealisAI/monotonicity-mixup

Chapter 1. Introduction 59

further test our proposal in standard image benchmarks corresponding to object recognition and

image retrieval tasks. Finally, conclusions are summarized in Chapter 7 along with discussion on

future work building upon our contributions. Pointers to background material are provided in the

Appendix A.

Chapter 2

Improving neural network training for

utterance-level representation learning

2.1 Preamble

This chapter is compiled from material extracted from the two following publications: Section

2.3 covers the application of our proposals to language identification tasks as reported in [133]

and published in Computer Speech & Language. In Section 2.4, we then discuss variations of the

proposed setting in applications to speaker verification cases, as discussed in [134], published in the

Proceedings of INTERSPEECH (2019).

2.2 Introduction

In the case of ASV or LID tasks, training of approaches such as x-vectors [3] or any other neural

network-based system has generally been performed under the multi-class classification setting, i.e.,

the model is used as a classifier aiming to identify the speaker/language from a given input utterance.

The outputs of a final softmax layer thus parameterize a data-conditional categorical distribution

over the set of training speakers or languages, and parameters are learned via maximum likelihood

estimation (MLE) through minimization of the cross entropy loss. At testing time, outputs of

intermediate layers are used as low-dimensional representations on top of which a binary classifier

62

can be trained for verification purposes for open set conditions, while the outputs are directly used

as scores within closed set testing conditions.

Another relevant body of literature on representation learning for ASV or LID is based on metric

learning methods [5]. Under this setting, a representation model maps sequences of speech features

into a low-dimensional space and training is carried out so as to minimize the distance between

embeddings from the same class while maximizing the distance between those from different classes.

The metric learning approach was explored in large scale cases for face verification [62], but training

difficulties have been commonly reported [71]. As such, stabilizing strategies have been proposed,

such as triplets mining, supervised pre-training, and combination of triplets loss with center- [25]

or intra-losses [110]. Even though the metric learning framework seems to be a good fit to learn

speaker-dependent low-dimensional representations, the training difficulties observed when training

is performed under this setting (e.g., finding informative sets of negative examples at training time)

have to be dealt with.

In this contribution, we design a training strategy particularly tailored to further enforce dis-

criminability on model outputs while avoiding common issues appearing in metric learning settings.

Specifically, we evaluate the combination of the two previously-described frameworks, namely: (i)-

MLE via speaker or language recognition, and (ii)-metric learning. Our main goal is to combine

the advantages offered by each scheme, i.e., the relative easiness of training under the maximum

likelihood setting along with the discriminability provided by triplet loss minimization. Evalua-

tion of the proposed training strategy is performed using the triplet-network [6] realized with an

architecture inspired in the ResNet model augmented with a frame-wise attention component. For

the case of LID, experiments are performed on the tasks introduced for the AP18-OLR challenge

corresponding to data containing recordings of telephone speech from ten oriental languages under

different settings, including short-duration of speech and confusing languages, showing relevant im-

provements in terms of classification performance over strong baselines in all studied test conditions.

Moreover, end-to-end evaluation is also carried out showing that directly utilizing model outputs

as scores, i.e., discarding post-trained PLDA, outperforms i-vectors+PLDA’s results. For ASV, the

cross-language setting introduced for NIST SRE 2016 composed of telephone speech is employed for

evaluation of the proposed scheme. Additionally, different pooling strategies, used to aggregate sets

of local descriptors into a fixed-dimensional representation space, are compared including simple

statistics of high-level representations across the time dimension and more complex learning-based

Chapter 2. Improving neural network training for utterance-level representation learning 63

attentive schemes. In what follows, we split the presentation for the case of LID and ASV so that

training details required for either application are specified more clearly.

2.3 Application to language identification

2.3.1 Model used for evaluation of the proposed training scheme

As mentioned previously, we propose the use of a convolutional architecture aiming to include

long-term contextual information at each time-step. This is an inherent feature of stacked convolu-

tional layers [69]. It is important to highlight that, differently from other approaches that employ

causal convolutions for temporal dependency modelling [70], the setting explored herein assumes ac-

cess to the full speech recording for computation of each output time-step. This allows us to compute

fixed dimensional language-dependent embeddings relying on full recordings. Moreover, a residual

architecture is employed. Namely, a slightly modified ResNet-501 [4], i.e., a set of 50 layers orga-

nized as a stack of residual blocks, is used throughout our experiments. Inputs are time-frequency

representations of speech data, i.e., 13 mel frequency cepstral coefficients (MFCCs), which are sim-

ply treated as one-channel images. We introduce a convolutional layer prior to ResNet’s residual

stack which shrinks the frequency dimension to 1. Moreover, a frame-wise attention component

is employed on top of the last convolutional layer substituting the original fully connected output

layer. The channel dimension corresponding to the last convolutional layer within the residual

stack will yield the final embedding sizes, which are then pooled across the time dimension using

the frame-wise mechanism described in Chapter 1. A diagram illustrating the proposed model is

presented in Figure 2.1.

2.3.2 Training details

As discussed above, two different training strategies are used together to enforce language de-

pendency on embeddings y. First, we directly train the model for classification by projecting y

onto an output layer using a fully connected additional layer, and train the model via MLE, i.e.,

with multi-class cross entropy minimization, as commonly done for speaker recognition [47, 22, 3].

1Architecture details of ResNet-50: http://ethereon.github.io/netscope/#/gist/db945b393d40bfa26006

http://ethereon.github.io/netscope/#/gist/db945b393d40bfa26006

64

R
esidual S

tack
Residual

Block

Residual
Block

Residual
Block

...

yT’

S
elf-attention

y

Input
Convolution

Shape: [N, 13, T0]

Shape: [N, 1, T1]

Shape: [N, 128, T2]

Shape: [N, 128]Embedding:

Figure 2.1 – Proposed residual convolutional neural network model with frame-wise attention employed
for language recognition. The shapes indicate the dimensionality of the processed data within different
parts of the model. N indicates the number of examples contained in a batch of data, while T0, T1,
and T2 stand for the dimensionality across the time dimension in different points.

Chapter 2. Improving neural network training for utterance-level representation learning 65

Moreover, aiming to enforce language discriminability in y, triplet-loss minimization on top of y is

jointly performed along with MLE, employing a distance metric based on the cosine similarity.

The most common definition of triplet loss is given by:

LT = max(d+ − d− + α, 0), (2.1)

where d+ and d− correspond to a distance measure between pairs of embeddings obtained from

recordings of the same language, and from different languages, respectively. Parameter α is a

hyperparameter commonly referred to as margin.

The operator max(x, 0), x ∈ R, is used so that triplets, i.e., pairs corresponding to the same and

different languages, respectively, that already have low d+ and high d− stop influencing training.

Here, we follow the approach in [71] and enforce concentration of same language embeddings by

using a soft-margin variation of the triplet loss given by:

LT = softplus(d+ − d−), (2.2)

where the softplus operator is defined as:

softplus(x) = log(1 + ex). (2.3)

Figures 2.2a and 2.2b illustrate how T changes as a function of (d+ − d−) for the hard- and

soft-margin cases, respectively. One can notice that for high (d+ − d−), i.e., in a triplet in which

the negative pair is closer than the positive one, both loss definitions will behave similarly, and T

will depend linearly on (d+ − d−). However, in low loss scenarios, the hard-margin definition will

simply set T = 0 once (d+ − d−) < α, which is convenient when mining schemes are employed

at training time to ensure only triplets with high loss are used. In our training pipeline, on the

other hand, randomly selected triplets are employed in order to avoid the excessive cost involved

in mining methods and thus, the soft-margin definition of T makes it possible to obtain a training

signal even from examples in which (d+ − d−) > α.

66

(a) Hard-margin triplet loss as a function of (d+ −d−).
The red dot corresponds to α.

(b) Soft-margin triplet loss as a function of (d+ − d−).
Notice LT > 0 even if (d+ − d−) < α

Figure 2.2 – Illustration of triplet losses under hard or soft margins.

Several works have proposed variations of triplet loss in which different distances d are employed.

Here, we define d as:

d(y1, y2) = 1− y1 · y2
||y1||2||y2||2

, (2.4)

where the second term is the cosine of the smallest angle between y1 and y2. The definition of

d(y1, y2) making use of the cosine similarity as a distance metric is intended for it not to depend on

the norms of embeddings, as would be the case if some Lp norm were used instead, i.e., d(y1, y2) =

||y1 − y2||p. Employing embeddings with unconstrained norm will let the model benefit from the

cross entropy loss term, otherwise the two different objectives would be counter-acting each other,

since both losses would simultaneously rely on their ability to control embeddings norms.

Training is carried out using gradient-based minimization of the sum of cross entropy and soft-

margin triplet losses. RMSProp [135], a variation of SGD in which gradients are scaled by a running

average of their recent magnitudes, is employed for optimization with its smoothing constant set

to 0.99. The global learning rate starts at 0.001 and is halved once the classification error rate,

measured on a validation set held out of training, plateaus for 30 epochs. A single Titan X NVIDIA

GPU is used for training.

Data sampling and triplet selection: Mini-batches of size 64 are assembled such that two

random recordings of each language are sampled sequentially to form same language pairs (positive),

and a random recording from a different language is selected to compose the different language pair

(negative). One epoch is considered finished when each language is selected 1000 times to compose

positive pairs. A budget of 500 epochs is used for each training run, which takes approximately 48

hours under the described setting.

Chapter 2. Improving neural network training for utterance-level representation learning 67

Moreover, recordings are processed on the fly during training in such a way that, for recordings

longer than 6 seconds, a random continuous segment of 6 seconds duration is selected. Short-

duration training recordings are elongated with initial frames so as to make them reach a minimum

of 6 seconds duration. To further increase the diversity on training samples, each mini-batch has

its length randomly selected to lie between 3-6 seconds before feeding it to the neural network. At

testing time, on the other hand, full recordings are used for scoring in the end-to-end setting or to

obtain low-dimension representations, without any processing prior to forward-pass test recordings

into the trained model.

2.3.3 Evaluation details, results, and discussion

We evaluate our proposed framework using the dataset introduced for the AP18-OLR Challenge

[8] described in Chapter 1, which consists of recordings with unconstrained phonetic content of

telephone speech in 10 different oriental languages. Information about speaker identity, gender, or

age were not utilized, nor was phonetic information. We introduce multi-condition training data

by augmenting the original train partition with supplementary noisy speech, created by corrupting

original samples adding reverberation (reverberation time varies from 0.25s - 0.75s), adding noise at

signal-to-noise ratio (SNR) ranging from 0 to 15 dB, as well as by adding background noise, such as

music (SNR within 5-15 dB), and babble (SNR varies from 10 to 20 dB). Babble, music, and other

noise signals were selected from the MUSAN corpus [136] and the room impulse responses (RIRs)

used to simulate reverberant effects were taken from openslr2. Multi-style training compensates for

environmental mismatch between training and test data. Due to the supervised training nature

commonly employed in deep neural networks, use of data augmentation is ubiquitous and allows

for better generalization of the network by creating diversity in the training data. Moreover, voice

activity detectors are usually used in the pre-processing phase for speaker recognition applications.

Here, we empirically observed better performance when silence segments were kept in both training

and test recordings, thus VADs are not required. We hypothesize that the way short pauses occur

within speech might be characteristic in each language, and our model is thus learning such pause

patterns.

2http://www.openslr.org/

http://www.openslr.org/

68

Cantonese
Mandarin
Indonesian
Japanese
Russian
Korean
Vietnamese
Kazakh
Tibetan
Uyghur

Figure 2.3 – 2-dimensional t-SNE embeddings of test recordings obtained after the attention layer.
Each color stands for one different language. Better viewed in color.

The first step to evaluate the proposed model and training scheme is to visually inspect embed-

dings generated from data which was not used during training. Embeddings dimensionality were

set to 128, which means the number of channels of the last convolutional layer is set to 128. The

2-dimensional t-SNE [137] embeddings of test data representations learned by our proposed model

are shown in Figure 2.3. Each color represents a different language. As desired, each different color

is clustered together in different regions of the embedding space, thus assuring class separability,

which is useful for posterior scoring strategies.

We proceed to evaluate the proposed system under the closed set verification setting. We do so

by using the provided development set, which corresponds to test data released for the AP17-OLR

challenge [138], in which a set of short-duration recordings, i.e., speech segments containing less

than 1 second total duration, is provided. Trials lists are included along with test data for both

short-duration condition and full-length test recordings, which can include short recordings as well.

Three strategies are used for scoring trials:

1. PLDA trained on the embeddings of the full set of training data.

2. The cosine similarity between enrollment language models obtained by averaging embed-

dings of all training recordings from a given target language, and the embedding of the test

recording.

3. End-to-end: the output of the softmax layer corresponding to the claimed language is used

as score.

Chapter 2. Improving neural network training for utterance-level representation learning 69

PLDA and cosine similarity are employed as backends across all implemented benchmark systems,

and linear discriminant analysis (LDA) is further employed to reduce the dimensionality of em-

beddings in the case of PLDA and cosine similarity backends. The final embeddings in such cases

correspond to 64 dimensional representations, which we observed to work well across considered

conditions.

Several benchmark systems are evaluated for comparison, including results reported in [8], ob-

tained with i-vectors [1] using both LDA and PLDA backends, along with two neural network based

systems: a TDNN [27] and a LSTM [28], in both cases using end-to-end scoring. Moreover, in-house

implementations of other benchmark systems include:

1. i-vectors. For this system, a 2048-Gaussians full covariance universal background model

(UBM) along with a 400-dimensional i-vector extractor are trained using MFCC features

on the training data. For scoring, cosine similarity and PLDA backends are used. Before

scoring, LDA is applied for reducing the i-vectors dimensionality.

2. Tandem: i.e., low-dimensional embeddings obtained from principal component analysis (PCA)

of statistics from a GMM-UBM trained on top of tandem features, similar to the setting de-

scribed in [139]. However, here tandem features correspond to output posterior distribution

of the phonetic neural networks, rather than a bottleneck layer output. The phonetic neural

networks were trained on the THCHS30 corpus, an open Chinese speech database [140].

3. cLSTM: a convolutional-recurrent model consisting of 6 convolutional layers followed by a

2-layered bi-directional LSTM, trained with the same setting as the proposed model. In this

case, evaluation is performed with the same end-to-end strategy employed by our proposed

model, as well as using PLDA and cosine similarity as backends, in which case previous

dimensionality reduction is performed using LDA.

Results in terms of equal error rate (EER) and average cost performance (Cavg) are reported

in Table 2.1. Both EER and Cavg are better when closer to 0. While EER consists of the value

of the false acceptance rate at the threshold in which it matches the false rejection rate, Cavg, on

the other hand, averages the missing and false alarm probabilities for each target/non-target pair

of languages. More details about both metrics can be found in [8].

As expected, the performance of the i-vector+PLDA approach drops substantially from the

full-length to short-duration settings, in both the in-house implementation and that reported in [8].

70

Table 2.1 – Performance comparison of proposed system (last three rows) and benchmarks based on
equal error rate (%) and average cost performance (Cavg). A total of 220510 trials were processed in
both short-duration and full-length cases.

Short-duration Full-length
EER (%) Cavg EER (%) Cavg

i-Vector+LDA 18.04 0.1784 6.12 0.0598
Benchmarks [8] i-Vector+PLDA 17.51 0.1746 5.86 0.0596

TDNN 14.04 0.1282 11.31 0.1034
LSTM 15.92 0.1452 12.76 0.1154

i-Vector+Cosine 18.37 0.1786 5.48 0.0514
i-Vector+PLDA 17.95 0.1756 5.42 0.0513
Tandem+Cosine 15.13 0.1457 5.27 0.0508

Benchmarks (our implementation) Tandem+PLDA 14.57 0.1431 4.80 0.0454
LSTM+Cosine 21.05 0.2046 5.91 0.0564
LSTM+PLDA 20.31 0.1982 5.17 0.0482

LSTM 24.17 0.2330 4.74 0.0450
LDA+Cosine 15.05 0.1465 4.47 0.0435

Proposed LDA+PLDA 14.14 0.1361 3.59 0.0343
End-to-end 13.26 0.1291 2.76 0.0257

TDNN and LSTM, in turn, perform better than i-vectors in the short-duration case, but not in the

full-length evaluation, thus suggesting that such models are not effective in handling longer-term

dependencies. This could be due to the limited context in the TDNN case, or the known training

difficulties in the long sequences regime faced by RNNs [141], including LSTMs.

As can be seen, our proposed approaches (last three rows in Table 2.1) outperform all considered

baselines in the full-length evaluation, indicating the added context together with the employed

attentive pooling effectively improve modelling of long-term dependencies. More importantly, for the

end-to-end scoring, i.e., without the use of any extra training step after training the convolutional

model, EER in both short-duration and full-length conditions are lower when compared to all

evaluated benchmarks in both testing conditions. We further highlight that PLDA and cosine

similarity backends, which would be valid scoring strategies in a complete open set evaluation

scenario, are also able to outperform benchmarks in the full-length case, while on par in short-

duration. We further observe tandem features are able to outperform i-vectors, TDNN, and LSTM,

which suggests such phonetics-dependent representations can be a promising space to train our

system, which we intend to evaluate in future work.

We further evaluate the proposed approach using the test conditions introduced for the AP18-

OLR challenge, consisting of: (a) short-duration recordings with up to 1 second, (b) confusing

Chapter 2. Improving neural network training for utterance-level representation learning 71

Table 2.2 – Performance comparison of proposed system (last three rows) and benchmarks based
on equal error rate (%) and average cost performance (Cavg). Confusing languages correspond to
Cantonese, Korean, and Mandarin. A total of 214560, 22071, and 404160 trials were processed,
respectively, for each evaluation condition: short-duration, confusing-languages, and unseen languages.

Short-duration Confusing languages Unseen non-target languages
EER (%) Cavg EER (%) Cavg EER (%) Cavg

i-Vector+Cosine 18.02 0.1780 10.71 0.1069 7.77 0.0577
i-Vector+PLDA 17.50 0.1743 10.66 0.1059 7.51 0.0524
Tandem+Cosine 15.73 0.1502 13.81 0.1387 8.98 0.0683

Benchmarks Tandem+PLDA 15.30 0.1461 13.33 0.1324 8.37 0.0596
LSTM+Cosine 20.10 0.1978 9.11 0.0840 7.78 0.0537
LSTM+PLDA 19.14 0.1896 8.78 0.0819 7.49 0.0490

LSTM 24.00 0.2321 7.54 0.0738 7.57 0.0491
LDA+Cosine 14.63 0.1432 9.81 0.0967 6.44 0.0463

Proposed LDA+PLDA 13.48 0.1328 8.28 0.0810 5.97 0.0369
End-to-end 12.62 0.1246 6.80 0.0669 5.65 0.0315

languages, in which only trials corresponding to 3 languages known to be difficult to distinguish are

included (Cantonese, Korean, and Mandarin), and (c) an open set condition, in which non-target

test recordings in languages not present in the training data are included. Results are once again

reported in terms of EER and Cavg in Table 2.2.

The results show that end-to-end scoring of the proposed method outperforms all compared

benchmarks in all evaluation conditions. This supports the claim that convolutional layers along

with attention mechanisms form an effective approach to model language dependencies in different

time-scales. Particularly, even though a fully-supervised setting is employed at trainining time,

in the sense that language information is required for each train recording, the introduced test

recordings from unseen languages at training time do not significantly affect the performance of our

proposed approach, regardless of the employed scoring strategy. This is due to the effect imposed by

triplet loss minimization, which enforces both class-separability and concentration of embeddings

belonging to the same class. The minimization of triplet loss acts as a regularization term and avoids

domain-dependency, e.g., speaker- or channel-dependency, on learned embeddings, which would

incur in generalization issues, as commonly observed in applications with small training datasets.

The model trained using the proposed strategy was able to yield improvements in terms of Cavg

of 28.51%, 36.83%, and 39.88% for short-duration, confusing languages, and open set evaluation

conditions, respectively, when compared to an i-vector system with PLDA scoring.

72

ResNet-50Input Convolution

. . .
1-dimensional
convolutions

Shrinks
coefficients
dimension

C
ep

st
ra

l C
oe

ffi
ci

en
ts

d-dimensional
local descriptors

Pooling of local
descriptors

y1

y2

y3

yNd

. . .
y4

y

d-dimensional
global descriptor

Figure 2.4 – Diagram representing our proposed system. Features are mapped into local descriptors,
which aggregated to yield final representations.

2.4 Application to speaker verification

In the case of ASV, a modified ResNet-50 [4] is used throughout our experiments. However,

unlike the generic triplet-network represented in Figure 1.10 in which we assumed data samples have

a fixed dimension D, text-independent ASV systems usually have to deal with recordings of varying

lengths. We thus split the mapping F from data to embeddings into two separate stages: (i) map

speech features into a set of vectors representing parts of the input across the time dimension, and

(ii) aggregate such local descriptors into a single vector representing the complete input recording.

A block diagram describing those two stages is shown in Figure 2.4.

Mel frequency cepstral coefficients are treated as 1-channel images and fed into an input convo-

lutional layer containing 32 filters of dimension [NCC , 3], where NCC is the number of MFCCs in the

input, resulting in a 32-channel temporal representation. This representation then serves as input

for the Resnet, which operates over the temporal dimension only. The output of the convolutional

layers is a set of Nd local descriptors yi ∈ Rd representing parts of the input across time, where Nd

is a function of the input length L, and d will be given by number of filters in the last convolutional

layers, set to 512. The following step consists in aggregating the set of local descriptors yi into

what we refer to as a global descriptor, i.e., the vector y ∈ Rd representing an utterance of arbitrary

Chapter 2. Improving neural network training for utterance-level representation learning 73

length. We consider three temporal pooling strategies as detailed below and depicted in Figures

2.5, 2.6, and 2.7:

Statistics pooling: The global descriptor y will be given by a linear projection P of concatenated

element-wise estimates of first- and second-order statistics of the set of local descriptors yi ∈ Rd, i ∈

{1, 2, ..., Nd}:

y = P · cat[µ(yi), σ(yi)], (2.5)

where P[2d,d] entries are learned jointly with convolutional layers parameters. The operator v =

cat[v1, v2] concatenates v1, v2 ∈ Rd such that v ∈ R2d, and P ’s dimension is such that the dimension

of y is 256.

Attentive pooling: We augment the previous pooling scheme with a weighing method often

referred to as soft-attention. A linear transformation A, whose entries are learned along with the

complete model, is first applied to each local descriptor yi, resulting in the set of scalars a1:Nd
:

ai = tanh (A · yi). (2.6)

A set of normalized weights summing up to 1 is then obtained through the softmax operator:

wi = eai∑Nd
i=1 eai

, (2.7)

and the global descriptor y is finally given by the projection of concatenated statistics of weighted

local descriptors, i.e.:

y = P · cat[µ(wi · yi), σ(wi · yi)]. (2.8)

Recurrent attentive pooling: Lastly, a recurrent model is employed along with the soft-attention

scheme described above so that its hidden layer can be further used as a summary of the set of local

descriptors. The recurrent model is implemented as a two-layered bi-directional LSTM [28] with its

hidden layers set to a size of 256. The LSTM will first map the set yi into a new sequence y′
i and a

hidden state h hence, y becomes:

y = P · cat[µ(wi · y′
i), σ(wi · y′

i), h], (2.9)

74

V1

V2

V3

VN

. . .

V4

𝞼
(V

i)
𝞵

(V
i)

W (𝞵 ^ 𝞼)

V

Figure 2.5 – Statistics pooling.

V1

V2

V3

VN

. . .

V4

w1V1

w2V2

w3V3

wN(T)VN(T)

w4V4

𝞼
(w

iV i)
𝞵

(w
iV i)

W (𝞵 ^ 𝞼)

V

Self-Attention

{w1, w2, w3, …, wN}
. . .

Figure 2.6 – Attentive pooling.

V1

V2

V3

VN

. . .

V4

w1U1

w2U2

w3U3

wNUN

w4U4

𝞼
(w

iU
i)

𝞵
(w

iU
i)

W (𝞵 ^ 𝞼 ^ H)

VLSTM

H

U1

U2

U3

UN

. . .

U4

Self-Attention

{w1, w2, w3, …, wN}

Figure 2.7 – Recurrent attentive pooling.

where weights wi are obtained with soft-attention on y′
i rather than yi as in the previous pooling

scheme.

2.4.1 Training loss

Speaker recognition and triplet loss minimization are performed jointly during training. Such

two-loss components can be computed once the embedding y is obtained through one of the pooling

approaches described. Triplet loss will be computed on top of embedding projected on the unit

sphere: yp = y
||y||2 , and for the speaker recognition term, a softmax output layer is employed so that

the multi-class cross entropy can be computed using speaker identities as class labels. Training is

performed so as to minimize the sum of the two losses.

Chapter 2. Improving neural network training for utterance-level representation learning 75

The triplet loss LT can be computed as described in Equation 1.12. We employ the L2 norm in

this case and compute the loss on top of the projected embeddings on the hypersphere yp, which

thus yields:

LT = 1
Nt

Nt∑
i=1

max(||yp
i,a − yp

i,+||2 − ||y
p
i,a − yp

i,−||2 + α, 0). (2.10)

Moreover, in order to perform speaker recognition, our models contain an additional dense

layer which, followed by the application of the softmax operator, defines a transformation over

embeddings y. A vector of probabilities p over the set of training speakers is then obtained through

F ′: Rd → ∆NS−1, where NS is the number of speakers and ∆NS−1 defines a simplex in RNS , i.e., the

sum of the components of any vector in ∆NS−1 is equal to 1. We do so to ensure the vector p = F ′(y)

corresponds to the parameters of a categorical distribution over the set of training speakers.

Performing maximum likelihood estimation on the conditional categorical distribution discussed

above is equivalent to minimize the cross entropy loss LCE , which for a set of Ne embeddings yi

will be given by:

LCE = −1
Ne

Ne∑
i

d∑
j

log[F ′(yi)j] · ti,j , (2.11)

where the inner summation is performed over the elements of the vector log pi, as defined by the

term log[F ′(yi)j], and ti ∈ RNS is a one-hot encoded vector representing the identity of a given

speaker, i.e., the entry of ti given by ti,j will be 1 if the identity of the speaker corresponding to

example i is j, and 0 otherwise.

The combined training loss L = LT + LCE will be finally, given a set of examples of size Ne,

along with the one-hot encoded speaker identities t:

L = −1
Ne

Ne∑
i

d∑
j

log[F ′(yi)j] · ti,j + 1
Nt

Nt∑
i=1

max(||yp
i,a − yp

i,+||2 − ||y
p
i,a − yp

i,−||2 + α, 0). (2.12)

Note that Equation 2.12 does not clarify how one can obtain a set of Nt triplets out of a set of

Ne training examples. We describe the triplet selection procedure as well as the method we employ

to sample examples from the pool of training recordings in the following Section.

76

x1, 1Speaker 1

Speaker 2

Speaker 3

Speaker 4

Speaker NS

i=4NS

. . .

x1, 2 x1, 3 x1, 4 x1, 5 x1, 6 x1, 7 x1, 8

x2, 1 x2, 2 x2, 3

x3, 1 x3, 2

x4, 1 x4, 2 x4, 3 x4, 4 x4, 5 x4, 6 x4, 7

xNs, 1 xNs, 2 xNs, 3 xNs, 4 xNs, 5 xNs, 6 xNs, 7 xNs, 8

j={2,3,4,6,7}

Figure 2.8 – Sampling training examples from the dataset. Speakers are selected sequentially and five
recordings are randomly selected for each such speaker so as to compose a training mini-batch.

2.4.2 Mini-batch construction and triplets selection

Given that the number of training recordings is not constant across speakers, we devise a par-

ticular approach to sample examples so as to present balanced mini-batches to models throughout

training. Mini-batches are constructed through sequentially picking examples from each speaker.

More specifically, 5 recordings are sampled with repetition. We exemplify such a sampling scheme

in Figure 2.8. The speaker index i ∈ {1, 2, ..., NS} cycles over the set of speakers and for each value

of i, a set of randomly selected recordings represented by xi,j is then returned. Such an approach

provides mini-batches of size Ne = S · R, where R and S correspond to the number of speakers

per mini-batch and the number of recordings per speaker, respectively. While R is set to 5 as per

the example in Figure 2.8, S is set to 24, which gives Ne = 120. One training epoch is considered

finished when sets of 5 recordings are sampled from each speaker 3 times, and a budget of 500

epochs is used for each training run.

We further use the described sampling scheme to increase the diversity of the training data at

hand. Once each recording xi,j is selected, it is further processed such that a randomly positioned

window of 10 seconds will be selected for those longer than 10 seconds, and shorter-duration training

examples are elongated by repeating initial frames so as to make them reach a minimum of 10 seconds

duration. Additionally, each mini-batch has its length randomly selected to lie between 3-10 seconds

before being fed into the model during training iterations. At testing time, however, recordings are

fed with their original length.

Chapter 2. Improving neural network training for utterance-level representation learning 77

A

+

-

𝚹A,+

𝚹A,-

A

+

-

𝚹A,+

𝚹A,-

Figure 2.9 – Hard and easy triplets. Triplet loss minimizes the distance between anchor and positive
examples while maximizing that between anchor and negative cases.

Previous literature has discussed in depth the need of finding sets of triplets yielding a high

triplet loss, i.e., hard triplets in the sense that ||ya− y−||2 < ||ya− y+||2 resulting in an informative

LT . In [71], authors argue representation models are able to quickly learn to map trivial triplets

correctly, which renders a large fraction of possible triplets uninformative. This is exemplified in

Figure 2.9 for triplets in a sphere in R2 which represents a “hard” triplet on the left, and those

appear very frequently early on during training, and “easy” triplets on the right, which represent the

majority of randomly selected sets of examples after a relatively small number of training iterations.

Given that our mini-batch construction scheme ensures R recordings per speaker are available,

we thus employ an online triplet selection method similar to that introduced in [62]. The most

recent version of the model embeds all the Ne training examples, and all possible positive pairs are

taken. The hardest negative pairs are then selected so as to match the number of positive pairs.

This procedure should yield Nt = S R(R−1)
2 , which gives at most Nt = 240 given that S = 24 and

R = 5 in our setting, and triplets such that LT = 0 are discarded.

2.4.3 Maximum Entropy Regularization

It is well known that two random vectors on a high-dimensional hypersphere will likely be

orthogonal. This can be problematic in the case speaker-dependent embeddings or global descriptors

y lie in the unit sphere in Rd, since dot products in that case wouldn’t discriminate between positive

78

and negative pairs3. We employ an entropy regularizer so as to enforce speaker representations to

spread across the sphere, which favors discriminability. A regularization penalty was introduced

in [142] specifically to this end based on the Kozachenko-Leononenko estimator of the differential

entropy [143]. For a finite sample of size n, we use a slightly modified maximum entropy regularizer

for embeddings y ∈ Rd:

Hn = −
n∑

j=1
ρn,j , (2.13)

where ρn,j = minj 6=k ||yj − yk||2. A coefficient λ is further added in order to control the influence of

the regularizer. We set λ to 0.01 in all our experiments.

A rather practical observation we would like to provide is that such regularization penalty allevi-

ates numerical instabilities observed when training PLDA on top of embeddings obtained using the

described systems. Global descriptors extracted with earlier versions of the setting described here

would very often yield design matrices of incomplete rank, which is not the case when embeddings

are encouraged to spread over the sphere.

2.4.4 Other training details

A pseudocode describing the training procedure is presented in Algorithm 1 in order to sum-

marize the above described training steps. The employed parameter’s update rule is SGD. Weight

decay is further employed as a regularization penalty to avoid overfitting to training data. A sched-

ule is defined such that the learning rate is halved if a validation loss does not improve for at least

15 epochs. In order to do so, we built a validation set by selecting all the recordings of a group of 50

randomly selected speakers, taken out of training data. The generalization performance is assessed

by the EER obtained by using cosine similarity to score a set of trials created at training time out

of recordings from the validation set.

The initial learning rate and the weight decay coefficient are set to 1e−2 and 5e−5, respectively,

given those yielded the best results on a grid search across considered settings. Momentum coeffi-

cient is set to the default value of 0.9. Model training is implemented in Pytorch [144] and takes

approximately 8 days to complete in a single NVIDIA Titan X GPU. All results are reported for

the model that achieved the lowest validation EER during training.
3The dot product a′ · b′ between two vectors a′ = a

||a||2
and b′ = b

||b||2
will be proportional to the Euclidean

distance ||a′ − b′||2.

Chapter 2. Improving neural network training for utterance-level representation learning 79

Algorithm 1 Training Speaker Embedding Model.
F, F ′ ← InitializeModel()
Fbest, EERbest ← F, inf
repeat

x, l← SampleMiniBatch()
y ← F (x)
yp ← y

||y||2
p← Softmax(F ′(y))
yp

a, yp
+, yp

− ← SelectTriplets(yp)
Hn ← SumMinimumDistancePairs(yp)
L ← LCE(p, l) + LT (yp

a, yp
+, yp

−)
∇L ← BackPropagate(F, F ′,L, Hn)
F, F ′ ← SGD(F, F ′,∇L)
EER← V alidate(F, xval, lval)
if EER < EERbest then:

EERbest ← EER
Fbest ← F

endif
until Maximum number of iterations reached
return Fbest

2.4.5 Evaluation and Discussion

We evaluate the proposed setting (model and training scheme) under the conditions introduced

for the NIST SRE 2016. In order to train speaker embedding models, a first training dataset is

built by combining the data from NIST SREs from 2004 to 2010, Mixer 6, as well as Switchboard-2,

phases 1, 2, and 3, summing up to approximately 7000 speakers, out of which we remove all the

recordings from 50 speakers to be used as validation set. Speech features correspond to 23 MFCCs

obtained with a short-time Fourier transform using a 25 ms Hamming window with 60% overlap.

An energy-based voice activity detector is employed to filter out non-speech frames. Multi-condition

training data is further introduced by augmenting the original train partition with supplementary

noisy speech in order to enforce the model’s robustness across varying conditions. We thus created

additional versions of training recordings as similarly done in [3], i.e., by corrupting original samples

adding reverberation (reverberation time varies from 0.25 s - 0.75 s), as well as by adding background

noise, such as music (signal-to-noise ratio, SNR, within 5-15 dB), and babble (SNR varies from 10 to

20 dB). Noise signals were selected from the MUSAN corpus [136] and the room impulse responses

to simulate reverberation from openslr. A second larger training set is constructed by further adding

the recordings from VoxCeleb [7] after downsampling them to 8kHz, which adds up to approximately

80

Table 2.3 – EER (lower is better) obtained for the same system trained with different losses. The
combination of triplet loss and cross entropy yields speaker-dependent representations.

Back-end Train loss All Cantonese Tagalog

PLDA
Triplet loss 29.51% 27.25% 31.94%
cross entropy 20.81% 17.01% 24.72%
Combined 14.10% 9.23% 19.09%

Adapted PLDA
Triplet loss 26.97% 24.47% 29.48%
cross entropy 18.81% 14.52% 22.57%
Combined 10.51% 6.44% 14.67%

14000 speakers, and, in that case, all recordings from 100 speakers are taken out of training data

so as to serve as a validation set throughout training. The smaller train dataset is used by default,

and models trained with the addition of VoxCeleb data will be indicated.

PLDA was employed for scoring trials after dimensionality reduction of embeddings using LDA.

PLDA is trained only on embeddings from the SRE partition of the training data. The model

adaptation scheme introduced in [145] is also utilized for PLDA to help overcome the domain shift

observed across train and evaluation data due to different spoken languages and noise conditions.

To do so, embeddings of provided unlabelled data in target languages are clustered, and clusters

are used as speaker identities, which are then employed for training a second PLDA model. The

final back-end is obtained by simply averaging the covariance matrices of the two PLDA models.

We further highlight that reported results are obtained from models that achieved the minimal

validation loss throughout training (Fbest), and the evaluation data is only made available to the

models to generate the reported metrics, not being used at the development phase.

The first experiment we perform consists of an ablation study to compare the performance

of the proposed multi-task setting with cases such that only one of either speaker recognition or

metric learning is employed as training task for the embedding model, F . One of our proposed

models is trained with the combined loss L while equivalent systems are trained with cross entropy

or triplet loss only. The attentive pooling strategy was used for the three models. Results on

the SRE-16 evaluation data are shown in Table 2.3 in terms of EER, where one can notice that

verification performance on the evaluation set is significantly improved when the multi-task training

is employed when compared to systems trained with only one of the loss components. That is the

case for Cantonese, Tagalog, and the pooled set of languages, as well as with or without PLDA

adaptation, which leads us to conclude that both losses are complementary and should be used

jointly, as is the case of the proposed multi-task training.

Chapter 2. Improving neural network training for utterance-level representation learning 81

Table 2.4 – EER (lower is better) obtained using different pooling strategies to aggregate local de-
scriptors into embeddings.

Back-end Pooling All Cantonese Tagalog

PLDA

Statistics 14.07% 8.95% 19.14%
Attention 14.10% 9.23% 19.09%
LSTM 15.98% 11.92% 19.46%

Pretrain+LSTM 14.36% 8.95% 19.70%

Adapted PLDA

Statistics 10.87% 6.79% 15.00%
Attention 10.51% 6.44% 14.67%
LSTM 10.58% 6.59% 14.71%

Pretrain+LSTM 9.99% 5.90% 13.53%

In Table 2.4, we compare the verification performance of the three considered pooling strategies

on evaluation data in terms of EER. We further include a fourth system obtained by first training

a model with attention only, and then fine-tuning the model after including the LSTM block in the

pooling stage. One interesting finding is that the pooling methods benefit differently from PLDA

adaptation, and the rank of best performers, not considering the pre-trained model, changes consid-

erably once adaptation is used. This indicates the extra capacity in terms of number of parameters

at the pooling level is used to learn domain-dependent patterns, and thus the performance boost

achieved with adaptation is higher in such cases. Regarding pre-training, its benefit is observed both

with and without adaptation, yielding the lowest EER obtained from single systems within our eval-

uation, and its effect in performance is further highlighted by the fact that a model with the same

architecture but trained from scratch (LSTM) is not able to outperform the simpler attention-based

pooling. We hence conclude the training difficulties introduced with the LSTM block outweigh the

benefit of the extra capacity, and pre-training helps alleviate such training difficulties by providing

the LSTM with features that are already meaningful from the start.

We proceed and further perform a comparison among our proposed method and well-known

systems. For comparison purposes, i-vectors [1] are obtained as described in [146], i.e., by computing

a 2048-Gaussians full covariance UBM using the unlabelled partition of NIST SRE 2016. Total

variability analysis is performed on top of UBM’s Baum-Welch statistics obtained for recordings

from the SRE partition of the same training data as used for our models, resulting in a 600-

dimensional extractor; i-vectors are finally reduced to a dimension of 200 with LDA. An x-vector

system is also obtained using its Kaldi recipe [3] thus yielding embeddings of dimension 512 later

reduced to 150 with LDA. The same training data as our systems was used for training x-vectors,

and scoring of both i- and x-vectors is performed with PLDA employing the same model adaptation

82

Table 2.5 – Comparison of proposed systems with well-known baseline methods. Results correspond
to verification EER (lower is better). “ * ” indicates that models trained with the larger training set
are included.

System All Cantonese Tagalog

Baseline

x-vector [148] 11.90% 6.50% 16.30%
x-vector+Attention [150] 10.21% 4.61% 14.15%

x-vector 10.02% 5.82% 14.31%
i-vector 12.68% 8.17% 17.25%

Proposed

Statistics 10.87% 6.79% 15.00%
Attention 10.51% 6.44% 14.67%
LSTM 10.58% 6.59% 14.71%

Pretrain+LSTM 9.99% 5.90% 13.53%
Pretrain+LSTM* 9.53% 5.41% 13.22%

Fusion

Proposed 8.41% 4.95% 11.93%
Proposed* 8.04% 4.62% 11.52%

Proposed + x-vectors 7.63% 4.23% 11.01%
Proposed + x-vectors + i-vectors 7.46% 4.14% 10.91%

approach as described above. Results in Tables 2.5 and 2.6 correspond to the EER and DCF10

[147] for:

• A set of baseline systems on the first rows given by EERs obtained by above described i- and

x-vectors. For the case of EER only, further results reported in the x-vector original paper

[148] as well as in a more recent work in which x-vectors were augmented with structured

soft-attention [149] are also included.

• Our proposed systems in the middle rows correspond to varying time pooling strategies. We

further included our best system (Pretrain+LSTM) trained on the larger training set, which

we indicate by the symbol “ * ”.

• Sum fusion performed at the score-level. We report results obtained by fusing scores of

proposed systems only, including and not including the system trained on the larger training

dataset, as well as proposed models combined with x-vectors, and also i-vectors.

As expected, the pre-trained system attains the lowest EER among single systems for the case

of the pooled set of trials, while attaining a similar level of DCF10. The effect of the increase in the

amount of training data is also observed given that performance in all metrics and for all evaluation

conditions is improved once the amount of training data is higher. By fusing the considered systems

we observe further improvement, thus reaching the lowest EER across all evaluation conditions.

Chapter 2. Improving neural network training for utterance-level representation learning 83

Table 2.6 – Comparison of proposed systems with well-known baseline methods on SRE-16 evaluation
set. Results reported in terms of DCF 10−2 and DCF 10−3 (lower is better). “ * ” indicates that models
trained with the larger training set are included.

DCF10−2 DCF10−3

System All Cantonese Tagalog All Cantonese Tagalog

Baseline x-vector 0.6429 0.4769 0.7930 0.8464 0.6875 0.9556
i-vector 0.7199 0.5636 0.8551 0.8845 0.7492 0.9689

Proposed

Statistics 0.7039 0.5540 0.8222 0.8985 0.7305 0.9599
Attention 0.7078 0.5442 0.8349 0.9186 0.7148 0.9899
LSTM 0.7175 0.5506 0.8491 0.9268 0.7445 0.9860

Pretrain+LSTM 0.7118 0.4983 0.8429 0.9478 0.6868 0.9868
Pretrain+LSTM* 0.6859 0.4799 0.8170 0.9214 0.6747 0.9766

Fusion

Proposed 0.6345 0.4522 0.7830 0.8956 0.6099 0.9756
Proposed* 0.6256 0.4366 0.7756 0.8922 0.5936 0.9728

Proposed* + x-vectors 0.5949 0.4154 0.7472 0.8587 0.5830 0.9632
Proposed* + x-vec + i-vec 0.5814 0.3997 0.7371 0.8484 0.5636 0.9547

2.5 Conclusion

We evaluated the effectiveness of employing multi-task training procedures where maximum

likelihood estimation is combined with metric learning so as to yield language- or speaker-dependent

representations. Specific strategies are designed for each of the two tasks we are concerned with: LID

and ASV. For the case of LID, evaluation on non-trivial conditions, such as short-duration of speech,

confusing languages, and non-target test recordings corresponding to languages not represented

within training data, indicates the robustness of the proposed approach relative to several well-

known benchmarks relevantly improving both EER and Cavg in all considered evaluation settings.

Specifically, improvements of 28.51%, 36.83%, and 39.88% were observed with respect to i-vectors

when scoring is performed with PLDA, for three different evaluation conditions, namely, short-

duration, confusing languages, and open set, respectively.

For the case of ASV, the proposed training method along with introduced sampling and regu-

larization strategies were evaluated on the conditions introduced for NIST SRE 2016 in which we

showed that: (i) models trained under the multi-task setting outperform those trained with single

losses. (ii) sophisticated pooling strategies yield the best performance in our experiments, however,

one has to deal with the additional training difficulties given by such systems. We found that pre-

training with a simpler pooling method and finally training the complete model helps in that regard.

(iii) our best systems yield equivalent or superior verification performance relative to well-known

benchmark methods in the considered evaluation conditions. Fusion with baseline systems further

improved final performance.

Chapter 3

Detecting threats as a means for

robust voice biometrics

3.1 Preamble

This chapter is compiled from material extracted from the following three publications: Section

3.3 corresponds to [42], published in the Proceedings of the IEEE 29th International Workshop

on Machine Learning for Signal Processing (MLSP). Section 3.4 covers [151], published in the

Proceedings of the Odyssey Speaker and Language Recognition Workshop (2020). Finally, in Section

3.5 we discuss [152] which was published in Computer Speech & Language.

3.2 Introduction

Artificial neural networks were observed to present properties that might be exploited by attack-

ers. Specifically, the outputs of such models may vary greatly given subtle and often imperceptible

variations in the inputs [97, 98]. So-called adversarial attacks [153] showed that one can leverage

such inherent properties in order to fool trained models in such a way that attack instances are not

detectable by human observers. The described vulnerability constitutes one of the major factors

limiting the vast deployment of neural network-based technologies into safety-critical applications.

While most of the recent work on the development of adversarial attacks and defenses have tar-

86

geted computer vision applications, it was recently shown that the same threat appears in the case

of models tailored to speech processing, such as speech and speaker recognition [154, 155].

Besides the above described threat of adversarial attacks, which affect applications of neural

networks in general, for the specific case of voice biometrics, even simpler attack strategies exist

which can be applied to any type of model, neural network or otherwise. One example is replaying

someone’s voice, which is commonly referred to as a physical attack (PA). As a simple and realistic

example, one could record someone’s voice saying a command to gain unauthorized access to their

portable devices. Another attack strategy, referred to as logical attack (LA), can be defined using

synthesized speech. In fact, recent advances in conditional generative models (e.g., Wavenet [72])

may be used to this end for both text-to-speech or voice conversion settings. The potential conse-

quences of such vulnerabilities are tremendous and range from financial loss to undue incrimination.

Given that these described threats limit the use of high performance systems in real appli-

cations, a popular research direction in recent years has been to design countermeasures against

such attackers. For the specific case of speaker recognition and voice authentication, for instance,

recent spoofing detection challenges [38, 39, 9] were introduced with the goal of pushing forward

the state-of-the-art in attack detection. In general, countermeasures can be grouped into two cat-

egories: defense and detection methods. While defense techniques try to either improve the model

robustness or suppress the success rates of attacks, detection methods take a different approach and

attempt to determine if the input is genuine or was somehow manipulated. While both directions

are promising, we focus on the detection approach, as it allows service providers to know when their

systems are under attack.

More specifically, we are interested in detection approaches that operate in an end-to-end man-

ner. Here, end-to-end is referred to systems comprised of a single component able to receive audio

as input (or general purpose audio representations) and output scores indicating how likely it is

that the input has been tampered. The main advantage of end-to-end settings over conventional

pipeline-based methods that rely on several internal blocks, is simplicity. End-to-end systems allow

for inference schemes that require a single forward pass, while pipeline methods usually have to deal

with several blocks, each one with their specific challenges and limitations.

We further remark that, even though the data released for the challenges mentioned above are

generated making sure that speakers and attack types vary across train, development, and evaluation

Chapter 3. Detecting threats as a means for robust voice biometrics 87

LCNN / ResNetInput Convolution

. . .
1-dimensional
Convolutions

. . .
2-dimensional
Convolutions

Output Convolution

Shrinks
coefficients
dimension

Shrinks
frequency
dimension

C
ep

st
ra

l C
oe

ffi
ci

en
ts

Sp
ec

tr
um

K-dimensional
local descriptors

Frame-wise
attention

V1

V2

V3

VN(T)

. . .

V4

w1V1

w2V2

w3V3

wN(T)VN(T)

w4V4

𝞼
(w

iV i)
𝞵

(w
iV i)

Projected statistics of weighted
local descriptors

W (𝞵 ^ 𝞼)

V

K-dimensional
global descriptor

Figure 3.1 – Cepstral Coefficients are first shrunk through a convolutional layer and then fed into
a LCNN29 modified with 1-dimensional time convolutions. Spectral features on the other hand are
directly fed into a standard time-spatial LCNN9, and have the frequency dimension shrunk later
on. The number of channels K of the last convolutional layers yields the dimensionality of the final
representation V , which is given by a linear projection of concatenated statistics of weighted local
descriptors.

datasets, the developed detection systems rely on the strong (and unrealistic) assumption that

training and testing data are identically distributed so that the same general attack strategy (LA or

PA) will appear on both training and testing data. By doing so, varying models, architectures, and

input features are used for either PA or LA attacks. This strategy-specific configuration, however,

is not aligned with practical, real-life scenarios where the attack strategy is not known a priori. We

thus also seek to address such limitation and propose attack-agnostic detection strategies.

The remainder of this chapter will be organized as follows: Section 3.3 describes our first proposal

of an end-to-end scheme where light-weight convolutional models are designed along with a training

strategy resulting in strong performance on both LA and PA cases. In Section 3.4, we scale the

approach introduced in Section 3.3 to larger models by employing data augmentation strategies that

conserve the artifacts that enable detection of attackers. We finally introduce an attack-agnostic

detection approach in Section 3.5, where a conditional modeling approach is proposed so that a

single model (or set of models) can be used to detect both physical and logical attacks.

88

3.3 An end-to-end setting for spoofing detection

3.3.1 Model and training

As a countermeasure to attacks targeting voice biometrics systems, we propose an end-to-end

setting for detection of either logical or physical attacks. We once more remark that by end-to-end

we mean that the proposed models are able to output a score indicating how likely it is that its

input is an attack when inputs correspond to general purpose time-frequency representations of

speech data. This is unlike common settings in which features and the classifier/scorer are obtained

separately. Modified light convolutional neural networks (LCNN) [73], originally proposed for face

recognition, are employed in our case along with an attention layer, aimed at enabling the model to

process varying length recordings while focusing on specific portions of inputs. The light models are

used given the limited amount of train data made available for the considered evaluation setting,

which might result in overfiting and degradation of generalization performance. We further used

two distinct LCNN variations with increasing depths, and observed that models yielding the higher

performance depend on the choice of input features. Evaluation is carried out under the ASVspoof

2019 challenge conditions, which provides training and development data partitions for both logical

attacks generated with text-to-speech and voice conversion systems, as well as physical attacks

corresponding to replayed recordings under various simulated configurations.

3.3.1.1 Speech representation

We employ two sets of general purpose time-frequency representations of speech. Both spectral

representations and cepstral coefficients are considered, and different modeling strategies are used

in each case, as illustrated in Figure 3.1. Specifically, we report results for models trained on top

of the power spectrum (Spec), the product spectrum (ProdSpec) introduced in [156] and later used

in [157] as a countermeasure for replay spoofing detection, linear frequency cesptral coefficients

[100] (LFCC), and the constant Q cesptral coefficients (CQCC) [158]. In all the cases, features are

obtained with a short-time Fourier transform with length 512 using a 20ms Hamming window with

50% overlap. The end result corresponds to 257 frequency bins for spectral representations and

30 coefficients stacked with delta and delta-delta coefficients for the LFCC and CQCC cases, thus

resulting in a dimensionality of 90.

Chapter 3. Detecting threats as a means for robust voice biometrics 89

3.3.1.2 Extraction of local descriptors

The first stage within our modelling pipeline following feature extraction corresponds to mapping

a given recording into a set of local descriptors Vi ∈ RK , i.e., a set of vectors representing parts

of inputs across the time dimension. To obtain such set of descriptors, we consider recent findings

in [70] showing that convolutional neural networks are well-suited for time dependency modelling

while avoiding common training issues observed in the case of recurrent neural networks (e.g.,

vanishing/exploding gradients). Namely, light convolutional neural networks [73] are employed

given their low parameter count with respect to other well known convolutional models, such as

VGGs [74] or ResNets [4].

LCNNs employ the so-called max-feature-map (MFM) activation function, which corresponds

to an alternative to the commonly used maxout operator, i.e., when the neuron’s output is given by

its greatest input. When using MFM activations on the particular case of convolutional layers, the

max operator is taken element-wise on splits of same size taken from feature maps. Two schemes

are proposed in [31] so that either feature maps are split into two or three groups, resulting in 1/2

or 2/3 of the number of input feature maps after MFM is applied, referred to as MFM-2/1 and

MFM-3/2, respectively. An illustration of the latter is depicted in Figure 3.2.

We further apply some modifications to LCNN depending on which type of speech representation

is used. For the case of cepstral coefficients, we include an input convolutional layer responsible to

shrink the coefficients dimension to 1, and proceed with a modified 29-layered LCNN (LCNN29)

which performs convolutions on the time dimension only. For spectral features on the other hand,

we directly input examples into a standard spatio-temporal LCNN containing 9 layers (LCNN9),

and an output convolutional layer is then employed so as to shrink the frequency dimension to 1.

In both the cases, we then end up with a set of vectors of dimension K matching the number of

channels of the last convolutional layer. K was considered a hyperparameter and we found the

value of 128 to yield good performance across all cases considered herein.

The same frame-wise attention scheme introduced in Chapter 1 is considered here with the

goal of combining local descriptors Vi into a single global descriptor V . We briefly re-introduce

the operations corresponding to this component with a matching notation within the chapter for

clarity. Moreover, we slightly modify the pooling operation described originally since here we include

second-order statistics of representations besides the average. More specifically, given an utterance

90

C x H x W

C/3 x H x W

C/3 x H x W

C/3 x H x W

2C/3 x H x W

Element-wise
max.

Element-wise
max.

Figure 3.2 – Application of a 3/2 MFM activation on C channels of dimension H × W . Input set of
channels is split in 3 groups, the minimal element-wise element in each triplet is removed.

of arbitrary length, it will be mapped to a fixed-dimensional vector. Consider V1:N(T) as a set of

vectors corresponding to the outputs of a given neural network for some input, where T is the

duration of the input and the number of local descriptors is represented as a function N(T). The

parameters of the attention layer are the components of a linear transformation A, shared across

all time-steps i, and applied to each Vi resulting in a set of scalars a1:N(T), according to:

ai = tanh (AVi). (3.1)

A set of normalized weights summing up to 1 is thus obtained through the softmax operator:

wi = eai∑N(T)
i=1 eai

, (3.2)

and component-wise first- and second-order statistics of weighted local descriptors wiVi are com-

puted to finally yield the global descriptor V :

V = cat[µ(wiVi), σ(wiVi)]. (3.3)

The described model is represented in Figure 3.1 for each of the considered input representations.

Global descriptors are thus employed for final binary classification, which is performed in our case

with a single fully-connected layer.

Chapter 3. Detecting threats as a means for robust voice biometrics 91

3.3.1.3 Training

Training is carried out with SGD using mini-batches of size 16 and 32 for the cases of spectral

and cepstral coefficients, respectively. For each model and features combination, a grid search is

performed for the best values of both learning rate and weight decay coefficient, and we found the

values of 0.001 and 0.00005 to yield the best results across all considered cases on a validation set

held out of training, containing randomly selected 100 and 1000 recordings corresponding to clean

and attack examples, respectively. Momentum is also employed with its coefficient set to the default

value of 0.9.

Each training example is pre-processed such that if it is shorter than 10 seconds, it is repeated

up to that length. In the case it is longer, we select a random 10 seconds segment. Moreover, since

all the examples within a mini-batch are exactly 10 seconds long, we randomly trim all the examples

to be within 3-10 seconds. This is done so as to generate diversity in the samples presented to the

model and artificially augment the size of the train dataset, since this will make training examples

different each time they are sampled. Additionally, given the imbalance in the number of examples

corresponding to clean and attack recordings, we oversample clean examples such that each mini-

batch is balanced, i.e., we sample pairs of training examples by sequentially iterating over the set of

recordings corresponding to attacks. To sample clean recordings, we pick the recording with index

k = j mod Nclean, where j ∈ {0, 1, ..., Nattack − 1} is the index of attack recordings, and Nclean and

Nattack are the number of clean and spoofing training recordings. The sequence of indices j is further

randomized to provided diverse mini-batches at each epoch. Training proceeds up to convergence

of the loss measured in the validation set held out of training, which takes approximately 12 hours

in a single NVIDIA Titan X GPU1.

3.3.2 Evaluation

The proposed methods are evaluated using the data introduced for the ASVspoof 2019 challenge.

Two types of attacks are considered: logical and physical access attacks, corresponding to synthetic

speech and replayed recordings, respectively. Logical access attacks were created using both voice

conversion and text-to-speech systems, while replay attacks are simulated from clean recordings

1Code is available at: https://github.com/joaomonteirof/e2e_antispoofing

https://github.com/joaomonteirof/e2e_antispoofing

92

Example 1

Example 2

Example 3

Example 4

Example 1

Example 2

Example 3

Example 4

Example 5

Example 6

Example 7

Bona fide Spoof

k=0, j=0 or 4

k=1, j=1 or 5

k=2, j=2 or 6

k=3, j=3

k=0, j=0

k=1, j=1

k=2, j=2

k=3, j=3

k=0, j=4

k=1, j=5

k=2, j=6

Nclean

Nattack

Figure 3.3 – Sampling strategy for constructing mini-batches. Clean examples are sampled several
times per epoch so as to ensure mini-batches are balanced.

considering exhaustive combinations of 3 room sizes, 3 distances to the microphone, and 3 levels of

reverberation. Further details on the dataset are discussed in Chapter 1.

In this set of evaluations, benchmark systems are those provided by the ASVspoof 2019 organiz-

ers. These consist of Gaussian Mixture Models (GMM) classifiers trained on frame-level features,

i.e., two independent GMMs are trained on each of considered classes (genuine or spoofing). Scores

are given by the difference of log-likelihoods provided by the two generative models for a given test

instance. Reference performance is provided for GMMs trained on both LFCC (LFCC-GMM) and

CQCC (CQCC-GMM). Additionally, we included our own implementation of CQCC-GMM, and

further evaluated an i-vector system [1], in which case, a 512-Gaussians full covariance universal

background model (UBM) along with a 400-dimensional i-vector extractor are trained on the train-

ing partition using CQCC features. I-vectors further have their dimensionality reduced to 150 using

linear discriminant analysis. Scoring is finally performed with a probabilistic linear discriminant

analysis (PLDA) classifier [106].

Evaluation metrics verified on the development partition of ASVspoof 2019 are reported in

Tables 3.1 and 3.2 for the case of logical and physical attacks, respectively. Results correspond

to the equal error rate (EER) and the normalized minimum tandem detection cost function (min-

tDCF). EER consists of the value of the miss rate, given by the fraction of miss-classified clean test

recordings with respect to the number of trials corresponding to genuine samples, at the threshold in

which it matches the false alarm rate, i.e., the ratio between the number of miss-classified spoofing

Chapter 3. Detecting threats as a means for robust voice biometrics 93

trials and the number of spoofing test recordings. The min-tDCF, in turn, was recently introduced

in [159], and was designed especially for the evaluation of spoofing detection countermeasures when

used alongside a speaker recognizer. The interested reader can refer to [9] for a detailed description

regarding both evaluation metrics. We further highlight that the development set is not used during

training in any way. A validation set is rather constructed by taking recordings out from train data,

which is then used for deciding when to stop training as well as for fine tuning of hyperparameters.

Only models completely trained have access to development data.

Results for the challenge benchmark systems as well as our own evaluated baselines are presented

along with only the instances of our systems which were able to outperform some of the considered

baselines. For the logical access case, systems based on LFCC and CQCC achieved relevant perfor-

mance. Specifically for the case of LFCC, a relative improvement of approximately 50% in terms

of both EER and min-tDCF is observed with respect to the best compared system (CQCC-GMM).

In the case of physical presentation attackers, three of our proposed settings were able to perform

substantially better than the considered benchmarks. Most notably, LCNN9 trained on top of

product spectral features attained detection metrics one order of magnitude lower than those of the

considered benchmarks.

Additional results are reported in Table 3.3 for the evaluation partition for the case of physical

access attacks. Even though a mismatch is observed between training and evaluation data in terms

of attack generation conditions, i.e., different channel and reverberation settings were employed to

generate attacks in each case, our proposed model’s detection performance is substantially better

than all the tested benchmarks. We attribute the performance boost observed by the adoption of

LCNNs+attention (compared to GMM classifiers and i-vectors+PLDA) to the better handling of

temporal dependencies. It is well-known that convolutional layers over the time dimension yield

long-term temporal modelling through depth, i.e., outputs depend on far apart portions of the input

when convolutional layers are stacked. Moreover, the attention layer represents an effective means

for the model to assign importance to portions of the input in a data-driven fashion. GMMs and the

UBM for the i-vectors extraction, however, completely disregard temporal modelling by assuming

frame-level features are independent. Additionally, the low parameter count offered by the adoption

of LCNNs along with the efficient handling of time pooling using a simplistic attention layer, as

opposed to employing recurrent models to this end, help on circumventing the rather limited amount

of training data.

94

Table 3.1 – EER and min-tDCF for logical access attacks on development partition. Both scores are
better when closer to 0.

Feature-Model EER(%) min-tDCF

ASVspoof benchmarks [9] LFCC-GMM 2.71 0.0663
CQCC-GMM 0.43 0.0123

Internal baselines CQCC-GMM 0.39 0.0110
i-vector-PLDA 0.70 0.0210

Proposed CQCC-LCNN29 1.07 0.0321
LFCC-LCNN29 0.20 0.0048

Table 3.2 – EER and min-tDCF for physical access attacks on development partition. Both scores are
better when closer to 0.

Feature-Model EER(%) min-tDCF

ASVspoof benchmarks [9] LFCC-GMM 11.96 0.2554
CQCC-GMM 9.87 0.1953

Internal baselines CQCC-GMM 9.70 0.1842
i-vector-PLDA 9.17 0.2310

Proposed
CQCC-LCNN29 2.93 0.0752
Spec-LCNN9 2.00 0.0488

ProdSpec-LCNN9 0.87 0.0232

Table 3.3 – EER and min-tDCF for physical access attacks on evaluation partition. Both scores are
better when closer to 0.

Feature-Model EER(%) min-tDCF

ASVspoof benchmarks LFCC-GMM 13.54 0.3017
CQCC-GMM 11.04 0.2454

Proposed ProdSpec-LCNN9 1.66 0.0445

More importantly, our experimental results further show the best choice of data representation

and modelling architectures to be dependent on the type of attack, which might represent a threat

from the perspective of a real-world application of such countermeasures. If we consider that

attackers evolve over time, a detector can have its performance degraded if attackers are generated

using a novel strategy, thus being able to generalize across diverse spoofing strategies should be

considered, which we tackle later on within this Chapter in Section 3.5.

Chapter 3. Detecting threats as a means for robust voice biometrics 95

3.4 Scaling end-to-end detection to larger models via artifact-preserving

data augmentations

3.4.1 Augmentation approach

Data augmentation can be defined as the process of increasing the amount and diversity of

existing training data. It is performed with two goals: (i) as a form of regularization strategy

to improve the performance measured on test data by directly increasing the number of training

examples, and (ii) to compensate possible mismatches between the training and testing conditions,

which can be seen as a way of inducing robustness across varying noise conditions. For the case

of speech processing applications, augmentation is often performed by supplementing a dataset

with similar data, artificially created by introducing additive and convolutive noises, for instance.

Augmentation schemes became common practice in speech-based applications, such as speaker and

speech recognition.

In this section, we perform evaluation using the data introduced for the ASVspoof 2019 challenge

[9]. Specifically, we are particularly interested in being able to introduce perturbations in the signals

in such a way that the artifacts related to spoofing attacks are preserved, while at the same time

the artifacts we introduce with the augmentation process are different from those indicative of

attacks. For instance, we empirically found that, depending on the type of attack strategy, this can

be achieved through speed perturbations, as well as bandpass filtering, and those offer the extra

advantage of not requiring any external corpora to be used, complying with evaluation guidelines of

popular challenges such as ASVSpoof. We further observed simple online strategies, such as feeding

models with random continuous chunks of signals (as opposed to presenting the complete audio

recording) to be effective as an augmentation strategy. The approach we evaluate to increase the

amount of training data, both bona fide as well as spoofing examples, is to apply speed perturbations,

in which case we use perturbation factors of 0.9 and 1.1, to low pass filter with a cut-off frequency

of 3.8 kHz, and to high pass filter with the same cut-off frequency set to 3.8 kHz. The described

procedure is summarized in Figure 3.4. By doing so, we are able to increase the size of our corpus by

five times with respect to the original training data. Along with that, we perform additional online

transformations which will be further described once we detail how mini-batches are constructed at

training time.

96

Figure 3.4 – Data augmentation via speed perturbation, low pass, and high pass filtering of ASVspoof
2019 training data.

1d
 C

on
vo

lu
tio

n
Ba

tc
h

N
or

m
.

R
eL

UFeature
Extraction

1d
 C

on
vo

lu
tio

n
Ba

tc
h

N
or

m
.

R
eL

U

5x total Statistical
Pooling

Fu
lly

 c
on

ne
ct

ed
Ba

tc
h

N
or

m
.

R
eL

U

Fu
lly

 c
on

ne
ct

ed
Ba

tc
h

N
or

m
.

R
eL

U

Fu
lly

 c
on

ne
ct

ed
Si

gm
oi

d

Figure 3.5 – End-to-end detection of spoofing attacks. All convolutions maintain the time resolution.
Statistical pooling corresponds to concatenated mean and variance, obtained across the time dimen-
sion. N represents the dimension of feature vectors, which correspond to 90 and 257 for LFCC and
ProdSpec, respectively.

3.4.2 Model description

Given the supplemental data we introduced, we now implement our model using larger archi-

tectures instead of the LCNN architecture used previously in Section 3.3. Namely, the TDNN

architecture commonly used for speaker verification is employed. Moreover, we modified the stan-

dard TDNN architecture so that pre-activation batch normalization is performed at each convolution

and fully-connected layer. This procedure was introduced in [160] and shown in [124] that classifi-

cation accuracy is improved when batch normalization is applied prior to activation. A summary of

the employed architecture is shown in Table 1.1 in Chapter 1 while the complete end-to-end score

computation used specifically for the spoofing detection case is depicted in Figure 3.5.

Chapter 3. Detecting threats as a means for robust voice biometrics 97

3.4.3 Training details

Training follows the setup introduced in [42] and described in Section 3.3; i.e., with SGD per-

formed to minimize the binary cross entropy loss in a standard binary classification setting. Mini-

batches of effective size of 16 (balanced) are used for both of the cases of ProdSpec and LFCCs.

The learning rate and weight decay coefficients were set to 0.001 and 0.00005, and performance is

monitored throughout training with a validation set we created by removing 100 and 1000 randomly

selected recordings corresponding to clean and attack examples, respectively. Momentum is also

employed with its coefficient set to the default value of 0.9.

We further perform extra data augmentation strategies in an online manner, which conveniently

also helps to deal with the varying duration across recordings. Those correspond to signal manupu-

lations discussed in the previous Section. That is, each training example is pre-processed such that

if it is shorter than 10 seconds, it is repeated up to that length. In the case it is longer, we select

a random 10 second segment and this process is repeated whenever a given example is sampled.

Since we employ that procedure and ensure all examples within a mini-batch are exactly 10 seconds

long, we randomly trim all examples to be within 3-10 seconds, where the exact duration is sam-

pled uniformly from that range for every mini-match. This is done so as to generate diversity in

the samples in terms of duration since trained models are expected to be able to perform detection

given samples of arbitrary duration at testing time. We also employ the sampling strategy described

previously and illustrated in Figure 3.3 such that each mini-batch is balanced. Training proceeds

up to a fixed budget of epochs or convergence of the loss measured in the validation set held out of

training. This took approximately 12 hours in a single NVIDIA Titan X GPU.

3.4.4 Evaluation

Evaluation on both development and test partitions of ASVSpoof 2019 is performed in terms

of EER and min-tDCF. Since we created our validation sets by removing data from the training

partition, the development data is not used in any way during training nor for early stopping or

hyperparameter selection. All results are reported for the best performing model we could observe

across training in each data partition during a fixed budget of 100 training epochs. In addition to

our proposed systems, we further report the performance of baselines for comparison, which include:

(i) those provided by the ASVspoof 2019 organizers, which consist of GMM-based classifiers trained

98

Table 3.4 – The min-tDCF and EER(%) results for PA task on the development set. Lower values are
better.

System EER(%) min-tDCF

ASVSpoof baselines [9] CQCC-GMM 9.87 0.1953
LFCC-GMM 11.96 0.2554

Our baselines CQCC-GMM 9.70 0.1840
i-vector/PLDA 9.17 0.2310

Ours

TDNN 2.30 0.0690
TDNN+SP 0.87 0.0299
TDNN+Filt. 0.74 0.0244

TDNN+SP+Filt. 1.34 0.0439

on frame-level features, reference performance is provided for GMMs trained on both LFCC as

well as CQT-based cepstral coefficients (CQCC) [114]. And (ii) our own baselines obtained using

the Kaldi toolkit [161] corresponding to a GMM classifier on top of CQCCs, as well as an i-vector

system [1] scored with a probabilistic linear discriminant analysis (PLDA) classifier [106]. Both

the GMM- and i-vector-based systems use 512-Gaussian components for training bonafide/spoof

models and the universal background model (UBM), respectively. I-vectors were finally obtained

with total-variability analysis performed on top of UBM’s supervectors, yielding 400-dimensional

representations of audio clips, using CQCC features. Prior to training PLDA, i-vectors further have

their dimensionality reduced to 150 using linear discriminant analysis.

Tables 3.4 and 3.5 present the EER and min-tDCF scores obtained by the baselines, as well

as our proposed systems for the PA and LA tasks, respectively, considering the development data.

Proposed models are indicated by TDNN, TDNN+SP, TDNN+Filt, and TDNN+SP+Filt, which

corresponds to: models trained with the original training corpus and the previously described online

augementation strategy performed while assembling mini-batches, offline augmented train data with

speed perturbation (SP) only, bandpass filtering (Filt) only, and augmented data with both speed

perturbation and bandpass filtering.

In both PA and LA cases, end-to-end approaches are able to outperform more standard GMM-

classifers, as well as our i-vector/PLDA system in terms of both EER and min-tDCF. Moreover,

specifically for replay attacks as presented in Table 3.4, we observe that adding speed perturba-

tions yielded an improvement in the detection performance. However, once the complete set of

augmentations is employed, we actually observe a degradation in performance. Nevertheless, as

will be further discussed, the opposite is observed in the case of evaluation data (c.f. Table 3.6),

Chapter 3. Detecting threats as a means for robust voice biometrics 99

Table 3.5 – The min-tDCF and EER(%) results for the LA task on the development set. Lower values
are better.

System EER(%) min-tDCF

ASVSpoof baselines [9] CQCC-GMM 0.43 0.0123
LFCC-GMM 2.71 0.0663

Our baselines CQCC-GMM 0.39 0.0104
i-vector/PLDA 0.70 0.0211

Ours

TDNN 0.07 0.0015
TDNN+SP 0.04 0.0012
TDNN+Filt. 0.08 0.0011

TDNN+SP+Filt. 0.08 0.0018

Table 3.6 – The min-tDCF and EER(%) results for PA task on the evaluation test set. Lower values
are better.

System EER(%) min-tDCF

ASVSpoof baselines [9] CQCC-GMM 11.04 0.2454
LFCC-GMM 13.54 0.3017

Our baselines CQCC-GMM 11.16 0.2478
ivector/PLDA 10.18 0.2687

Ours

TDNN 4.46 0.1337
TDNN+SP 2.18 0.0777
TDNN+Filt. 1.84 0.0611

TDNN+SP+Filt. 1.77 0.0597

which suggests that the mismatch across training and development data is much smaller than that

across training and evaluation data. The observed performance degradation is thus an indication

of reduced overfitting to train data, which is beneficial given the improved generalization observed

when evaluation data is used to assess performance.

Performance on the evaluation data is reported in Tables 3.6 and 3.7 for PA and LA attacks,

respectively. In this case, we once more observe the proposed end-to-end approaches outperforming

the considered baselines. However, for PA attacks specifically, we now observe that the use of

more data augmentation consistently implies improved detection performance, which confirms our

hypothesis in that the more diverse train data introduces some sort of regularization and avoids

overfitting to the types of attack strategies utilized to create train data.

We further stress the observation made above considering the mismatch in results observed

between development and evaluation data for all considered systems, baseline or otherwise, for the

specific case of LA attacks. In fact, for that particular evaluation case, most systems reach a strong

detection performance on development data, while observe a more severe degradation when we

100

Table 3.7 – The min-tDCF and EER(%) results for LA task on the evaluation test set. The lower the
values of min-tDCF and EER the better is the performance.

System EER(%) min-tDCF

ASVSpoof baselines [9] CQCC-GMM 9.57 0.2366
LFCC-GMM 8.09 0.2116

Our baselines CQCC-GMM 8.91 0.2157
ivector/PLDA 16.55 0.4201

Ours

TDNN 7.00 0.1653
TDNN+SP 8.89 0.1769
TDNN+Filt. 8.22 0.1769

TDNN+SP+Filt. 7.12 0.1674

move to evaluation data. This is due to the different approaches used to create attacks so as to

compose both data partitions; i.e., generative approaches used to create the development partition

are similar to those used to create train data. The online augmentation helps in this regard, working

as a regularization strategy and enabling better generalization to the new conditions introduced with

the evaluation data. However, the artifacts introduced with speed perturbation as well as bandpass

filtering appear to overlap with those introduced by the speech synthesis approaches utilized in order

to create the attacks, and thus yield a slight degradation in performance, but not due to overfitting

in this case. In fact, we hypothesize the opposite happens for LA, since the augmented genuine

samples appear alike to synthetic attackers, an effect similar to that of label noise is introduced,

yielding a too strong regularization strategy for this particular evaluation. The end-to-end models

we trained are nevertheless able to outperform considered baselines by a large amount.

3.5 Attack-agnostic strategy to detect both logical and replay at-

tacks

3.5.1 Proposed Model

Here, we describe an approach aimed at being able to detect both LA and PA attacks simulta-

neously, without any prior knowledge as to which type of strategy was employed in order to create

attack signals. Figure 3.6 illustrates the strategy we propose in order to be able to detect attackers

generated using different strategies. In that case, inputs xLA, xMIX , and xP A correspond to features

obtained from a given audio sample. We discuss the selection of the feature space in each case in

Chapter 3. Detecting threats as a means for robust voice biometrics 101

MLA MPAMMIX

xLA

yLA

xMIX

λ

xPA

yPA

Figure 3.6 – General scheme illustrating the proposed ensemble strategy.

Section 3.5.5. Each of MLA, MMIX , and MP A are such that M : X → [0, 1], i.e., speech features

are mapped into a score in [0, 1]. The output λ = MMIX(xMIX) is then used to compute a convex

combination of scores yLA and yP A:

y = λyLA + (1− λ)yP A, (3.4)

and score y can be thus employed to jointly train the whole ensemble as a binary classifier of genuine

vs. attack samples in a single-shot, considering both LA and PA examples are represented within

train data.

The underlying assumption when doing so is that there are combinations of type of features and

models which are better tailored for each of the considered LA or PA attack strategies. Further,

MMIX would be able to decide which of MLA or MP A should be given more importance for each

input audio example.

Each ensemble component, as described in Figure 3.6, is required to map features extracted

from an audio sample of arbitrary length into a score ∈ [0, 1]. We do so by using the same approach

described in Section 3.3, i.e., by splitting the mapping into three stages: (i) from audio to local

descriptors, (ii) temporal pooling, i.e., from a set of local descriptors to a global descriptor, and (iii)

a mapping from a global descriptor to a score, as illustrated in Figure 3.7.

102

. . .
1-dimensional
Convolutions

. . .
2-dimensional
Convolutions

Shrinks
coefficients
dimension

Shrinks
frequency
dimension

C
ep

st
ra

l C
oe

ffi
ci

en
ts

Sp
ec

tr
um

Temporal Pooling

V1

V2

V3

VN(T)

. . .

V4

Global descriptor to score

V

K-dimensional
global descriptor

V y

Audio features to local descriptors

Figure 3.7 – Cepstral coefficients are first shrunk through a convolutional layer and then fed into a
stack of 1-dimensional time convolutions. Spectral features on the other hand are directly fed into
a set of time-spatial convolutions, and have the frequency dimension shrunk later on. The number
of channels K of the last convolutional layers yields the dimensionality of the final representation V ,
finally projected into an output score y ∈ [0, 1]. The number of local feature vectors N is a function of
the number of input frames T .

3.5.2 Training

We jointly train MLA, MMIX , and MP A, and in order to do so, we consider the standard

maximum likelihood setting through the minimization of the binary cross entropy loss (BCE) for

the predicted scores y. Moreover, we empirically found that further including individual losses so

as to ensure each model performs well on its own significantly accelerates convergence, and further

consider such losses measured for yLA and yP A. The binary cross entropy loss for a generic score

s ∈ [0, 1] and the true label l ∈ {0, 1}, is given by:

BCE(s, l) = −l log(s)− (1− l) log(1− s). (3.5)

The binary cross entropy loss discussed above is employed to define the training losses of MLA,

MP A, and the ensemble-level loss. If we assume the true label to be such that l = 0 for genuine

audio examples and l = 1 in the case of attacks, the binary cross entropy is given by BCE(yLA, l),

BCE(yP A, l), and BCE(y, l), respectively. Moreover, we want to enforce a particular behavior in

MMIX such that a higher importance is assigned to MLA if the input corresponds to an LA attack.

In this case, λ would be closer to 1. Alternately, yP A is to be assigned higher importance for PA

Chapter 3. Detecting threats as a means for robust voice biometrics 103

attacks, thus λ should be close to 0. Hence, we define the total training loss L as:

L = BCE(y, l) + BCE(yLA, l) + BCE(yP A, l) + BCE(λ, l∗), (3.6)

where l∗ will be 1 in case the input corresponds to an LA attack, 0.5 for the case it is a genuine

example, and 0 for the case where a PA attack is presented.

Two versions of LCNNs are employed, such that a deep LCNN-29 is used in the 1-dimensional

case while a LCNN-9 is employed for spectral representations. For the ResNet case, ResNet-18

was the variation chosen given that we observed deeper versions to strongly overfit to train data.

Training and development data are composed of pooled examples corresponding to LA, PA, and

genuine utterances. Adam [162] is the chosen update rule using mini-batches of size 16 and 32 for

the cases of spectral and cepstral coefficients, respectively, when LCNNs are used, and a size of 8 is

employed for ResNets.

Mini-batches are sampled using the same approach described in Section 3.3. In fact, as discussed

previously, a significant imbalance on the number of examples corresponding to genuine and attack

recordings is observed in the considered train data. As such, in our initial experiments, in which

case naive random data samplers were employed, models quickly converged to the condition where

they simply predict every input is an attack. While several sampling strategies were proposed to

deal with imbalanced data (c.f. [163]), we found oversampling genuine examples and ensuring each

mini-batch is balanced to effectively and efficiently fix that issue. Moreover, each sampled training

example is pre-processed such that if it is shorter than 8 seconds, it is repeated up to that length. In

the case it is longer, we select a random 8 seconds continuous segment. Since all examples within a

mini-batch are exactly 8 seconds long, we randomly trim every mini-batch to be within 3-8 seconds

before feeding them to the models. This artificially augments the size of the train dataset since this

will make training examples different each time they are sampled.

A linear learning rate warm-up is employed in the first 1000 training iterations, and the same

exponential decay as in [48] is employed after that. Label smoothing [81] is further employed to

avoid overfitting. A grid search is performed for the best values of both learning rate and weight

decay coefficient. We found the values of 0.001 and 0.00005 to yield the best results across all

considered cases on development data held out of training. Adam’s β1 and β2 are set to 0.98 and

104

0.90, respectively. Training proceeds up to convergence of the loss measured in the validation set.

Training is performed on a single NVIDIA Titan X GPU.

3.5.3 Experimental Setup and Evaluation

Once more, the approach discussed herein is evaluated under the conditions introduced for

the ASVspoof 2019 challenge. The development set is used for hyperparameter tuning and the

performances reported in all tables correspond to the models that achieved the best performance in

development data. Evaluation data is used at final evaluation only. Different modelling strategies

are explored depending on the type of speech features used to represent the data, as illustrated in

Figure 3.7. Temporal convolutions are performed for the case of cepstral coefficients while spectral

representations are processed by 2-dimensional frequency-time convolutions. We thus follow the

findings reported in [42] and use both linear frequency cesptral coefficients [100] (LFCC), showed

to be well suited for detecting LA attacks, and the product spectrum (ProdSpec) introduced in

[156] and later used in [157] as a countermeasure for replay spoofing detection. The modified group

delay [99, 164] cepstral coefficients were further evaluated as an attempt to check whether features

computed on top of the phase spectrum would be effective on discriminating attackers from genuine

audio samples.

3.5.4 Evaluating single models trained on pooled data

Given that our main interest is to be able to use the same model across LA and PA attackers,

we start our evaluation by analyzing the performance of simply pooling training data from both

considered strategies. Results in terms of EER are reported in Table 3.8 for each of the considered

types of features using ResNets. In the last column in the table, we report reference performances

obtained by the best specialized model, i.e., using only training data corresponding to the particular

type of attack used for evaluation. Such models will be used as a target of performance and will

be generally referred to as Privileged, and by that we mean that the countermeasure has prior

knowledge as to which type of attackers appear at testing time, and its training data is made so as

to match the development/evaluation data in terms of type of attack.

Chapter 3. Detecting threats as a means for robust voice biometrics 105

Table 3.8 – EER obtained by pooling LA and PA training data. Models are trained on top of different
speech features. Column Privileged refers to the best performance we could obtain with a privileged
model, training on data corresponding to the same type of attack it would face at evaluation time.
Privileged systems correspond to 1-dimensional ResNet along with LFCCs for LA attacks and 2-
dimensional ResNets on top of ProdSpec for the case of PA attacks.

Data Attack Type EER PrivilegedLFCC ProdSpec MGDCC

Dev. LA 0.05% 0.01% 0.30% 0.04%
PA 2.38% 0.85% 3.88% 0.52%

Eval. LA 14.39% 12.77% 13.13% 6.38%
PA 2.96% 4.30% 5.99% 1.98%

In most cases, the combination of 2-dimensional convolutions and ProdSpec features yielded

the best detection performance. However, regardless of the type of model and features, we observe

a severe degradation in performance of the models trained on the pooled data when compared to

the specialized case of reference, which suggests that naively creating bigger datasets with different

types of attacks is not enough to recover the performance one can obtain when the attack strategy

is known in advance.

3.5.5 Selecting the best approach to model the mixture coefficient

One important step in our design consists in determining which kinds of speech representations

will be used in xLA, xP A, and xMIX . For the first two cases, we leverage previous findings [42]

and set LFCC and ProdSPec for xLA, and xP A, respectively. For the case of xMIX , we empirically

determined which type of feature would be the most effective in detecting types of attackers, and

did so through training MMIX by itself, utilizing only the term BCE(λ, l∗) of the loss introduced

in Section 3.5.1. Moreover, regarding the type of models required to properly model λ, we assume

the problem of discriminating LA and PA attackers is as difficult as that of discriminating genuine

vs. spoofing. As such, we employ the same types of models we use as detectors. However, in order

to verify such assumption, we run experiments after drastically reducing the model capacity and

observe their resulting performance. We do so by training a linear model on top of concatenated

global first- and second-order statistics of input features.

The EER in the development and evaluation data for both cases are reported in Table 3.9 for

ResNets while reference performance of linear probe models are presented in parenthesis. Since the

labels l∗ used to train MMIX are such that l∗ = 0, l∗ = 1, and l∗ = 0.5 for LA, PA, and genuine

106

Table 3.9 – Analysis on the performance in terms of detection EER of MMIX models trained on top of
different features to discriminate LA and PA attacks. Reference performance for linear models trained
on top of the same features with the same computational budget are presented in parenthesis for each
evaluation case.

Data Attack Type EER
LFCC ProdSpec MGDCC

Dev. LA 0.12% (12.47%) 0.08% (11.57%) 0.06% (13.90%)
PA 1.30% (24.63%) 0.61% (17.85%) 3.17% (15.25%)

Eval. LA 14.05% (18.34%) 11.72% (34.17%) 18.19% (23.53%)
PA 2.08% (34.36%) 2.80% (21.78%) 4.00% (19.80%)

examples, respectively, we expect values of λ close to the extreme values of 0 or 1 to be indicative of

attacks. The distance from λ to 0.5 is then used to compute the detection score given by: |λ− 0.5|.

In almost all the evaluation cases, the combination of 2-dimensional convolutions and ProdSpec

features yielded the best detection performance. We thus set xMIX to ProdSpec. As expected,

the low capacity linear models yield a severe degradation in discrimination performance in all the

cases leading us to conclude that large high capacity models similar to the privileged detectors are

required to model λ.

3.5.6 Evaluation of the proposed approach

We now proceed to an evaluation in terms of EER as well as min-tDCF. In this case, our systems

are compared with the baselines provided by ASVspoof 2019 organizers, which consist of GMM

classifiers trained on frame-level features. Reference performance is provided for GMMs trained on

both LFCC (LFCC-GMM) and Constant Q Cepstral Coefficients (CQCC-GMM). Extra baselines

correspond to our own implementation of CQCC-GMM systems, well known i-vectors [1] along with

PLDA, and end-to-end ResNets trained and tested on the same attack strategy. Such baselines are

referred to in the tables as privileged, which once more indicates that the countermeasure has prior

knowledge as to which type of attackers appear at testing time. We further included a mixture of

two privileged models (indicated by LA/PA), where the final score is given by the maximum over the

scores of the best privileged models trained independently on LA and PA data. The performance

of models trained on pooled training data considering both attack strategies and discussed in Table

3.8 are further included for a complete comparison along with an ablation experiment. In this case,

the mixture model has a more limited capacity corresponding to an ensemble where a linear model

Chapter 3. Detecting threats as a means for robust voice biometrics 107

such as that evaluated in Table 3.9 is used to model λ. Results for the LA and PA cases are reported

in Tables 3.10 and 3.11, respectively.

Considering that our systems are comprised of different components, we can make use of the

different outputs to score test recordings. We thus report results obtained by directly using yLA and

yP A as scores, which we refer to in the tables by the name of their corresponding input features,

i.e., LFCC and ProdSpec, respectively, and further include the results given by the final output

y. One additional scoring strategy which is also evaluated corresponds to |λ − 0.5| as discussed in

the results reported in Table 3.9, in which case we expect extreme values of λ to be indicative of

attackers. We refer to that score as Lambda in the tables.

We first highlight the proposed strategy outperforms models trained on pooled data for both

cases of LA and PA attacks. This once more indicates that simply creating bigger datasets with

different types of attacks is not enough to recover the performance one can get when the attack

strategy is known in advance. Moreover, we remark that both ResNets and LCNNs trained and

scored under the proposed ensemble setting are competitive when compared to privileged specialized

systems, and even better in the case of LA attacks on development data and PA attacks both for

development and evaluation data in terms of EER. Also, all systems, including the privileged base-

lines and the challenge benchmarks, presented a significant drop in performance from development

to evaluation data for the specific case of LA attacks (see Table 3.10). This is due to the significant

mismatch between the speech synthesis and voice conversion algorithms used to generate each data

partition. Nonetheless, we observed the mixture score y degraded much less when compared to

individual sub-systems (LFCC and ProdSpec) and models trained with the pooled dataset, thus

further highlighting the effectiveness of the introduced setting in generalizing to novel conditions.

Additional conclusions we can draw from results presented in Tables 3.10 and 3.11 regard the

fusion of privileged systems (indicated by LA/PA in both tables) as well as the ablation cases

in which we significantly reduced the size of the model yielding mixture coefficients λ by simply

using a linear model instead of ResNets/LCNNs. For the latter, we observed some degradation in

performance once we compared fused privileged systems with their individual components (more

significant in the LA case), being outperformed by our proposed setting in all considered evaluations.

Moreover, as expected, reducing the representation capacity used to model λ is hurtful in that doing

so degrades the performance of the ensemble, but most notably, the performance obtained by using

108

its output to score test recordings (as indicated by Lambda in the tables) is significantly worse

compared to the same scoring strategy when ResNets or LCNNs are used.

We finally remark that the mixture score y is consistently more effective in detecting attackers

in all evaluation cases when compared to the individual sub-component systems, thus supporting

our hypothesis that there is a particular combination of feature space and modeling strategy better

suited for each type of attack. In particular, the proposed approach is shown to be effective in

combining sub-systems by deciding which should be trusted more given the input signal.

On the other hand, it can be seen in each case that the best performers do not follow the insights

previously-obtained in [42] with specialized systems showing that specialized models are such that

LFCCs and 1-dimensional convolutions were the best setting for LA attacks while ProdSpec and 2-

dimensional convolutions would yield a better performance for the case of PA attacks. We conjecture

that this is due to the pooling of PA and LA examples to compose training data. Since PA attacks

are close to genuine examples in the space of LFCC, and similarly, LA attacks look genuine in the

ProdSpec space2, pooling both types of attacks is akin to corrupting training labels, which induces

a strong regularization effect, leading to underfitting and greatly increasing the training sample

complexity for individual systems. Nevertheless, the mixture model is able to compensate for the

introduced suboptimality, yielding significant improvements over the single systems trained on the

same pooled data.

3.6 Conclusion

We tackled the problem of detecting spoofing attacks to ASV systems in an end-to-end man-

ner, i.e., our models map speech features into scores. First, we proposed variations of the light

convolutional neural networks given limitations in available amount of training data. Performance

of the proposed setting is thus evaluated on data introduced for the ASVspoof 2019 challenge, in

which case we are able to achieve significant detection performance improvements with respect to

well-known reference baseline systems. We further built on top of such an approach and introduced

different strategies aimed at augmenting the training data in order to allow for larger models to

be used to define detectors of spoofing attackers. By doing so, we were able to increase the size of

2As supported by the fact that LFCC and ProdSpec are shown to be better suited for detecting LA and PA
attacks, respectively, for the case of individual systems.

Chapter 3. Detecting threats as a means for robust voice biometrics 109

Table 3.10 – The t-DCF and EER results for the LA task on the development and evaluation sets.
The lower the values of min-tDCF and EER the better is the performance.. Training for ensemble
systems is performed on top of combined LA and PA data.

System Description Dev. Eval.
EER t-DCF EER t-DCF

Priviledged [9] CQCC-GMM 0.43% 0.0123 9.57% 0.2366
LFCC-GMM 2.71% 0.0663 8.09% 0.2116

Priviledged

CQCC-GMM 0.39% 0.0104 8.91% 0.2157
i-vector/PLDA 0.70% 0.0211 16.05% 0.4201
LFCC-ResNet 0.04% 0.0004 6.38% 0.1423

LA/PA 0.08% 0.0023 10.82% 0.2322

Pooled data
LFCC 0.08% 0.0023 14.38% 0.3231

ProdSpec 0.01% 0.0002 12.77% 0.2448
MGDCC 0.27% 0.0066 13.13% 0.2953

Ablation
(Linear mixture model)

LFCC 0.16% 0.0048 15.08% 0.3303
ProdSpec 0.17% 0.0023 23.25% 0.3348
Lambda 11.70% 0.2900 32.36% 0.7159
Mixture 0.17% 0.0031 14.41% 0.3355

Proposed - ResNet

LFCC 0.08% 0.0021 15.84% 0.3476
ProdSpec 0.03% 0.0002 15.73% 0.2725
Lambda 0.04% 0.0004 13.12% 0.2962
Mixture 0.01% 0.0002 9.87% 0.1890

Proposed - LCNN

LFCC 4.56% 0.1531 16.79% 0.4825
ProdSpec 0.09% 0.0030 11.36% 0.2160
Lambda 0.34% 0.0115 21.64% 0.3340
Mixture 0.03% 0.0003 8.32% 0.2073

available corpora by a factor of five, while making it more diverse, thus introducing regularization

effects that improved generalization to novel conditions. In fact, unlike past work, which focused on

simple classification pipelines or relatively small neural networks, via data augmentation we were

able to effectively train commonly used convolutional models, such as TDNNs.

As our main contribution, we introduced an ensemble-based approach with the goal of enabling

detectors to be effective across varying types of spoofing attacks. We thus proposed a setting

containing three components such that two of those are known to perform well individually in each

of the two considered attack strategies. The third is then trained so as to decide how to combine

the decision of the other systems depending on the input it is presented with. Evaluation led us to

the conclusion that the proposed approach outperforms the standard procedure of pooling diverse

training data and training a single model, and achieved competitive performance when compared

to specialized models, trained on data curated so as to match the evaluation condition known

in advance. In fact, for the specific case of PA attacks, our models outperformed the privileged

110

Table 3.11 – The t-DCF and EER results for the PA task on the development and evaluation sets. The
lower the values of min-tDCF and EER the better is the performance. Training for ensemble systems
is performed on top of combined LA and PA data.

System Description Dev. Eval.
EER t-DCF EER t-DCF

Priviledged [9] CQCC-GMM 9.87% 0.1953 11.04 0.2454
LFCC-GMM 11.96% 0.2554 13.54 0.3017

Priviledged

CQCC-GMM 9.70% 0.1840 11.16 0.2478
i-vector/PLDA 9.17% 0.2310 10.18 0.2687

ProdSpec-ResNet 0.87% 0.0232 1.98% 0.0579
LA/PA 1.28% 0.0453 2.06% 0.0728

Pooled data
LFCC 2.39% 0.0835 2.96% 0.1017

ProdSpec 0.85% 0.0251 4.31% 0.1538
MGDCC 3.89% 0.1174 5.99% 0.1858

Ablation
(Linear mixture model)

LFCC 2.12% 0.0752 5.66% 0.1847
ProdSpec 2.74% 0.0962 5.78% 0.2058
Lambda 15.48% 0.3522 19.48% 0.4771
Mixture 1.17% 0.0322 2.40% 0.0850

Proposed - ResNet

LFCC 1.87% 0.0656 3.99% 0.1408
ProdSpec 3.80% 0.1111 4.94% 0.1479
Lambda 1.32% 0.0317 2.29% 0.0641
Mixture 0.78% 0.0275 1.75% 0.0606

Proposed - LCNN

LFCC 17.46% 0.4357 19.62% 0.4844
ProdSpec 2.46% 0.0730 6.16% 0.1799
Lambda 1.22% 0.0414 2.33% 0.0830
Mixture 0.78% 0.0244 2.28% 0.0803

specialized systems. Given that most of the current work on countermeasures for spoofing attacks

focuses on specialized systems for particular types of attack strategies, we believe the approach

proposed herein is a first step in the direction of enabling ASV systems to be deployed free of the

risk of security breaches, since it performs well across the different attack strategies we considered

in our evaluation.

Chapter 4

Multi-level self-attentive TDNN: a

general and efficient approach to

summarize speech into discriminative

utterance-level representations

4.1 Preamble

This chapter is compiled from material extracted from [165], under review in Speech Communi-

cation.

4.2 Introduction

While in Chapter 2 our focus was directed at developing effective training strategies yielding

discriminative representation, we now turn our attention to model designs resulting in discrimi-

native features. In particular, time delay neural networks (TDNN), discussed in Chapter 1, have

been widely employed in speech processing applications, most notably within the space of voice bio-

metrics. The architecture consists of a sequence of dilated 1-dimensional convolution layers which

112

operate across the temporal dimension. The convolutional stack is followed by a temporal pooling

layer, which concatenates component-wise first- and second-order statistics over the time axis. The

outputs of the pooling layer are finally passed through two fully-connected layers to yield outputs

corresponding to conditional log-probabilities over the set of training speakers or languages.

The temporal pooling operation summarized above – or even more complex aggregation schemes,

such as those discussed in Chapter 2 for the ASV evaluation – is intended to enable the computation

of global utterance-level representations of the audio input and yield a single vector representing

an entire sequence of acoustic features from input signal. From a practical perspective, global

representations can be useful for tasks where the ability to process sequences of varying lengths

is required, such as speaker and/or spoken language identification. However, including a pooling

operation within a feed-forward architecture results in challenges and limitations, including:

1. Overly specialized architectures: lower-level (i.e., closer to inputs) or high-level (i.e., closer to

outputs) learned representations might be more or less effective depending on the underlying

task/data of interest. For instance, it’s unlikely that the same type of representation would

be useful for tasks such as speaker verification and language identification, since speaker-

dependent cues are generally independent of the underlying phonetics within a signal, while

determining languages does require phonetic information to be salient in learned representa-

tions. Given those variations across tasks, we argue determining the right level of abstraction

of learned representations, mostly via deciding where to perform global pooling operations,

is task-dependent and, as such, requires the design of a specific architecture for each different

task.

2. Ignoring complementary information: TDNNs perform pooling operations only after the out-

put of the final convolutional layer, thus global features from other levels of the model are not

explicitly accounted for. Such operation could discard potentially discriminatory informa-

tion for downstream tasks. We argue that a solution that simultaneously accounts for pooled

features across different parts of the model has the potential to yield more discriminative

learned representations, resulting in more generalizable models.

In order to address these limitations, we propose to modify the TDNN architecture and compute

the pooling operation independently across the five convolution layers of the model. Moreover, we

propose the use of a self-attentive layer [48] to give the model the ability to select, at training

Chapter 4. Multi-level self-attentive TDNN 113

time, the best combination scheme between features obtained at different levels and to compute a

novel sequence of global vectors as a function of the entire set of representations. Finally, a last

pooling operation is applied on the resulting sequence to yield an utterance-level representation.

The proposed scheme offers the following advantages over conventional TDNNs:

1. Versatility: as opposed to designing a new architecture for each new task, the proposed archi-

tecture introduces a data-oriented approach that allows for the model to learn which layers

provide more discriminative information for global pooling. As such, a single architecture

can be re-used across different tasks, as will be observed in the evaluation section.

2. Generality: global factors in each layer are explicitly considered, as opposed to just the last

convolutional layer. As such, complementary information obtained from different layers can

be leveraged. We further highlight that such a scheme defines classes of models that contain

simple aggregation mechanisms as particular cases; i.e., simple schemes such as averaging

pooled representations from different levels, or selecting a specific layer can all be recovered

by the proposed model if those are the best solutions for the task/data at hand.

3. Learnability: The pooling operation across layers acts as skip/residual connections, thus

yielding loss landscapes that are easier to train against [4, 45].

4. Transferability: We further remark that the proposed pooling strategy can be used in any

architecture that keeps the data dimension fixed throughout the encoder (e.g., ResNets [4]).

We thus gauge the versatility of the proposed architecture, referred to as multi-level self-attentive

TDNN (ML-TDNN), on two end-to-end tasks: spoken language identification and spoofing attack

detection. Moreover, we further evaluate the proposed model when it is used as an embedding

encoder for speaker verification. Across all such cases, we find evidence supporting the claim that

global information from low-level layers contains complementary information that can be leveraged

at later stages of the model to improve performance.

4.3 Proposed Model

The proposed model builds upon the original TDNN architecture discussed in Chapter 1, illus-

trated in Figure 1.7, and further detailed in Table 1.1. In that case, an input sequence of length T is

denoted as x[1:T] representing ordered acoustic feature vectors of dimension d (e.g., MFCCs), where

114

xT

. . .

x1 ...

...

...

Conv. 1 Conv. 5

V

Pooling Pooling

V1 V5

...A1 A5

Pooling

Self-attention

y1
1

...

yT
1

... y1
5

...

yT
5

Figure 4.1 – Proposed TDNN with multi-level self-attentive temporal pooling.

each xi ∈ Rd, i ∈ [T],. The set of features output by a stack of layers is denoted by y1:T ∈ RD, i ∈ [T].

For the standard TDNN, the time pooling operation performed at the end of the convolutional stack

converts the sequence y1:T into an utterance-level representation V , being the only model compo-

nent able to summarize the content of the sequence into a global representation. We argue that

this is: i) too restrictive, as it ignores valuable information available in earlier layers of the model,

and ii) too specific, since different tasks should require designers to search for the right layer where

to apply the pooling operation. As such, we propose the multi-level pooling scheme illustrated in

Figure 4.1. In this case, we extract a sequence of local descriptors yk
[1:T] for each convolution layer,

i.e., k ∈ [1, 2, ..., 5]. The same temporal pooling operation described above is now performed across

every layer k, thus yielding a sequence of global descriptors denoted V[1:5].

Next, we employ a self-attention layer [48] (c.f. Chapter 1 for a discussion on attentive layers)

so that each Vk can be taken into account depending on how relevant they are in order to result in

discriminative representations. In other words, we take advantage of the depth-wise set of global

summaries of the input sequence by including a sequence modeling component into the architecture.

In our case, the number of self-attention heads is treated as a hyperparameter, and we empirically

found the value of 16 to yield good results for the evaluation tasks considered herein. It is important

Chapter 4. Multi-level self-attentive TDNN 115

to emphasize that even though the computation cost of self-attention layers scales with the square

of the input length, the proposed model is favoured by the fact that the sequence length is fixed and

moderate, as it corresponds to the depth of the convolutional stack (i.e., 5). Moreover, such a layer

defines a class of models that include schemes as simple as averaging/selection to more complicated

non-linear relationships between elements. However, any alternative sequence modeling layer can

be used in this case yielding variations of the proposed model.

We refer to the sequence output by the self-attentive transformation as A[1:5]. Lastly, in order

to combine the set of global descriptors A[1:5] into a single representation, we make use of a final

statistical pooling layer that operates across the depth of the network, rather than across time. This

yields the global descriptor:

V = µ(Ak). (4.1)

We then proceed as usual and feed V into a sequence of fully-connected components leading to the

output layer. Training is carried out so that the parameters of all the components described above

are learned jointly after being randomly initialized.

4.4 Experimental Setup

The empirical evaluations carried out herein are aimed at highlighting the versatility of the

proposed architecture; as such, we show that re-using it across tasks does not require data-specific

adaptations. Thus, we deliberately evaluate the proposed model across different tasks and datasets.

Datasets and tasks used for evaluation are as follows (c.f. Chapter 1 for further details on all such

datasets):

Detecting Spoofing Attacks For the case of spoofing detection, the evaluation setting intro-

duced for the ASVspoof 2019 challenge [9] is considered with its two independent sub-tasks: logical

access attacks (LA) and physical access attacks (PA) representing generated and simulated replay

attacks, respectively.

Language Identification For the language identification task, we consider the data and eval-

uation conditions introduced for the AP18-OLR Challenge [8]. The data corresponds to audio

116

from ten languages, and the following evaluation conditions were defined: short-duration, confusing

languages, and unseen languages

Speaker Verification The second release of the VoxCeleb corpus [7] is employed for evaluat-

ing the ML-TDNN when it is used as an embedding encoder. The dataset is given by audio

collected from YouTube videos corresponding to interviews under unconstrained acoustic environ-

ments. Three evaluations are made available, namely: the test set of the first release of the corpus,

the full training set of the first release (unseen during training) referred to as extended, and a hard

set of trials, where available meta-data was used to create trials likely to be difficult to discriminate.

4.5 Experimental Results and Discussion

In the experiments below, we aim to find evidence in support of the following claims:

1. A single architecture can be re-used across a set of distinct tasks while achieving high pre-

diction performance, as well as yielding effective representations for open-set tasks.

2. Global features collected from low-level layers contain complementary information that can

be leveraged to improve accuracy.

We further remark that, since self-attentive aggregation includes as particular cases simple

schemes, such as averaging representations obtained from all the layers as well as selecting specific

layers to be used, we focus our computation budget on baseline systems that do not explicitly use

any global summary of low-level representations. To further gauge the effectiveness of the proposed

methods, results are compared with state-of-the-art approaches recently reported in the literature.

4.5.1 Detecting spoofing attacks

For end-to-end detection of spoofing attacks, binary classifiers are trained following the strategies

discussed in [42]. More specifically, audio features are extracted such that 30 linear frequency

cepstral coefficients [100] (LFCC) stacked with delta and double-delta coefficients are used for logical

access attack detection. For physical access attacks, in turn, product spectra (ProdSpec) [117] with

257 frequency bins are used. Train data is augmented offline following the approach in [151] and

Chapter 4. Multi-level self-attentive TDNN 117

Table 4.1 – Detection performance on the evaluation set of the logical access task of the ASVspoof
2019.

System EER (%) min-tDCF

Challenge baselines [9] CQCC-GMM 9.57 0.2366
LFCC-GMM 8.09 0.2116

Our baselines

CQCC-GMM 8.91 0.2157
ivector/PLDA 16.55 0.4201
ResNet [152] 6.38 0.1423
TDNN [151] 7.00 0.1653

Proposed ML-TDNN 6.07 0.1327

Table 4.2 – Detection performance on the evaluation set of the physical access task of the ASVspoof
2019.

System EER (%) min-tDCF

Challenge baselines [9] CQCC-GMM 11.04 0.2454
LFCC-GMM 13.54 0.3017

Our baselines

CQCC-GMM 11.16 0.2478
ivector/PLDA 10.18 0.2687
ResNet [152] 1.98 0.0579
TDNN [151] 1.77 0.0597

Proposed ML-TDNN 1.32 0.0470

the sampling approach proposed in [42] to deal with unbalanced classes is further employed. The

development data is used for cross-validation during model selection and hyperparameter tuning.

We report performance in terms of the equal error rate (EER) and the normalized minimum tandem

detection cost function (min-tDCF) [159] (see [9] for a detailed description and motivation for these

evaluation metrics). Lower values of the metrics suggest improved performance. Experimental

results are reported in Tables 4.1 and 4.2 for the logical and physical access attacks, respectively. In

addition to the conventional TDNN approach [151], several other baselines are considered, including

the two used in the ASVspoof 2019 challenge [9]. In particular, methods based on ResNets [4] trained

on top of the same features, GMM-based classifiers trained with LFCC or constant-Q cepstral

coefficients (CQCC), and a system based on the i-vector/PLDA combination [1, 106] are explored.

As can be seen from both tables, the proposed ML-TDNN reduced EER and min-tDCF across both

attack methods, thus better separating attacks and genuine samples. This can be due to an induced

more well-conditioned loss landscape and/or access to global information in early layers close to the

original data.

118

4.5.2 Spoken language identification

For spoken language identification, we train models using the multi-task method described in

[134] and Chapter 2, where a metric-learning approach is used along with a standard maximum

likelihood training strategy. The training loss is minimized using SGD and the same learning rate

schedule discussed in [48] is employed. Evaluation is performed under the end-to-end setting so that

predictions are made by directly forwarding data through the model, without using any external

classifier. We do so by following the approach discussed in [133], where the output unit corresponding

to the claimed class in a trial is used as a verification score. Regarding data preparation, pre-

processing steps follow those discussed in [133].

Results are reported in Table 4.3 in terms of EER and the average cost performance (Cavg).

Details about both metrics can be found in [8]. We highlight that the reported results were computed

using the official scripts released for the AP18-OLR challenge. We further remark that results are

reported for two variants of the proposed model, indicated by ML-TDNN (A) and (B) in Table

4.3, where differences are based on the validation datasets used to tune their hyperparamaters.

More specifically, for model (A), only the short-duration partition of the development data was

used, whereas for model (B) the complete development set was used. As can be seen from the

obtained results, an apparent trade-off is found regarding the performance on the short-duration

condition when using model (A). In particular, while using the short-duration development data

improved accuracy under this condition, it degraded the performance on the other tasks. For

practical implementations, we recommend using both models (A) and (B) in parallel and mixing

their scores. In Table 4.3, we report the performance given by the classifier resulting from the sum

of scores provided by models A and B (last row, termed A+B). Lastly, the proposed ML-TDNN

method is shown to outperform conventional TDNNs across all the three evaluation conditions. In

fact, with the exception of the short-duration condition, the proposed ML-TDNN outperformed all

the benchmarks, including those relying on ResNets with recurrent pooling [166], which considers a

complex training strategy involving pre-training steps of convolutional layers, shown to be important

for short-duration conditions.

Chapter 4. Multi-level self-attentive TDNN 119

Table 4.3 – Spoken language identification performance for the three evaluation conditions considered
on the AP18-OLR challenge.

Short-duration Confusing Unseen
EER (%) Cavg EER (%) Cavg EER (%) Cavg

i-vector+Cosine [166] 18.02 0.178 10.71 0.107 7.77 0.058
i-vector+PLDA [166] 17.50 0.174 10.66 0.106 7.51 0.052
ResNet (Stats.) [166] 10.85 0.112 3.63 0.036 4.23 0.020

ResNet (Attention) [166] 10.97 0.111 4.34 0.043 4.58 0.023
ResNet (LSTM) [166] 11.76 0.115 3.34 0.032 4.00 0.021

TDNN 13.16 0.126 4.30 0.058 4.80 0.036
ML-TDNN (A) 11.17 0.109 3.23 0.033 4.20 0.023
ML-TDNN (B) 14.68 0.138 2.80 0.029 3.53 0.016

ML-TDNN (A+B) 10.23 0.101 2.42 0.025 3.06 0.015

4.5.3 Speaker Verification

In the case of embedding encoders aimed at speaker verification tasks, both audio pre-processing

and model training closely follow the recipe in [134], i.e., a multi-task training procedure uses both

speaker recognition with the additive margin softmax approach [113], and supervised contrastive

learning in order to train the embedding encoders. Hyperparameter selection is performed via

random search with cross-validation performed using the test data of the first release of VoxCeleb.

The best model is then used to evaluate the other partitions. We remark that we chose not to

employ test-time augmentation given the computation overhead it incurs. Scoring of test trials is

efficiently performed via simply computing the cosine similarity between embedded audio of both

enrollment and test recordings considering the full audio in a single forward pass without the need

for multiple embedding runs for each test trial, as employed by the other approaches (e.g., [7]).

For scoring, given that the architecture we evaluate is significantly changed with respect to

the standard TDNN, we compare different embedding spaces as induced by outputs of different

layers of the model (as indicated by ML-TDNN “I” or “O” indicating inner or outer dense layers,

respectively). An illustration of the model along with the layers where representations are collected

at testing phase are shown in Fig. 4.2. We then analyze a similar scheme as that reported in [128],

where we perform prediction by combining pieces of evidence from different parts of the model. In

our case, however, we fuse the scores directly, as opposed to the features, since we observed that

to yield better results. Performance resulting from this score combination scheme is indicated by

“(I+O)” in Table 4.4, where the achieved EER values obtained are reported. As can be seen, the

proposed approach outperforms a number of benchmarks. Moreover, fusing scores from features

120

xT

. . .

x1

Conv.
Stack

V

Pooling

Dense Layer 1 (I)

Pooling

Test embedding (I)

...

Dense Layer 2 (O)

Output Layer

Test embedding (O)

Figure 4.2 – Illustration of the use of the proposed model as an embedding encoder. Two embedding
layers are considered as indicated by “I” or “O” as a reference to the inner or outer dense layers.
Scoring trials independently and averaging the scores (I+O) was observed to yield improvements in
most cases.

obtained in different layers shows to be a simple yet effective strategy, suggesting that, also at testing

time, combining available information collected in different parts of the model can be beneficial and

result in more effective decision scores.

4.6 Conclusion

We introduced a variation of the TDNN architecture in which temporal pooling operations

are performed across all the layers of the convolutional stack rather than only at its end, as in

the standard x-vector architecture. We term the proposed architecture ML-TDNN (multi-level

self-attention TDNN). In particular, we propose a model component aimed at combining global

representations from different layers by treating global statistics computed in different parts of

Chapter 4. Multi-level self-attentive TDNN 121

Table 4.4 – Verification performance on the VoxCeleb test partitions reported in terms of EER (%).
Performance of our models is reported for representations obtained in different layers: (I)–Inner or
penultimate dense layer, (O)–Outer or last dense layer, (I+O)–their average.

Scoring EER (%)
VoxCeleb1 test set

Chung et al. [7] Cosine 3.95
Xie et al. [167] Cosine 3.22

Hajavi et al. [168] Cosine 4.26
Xiang et al. [169] Cosine 2.69
Kaldi recipe [86] PLDA 2.51

Monteiro et al. [86] Learned sim. 2.51
Wang et al. [127] Cosine 2.41

ML-TDNN (I) (Ours) Cosine 2.68
ML-TDNN (O) (Ours) Cosine 2.24

ML-TDNN (I+O) (Ours) Cosine 2.14
Extended

Chung et al. [7] Cosine 4.42
Xie et al. [167] Cosine 3.13

Xiang et al. [169] Cosine 2.76
Kaldi recipe [86] PLDA 2.60

Monteiro et al. [86] Learned sim. 2.57
Wang et al. [127] Cosine 2.59

ML-TDNN (I) (Ours) Cosine 2.71
ML-TDNN (O) (Ours) Cosine 2.33

ML-TDNN (I+O) (Ours) Cosine 2.20
Hard

Chung et al. [7] Cosine 7.33
Xie et al. [167] Cosine 5.06

Xiang et al. [169] Cosine 4.73
Kaldi recipe [86] PLDA 4.62

Monteiro et al. [86] Learned sim. 4.73
Wang et al. [127] Cosine 4.33

ML-TDNN (I) (Ours) Cosine 5.77
ML-TDNN (O) (Ours) Cosine 4.06

ML-TDNN (I+O) (Ours) Cosine 4.34

the model as sequences, and processing said sequences using a transformer-style multi-head self-

attentive layer. Evaluation is performed on two end-to-end tasks (spoofing attack detection and

language identification) and an embedding task (speaker verification). Experimental results showed

that the proposed method consistently outperformed various benchmarks that use global features

obtained from a single layer, thus highlighting that complementary information could be efficiently

leveraged from low-level layers close to the input. Moreover, baselines in each considered task

consisted of models specialized to said task. The proposed method achieved better (or at par) results

122

than such specialized models, thus showing their generalization capabilities across tasks. Further

improvements could also be seen once, at testing time, self-fusion was applied from representations

obtained from different layers of the same model.

The main limitation of the proposed method is the fact that the obtained versatility comes at an

additional computational cost, as pooling operations across several layers and combining the result-

ing representations incurs additional computations. As such, resource-constrained settings, such as

on-device (edge) applications might not directly benefit from this type of model. Notwithstanding,

bootstrapping mechanisms for model compression or knowledge distillation [75] could be used to

alleviate this issue.

Chapter 5

Learning (pseudo) metric spaces for

discriminative verification

5.1 Preamble

This chapter is compiled from material extracted from [86], published in the Proceedings of the

37th International Conference on Machine Learning (ICML).

5.2 Introduction

In several settings, learning useful representations is generally a side effect of the solution of a

pre-defined task. For example, while learning the decision surface in a classification problem, inner

layers of artificial neural networks are shown to make salient cues of input data which are discrim-

inable. Moreover, in unsupervised settings, bottleneck layers of autoencoders as well as approximate

posteriors from variational autoencoders have all been shown to embed relevant properties of input

data which can be leveraged in downstream tasks. Rather than employing a neural network to

solve some task and hope learned features are useful, approaches such as siamese networks [170],

which can be included in a set of approaches commonly referred to as Metric Learning, have been

introduced with the goal of explicitly inducing features holding desirable properties. In this setting,

an encoder is trained so as to minimize or maximize a distance measured across pairs of encoded

124

examples, depending on whether the examples within each pair belong to the same class or not.

Follow-up work leveraged this idea for several applications [5, 6], which include, for instance, the

verification problem in biometrics, as is the case of FaceNet [62] and Deep-Speaker [64], which

are used for face and speaker recognition, respectively. However, as pointed out in recent work

[62, 63, 78, 64, 65], careful selection of training pairs is crucial to ensure a reasonable sample com-

plexity during training given that most triplets of examples quickly reach the condition such that

distances measured between pairs from the same class are smaller than those of the pairs from

different classes.

Here, we are concerned with the metric learning setting, and more importantly, we turn our

attention to its application to the verification problem, i.e., that of comparing data pairs and

determining whether they belong to the same class. The verification problem arises in applications

where comparisons of two small samples are required such as face/finger-print/voice verification

[76], image retrieval [77, 78], and so on. At testing time, inference is often performed to answer two

types of questions:

1. Do two given examples belong to the same class?

2. Does a test example belong to a specific claimed class?

In both the cases, test examples might belong to classes never presented to the model during

training. Current verification approaches are usually comprised of several components trained in a

greedy manner [79, 3], and an end-to-end approach is still lacking.

Euclidean spaces will not, in general, be suitable for representing any desired type of structure

expressed in the data (e.g., asymmetry [60] or hierarchy [80]). To avoid the need to select an

adequate distance given every new problem we are faced with, as well as to deal with the training

difficulties mentioned previously, we propose to augment the metric learning framework and jointly

train an encoder (which embeds raw data into a lower-dimensional space) and a (pseudo) distance

model tailored to the problem of interest. An end-to-end approach for verification is then defined by

employing such pseudo-distance to compute similarity scores. Both models together, parameterized

by neural networks, define a (pseudo) metric space in which inference can be performed efficiently

since now semantic properties of the data (e.g., discrepancies across classes) are encoded by scores.

While doing so, we found several interpretations appear from such learned pseudo-distance, and

it can be further interpreted as a likelihood ratio in a Neyman-Pearson hypothesis test, as well as

Chapter 5. Learning (pseudo) metric spaces for discriminative verification 125

an approximate divergence measure between the joint distributions of positive (same classes) and

negative (different classes) pairs of examples. Moreover, even though we do not enforce models to

satisfy properties of an actual metric1, we empirically observe such properties to appear.

5.3 The verification problem

We consider the definition and notation introduced in Chapter 1 for the verification problem,

which we intentionally partially re-introduce here for clarity since it involves the definition of the

notation used throughout the chapter. In summary, given data elements x ∈ X , each x can be

associated to a class label y ∈ Y through a labeling function f : X → Y. We define a trial

T as a pair of sets of examples {Xi, Xj}, provided that f(xk
i) = f(xl

i) ∀ k, l ∈ {1, 2, ..., |Xi|}2

and f(xk
j) = f(xl

j) ∀ k, l ∈ {1, 2, ..., |Xj |}2, so that we can assign class labels to such sets Xm

defining f(Xm) = f(xm) ∀ xm ∈ Xm. The verification problem can be thus viewed as, given a trial

T i,j = {Xi, Xj}, decide whether f(Xi) = f(Xj), in which case we refer to T as target trial, or

f(Xi) 6= f(Xj) and the trial will be called non-target.

Moreover, under the Neyman-Pearson approach [11], verification is seen as a hypothesis test,

where H0 and H1 correspond to the hypothesis such that T is target or otherwise [12], and the test

is performed through the following likelihood ratio (LR):

LR = p(T |H0)
p(T |H1)

, (5.1)

where p(T |H0) and p(T |H1) correspond to models of target, and non-target trials. The decision

is made by comparing LR with a threshold δ. A common approach to approximate LR through

generative approaches [13] employs a universal background model (GMM-UBM, [14]) trained on

data from all available classes, while the numerator is a fine-tuned model on enrollment data so

that, for trial {X1, X2}, LR will be:

LR = pX1(X2)
pUBM (X2)

= pXEnroll
(xtest)

pUBM (xtest)
. (5.2)

1Symmetry, identity of indiscernibles, and triangle inequality.

126

5.4 Learning pseudo metric spaces

We consider the setting where both an encoding mechanism, as well as some type of similarity

or distance across data points are to be learned. Assume E : RD → Rd and D : Rd×Rd → (0, 1) are

deterministic mappings which will be referred to as encoder and distance model, respectively, and

will be both parameterized by neural networks. Such entities resemble a metric-space, thus we will

refer to it as pseudo metric space. We empirically observed that introducing distance properties in

D, i.e., by constraining it to be symmetric and enforcing it to satisfy the triangle inequality, did

not result in improved performance, yet rendered training unstable. However, since trained models

are found to approximately behave as an actual distance, we make use of the analogy, but further

provide alternative interpretations of D’s outputs.

Data samples are such that x ∈ X ⊂ RD, and z = E(x) represents embedded data in Rd. It will

be usually the case that D � d. Once more, each data example can be further assigned to one of L

class labels through a labeling function f : X → {1, ..., L}. Moreover, we define positive and negative

pairs of examples denoted by + or − superscripts such that x+ = {xi, xj} =⇒ f(xi) = f(xj), as

well as x− = {xi, xj} =⇒ f(xi) 6= f(xj). The same notation is employed in the embedding space

so that z+ := E(x+) := {E(xi), E(xj)} =⇒ f(xi) = f(xj), and z− := E(x−) := {E(xi), E(xj)} =⇒

f(xi) 6= f(xj). We will denote the sets of all possible positive and negative pairs by X+ and X−,

respectively, and further define a probability distribution p over X which, along with f , will yield

p+ and p− over X+ and X−. Similarly to the setting in [171], which introduces a discriminator over

pairs of samples, we are interested in E∗ and D∗ such that:

E∗,D∗ ∈ arg min
E,D

− Ex+∼p+ log(D ◦E(x+))− Ex−∼p− log(1−D ◦E(x−)), (5.3)

and ◦ indicates composition so that D ◦E(x+) := D(E(x+)). Such problem is separable in the pa-

rameters of E and D and iterative solution strategies might include either alternate or simultaneous

updates. We found the latter to converge faster in terms of wall-clock time and both approaches

reach similar performance. We thus perform simultaneous updates while training.

The problem stated in (5.3) corresponds to finding E and D which will ensure that semantically

close or distant samples, as defined through f , will preserve such properties in terms of distance in

the new space, while doing so in lower dimension. We stress the fact that class labels define which

Chapter 5. Learning (pseudo) metric spaces for discriminative verification 127

samples should be close together or far apart, which means that the same underlying data can yield

different pseudo metric spaces if different semantic properties are used to define class labels. For

example, if one considers that, for a given set of speech recordings, class labels are equivalent to

speaker identities, recordings from the same speaker are expected to be clustered together in the

embedding space, while different results can be achieved if class labels are assigned corresponding

to spoken language, acoustic conditions, and so on.

5.4.1 Different interpretations for the distance model

Besides the view of D as a distance-like object defining a metric-like space {E(X),D}, here

we discuss some other possible interpretations of its outputs. We start by justifying the choice

of the training objective defined in (5.3) by showing it to yield the likelihood ratio of particular

trials of type I corresponding to a single enrollment example against a single test example, i.e.,

T = {xenroll, xtest}. In both of the next two propositions, proofs directly reuse results from the

contrastive estimation and generative adversarial networks literature [172, 173] to show D can be

used for verification.

Proposition 1. The optimal D for any fixed E yields a simple transformation of the likelihood

ratio stated in Eq. 1.1 for trials of the type T = {xenroll, xtest}.

Proof. We first define p+
z and p−

z , which correspond to the counterparts of p+ and p− induced

by E in the embedding space. Now consider the loss L defined in Eq. 5.3:

L = −Ez+∼p+
z

log(D(z+))− Ez−∼p−
z

log(1−D(z−)),

= −
∫

Z+

p+
z (z+) log(D(z+))−

∫
Z−

p−
z (z−) log(1−D(z−)),

= −
∫
Z′

p+
z (z′) log(D(z′)) + p−

z (z′) log(1−D(z′)), (5.4)

128

where Z ′ corresponds to Z+ ∪ Z− or equivalently E(X+) ∪ E(X−). Since D(z′) ∈ (0, 1) ∀ z′ ∈ Z ′,

the above integrand p+
z (z′) log(D(z′)) + p−

z (z′) log(1−D(z′)) has its maximum at:

D∗(z′) = p+
z (z′)

p+
z (z′) + p−

z (z′)
= 1

1 +
(

p+
z (z′)

p−
z (z′)

)−1 . (5.5)

The rightmost equality on the above is of course only valid for z′ ∈ supp(p+
z). Nevertheless,

D∗(z′) is in any case meaningful for verification. In fact, as will be discussed in Proposition 2,

the optimal encoder is the one that induces supp(p+
z) ∩ supp(p−

z) = ∅. Considering trial T =

{xenroll, xtest}, we can write the ratio p+
z (z′)

p−
z (z′) as:

p+
z (z′)

p−
z (z′)

= p+
z (E(xenroll), E(xtest))

p−
z (E(xenroll), E(xtest))

:= p(T |H0)
p(T |H1)

.□ (5.6)

Proposition 1 indicates that the discussed setting can be used in an end-to-end manner to yield

verification decision rules against a threshold δ for trials of a specific type.

The following lemma will be necessary for the next result:

Lemma 1. If supp(p+
z) ∩ supp(p−

z) = ∅, any positive threshold 0 < δ < ∞ yields optimal

decision rules for trials T = {xenroll, xtest}.

Proof. We prove the lemma by inspecting the decision rule under the considered assumptions

in the two possible test cases: if T is non-target =⇒ p+
z (E(xenroll),E(xtest))

p−
z (E(xenroll),E(xtest)) = 0 < δ. If T is target

=⇒ p+
z (E(xenroll),E(xtest))

p−
z (E(xenroll),E(xtest)) →∞ > δ, completing the proof. □

We now proceed and use the optimal discriminator into L, which yields the following result for

the optimal encoder:

Proposition 2. Minimizing L yields optimal decision rules for any positive threshold.

Chapter 5. Learning (pseudo) metric spaces for discriminative verification 129

Proof. We plug D∗ into L so that for any z′ we obtain:

L =− Ez′∼p+
z

log
(p+

z (z′)
p+

z (z′) + p−
z (z′)

)
− Ez′∼p−

z
log

(p−
z (z′)

p+
z (z′) + p−

z (z′)

)
=−KL

(
p+

z ||p+
z + p−

z

)
−KL

(
p−

z ||p+
z + p−

z

)
= log 4− 2JSD(p+

z ||p−
z).

(5.7)

L is therefore minimized (L∗ = 0) iff E yields supp(p+
z)∩supp(p−

z) = ∅, which results in optimal

decision rules for any positive threshold, invoking lemma 1. □

We thus showed the proposed training scheme to be convenient for 2-sample tests under small

sample regimes, such as in the case of verification, given that: (i) the distance model is also a

discriminator which approximates the likelihood ratio of the joint distributions over positive and

negative pairs2, and the encoder will be such that it induces a high divergence across such distri-

butions, rendering their ratio amenable to decision making even in cases where verified samples are

as small as single enrollment and test examples.

On a speculative note, we provide yet another view of D by defining the kernel function K = D.

If we assume K to satisfy Mercer’s condition (which won’t likely be the case within our setting since

K will not be symmetric nor positive semidefinite), we can invoke Mercer’s theorem and state that

there is a feature map to a Hilbert space where verification can be performed through inner products.

Training in the described setting could be viewed such that minimizing L becomes equivalent to

building such a Hilbert space where classes can be distinguished by directly scoring data points

one against the other. We hypothesize that constraining K to sets where Mercer’s condition does

hold might yield an effective approach for the problems we consider herein, which we intend to

investigate in future work.

5.4.2 Training

We now describe the procedure we adopt to minimize L as well as some practical design decisions

made based on empirical results. Both E and D are implemented as neural networks. In our

2The joint distribution over negative pairs is simply the product of marginals: p−(xi, xj) = p(xi)p(xj).

130

experiments, E will be convolutional (2-d for images and 1-d for audio) while D is a stack of fully-

connected layers which take as input concatenated embeddings of pairs of examples. Training is

carried out with standard mini-batch SGD with momentum. We perform simultaneous update

steps for E and D since we observed that to be faster than alternate updates, while yielding the

same performance. Standard regularization strategies such as weight decay and label smoothing

[81] are also employed. We empirically found that employing an auxiliary multi-class classification

loss significantly accelerates training. Since our approach requires labels to determine which pairs

of examples are positive or negative, we make further use of the labels to compute such auxiliary

loss, which will be indicated by LCE . To allow for computation of LCE , we project z = E(x) onto

the simplex ∆L−1 using a fully-connected layer. Minimization is then performed on the sum of the

two losses, i.e., we solve E ,D ∈ arg min L′ = L+ LCE , where the CE subscript in LCE indicates

the multi-class cross-entropy loss.

All hyperparameters are selected with a random search over a pre-defined grid. For the par-

ticular case of the auxiliary loss LCE , besides the standard cross-entropy, we also ran experiments

considering one of its so-called large margin variations. We particularly evaluated models trained

with the additive margin softmax approach [113]. The choice between the two types of auxiliary

losses (standard or large margin) was a further hyperparameter and the decision was based on the

random search over the two options. The grid used for hyperparameters selection along with the

values chosen for each evaluation are presented in Section 5.6. A pseudocode describing our training

procedure is presented in Algorithm 2.

Algorithm 2 Training procedure.
E ,D = InitializeModels()
repeat

x, y = SampleMiniBatch()
z = E(x)
z+ = GetAllPositivePairs(z, y)
z− = GetAllNegativePairs(z, y)
y′ = ProjectOntoSimplex(z) # i.e., a learned linear layer followed by softmax.
L′ = L(z+, z−,D) + LCE(y′, y)
E ,D = UpdateRule(E ,D,L′) # i.e., run optimizer step.

until Maximum number of iterations reached
return E ,D

Chapter 5. Learning (pseudo) metric spaces for discriminative verification 131

5.5 Evaluation

To evaluate the described framework, we rely on three sets of experiments: (i) a proof-of-

concept analysis, (ii) a large-scale ASV benchmark, and (iii) extra experiments, where we analyze

the behavior of the proposed method in terms of the presence of distance properties, its performance

under distribution shifts, and its sensitivity to the choice of architecture for the distance model. In

the first part of our evaluation, we run proof-of-concept experiments that take advantage of well-

established image datasets and models to simulate verification settings and validate our proposal

when compared against metric learning under standard distances. For that, we report results on all

trials created for the test sets of CIFAR-10 and MiniImageNet. In the former, the same 10 classes

of examples appear for both train and test partitions, in what we refer to as closed set verification.

For the case of MiniImageNet, since that dataset was designed for few-shot learning applications,

we have an open set evaluation for verification since there are 64, 16, and 20 disjoint classes of

training, validation, and test examples.

We then move on to a large scale realistic evaluation. To this end, we make use of the VoxCeleb

corpus [82, 7], corresponding to audio recordings of interviews taken from Youtube videos, which

means there’s no control over the acoustic conditions present in the data. Moreover, while most of

the corpus corresponds to speech in English, other languages are also present, so that test recordings

are from different speakers relative to the train data, and potentially also from different languages

and acoustic environments. We specifically employ the second release of the corpus so that training

data is composed of recordings from 5994 speakers while three test sets are available: (i) VoxCeleb1

Test set, which is made up of utterances from 40 speakers, (ii) VoxCeleb1-E, i.e., the complete

first release of the data containing 1251 speakers, and (iii) VoxCeleb1-H, corresponding to a sub-

set of the trials in VoxCeleb1-E so that non-target trials are designed to be hard to discriminate

by using the meta-data to match factors, such as nationality and gender of the speakers. We then

report experiments performed to observe whether D’s outputs present properties of actual distances,

and finally check the influence of D’s architecture on final performance.

In our final set of experiments, we study properties of the proposed pair of models by analyzing to

which extent properties of actual distances hold after the proposed training procedure is performed.

To evaluate the behavior of the method when training and testing data distributions shift apart,

we consider the evaluation case introduced within the NIST SRE 2018, where the languages spoken

132

on test recordings are not the same as those corresponding to training data. Finally, we evaluate

the sensitivity of the approach to choices in the architecture of D. In particular, we check for the

effect of the depth of D in terms of its number of layers in the resulting performance.

Our main baselines for proof-of-concept experiments correspond to the same encoders as in the

evaluation of our proposed approach, while D is dropped and replaced by the Euclidean distance.

In those cases, however, in order to get the most challenging baselines, we perform online selection

of hard negatives. Our baselines closely follow the setting described in [134]. All such baselines

are referred to as triplet in the tables with results as a reference to the training loss in those

cases. Unless specified, all models, baseline or otherwise, are trained from scratch, and the same

computation budget is used for training and hyperparameter search for all models we trained.

Performance is assessed in terms of the difference to 1 of the area under the operating curve,

indicated by 1-AUC in the tables, and also in terms of equal error rate (EER). EER indicates the

operating point (i.e., threshold selection) at which the miss and false alarm rates are equal. Both

metrics are better when closer to 0. We consider different strategies to score test trials. Both cosine

similarity and PLDA are considered in some cases, and when the output of D is directly used as a

score we then indicate it by E2E in reference to end-to-end3. We further remark that cosine similarity

can also be used to score trials in our proposed setting, and we observed some performance gains

when applying simple sum fusion of the two available scores. Additional implementation details are

included in Section 5.6.

5.5.1 Proof-of-concept evaluation on CIFAR-10 and MiniImageNet

The encoder for evaluation on both CIFAR-10 and MiniImageNet was implemented as a ResNet-

18 [4]. Results are reported in Table 5.1. Results indicate the proposed scheme indeed yields ef-

fective inference strategies under the verification setting compared to traditional metric learning

approaches, while using a more simplified training scheme since: (i) no sort of approach for harvest-

ing hard negative pairs (e.g., [62, 78]) is needed in our case, and those are usually expensive, (ii) the

method does not require large batch sizes, and (iii) we employ a simple loss with no hyperparam-

eters that have to be tuned, as opposed to margin-based triplet or contrastive losses. We further

highlight that the encoders trained with the proposed approach have the possibility for trials to be

3Scoring trials with cosine similarity can be also seen as end-to-end.

Chapter 5. Learning (pseudo) metric spaces for discriminative verification 133

Table 5.1 – Evaluation of models trained under the proposed approach on image data.

Scoring EER 1-AUC

CIFAR-10

Triplet Cosine 3.80% 0.98%

Proposed
E2E 3.43% 0.60%

Cosine 3.56% 1.03%
Cosine + E2E 3.42% 0.80%

MiniImageNet
(Validation)

Triplet Cosine 28.91% 21.58%

Proposed
E2E 28.64% 21.01%

Cosine 30.66% 23.70%
Cosine + E2E 28.49% 20.90%

MiniImageNet
(Test)

Triplet Cosine 29.68% 22.56%

Proposed
E2E 29.26% 22.04%

Cosine 32.97% 27.34%
Cosine + E2E 29.32% 22.24%

further scored with cosine similarities, which yields a performance improvement in some cases when

combined with D’s output.

5.5.2 Large-scale verification with VoxCeleb

We now proceed and evaluate the proposed scheme in a more challenging scenario corresponding

to realistic audio data for speaker verification. To do so, we implement E as the well-known time-

delay architecture [108] employed within the x-vector setting, showed to be effective in summarizing

speech into speaker- and spoken language-dependent representations [3, 174]. The model consists

of a sequence of dilated 1-dimensional convolutions across the temporal dimension, followed by a

time pooling layer, which simply concatenates element-wise first- and second-order statistics over

time. Statistics are finally projected into an output vector through fully-connected layers. Speech

is represented as 30 MFCCss obtained with a short-time Fourier transform using a 25ms Hamming

window with 60% overlap. All the data is downsampled to 16kHz beforehand. An energy-based

voice activity detector is employed to filter out non-speech frames. We augment the data by creating

noisy versions of training recordings using exactly the same approach as in [3]. Further practical

details are discussed in Section 5.6.

We compared our models with a set of published results as well as the results provided by the

popular Kaldi recipe4, considering scoring using cosine similarity or PLDA. For the Kaldi baseline,

we found the same model as ours to yield relatively weak performance. As such, we decided to search
4Kaldi recipe: https://github.com/kaldi-asr/kaldi/tree/master/egs/voxceleb

https://github.com/kaldi-asr/kaldi/tree/master/egs/voxceleb

134

over possible architectures in order to make it a stronger baseline. We thus report the best model

we could find which has the same structure as ours, i.e., it is made up of convolutions over time

followed by temporal pooling and fully-connected layers, while the convolutional stack is deeper,

which makes the comparison unfair in their favor.

We further evaluated our models using PLDA by running just the part of the same Kaldi recipe

corresponding to the training of that downstream classifier on top of representations obtained from

our encoder. Results are reported in Table 5.2 and support our claim that the proposed framework

can be directly used in an end-to-end manner. It is further observed that it outperformed standard

downstream classifiers, such as PLDA, by a significant difference while not requiring any complex

training procedure, as common metric learning approaches usually do. We employ simple random

selection of training pairs. Ablation results are also reported, in which case we dropped the auxiliary

loss LCE and trained the same E and D using the same budget in terms of number of iterations,

showing that having the auxiliary loss improves performance in the considered evaluation.

5.5.3 Extra experiments

5.5.3.1 Speaker verification under domain shift

In this experiment, we evaluate the performance of the proposed setting when test data sig-

nificantly differs from the training examples. To do so, we employ the data introduced for one

of the tasks of the 2018 edition of the NIST Speaker Recognition Evaluation (SRE)5. We specifi-

cally consider the CTS task so that test data corresponds to spontaneous conversational telephone

speech spoken in Tunisian Arabic, while the bulk of the train data is spoken in English. Besides

the language mismatch, variations due to different codecs are further observed (PSTN vs. PSTN

and VOIP).

The main training dataset (English) is built by combining the data from NIST SREs from 2004

to 2010, Mixer 6, as well as Switchboard-2, phases 1, 2, and 3, and the first release of VoxCeleb,

yielding a total of approximately 14000 speakers. Audio representations correspond to 23 MFCCs

obtained using a short-time Fourier transform with a 25ms Hamming window and 60% overlap. The

audio data is downsampled to 8kHz. Further pre-processing steps are the same as those performed

5https://www.nist.gov/system/files/documents/2018/08/17/sre18_eval_plan_2018-05-31_v6.pdf

https://www.nist.gov/system/files/documents/2018/08/17/sre18_eval_plan_2018-05-31_v6.pdf

Chapter 5. Learning (pseudo) metric spaces for discriminative verification 135

Table 5.2 – Evaluation of models trained under the proposed approach on VoxCeleb.

Scoring Training set EER
VoxCeleb1 Test set

Nagrani et al. (2017) [82] PLDA VoxCeleb1 8.80%
Cai et al. (2018) [175] Cosine VoxCeleb1 4.40%

Okabe et al. (2018) [126] Cosine VoxCeleb1 3.85%
Hajibabaei & Dai (2018) [176] Cosine VoxCeleb1 4.30%
Ravanelli & Bengio (2019) [177] Cosine VoxCeleb1 5.80%

Chung et al. (2018) [7] Cosine VoxCeleb2 3.95%
Xie et al. (2019) [167] Cosine VoxCeleb2 3.22%

Hajavi & Etemad (2019) [168] Cosine VoxCeleb2 4.26%
Xiang et al. (2019) [169] Cosine VoxCeleb2 2.69%

Kaldi recipe PLDA VoxCeleb2 2.51%
Proposed Cosine VoxCeleb2 4.97%
Proposed E2E VoxCeleb2 2.51%
Proposed Cosine + E2E VoxCeleb2 2.51%
Proposed PLDA VoxCeleb2 3.75%

Ablation (−LCE) E2E VoxCeleb2 3.44%
VoxCeleb1-E

Chung et al. (2018) [7] Cosine VoxCeleb2 4.42%
Xie et al. (2019) [167] Cosine VoxCeleb2 3.13%

Xiang et al. (2019) [169] Cosine VoxCeleb2 2.76%
Kaldi PLDA VoxCeleb2 2.60%

Proposed Cosine VoxCeleb2 4.77%
Proposed E2E VoxCeleb2 2.57%
Proposed Cosine + E2E VoxCeleb2 2.53%
Proposed PLDA VoxCeleb2 3.61%

Ablation (−LCE) E2E VoxCeleb2 3.70%
VoxCeleb1-H

Chung et al. (2018) [7] Cosine VoxCeleb2 7.33%
Xie et al. (2019) [167] Cosine VoxCeleb2 5.06%

Xiang et al. (2019) [169] Cosine VoxCeleb2 4.73%
Kaldi recipe PLDA VoxCeleb2 4.62%
Proposed Cosine VoxCeleb2 8.61%
Proposed E2E VoxCeleb2 4.73%
Proposed Cosine + E2E VoxCeleb2 4.69%
Proposed PLDA VoxCeleb2 5.98%

Ablation (−LCE) E2E VoxCeleb2 7.76%

for experiments with VoxCeleb, i.e., an energy-based voice activity detector is followed by data

augmentation performed via distorting original samples adding reverberation and background noise.

Baseline: For performance reference, we trained the well-known x-vector setting [3] using its

Kaldi recipe6. In that case, PLDA is employed for scoring test trials. The same training data used
6https://github.com/kaldi-asr/kaldi/tree/master/egs/sre16/v1/local/nnet3/xvector

https://github.com/kaldi-asr/kaldi/tree/master/egs/sre16/v1/local/nnet3/xvector

136

Table 5.3 – Evaluation of models under domain shift. Target data corresponds to speech spoken in
Arabic. Fine-tuning on datasets including target data yields an improvement in verification perfor-
mance.

Training domain Scoring EER

Snyder et al. (2018) [3] English PLDA 11.30%
English+Arabic Adapted PLDA 9.44%

Proposed English E2E 13.61%
Multi-language E2E 8.43%

to train our systems is employed in this case as well. The recipe performs the following steps: (i)

training of a TDNN (same architecture as in our case) as a multi-class classifier over the set of

training speakers using the same training data utilized to train our proposed model; (i) preparation

of PLDA’s training data, in which case the SRE partition of the training set is encoded using the

second to last layer of the TDNN, embeddings are length-normalized and mean-centered using the

average of an unlabelled sample from the target domain and finally have their dimensionality reduced

using Linear Discriminant Analysis; (iii) training of PLDA; (iv) scoring of test trials. Additionally,

in order to cope with the described domain shift, the model adaptation scheme introduced in [145]

is also utilized for PLDA so that a second PLDA model is trained on top of target data. The

final downstream classifier is then obtained by averaging the parameters of the original and target

domain models. Both results obtained with and without the described scheme are reported in Table

5.3.

For the case of the proposed approach, training is carried out using the training data described

above corresponding to speech spoken in English. We re-used the setting found to work well on

the experiments reported with the VoxCeleb corpus in Section 5.5.2 including all hyperparameters,

architecture, data sampling and mini-batch construction strategies, and computational budget. We

additionally build a multi-language training set including data corresponding to the target domain

so that we can fine-tune our model. The complementary training data corresponds to the data

introduced for the 2012 (English) and 2016 (Cantonese+Tagalog) editions of NIST SRE as well as

the development partition of NIST SRE 2018 which corresponds to the target domain of evaluation

data (Arabic). This is done so as to increase the amount of data within the complementary partition

and avoid overfitting to the small amount of target data. The combination of such data sources

yields approximately 800 speakers. We train our models on the large out-of-domain dataset and

fine-tune the resulting model in the multi-language complementary data.

Chapter 5. Learning (pseudo) metric spaces for discriminative verification 137

Figure 5.1 – MNIST embeddings on a 2-dimensional space. Each color represents test examples
corresponding to a digit from 0 to 9.

Results in terms of equal error rate are presented in Table 5.3. While our model appears to be

more domain dependent when compared to PLDA, as indicated by results where only out-of-domain

data is employed, it significantly improves once a relatively small amount of target domain data is

provided. We stress the fact that the proposed setting dramatically simplifies verification pipelines

and completely removes practical issues such as those related to processing steps prior to training

of the downstream classifier.

5.5.3.2 Checking for distance properties in trained models

We now empirically evaluate how D behaves in terms of properties of distances or metrics, such

as symmetry, for instance. We start by plotting embeddings from E and do so by training an encoder

on MNIST [88] under the proposed setting (without the auxiliary loss LCE in this case) so that its

outputs are given by z ∈ R2. We then plot the embeddings of the complete MNIST’s test set on

Fig. 5.1, where the raw embeddings in R2 are directly displayed in the plot. Interestingly, classes

are reasonably clustered in the Euclidean space even if such behavior was never enforced during

training. We proceed and directly check for distance properties in D′ = 1 − D. For the test set

of CIFAR-10 as well as for VoxCeleb1 Test set, we plot histograms of (i) the distance to itself

for all the test examples, (ii) a symmetry measure given by the absolute difference of the outputs

of D′ measured in the two directions for all possible test pairs, and (iii) a measure of how much

D′ satisfies the triangle inequality, which we do by measuring max[D′(b, c)− (D′(a, b) +D′(a, c)), 0]

for a random sample taken from all possible triplets of examples {a, b, c}. Proper metrics should

have all such quantities equal 0. In Figure 5.2, it can be seen that once more, even if any particular

behavior is enforced over D at its training phase, resulting models approximately behave as proper

metrics. We thus hypothesize the relatively easier training observed in our setting, in the sense

138

(a) Distance to itself - CIFAR-10. (b) Symmetry - CIFAR-10. (c) Triang. ineq. - CIFAR-10.

(d) Distance to itself - VoxCeleb. (e) Symmetry - VoxCeleb. (f) Triang. inequality - VoxCeleb.

Figure 5.2 – Evaluation of distance properties of trained models.

that it works well without complicated schemes for selection of negative pairs, is due to the not so

constrained distances induced by D.

5.5.3.3 Varying the depth of the distance model for verification on ImageNet

We performed closed set verification on the full ImageNet [94] with distance models of increasing

depths (1 to 5) to verify whether our setting is stable with respect to some of the introduced

hyperparameters. With this experiment, we specifically intend to assess how difficult it would be

in practice to find a good architecture for the distance model. Our models are compared against

encoders with the same architecture, but trained using a standard metric learning approach, i.e the

same training scheme as that employed for baselines reported in Table 5.1.

For this case, the encoder E is implemented as the convolutional stack of a ResNet-50 followed by

a fully-connected layer used to project the output representations to the desired dimensionality, and

we employ an embedding dimension of 128 across all reported models. D is once more implemented

as a stack of fully-connected layers in which case we set the sizes of all hidden layers to 256. Training

is performed such that the parameters of the convolutional portion of E are initialized from a pre-

trained model for multi-class classification on ImageNet, and this approach is used for both our

models as well as the baseline. We then perform SGD on the combined loss discussed above using

Chapter 5. Learning (pseudo) metric spaces for discriminative verification 139

2.00%

2.50%

3.00%

3.50%

4.00%

Depth=1 Depth=2 Depth=3 Depth=4 Depth=5

Baseline E2E

(a) Verification in terms of EER on all trials created
by pairing all test examples of ImageNet. Results
indicate that defining the architecture of the distance
model is not difficult in practice given that models of
varying depths yield a relatively small performance
range.

0.00%

0.25%

0.50%

0.75%

1.00%

Depth=1 Depth=2 Depth=3 Depth=4 Depth=5

Baseline E2E

(b) Verification in terms of AUC on all trials created
by pairing all test examples of ImageNet. Results
indicate that defining the architecture of the distance
model is not difficult in practice given that models of
varying depths yield a relatively small performance
range.

Figure 5.3 – Effects of increasing depth of the distance model.

the standard multi-class cross entropy as auxiliary loss. Moreover, given the large number of classes

in ImageNet compared to commonly used batch sizes, in order to be able to always find positive

pairs throughout training, mini-batches are constructed using the same strategy as that employed

for experiments with VoxCeleb, i.e., we ensure at least 5 examples per class appear in each mini-

batch. The learning rate is set to 0.001 and is reduced by a factor of 0.1 every 10 epochs. Training

is carried out for 50 epochs. Evaluation is performed over trials obtained from building all possible

pairs of examples from the test partition of ImageNet. Results are reported in Figures 5.3a and

5.3b in terms of EER and the area over the operating curve (1-AUC), respectively. Scoring for the

case of baseline encoders is performed with cosine similarity between encoded examples from test

trials. While standard metric learning encoders make for strong baselines, all evaluated distance

models are able to perform on pair (depth=1) or better than (depth>1) such models.

The results discussed herein provide empirical evidence for the claim that tuning the hyper-

parameters we introduced in comparison to previous settings, i.e., the architecture of the distance

model, is not so challenging in that we achieve reasonably stable performance for verification on

ImageNet when varying the depth of the distance model. Yet another empirical finding supporting

that claim consists of the fact that similar architectures of the distance model were found to work

well across all the datasets/domains we evaluated on. We specifically found that distance models

with 3 or 4 hidden layers with 256 units each work well across datasets, which we believe might be

a reasonable starting point for extending the approach we discussed to other datasets.

140

5.6 Implementation details

5.6.1 Architecture of the distance model

D is implemented as a stack of fully-connected layers with LeakyReLU activations. Dropout is

further used in between the last hidden and the output layer. The number and size of hidden layers

as well as the dropout probability were tuned for each experiment.

5.6.2 CIFAR-10 and MiniImageNet

5.6.2.1 Hyperparameters

The grid used on the hyperparameter search for each hyperparameter is presented next. A

budget of 100 runs was considered and each model was trained for 600 epochs. Hyperparameters

yielding the best EER on the validation data for our proposed approach and the triplet baseline are

represented by ∗ and †, respectively. In all experiments, the mini-batch size was set to 64 and 128

for CIFAR-10 and MiniImageNet, respectively. A reduce-on-plateau schedule for the learning rate

was employed, while its patience was a further hyperparameter included in the search.

CIFAR-10:

• Learning rate: {0.5, 0.1, 0.01∗,†, 0.001}

• Weight decay: {0.01, 0.001∗, 0.0001†, 0.00001}

• Momentum: {0.1, 0.5, 0.9∗,†}

• Label smoothing: {0.01, 0.1, 0.2∗,†}

• Patience: {1, 5, 10∗,†, 20}

• Number of D hidden layers: {2, 3∗, 4, 5}

• Size of D hidden layers: {128, 256, 350∗, 512}

• D dropout probability: {0.01, 0.1, 0.2∗}

• Type of auxiliary loss: {Standard cross-entropy, Additive margin∗,†}

MiniImageNet:

Chapter 5. Learning (pseudo) metric spaces for discriminative verification 141

• Learning rate: {0.5, 0.1†, 0.01∗, 0.001}

• Weight decay: {0.01, 0.001∗, 0.0001†, 0.00001}

• Momentum: {0.1, 0.5, 0.9∗,†}

• Label smoothing: {0.01, 0.1∗, 0.2†}

• Patience: {1, 5, 10∗,†, 20}

• Number of D hidden layers: {2, 3∗, 4, 5}

• Size of D hidden layers: {128, 256, 350∗, 512}

• D dropout probability: {0.01, 0.1∗, 0.2}

• Type of auxiliary loss: {Standard cross-entropy, Additive margin∗,†}

5.6.3 Voxceleb

5.6.3.1 Encoder architecture

We implement E as the well-known TDNN architecture employed within the x-vector setting [3],

which consists of a sequence of dilated 1-dimensional convolutions across the temporal dimension,

followed by a time pooling layer, which simply concatenates element-wise first- and second-order

statistics over time. Concatenated statistics are finally projected into an output vector through two

fully-connected layers. Pre-activation batch normalization is performed after each convolution and

fully-connected layer. A summary of the employed architecture is shown in Table 1.1.

5.6.3.2 Data augmentation and feature extraction

We augment the training data by simulating diverse acoustic conditions using supplemen-

tary noisy speech, as done in [3]. More specifically, we corrupt the original samples by adding

reverberation (reverberation time varies from 0.25 s - 0.75 s) and background noise, such as

music (signal-to-noise ratio, SNR, within 5-15 dB), and babble (SNR varies from 10 dB to 20

dB). Noise signals were selected from the MUSAN corpus [136] and the room impulse responses

samples from [178] were used to simulate reverberation. All the audio pre-processing steps in-

cluding feature extraction, degradation with noise as well as silence frames removal was per-

formed with the Kaldi toolkit [161] and are openly available as the first step of the recipe in

142

https://github.com/kaldi-asr/kaldi/tree/master/egs/voxceleb. The corpora used for aug-

mentation are also openly available at https://www.openslr.org/.

In order to deal with recordings of varying duration within a mini-batch, we pad all recordings

to a maximum duration set in advance. We do so by repeating the signal up until it reaches the

maximum duration or taking a random continuous chunk with the maximum duration for the case

of long utterances.

5.6.3.3 Mini-batch construction

Given the large number of classes in the VoxCeleb case (corresponding to the number of speakers,

i.e., 5994), we need to ensure several examples belonging to the same speaker exist in a mini-batch

to allow for positive pairs to exist. We thus create a list of sets of five recordings belonging to the

same speaker, and such sets are randomly selected at training time. Mini-batches are constructed

through sequentially picking examples from the list, and the list is recreated once all elements are

sampled. Such approach provides mini-batches of size Ne = S · R, where R and S correspond to

the number of speakers per mini-batch and recordings per speaker, respectively. While R is set to

5, S is set to 24, which gives an effective mini-batch size of Ne = 120.

5.6.3.4 Hyperparameters

Training was carried out with a linear learning rate warm-up, employed during the first itera-

tions, and the same exponential decay as in [48] is employed after that. A budget of 40 runs was

considered and each model was trained for a budget of 600k iterations. The best set of hyperparam-

eters, as assessed in terms of EER measured over a random set of trials created from VoxCeleb1-E,

was then used to train a model from scratch for a total of 2M iterations. We report the results

obtained by the best model within the 2M iterations in terms of the same metric used during the

hyperparameter search. Selected values are indicated by ∗.

The grid used for the hyperparameter search is presented next. In all experiments, the mini-batch

size was set to 24, which, given the sampling strategy employed in this case, yields an effective batch

size of 120. We further employed gradient clipping and searched over possible clipping thresholds.

https://github.com/kaldi-asr/kaldi/tree/master/egs/voxceleb
https://www.openslr.org/

Chapter 5. Learning (pseudo) metric spaces for discriminative verification 143

• Base learning rate: {2.0, 1.5∗, 1.0, 0.5, 0.1}

• Weight decay: {0.001∗, 0.0001, 0.00001}

• Momentum: {0.7, 0.85, 0.95∗}

• Label smoothing: {0.0, 0.1∗, 0.2]}

• Embedding size d: {128, 256∗, 512}

• Maximum duration (in number of frames): {300, 500, 800∗}

• Gradient clipping threshold: {10∗, 20, 50}

• Number of D hidden layers: {1, 2, 3, 4∗}

• Size of D hidden layers: {128, 256∗, 350, 512}

• D dropout probability: {0.01, 0.1∗, 0.2}

• Type of auxiliary loss: {Standard cross-entropy, Additive margin∗}

5.7 Conclusion

We introduced a setting where small sample 2-sample tests can be performed efficiently. This

is suitable and compare data pairs to determine whether they belong to the same class. Several

interpretations of such framework are provided, including joint encoder and distance metric learning,

as well as contrastive estimation over data pairs. We used contrastive estimation results to show

the solutions of the posed problem yield optimal decision rules under verification settings, resulting

in correct decisions for any choice of threshold. In terms of practical contributions, the proposed

method simplifies both the training under the metric learning framework, as it does not require

any scheme to select negative pairs of examples, and also simplifies verification pipelines, which

are usually made up of several individual components, each one contributing specific challenges at

training and testing phases. Our models can be used in an end-to-end manner by using D’s outputs

to score test trials yielding strong performance even in large scale and realistic open set conditions

where test classes are different from those seen at training time7.

7Code for reproducing our experiments can be found at: https://github.com/joaomonteirof/e2e_verification

https://github.com/joaomonteirof/e2e_verification

Chapter 6

Learning partitions to define versatile

learning templates

6.1 Preamble

This chapter is compiled from material extracted from [179], under review in the IEEE Trans-

actions on Pattern Analysis and Machine Intelligence.

6.2 Introduction

In this contribution, we leverage the framework introduced in Chapter 5 and build upon it so

as to define the idea of TEMPlate LEarners (TEMPLE): a set of model components and a training

procedure that can be re-used across different scenarios to reach similar performance to that of task-

specific models yielding a versatile/general-purpose modeling framework. To do so, we again make

use of metric learning methods, but also consider the geometric approaches originally introduced

to tackle few-shot-classification; prototypical networks in particular [83]. More specifically, we focus

on metric learning settings where both an encoder and a similarity or distance models are trained

jointly [84, 85, 86], but augment such setting with a set of class prototypes used in order to assign

points to classes. TEMPLE models comprise three main components:

146

1. An encoder that embeds data into a lower-dimensional space;

2. A similarity model which maps a pair of concatenated representations into a similarity score;

3. A set of class prototypes where each one summarizes a whole class into a vector in the

embedding space.

Based on models defined by said components, we can then devise different inference mechanisms

depending on the task of interest. For the case of multi-class classification, for example, one can

predict the class of a particular test instance through measuring its similarity against each prototype

and assigning it to the class whose prototype it is most similar to. Similarly, tasks relying on pairwise

comparisons can be performed, such as verification (comparing two data instances and determining

whether they belong to the same class) or retrieval (comparing a test instance against a gallery

and determining the k elements in the gallery the considered test instance is most similar to).

Moreover, each time new classes appear, adapting the model simply consists of updating the list of

prototypes, while keeping the encoder and similarity unchanged, thus enabling fast adaptation and

avoiding issues, such as forgetting past classes or overfitting to the new ones.

We highlight that, given the broad applicability of TEMPLE, unlike in previous chapters, here

we broaden our scope and evaluate our proposals on tasks beyond applications related to voice

biometrics. In particular, we use both ASV experiments and also standard benchmarks on images

to provide empirical evidence and support the claim that models defined by TEMPLE perform on

par with task-specific specialized models across different scenarios and types of data. In addition to

that, we observed that classifiers defined under this setting result in improved robustness against

adversarial attacks and covariate shifts between training and testing data distributions. Moreover,

the proposed approach supports the inclusion of new classes appearing after training is complete,

which simply requires including new prototypes (or repartitioning the space) obtained from small

samples. Doing so yields a simple yet competitive mechanism for few-shot classification.

6.3 Background

A relatively recent research direction within the space of metric learning settings consists of

jointly training an encoder along with a distance/similarity model. This is the case discussed in

[84], where a symmetric model was used to map the absolute difference of a pair of representations

Chapter 6. Learning partitions to define versatile learning templates 147

into a similarity score. In [85], training of a distance/similarity model is done by imitation learning

of cosine similarities measured between representations, which the authors claim simplifies training

compared to the direct use of cosine scores. The approach in [60], in turn, focuses on distance

models supporting asymmetric properties of the data, while still satisfying the triangle inequality.

Learned Bregman divergences were evaluated in [180]. Completely unconstrained similarity models,

in the sense that none of the properties, such as symmetry, are imposed in the learned distance, were

proposed in [86] and discussed in Chapter 5 specifically for verification tasks. Learnable similarities

parameterized by neural networks were further employed by [181, 182] for the implementation of

learned kernels, and used to perform 2-sample tests based in the Maximum Mean Discrepancy

(MMD) [183].

Prototypical networks [83], introduced as a geometric approach to tackle the case of few-shot

classification, follow a similar idea to that of metric learning in the sense that training consists

of building a metric space, where distances are indicative of properties of the data. However,

performing inference using such models requires partitioning spaces using class prototypes, i.e., a

set of vectors representing each class, thus enabling its use to classification tasks since one can assign

a test instance to the class corresponding to its closest prototype. Employing this approach under

few-shot classification settings requires a new partitioning of the space to be computed once small

samples representing new classes are presented to the model. To define TEMPLE, we propose a

strategy to extend the setting proposed in [86] and include a partitioning with prototypes in the

learned pseudo metric space so that the final model can be used to perform tasks, such as multi-class

and few-shot classification, while still supporting tasks involving pairwise comparisons.

6.4 Defining learning templates via trainable similarity measures

We use the term template learner – TEMPLE for short – to refer to a set of model components

combined with a standardized learning procedure. In this case, template is meant to indicate that

TEMPLE can be re-used across different types of data and tasks, and it can be applied pending

implementation of the model components tailored to the task at hand, i.e., a task-specific encoder

needs to be implemented. We argue that defining such a type of general purpose learning scheme

can facilitate the practical application of learning techniques, given that training models on new

data sources and for new tasks simply requires defining a specific architecture for a component

148

prior to running a standardized training procedure. This does not require designers to concern

themselves with aspects, such as determining suitable loss functions or data sampling strategies, for

instance. AutoML [184] approaches can also benefit from such type of standardized building blocks

given the reduced design search space it yields. Moreover, combining TEMPLE with cross-modality

standardized architectures, such as the recently introduced Perceivers [185, 186], can further simplify

re-using templates across very different types of data and tasks. In what follows, we introduce in

further detail the model components and the training procedure that define TEMPLE, and discuss

inference approaches that can be implemented on top of such models to solve diverse tasks.

6.4.1 Model components

Let pairs (x, y) represent instances from X ×Y, where X ⊆ RD indicates the input space while Y

corresponds to the space of labels, which will often be defined by discrete sets in the cases considered

herein. The following components are to be considered:

1. An encoder E : RD 7→ Rd responsible for mapping data to lower-dimensional representations.

2. A similarity model S : Rd×Rd 7→ R which maps a pair of representations to similarity scores.

3. A set of prototypes C ∈ R|Y|×d each one corresponding to a vector representing an element

in Y.

As will be further discussed, these three components can be used to perform different types of

inference regarding properties of underlying data, and thus solve different tasks.

6.4.2 Training

Training is carried out to enforce the following properties:

1. The similarity as measured between a particular example and the prototype correspond-

ing to its class labels should be high relative to similarities measured between prototypes

representing other classes.

2. The similarities measured between examples from the same class should be high, while ex-

amples from different classes should yield a low similarity score.

Chapter 6. Learning partitions to define versatile learning templates 149

We design training objectives aimed at enforcing such properties. For the first property, we

consider a training sample of size m and employ the standard multi-class cross-entropy criterion,

but use the similarity measured between a training instance and each prototype as the set of logits, as

opposed to output layers defined by an affine transformation, commonly employed in standard clas-

sifiers. More specifically, we perform maximum likelihood estimation on the multinoulli conditional

distribution defined by:

P (Y|x′) = softmax(S(E(x′), C1:|Y|)), (6.1)

where Ci, i ∈ [|Y|], indicates the prototype corresponding to class i. The corresponding training

loss, denoted Lclass, will be then given by:

Lclass = − 1
m

m∑
i=1

log eS(E(xi),Cyi)∑|Y|
j=1 eS(E(xi),Cj)

, (6.2)

where xi and yi indicate the i-th training example. In order for the learned similarity to be mean-

ingful for pairwise comparisons, we make use of a binary classification objective also used by [87]

and [86]. This classification is aimed at discriminating pairs of examples from the same and from

different classes as per:

Lpair = − 1
| T + |

∑
x+∈ T +

log(σ(S(E(x+))))− 1
| T − |

∑
x−∈ T −

log(1− σ(S(E(x−)))), (6.3)

where σ stands for the logistic function, and x+ and x− indicate pairs of examples denominated

trials and denoted by T , i.e., T = {x′, x′′}. The sums are taken over the set of positive or target

trials T + obtained from the training sample, i.e., those for which x′ and x′′ belong to the same

class, and the set of negative or non-target trials T −. Note that we further define the application

of the encoder over a trial, which is denoted as E(T) = {E(x′), E(x′′)}.

Initializing and updating the list of prototypes: C is initialized randomly such that its

entries are i.i.d. sampled from a standard Gaussian distribution. We update C every iteration

through a moving average which is given by the following at iteration t: Ct = λCt−1 + (1− λ)C∗
t−1,

where λ ∈ [0, 1] is a hyperparameter, and C∗
t−1 is a copy of Ct−1, where the rows corresponding to

classes observed in the current mini-batch are substituted by the average representations of each

such classes.

150

Practical details: Both E and S are implemented as neural networks, and C is a matrix where

each row represents a prototype for a particular class. Moreover, while E is task-specific, S cor-

responds to a fully-connected network. As usual, training is carried out with SGD with gradients

estimated over mini-batches of training data. In order to compute Lpair, each mini-batch needs

to contain multiple examples from the same class otherwise T + will be empty. We sample mini-

batches ensuring that is the case (c.f. Section 6.5.3 for further implementation details). Finally, we

empirically observed that including a standard classification loss accelerates convergence across all

evaluations performed. We include a dense output layer to allow for computation of such a loss,

which we denote by Laux. Training is carried out to minimize the total loss L = Lclass+Lpair +Laux.

A high-level training procedure is depicted in Algorithm 3, and model components are illustrated

in Figure 6.1.

Algorithm 3 Training procedure.
E ,S = InitializeModels()
C = InitializePrototypes()
repeat

x, y = SampleMinibatch()
z = E(x)
C = UpdatePrototypes(z, y, C)
z+ = GetPositivePairs(z, y)
z− = GetNegativePairs(z, y)
y′ = DenseLayer(z) # Used for computing auxiliary loss.
L = Lpair + Lclass + Laux

E ,S = UpdateRule(E ,S,L) # i.e., run optimizer step.
until Maximum number of iterations reached
return E ,S, C

6.4.3 Testing

We now define the set of tasks one can tackle using trained E , S, and C along with the inference

mechanisms employed for each such task.

Multi-class classification: For the case where one is given a test instance x′ and desires to

determine its class label y′, this can be achieved by the following classifier:

arg max
i∈[|Y|]

S(E(x′), Ci). (6.4)

Chapter 6. Learning partitions to define versatile learning templates 151

E(x)
S(z, Ci)

z

Ci, i = {1, ..., |Y|}

x

s1

s2

s|Y|

softmax(si)

si, i = {1, .., |Y|}
..
.

..
.

Wz + b

w1

w2

w|Y|

softmax(wi)

wi, i = {1, .., |Y|}..
.

Auxiliary output layer

1

Figure 6.1 – Components defining TEMPLE models. Implementing a model for a particular task
simply requires the definition of E.

Few-shot classification: If new classes are considered after training, repartitioning can be per-

formed with few data points by creating a new set of prototypes C′ defined such that each entry

corresponds to the average representation of each new class. Inference is thus performed following

the schemed defined for multi-class classification.

Verification: Now assume one is given a trial {x′, x′′} and desires to determine whether their

respective labels are such that y′ = y′′. One can then do the following:

1S(E(x′),E(x′′))>δ, (6.5)

where δ is an user-defined decision threshold.

Retrieval: Given a test instance x′ and a gallery of instances denoted by X = {x1, x2, ..., xn} :

xi ∈ X ∀ i ∈ [n], determine k elements in X such that at least one of their labels matches the

underlying label y′ of x′. The result will be:

k-arg max
x′′∈X

S(E(x′), E(x′′)), (6.6)

where the operator k-arg max denotes repeating the arg max operator k times, removing the current

result each time prior to the next arg max operation.

152

6.5 Evaluation

In the evaluation we carry out, we seek to test the proposed approach across a variety of

tasks and modalities of data since our main goal is to show evidence that TEMPLE instances

perform at least on par with specialized methods considering different cases. Namely, we start with

tasks that rely on pairwise comparisons of test instances and run evaluations under the verification

setting focusing on an ASV task on the large scale verification setting defined by the VoxCeleb

corpus [82, 7], also studied in Chapter 5. We then proceed to image benchmarks in which case,

in addition to checking for prediction performance, we evaluate different notions of robustness of

classifiers induced by TEMPLE. Such image benchmarks cover the following tasks: multi-class

classification, in which case we evaluate TEMPLE-based classifiers on MNIST [88] and CIFAR-

10 [89], and observe improved robust accuracy against popular norm-constrained adversaries. We

further perform evaluation on object recognition tasks considering larger resolution images and

under domain shift. For that, we employ the standard PACS benchmark [90], where we find that

the proposed classification strategies introduced herein outperform recently introduced alternatives,

and more importantly, that is the case in the most challenging conditions, where a notable domain

mismatch is observed (e.g., train on natural images and evaluate on sketches). We then evaluate

our proposed approach on image retrieval tasks employing popular benchmarks, such as CARS196

[91] and CUB200-2011 [92]. Finally, we discuss strategies to easily repartition the space so that new

classes can be evaluated at testing time, in which case we report experiments using MiniImageNet

[93]. Ablations are further reported using the full ImageNet [94] to show the importance of the use

of the auxiliary classification loss.

We remark that the training procedure presented in Algorithm 2 is employed for training models

used for all tasks discussed above, and no specialization to any task of interest is performed since

we seek evidence regarding how effective the proposed approach is in yielding a general enough

set of components (i.e., E , S, and C) and training algorithm which perform on par or better than

alternatives. As such, across different datasets and tasks, the encoder E is the only component that

is specific to each evaluation in the sense that its architecture requires specification for each specific

data source.

Chapter 6. Learning partitions to define versatile learning templates 153

6.5.1 ASV experiments on VoxCeleb

In order to perform evaluations that rely on pairwise comparisons of test instances, we consider

the verification setting where trials corresponding to pairs of test instances are presented to the

model. Its task is then to decide whether the examples in the trial belong to the same class. We

make use of the VoxCeleb corpus [82, 7] which consists of a large scale set of audio clips collected

from videos of interviews available online.

We compared models trained on the second release of the corpus, which is composed of audio

recordings from 5994 different speakers, against a set of published results on the three test partitions

made available along with that release. These partitions include: (i)-VoxCeleb1 Test set, which

correspond to data obtained from 40 speakers, (ii)-VoxCeleb1-Extended, which is given by the

complete first release of the corpus and contains 1251 speakers, and (iii)-VoxCeleb1-Hard, which

is made up of a subset of the data from VoxCeleb1-Extended yielding trials known to be hard to

distinguish. We highlight that the set of speakers represented in all test partitions is disjoint to

the set of speakers appearing in training data. The encoder E in this case corresponds to the 1-

dimensional convolutional model introduced by [3]. Details on the audio pre-processing and feature

extraction are included in Section 6.5.3.

Results are reported in terms of EER in Table 6.1, where we compare the verification per-

formance of different TEMPLE models using scoring strategies against a number of alternative

methods. Interestingly, scores obtained via cosine similarities measured between outputs of E are

observed to be discriminative, and in some cases even perform slightly better than learned sim-

ilarities, which is not explicitly enforced by the described training algorithm. This is likely due

to the type of cross-entropy criteria used to implement the auxiliary loss. In this case, the addi-

tive margin softmax [113] was used to implement classification criteria corresponding to two terms

composing the training objective, and it was empirically observed to result in discriminative em-

beddings via inner product scores. We thus take advantage of the fact that the cosine similarity

can be further used to score test trials. Specifically, we observed that combining it with learned

scores given by S by simply summing both similarities yields a further boost in performance. In

fact, such efficient combination schemes between cosine similarities and learned scores yield the best

performance amongst compared methods, which include a setting where PLDA is used for scoring.

We finally remark that the only difference between TEMPLE instances and the approach discussed

154

Table 6.1 – Verification performance on the VoxCeleb test partitions reported in terms of EER (%).

Scoring EER (%)
VoxCeleb1 test set

Chung et al. (2018) [7] Cosine 3.95
Xie et al. (2019) [167] Cosine 3.22

Hajavi & Etemad (2019) [168] Cosine 4.26
Xiang et al. (2019) [169] Cosine 2.69

Monteiro et al. (2020) [86] PLDA 2.51
Monteiro et al. (2020) [86] SIM 2.51

Ours Cosine 2.62
Ours SIM 2.55
Ours Cosine + SIM 2.45

Extended
Chung et al. (2018) [7] Cosine 4.42
Xie et al. (2019) [167] Cosine 3.13

Xiang et al. (2019) [169] Cosine 2.76
Monteiro et al. (2020) [86] PLDA 2.60
Monteiro et al. (2020) [86] SIM 2.57

Ours Cosine 2.69
Ours SIM 2.75
Ours Cosine + SIM 2.55

Hard
Chung et al. (2018) [7] Cosine 7.33
Xie et al. (2019) [167] Cosine 5.06

Xiang et al. (2019) [169] Cosine 4.73
Monteiro et al. (2020) [86] PLDA 4.62
Monteiro et al. (2020) [86] SIM 4.73

Ours Cosine 4.48
Ours SIM 4.76
Ours Cosine + SIM 4.39

in [86] and Chapter 5 is the prototypical classification loss. Comparing both approaches, however,

shows such modification slightly degrades prediction performance using scores from S, which can

be seen as a side affect of the added flexibility since the model can now perform other types of

tasks. Nonetheless, the simple score combination scheme recovers back the performance and yields

the best verification performance we observed.

Chapter 6. Learning partitions to define versatile learning templates 155

6.5.2 Experiments on image benchmarks

6.5.2.1 Robustness against adversaries

We report in Table 6.2 the accuracy obtained using convolutional classifiers trained on MNIST

and CIFAR-10 considering both clean data and FGSM [153] and PGD [187] attacks1 under L∞

budgets. We consider the white-box access model in which the attacker has full access to the

target model. Models trained using Algorithm 2 are compared against previously proposed defense

strategies. Specifically, adversarial training (AT) [187], adversarial logit pairing (ALP) [188], triplet

loss adversarial training (TLA) [189], and TRADES [190] are considered for comparison. The results

given by an undefended model, as reported by [189], are also included for reference.

A standard LeNet and the wide residual architecture introduced by [187] were employed for the

cases of MNIST and CIFAR-10, respectively, and an attack budget of 0.3 and 8
255 was considered

when each such dataset was evaluated. We evaluated our models both with and without adversarial

training, and report the results obtained when inference is performed using the scheme represented

in expression 6.4. This scheme is denoted as SIM to indicate that the similarity model S is used

for inference. Moreover, for cases where the auxiliary output layer used to compute Laux is used to

predict labels of test instances is indicated by DOL in a reference to dense output layer.

In order to have a full white-box access model, each output layer is exposed to the attacker in

each evaluation so that attacks are created accounting for the specific inference procedure that will

be used for testing. Based on the reported results, we verify that similarity/distance based inference

is inherently less affected by small norm adversarial perturbations. This could be observed in both

MNIST and CIFAR-10, where our undefended models showed higher robust accuracy than standards

undefendend classifiers across considered attacks, with the SIM case outperforming DOL and the

undefended standard classifier. With adversarial training, both inference mechanisms yielded higher

performance than the considered alternatives against considered attackers; importantly, this was

achieved without affecting the clean accuracy to the same extent as in previous methods.

The described results lead us to the conclusion that distance-based inference is inherently less

affected by small norm perturbations in inputs when compared to standard classifiers. More specifi-

cally, it is easier from the attacker’s perspective to increase the value of the activation of the output

1Attacks were implemented using FoolBox: https://foolbox.readthedocs.io/en/stable/index.html

https://foolbox.readthedocs.io/en/stable/index.html

156

Table 6.2 – Adversarial robustness evaluation in term of accuracy (%) considering PGD and FGSM
attackers under L∞ budgets of 0.3 and 8

255 for the cases of MNIST and CIFAR-10, respectively. The
number of steps employed for each attack is represented within parenthesis. We consider evaluations
obtained with the similarity classifier as indicated by SIM as well as utilizing the auxiliary output
layer which we indicate by DOL.

MNIST
Clean PGD (40) PGD (100) FGSM (1)

Undefended 99.20 0.00 0.00 34.48
AT 99.24 97.31 96.58 94.82
ALP 98.91 97.34 96.62 95.06
TLA 99.52 98.17 97.72 96.96

TRADES (1/λ = 6) 99.48 96.07 - 95.6
Ours - DOL 99.31 0.02 0.01 17.18
Ours - SIM 99.36 23.85 13.61 68.51

Ours - DOL + AT 98.71 95.04 93.78 97.62
Ours - SIM + AT 98.79 95.35 93.98 97.84

CIFAR-10
Clean PGD (7) PGD (20) FGSM (1)

Undefended 95.01 0.00 0.00 13.35
AT 87.14 55.63 49.79 45.72
ALP 89.79 60.29 51.89 48.5
TLA 86.21 58.88 53.87 51.59

TRADES (1/λ = 1) 88.64 - 49.14 48.9
TRADES (1/λ = 6) 84.92 - 56.61 56.43

Ours - DOL 96.20 47.39 9.27 57.42
Ours - SIM 96.14 65.46 27.87 65.46

Ours - DOL + AT 93.29 80.73 54.29 46.85
Ours - SIM + AT 92.55 80.04 56.13 52.98

unit of a wrong class than it is for it to move an embedding closer to the prototype of a wrong

class. Including adversarial perturbations at training time, as described in the results correspond-

ing to adversarial training, makes it even more difficult for the attacker to be effective since larger

perturbations in the input are necessary in order to move an embedding towards the prototype of

a different class. It is likely that adversarial training induces a (pseudo) metric space where class

centers have larger pairwise distances when compared to the standard cases, where no adversar-

ial perturbations are presented to the model during training. We hypothesize that regularization

penalties that aim to force prototypes to lie further apart are likely to increase robustness. Even

more so for input perturbations bounded in norm.

Chapter 6. Learning partitions to define versatile learning templates 157

Table 6.3 – Evaluation on the PACS benchmark in terms of accuracy (%) for the cases where each of
the available domains are left out of training.

P A C S Average
Dou et al. (2019) [191] 95.01 82.89 80.49 72.29 82.67

Gulrajani & Lopes-Paz (2020) [193] 97.80 88.10 78.00 79.10 85.75
Chattopadhyay et al. (2020) [192] 94.49 82.57 78.11 78.32 83.37

Ours - SIM 97.07 86.38 83.66 84.63 87.93

6.5.2.2 Robustness under domain shift

We now assess the performance of the proposed classification strategy once domain shifts across

train and test data occur. We do so by making use of the PACS domain-generalization bench-

mark [90] consisting of 224x224 RGB images distributed into 7 classes and originated from four

different domains: Photo (P), Art painting (A), Cartoon (C), and Sketch (S). We follow the leave-

one-domain-out evaluation protocol such that data from three out of the four available domains are

used for training while evaluation is carried out on the data from the left out domain. A comparison

is carried out with recent methods specifically designed to enable out-of-distribution generalization

introduced by [191] and [192], as well as with the results reported by [193], where standard clas-

sifiers were evaluated against domain generalization approaches. As per the common practice for

evaluation on PACS, experiments were carried out using a ResNet-50 [4] pretrained on ImageNet.

Both per-domain and averaged results are reported in Table 6.3. Considering the average of per-

formances obtained after each domain is left out, we observe improved robustness when similarity-

based classification is employed when compared to both standard classifiers and domain generaliza-

tion approaches. This suggests that distance-based TEMPLE classifiers rely less on domain-specific

factors that might correlate with labels on training domains. We hypothesize that such property

comes from the metric learning framework used to train our models, i.e., domain-specific information

is less helpful when trying to minimize the combination of Lclass and Lpair, which renders resulting

classifiers less dependent on the underlying domains used at training time. A gap in performance

in our favor can be particularly observed for the evaluation cases where domains corresponding to

cartoons and sketches are left out, given that such domains present a large discrepancy compared to

the natural images that compose the bulk of training data. On the other hand, for the photos cat-

egory in which the underlying data correspond to natural images, the standard classifier discussed

in [193] outperforms our model.

158

6.5.2.3 Image retrieval

We further verified the performance of the proposed approach on another set of tasks which

require comparisons of pairs of examples. In this case, we considered the retrieval setting where a

test example is compared against a gallery and k “similar” examples need to be selected from that

gallery. We thus make use of the CARS196 [91] and CUB200-2011 [92] datasets and closely follow

the evaluation protocol discussed by [78].

Results are reported in terms of Recall@k [194] (the higher the better), or R@k for short, and

summarized in Figures 6.2a and 6.2b, while the complete set of results is reported in Tables 6.4 and

6.5, respectively. Given a data point, Recall@k measures the probability of its set of top-k most

similar test instances to contain at least one exemplar of its underlying class. Compared approaches

consist of several metric learning methods specifically designed for the retrieval problem. We use

the indicators + and - to refer to the highest and lowest performances amongst the considered

baselines. Results were obtained considering a ResNet-50 pretrained on ImageNet and fine tuned

on each of the considered datasets. As a reference, we further report the results obtained by the

pretrained model prior to fine tuning. As can be seen, the proposed approach is competitive in that

its performance lies close to the + line (which corresponds to a strong baseline using an ensemble

of metrics approach [195]) and outperforms most of the compared methods. In fact, this is achieved

while relying on a simpler and general training procedure that, unlike specialized approaches, do

not require any special mining strategy of hard triplets, and use moderate batch sizes, thus enabling

practical training in single GPU hardware.

In summary, based on the discussed set of results we highlight that, both in the cases of tasks

that require instance-to-instance comparisons (verification and retrieval) and those that require

instance-to-sample similarity assessments (classification), TEMPLE models were observed to be

competitive in terms of prediction performance relative to task-specific approaches, while being

simple and general. Moreover, distance-based prediction was observed to be more robust to both

distribution shifts and norm-bounded adversarial perturbations. In what follows, we discuss a final

application of TEMPLE where new classes appear at testing time. We discuss a simple approach

to update C and enable prediction from exemplars of those new classes.

Chapter 6. Learning partitions to define versatile learning templates 159

R@1 R@2 R@4 R@8 R@16

40%

50%

60%

70%

80%

90%

100%

ImageNet
Ours
-
+

(a) R@K evaluation of TEMPLE models on the
CARS196 dataset.

R@1 R@2 R@4 R@8 R@16

40%

50%

60%

70%

80%

90%

100%

ImageNet
Ours
-
+

(b) R@K evaluation of TEMPLE models on the
CUB200-2011 dataset.

Figure 6.2 – Evaluation on retrieval tasks in terms of R@K.

Table 6.4 – R@K (%) evaluation of proposed methods on the CARS196 dataset.

R@1 R@2 R@4 R@8 R@16
Schroff et al. (2015) [62] 51.5 63.8 73.5 82.4 –

Oh Song et al. (2019) [194] 53.0 65.7 76.0 84.3 –
Song et al. (2016) [196] 58.1 70.6 80.3 87.8 –

Sohn (2016) [197] 71.1 79.7 86.5 91.6 –
Yuan et al. (2017) [198] 73.7 83.2 89.5 93.8 96.7

Wu et al. (2017) [78] 79.6 86.5 91.9 95.1 97.3
Roth et al. (2019) [199] 82.6 89.1 93.2 – –

ImageNet 40.8 53.0 64.9 76.7 86.1
SIM 81.8 88.7 93.4 96.3 97.9

Sanakoyeu et al. (2019) [195] 84.6 90.7 94.1 96.5 –(Ensemble of metrics)

6.5.2.4 Few-shot classification

We further evaluate the proposed framework under the few-shot classification setting in which

case new classes are presented to the model after training, and small samples from each novel class

are made available. We run evaluations considering the MiniImageNet [93] dataset which consists

of a subset of 100 classes from ImageNet containing 600 images for each class. We follow the setting

introduced by [201], which splits the data so that 64, 16, and 20 disjoint sets of classes are included

in the training, validation, and testing partitions, respectively.

Results are reported in terms of average top-1 accuracy along with boundaries of its 95% confi-

dence interval considering a sample of 1000 randomly selected tasks. Each task is randomly created

by giving to the model a set containing N-ways classes and K-shots examples per class, while 15 test

160

Table 6.5 – R@K (%) evaluation of proposed methods on the CUB200-2011 dataset.

R@1 R@2 R@4 R@8 R@16
Ustinova & Lempitsky (2016) [200] 52.8 64.4 74.7 83.9 90.4
Ustinova & Lempitsky (2016) [200] 50.3 61.9 72.6 82.4 88.8

Schroff et al. (2015) [62] 42.6 55.0 66.4 77.2 –
Oh Song et al. (2019) [194] 43.6 56.6 68.6 79.6 –

Song et al. (2016) [196] 48.2 61.4 71.8 81.9 –
Sohn (2016) [197] 51.0 63.3 74.3 83.2 –

Yuan et al. (2017) [198] 53.6 65.7 77.0 85.6 91.5
Wu et al. (2017) [78] 63.6 74.4 83.1 90.0 94.2

Roth et al. (2019) [199] 66.1 76.8 85.6 – –
ImageNet 51.1 64.6 75.9 85.7 92.0

SIM 60.1 72.9 82.9 89.3 93.8
Sanakoyeu et al. (2019) [195] 65.9 76.6 84.4 90.6 –(Ensemble of metrics)

examples per class are evaluated in each task. The encoder E is implemented as the convolutional

stack of the ResNet-12 architecture, which is also used in all the compared approaches.

A comparison is carried out with a set of approaches carefully designed for the few-shot clas-

sification setting, sometimes including sophisticated adaptation schemes for the novel classes and

having the evaluation process simulated at training time with the so-called episodic training. For

the case of our model, on the other hand, we intend to verify how simply training it using Algorithm

2 fares against such specialized methods. As such, we train our models on the training partition of

MiniImageNet, and once data from novel classes is given at testing time, we make use of it to build

a novel set of class prototypes C′ which is then used to define the classifier expressed in (6.4), i.e.,

no fine tuning of E and S is performed.

Results reported in Table 6.6 show that such a simple approach can yield performance inline with

recent sophisticated approaches. We additionally computed the accuracy yielded by substituting S

by the cosine similarity and observed that summing both scores resulted in an accuracy gain for the

1-shot case. Observed results suggest that prototypes defined by simple statistics of embeddings

from new classes are positioned far from the prototypes defined during training, which makes it

possible to perform classification of examples from those new classes without assigning them to

classes observed during training. We remark that more complex schemes were tested where the

prototypes matrix C′ of classes appearing at testing time were learned. More specifically, we froze

the parameters of E and S and learned C′ to minimize a cross-entropy criterion. We evaluated

randomly initializing C′ as well as initializing it from statistics of the test data. However, doing

Chapter 6. Learning partitions to define versatile learning templates 161

Table 6.6 – 5-way few-shot classification on MiniImageNet. Results consist of average top-1 accuracy
along with confidence intervals considering 1000 randomly selected tasks. All evaluations consider a
ResNet-12 architecture.

1-shot 5-shots
MatchNet [93] 63.08±0.80 75.99±0.60
SNAIL [202] 55.71±0.99 68.88±0.92

AdaResNet [203] 56.88±0.62 71.94±0.57
TADAM [204] 58.50±0.30 76.70±0.30

MetaOptNet [205] 62.64±0.61 78.63±0.46
Prototypical Networks [205] 59.25±0.64 75.60±0.48

Ours - Cosine 59.00±0.65 77.52±0.49
Ours - SIM 60.28±0.65 75.26±0.52

Ours - Cosine + SIM 61.27±0.65 76.83±0.50

Table 6.7 – Classification performance in terms of accuracy (%).

Top-1 Top-5
DOL 73.15 91.26
SIM 71.33 90.33

Ablation 70.37 89.85

so resulted in severe overfitting and performance degradation. Similarly to what is discussed for

results adversarial robustness in Section 6.5.2.1, i.e., constraining C so that prototypes are pairwise

distant might be beneficial as a regularization strategy for fine-tuning C′ while avoiding overfitting.

6.5.2.5 Ablation study

We performed ablations using the full ImageNet in order to assess the importance of the use

of the auxiliary loss Laux. We trained models with and without Laux in the training partition

of ImageNet using Algorithm 2 and performed evaluations in terms of multi-class classification

performance and verification. Results for each case are reported in Tables 6.7 and 6.8. Here, E was

implemented as the convolutional stack of a ResNet-50. For the classification case, performance is

assessed in terms of top-1 and top-5 accuracy, while EER and the area above the operation curve

(i.e., 1-AUC) are reported for the case of verification. Verification trials were defined by creating all

possible pairs of examples out of the test data. In both the cases, removing the auxiliary output layer

negatively affected performance, more notably so in the case of verification using cosine scores. Since

such an auxiliary layer does not add any significant cost and boosts performance across considered

evaluations, its use is justified.

162

Table 6.8 – Verification performance in terms of EER (%) and 1-AUC (%).

Scoring EER 1-AUC
Complete model SIM 3.54 0.63
Complete model Cosine 5.33 1.60

Ablation SIM 4.02 0.75
Ablation Cosine 10.06 3.93

6.5.3 Implementation details

Training: Training was carried out with SGD with momentum for most of the experiments, except

for the case of MNIST, where Adam with default hyperparameters was employed, and retrieval where

Adam was employed with an initial learning rate of 1e− 5 reduced by a factor of 0.1 on epochs 20

and 50, and hyperparameters, such as β1 and β2 were set to 0.5 and 0.999, respectively. Standard

schedules for the learning rate were employed for the case of CIFAR-10, consisting of a reduction by

a factor of 0.1 every 30 epochs, while a decay every 10 epochs was used for ImageNet experiments,

in which case pretrained encoders were employed to speed up convergence. For the specific case of

VoxCeleb, we found the additive margin softmax [113] yielded higher performance when used as an

auxiliary loss, and in that case the learning rate schedule introduced in [48] was employed. We set

λ = 0.9 across all experiments. Regularization strategies, such as weight decay and label smoothing

[81] were further employed.

Mini-batch construction for cases corresponding to large label sets: In cases where the

size of the label set |Y| was larger than the batch sizes being employed, which was the case for

experiments performed with ImageNet, VoxCeleb, and the retrieval datasets, we needed to define a

sampling strategy which would ensure that multiple examples from observed classes would appear

in each mini-batch so as to enable the definition of target trials T + in order to compute Lpair, as

per its definition in Equation 6.3. We thus build mini-batches such that 5 examples per class are

included for each class observed, and we make sure to update such groups of 5 examples every epoch

to allow for diverse minibatches throughout training.

Data preparation for verification experiments on VoxCeleb: The audio data from Vox-

Celeb is augmented following the procedure discussed in [3]. We thus add reverberation, using

reverberation times within 0.25s - 0.75s, and further add background noise consisting of music

Chapter 6. Learning partitions to define versatile learning templates 163

samples (SNR within 5-15dB), and babble samples (SNR within 10-20dB). Noise samples were

picked from the MUSAN corpus [136] while room impulse responses used to simulate reverbera-

tion were picked from [178]. The data used for distortions of the original audio are available at

https://www.openslr.org/. Features of audio are extracted such that 30 mel frequency cepstral

coefficients are obtained with a short-time Fourier transform using a 25ms Hamming window with

60% overlap. Audio is downsampled to 16kHz and a simple energy voice activity detector filters

out silent frames.

6.6 Conclusion

We introduced TEMPLE: a set of model components and a training procedure which simplifies

re-using of learning procedures across different types of tasks and data. Model components are

given by the following: an encoder responsible for embedding data into a lower-dimensional space,

a similarity model which outputs a similarity score when given a pair of embeddings, and a set of

class prototypes where each one represents a class observed during training. At testing time, different

inference schemes can be defined on top of said components so as to enable its use across different

settings. We presented empirical evidence showing classifiers defined under TEMPLE to yield

improvements including: (1) improved adversarial robustness, since small perturbations in norm

were observed to have a lesser effect on distance-based inference compared to standard classifiers.

(2) improved robustness against distribution shifts, which indicates the proposed training strategy

is more effective in avoiding models that rely on correlations between domain-specific factors and

labels. In this case, domain information is not as helpful as it can be for the case of maximum

likelihood estimation with standard classifiers. Moreover, performance across a set of tasks, such

as verification and image retrieval further showed TEMPLE models to perform competitively with

or better than alternatives designed targeting those particular applications.

https://www.openslr.org/

Chapter 7

Conclusions and Future Research

Directions

7.1 Conclusions

In this dissertation, we proposed several methods to improve the performance of models based

on neural networks specifically targeting voice biometrics and other related tasks, such as spoken

language identification. Moreover, we further consider the task of detecting spoofing attackers to

such systems. In addition, more broadly applicable proposals are discussed in the final chapters,

and those have potential applications outside the speech domain, and hence, image applications

are also explored, including object recognition from images, image retrieval, and robustness against

adversarial perturbations. As such, we present the thesis conclusions under two parts: applied

contributions comprising chapters 2- 4 focusing on the cases of automatic speaker verification (ASV),

language identification (LID), and spoofing countermeasures. The second part corresponds to more

fundamental contributions in the sense that they are applicable across domains and include Chapters

5 and 6.

166

7.1.1 Applied contributions

We provided contributions in terms of both training design and model architectures resulting

in improved language- and speaker-dependent utterance-level representations. In particular, we

introduced a multi-task scheme where a combination of metric learning and maximum likelihood

estimation is used as a training signal for neural networks. Additional practical training strategies

are further introduced including data augmentation schemes and sampling approaches resulting in

mini-batches containing informative pairs of examples. Entropy regularization is also discussed and

observed to improve performance. Results in terms of both geometric properties of the embedding

space and prediction performance support the claim that the proposed framework is effective in

learning discriminative representations. Specifically, evaluation is performed on non-trivial condi-

tions, such as short-duration speech segments and confusing languages (LID), as well as the setting

containing language mismatches for ASV. Obtained results further indicate the robustness and im-

proved accuracy of the proposed approach relative to several well-known benchmarks. An ablation

study further showed that the proposed combination of maximum likelihood and metric learning

outperformed models trained individually under each criterion. These findings suggest that the

proposed method combines the relative easiness of training under the maximum likelihood setting,

as well as the discriminability imposed on representations obtained with metric learning.

For spoofing detection, in turn, we introduced model architectures, as well as training procedures

resulting in predictors that operate in an end-to-end fashion, i.e., our models directly map speech

features into scores. We proposed variations to the light convolutional neural network architecture

by adding an attention layer to detect attacks of arbitrary duration. Performance was validated on

the ASVspoof 2019 challenge data, where we showed significant detection performance improvements

with respect to well-known reference baseline systems.

In addition, we evaluated different training-data augmentation strategies in order to allow for

more complex models to be found. A challenge with data augmentation for spoofing is that signal

transformations should not mask or remove artifacts introduced by the attack strategies, given

that those are needed for spoofing detection. We found that speed perturbations and bandpass

filtering satisfied these requirements for replay attacks, yielding a simple and efficient approach to

increase the amount of data five-fold and improve the diversity of the available train data. In turn,

simpler trimming methods across time showed to be helpful for the case of logical access attacks.

Chapter 7. Conclusions and Future Research Directions 167

It is important to emphasize that while our experiments considered an offline data augmentation

approach (i.e., corrupted copies of the data were generated prior to actually training models), the

proposed transformations are simple enough to be generated on-the-fly while models are being

updated. This can potentially further increase the diversity of train data and make its size virtually

unbounded, as data instances appear in a different version every time they are sampled, i.e., each

time a particular recording is selected during training, it appears different to the model due to the

random nature of the transformations we apply.

We also empirically observed that the best speech representation for spoofing detection depended

on the spoofing strategy used. For example, product spectra was the best choice for replay attacks,

whereas LFCCs were more helpful for the case of logical attacks. As such, we proposed an ensemble-

based approach with the goal of enabling detectors to be effective across varying types of spoofing

attacks to speaker verification systems. The ensemble relied on three components, where two were

optimized per attack and the third to decide how to best combine their decisions based on the input

speech signal. Evaluation on the ASVspoof 2019 challenge data showed that the proposed method (i)

outperformed methods that combine data from both the attack types (multi-condition training) and

train a single model, as well as (ii) achieved competitive performance when compared to specialized

models trained on data curated to match the evaluation condition known in advance. In fact, for

the specific case of PA attacks, our proposed model outperformed the privileged specialized systems.

Given that most of the current work on countermeasures for spoofing attacks focuses on specialized

systems for particular types of attack strategies, we believe the approach proposed herein is a first

step in the direction of enabling automatic speaker verification systems to be deployed free of the

risk of security breaches, since it performs well across the different attack strategies.

Finally, we introduced a variation of the TDNN architecture – ubiquitous within the context

of voice biometrics – where temporal pooling operations are performed across all layers of the

convolutional stack, rather than only at its end. We term the proposed architecture ML-TDNN

(multi-level self-attention TDNN). In particular, we propose a model component aimed at combin-

ing global representations from different layers by treating global statistics computed in different

parts of the model as sequences. We then use a self-attentive layer to process these sequences and

finally obtain an utterance-level representation from the processed sequence of global statistics. Ex-

periments are performed on three tasks: ASV, LID, and spoofing detection. Results showed that the

proposed method consistently outperformed various benchmarks that use global features obtained

168

from a single layer. We conclude that complementary information can be efficiently leveraged from

low-level layers, i.e., those close to the inputs. Moreover, the proposed architecture was observed to

perform at least as well as specialized models, designed to target a particular task. This suggests

that the proposed ML-TDNNs are versatile enough to be re-used across settings without specific

adaptations. In terms of limitations, we highlight the fact that the obtained versatility comes at an

additional computational cost, as pooling operations across several layers and their combinations in-

cur additional computations. As such, resource-constrained settings, such as on-device applications

might not directly benefit from this type of model. Notwithstanding, bootstrapping mechanisms

for model compression or knowledge distillation [75] could be used to alleviate this issue.

7.1.2 Fundamental contributions

We proposed an augmented metric learning framework where an encoder and a (pseudo) distance

are trained jointly. This pair of components defines a (pseudo) metric space, where inference can be

performed efficiently for verification. We use the term pseudo to indicate that such component only

needs to resemble a distance, while the proposed approach does not require it to satisfy properties

of actual distances. We then pose an estimation problem that results on (pseudo) metric spaces

where semantic relationships between data points, as defined via labels, can be assessed via distance

measures. In particular, we leverage contrastive estimation results to show that optimal solutions

of the posed problem are such that: (i) the optimal distance model for any fixed encoder yields the

likelihood-ratio for a Neyman-Pearson likelihood ratio test, and (ii) the optimal encoder induces a

high Jensen-Shannon divergence between the joint distributions of positive and negative pairs of

examples. These results imply that, for optimal encoder and distance models, using measures of

distances induced by the learned models result in optimal decision rules for verification settings,

resulting in correct decisions for any choice of positive thresholds1. For a practical implementation

of our proposed method, we parameterized both components as neural networks. Moreover, a simple

training algorithm was proposed, which does not require cumbersome steps, such as hard-negative

mining, often needed in standard metric learning cases. Evaluations on large scale verification tasks

provide empirical evidence of the effectiveness of directly using outputs of the learned distance for

inference, outperforming commonly used downstream classifiers.

1Scores are calibrated in this case.

Chapter 7. Conclusions and Future Research Directions 169

Finally, we leveraged the approach discussed above and extended it so that other types of tasks

can be supported, in addition to verification. In particular, we introduced a third component

corresponding to a set of class prototypes: a set of vectors, each one representing a particular

class. With the three components, we introduced TEMPlate LEarners (TEMPLE), a set of model

components accompanied by a training procedure that can be re-used for different tasks and types of

data. Under TEMPLE, defining a model on a particular data source requires simply implementing

an encoding procedure for that particular case. Inference schemes were then introduced on top of

TEMPLE models, enabling their use for cases that require instance-to-instance comparisons, such

as verification and retrieval, as well as those relying on instance-to-sample similarity assessment,

such as in the case of prototypical classification.

Empirical evaluation provides evidence that the proposed setting is able to match the perfor-

mance of specialized approaches across a diverse set of benchmarks. Moreover, classifiers defined

under this setting resulted in improvements in: (i) adversarial robustness, since small perturbations

in norm were observed to have a smaller effect on distance-based inference compared to standard

classification strategies, and (ii) robustness against distribution shifts, which indicates the proposed

training strategy is more effective in avoiding models that rely on correlations between training do-

main factors and labels. In this case, domain information is not as helpful as it can be for the case

of maximum likelihood estimation with standard classifiers. The proposed approach also supports

the inclusion of new classes appearing posterior to training, which we do by simply including new

prototypes (or repartitioning the space) obtained from small samples. Doing so yields an efficient

and competitive mechanism for few-shot classification.

7.2 Future work

In the following, we discuss research directions that build upon the proposals introduced herein.

We specifically discuss ideas that extend the ML-TDNN architecture presented in Chapter 4. In

this case, we conjecture that a training scheme where classification is performed at various levels

can further boost the discriminability of representations learned with models that perform global

pooling across different layers. Additionally, we discuss further extensions of the approach proposed

in Chapters 5 and 6, so as to support applications of learned distances to more tasks and define

170

robust classifiers. In this case, we discuss defining data-dependent kernel functions using such

learned distances and imposing properties on induced (pseudo) metric spaces.

Multi-level classification to improve multi-level pooling In order to improve on top of the

ML-TDNN architecture introduced in Chapter 4, future work should explore the use of auxiliary

output layers placed throughout the model, similarly to the inception architecture [81], so that

different embedding encoders can be defined using a single model. These can all be used to produce

a combined score at testing time. In order for such strategy to be effective, however, we hypothesize

that extra regularization strategies might be required so that predictions across layers are diverse

in the sense that errors across layers differ, hence motivating the use of model ensembles. The

framework of model distillation, originally introduced in [75], can be utilized to that end. That is,

auxiliary output layers defined in parts of the model close to inputs are trained using noisy labels

defined by predictions of the final output layer. Lastly, learning how to combine the scores obtained

throughout the model in a data-dependent fashion could also be explored, i.e., a model component

would be trained to decide which subset of the available scores are more relevant given the observed

data, which could lead to further versatility.

Data-dependent kernels for learning versatile predictors In [86], we found learned sim-

ilarities to perform extremely well in verification settings where questions such as the following

need to be answered at inference time: do two given instances belong to the same class? - even if

examples from novel classes are being tested. We then propose three sets of problems where one

can leverage learned similarities when treating them as kernel functions tailored to the data of inter-

est: non-parametric 2-sample tests based on MMD scores [183]; outlier/novelty detection, in which

case we envision the use of approaches, such as one-class SVM [206] using the learned kernel. An

issue that needs to be accounted for in this case is the fact that there is no guarantee that learned

similarities will yield Mercer’s kernels. We hypothesize that having a kernel which is approximately

symmetric positive semidefinite suffices in order to efficiently solve the considered tasks, in which

case such properties can be enforced during training. If that’s not the case, an alternative would be

to control the learned kernel’s range through the choice of its output layer activation function, as

well as inducing symmetry through a symmetrized kernel defined by KS = f(K(x′, x′′),K(x′′, x′)),

where f : R2 → R is symmetric, e.g., f(·, ·) = max(·, ·), and K is the learned similarity function.

Chapter 7. Conclusions and Future Research Directions 171

Adversarial robustness via low-density learned metric spaces As discussed in Section

6.5.2.1, distance-based inferences were observed to be inherently more robust relative to standard

multi-class classification. In addition, distance-based classifiers were also observed to benefit more

from adversarial training. This is likely due to the fact that larger norm perturbations are required

to move embeddings closer to the prototype of a wrong class than it is to modify an output layer so

that the highest logit corresponds to the wrong class. Such observation then indicates that one can

induce more robust distance-based classifiers by placing class centroids at a larger distance from

one another. Doing so would likely require a larger perturbation in the inputs, rendering attackers

detectable.

We thus envision augmenting the training objective described in Algorithm 3 by including a

regularization term that assigns a higher importance during training to encoders that result in larger

distances between prototypes of different classes. Specifically, we consider defining the similarity

matrix Sij , where S(i, j) = S(C(i), C(j)). Some property of S can then be used to define a

regularizer, such as its Frobenius or spectral norm. We remark that computing S would be efficient

since it only scales with the number of classes for fixed E and S.

Bibliography

[1] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-end factor analysis
for speaker verification,” IEEE Transactions on Audio, Speech, and Language Processing,
vol. 19, no. 4, pp. 788–798, 2010.

[2] M. Faundez-Zanuy, “On the vulnerability of biometric security systems,” IEEE Aerospace and
Electronic Systems Magazine, vol. 19, no. 6, pp. 3–8, 2004.

[3] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur, “X-vectors: Robust DNN
embeddings for speaker recognition,” in 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2018, pp. 5329–5333.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp.
770–778.

[5] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an invariant
mapping,” in Proceeedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. IEEE, 2006, pp. 1735–1742.

[6] E. Hoffer and N. Ailon, “Deep metric learning using triplet network,” in International Work-
shop on Similarity-Based Pattern Recognition. Springer, 2015, pp. 84–92.

[7] J. S. Chung, A. Nagrani, and A. Zisserman, “Voxceleb2: Deep speaker recognition,” Proc.
Interspeech 2018, pp. 1086–1090, 2018.

[8] Z. Tang, D. Wang, and Q. Chen, “Ap18-olr challenge: Three tasks and their baselines,” arXiv
preprint arXiv:1806.00616, 2018.

[9] M. Todisco, X. Wang, V. Vestman, M. Sahidullah, H. Delgado, A. Nautsch, J. Yamagishi,
N. Evans, T. Kinnunen, and K. A. Lee, “Asvspoof 2019: Future horizons in spoofed and fake
audio detection,” arXiv preprint arXiv:1904.05441, 2019.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convo-
lutional neural networks,” in Advances in neural information processing systems, 2012, pp.
1097–1105.

[11] J. Neyman and E. S. Pearson, “Ix. on the problem of the most efficient tests of statistical
hypotheses,” Philosophical Transactions of the Royal Society of London. Series A, Containing
Papers of a Mathematical or Physical Character, vol. 231, no. 694-706, pp. 289–337, 1933.

[12] H. Jiang and L. Deng, “A bayesian approach to the verification problem: Applications to
speaker verification,” IEEE Transactions on Speech and Audio Processing, vol. 9, no. 8, pp.
874–884, 2001.

[13] L. Deng and D. O’Shaughnessy, Speech processing: a dynamic and optimization-oriented
approach. CRC Press, 2018.

[14] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verification using adapted gaussian
mixture models,” Digital signal processing, vol. 10, no. 1-3, pp. 19–41, 2000.

174

[15] S. Cumani, N. Brümmer, L. Burget, P. Laface, O. Plchot, and V. Vasilakakis, “Pairwise
discriminative speaker verification in the i-vector space,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 21, no. 6, pp. 1217–1227, 2013.

[16] A. K. Jain, L. Hong, and Y. Kulkarni, “A multimodal biometric system using fingerprint,
face and speech,” in Proceedings of 2nd Int’l Conference on Audio-and Video-based Biometric
Person Authentication, Washington DC, 1999, pp. 182–187.

[17] A. K. Jain, A. Ross, and S. Prabhakar, “An introduction to biometric recognition,” IEEE
Transactions on circuits and systems for video technology, vol. 14, no. 1, pp. 4–20, 2004.

[18] A. Fazel and S. Chakrabartty, “An overview of statistical pattern recognition techniques for
speaker verification,” IEEE Circuits and Systems Magazine, vol. 11, no. 2, pp. 62–81, 2011.

[19] W. Li, T. Fu, H. You, J. Zhu, and N. Chen, “Feature sparsity analysis for i-vector based
speaker verification,” Speech Communication, vol. 80, pp. 60–70, 2016.

[20] T. Kinnunen and H. Li, “An overview of text-independent speaker recognition: From features
to supervectors,” Speech communication, vol. 52, no. 1, pp. 12–40, 2010.

[21] N. Dehak, P. A. Torres-Carrasquillo, D. Reynolds, and R. Dehak, “Language recognition via
i-vectors and dimensionality reduction,” in Twelfth annual conference of the international
speech communication association, 2011.

[22] J. S. Chung, A. Nagrani, and A. Zisserman, “Voxceleb2: Deep speaker recognition,” in IN-
TERSPEECH, 2018.

[23] W. Cai, Z. Cai, W. Liu, X. Wang, and M. Li, “Insights into end-to-end learning scheme for
language identification,” arXiv preprint arXiv:1804.00381, 2018.

[24] W. Cai, J. Chen, and M. Li, “Exploring the encoding layer and loss function in end-to-end
speaker and language recognition system,” arXiv preprint arXiv:1804.05160, 2018.

[25] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A discriminative feature learning approach for deep
face recognition,” in European Conference on Computer Vision. Springer, 2016, pp. 499–515.

[26] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “Sphereface: Deep hypersphere embedding
for face recognition,” in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), vol. 1, 2017, p. 1.

[27] K. J. Lang, A. H. Waibel, and G. E. Hinton, “A time-delay neural network architecture for
isolated word recognition,” Neural networks, vol. 3, no. 1, pp. 23–43, 1990.

[28] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9,
no. 8, pp. 1735–1780, 1997.

[29] M. M. Homayounpour and G. Chollet, “Discrimination of voices of twins and siblings for
speaker verification,” in Fourth European Conference on Speech Communication and Technol-
ogy, 1995.

[30] A. Ariyaeeinia, C. Morrison, A. Malegaonkar, and S. Black, “A test of the effectiveness of
speaker verification for differentiating between identical twins,” Science & Justice, vol. 48,
no. 4, pp. 182–186, 2008.

[31] Z. Wu, N. Evans, T. Kinnunen, J. Yamagishi, F. Alegre, and H. Li, “Spoofing and coun-
termeasures for speaker verification: A survey,” speech communication, vol. 66, pp. 130–153,
2015.

[32] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,”
arXiv preprint arXiv:1412.6572, 2014.

BIBLIOGRAPHY 175

[33] P. Korshunov, S. Marcel, H. Muckenhirn, A. R. Gonçalves, A. S. Mello, R. V. Violato, F. O.
Simoes, M. U. Neto, M. de Assis Angeloni, J. A. Stuchi et al., “Overview of btas 2016 speaker
anti-spoofing competition,” in 2016 IEEE 8th international conference on biometrics theory,
applications and systems (BTAS), 2016, pp. 1–6.

[34] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner,
A. Senior, and K. Kavukcuoglu, “Wavenet: A generative model for raw audio,” in 9th ISCA
Speech Synthesis Workshop, 2016, pp. 125–125.

[35] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly, Z. Yang, Y. Xiao,
Z. Chen, S. Bengio et al., “Tacotron: Towards end-to-end speech synthesis,” arXiv preprint
arXiv:1703.10135, 2017.

[36] A. Tamamori, T. Hayashi, K. Kobayashi, K. Takeda, and T. Toda, “Speaker-dependent
wavenet vocoder.” in Eighteenth Annual Conference of the International Speech Communi-
cation Association, 2017.

[37] T. Kaneko, H. Kameoka, N. Hojo, Y. Ijima, K. Hiramatsu, and K. Kashino, “Generative
adversarial network-based postfilter for statistical parametric speech synthesis,” in 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017, pp.
4910–4914.

[38] Z. Wu, T. Kinnunen, N. Evans, J. Yamagishi, C. Hanilçi, M. Sahidullah, and A. Sizov,
“Asvspoof 2015: the first automatic speaker verification spoofing and countermeasures chal-
lenge,” in Sixteenth Annual Conference of the International Speech Communication Associa-
tion, 2015.

[39] T. Kinnunen, M. Sahidullah, H. Delgado, M. Todisco, N. Evans, J. Yamagishi, and K. A. Lee,
“The asvspoof 2017 challenge: Assessing the limits of replay spoofing attack detection,” in
Eighteenth Annual Conference of the International Speech Communication Association, 2017.

[40] H. Muckenhirn, M. Magimai-Doss, and S. Marcel, “End-to-end convolutional neural network-
based voice presentation attack detection,” in 2017 IEEE international joint conference on
biometrics (IJCB), 2017, pp. 335–341.

[41] C.-I. Lai, A. Abad, K. Richmond, J. Yamagishi, N. Dehak, and S. King, “Attentive filter-
ing networks for audio replay attack detection,” in ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 6316–6320.

[42] J. Monteiro, J. Alam, and T. H. Falk, “End-to-end detection of attacks to automatic speaker
recognizers with time-attentive light convolutional neural networks,” in 2019 IEEE 29th In-
ternational Workshop on Machine Learning for Signal Processing (MLSP). IEEE, 2019, pp.
1–6.

[43] P. L. Bartlett, D. P. Helmbold, and P. M. Long, “Gradient descent with identity initialization
efficiently learns positive definite linear transformations by deep residual networks,” arXiv
preprint arXiv:1802.06093, 2018.

[44] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: Inverted
residuals and linear bottlenecks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 4510–4520.

[45] H. Li, Z. Xu, G. Taylor, and T. Goldstein, “Visualizing the loss landscape of neural nets,”
arXiv preprint arXiv:1712.09913, 2017.

[46] M. Hardt and T. Ma, “Identity matters in deep learning,” arXiv preprint arXiv:1611.04231,
2016.

[47] G. Bhattacharya, J. Alam, and P. Kenny, “Deep speaker embeddings for short-duration
speaker verification,” in Proc. Interspeech 2017, 2017, pp. 1517–1521.

176

[48] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin, “Attention is all you need,” in Advances in neural information processing
systems, 2017, pp. 5998–6008.

[49] E. P. Xing, M. I. Jordan, S. J. Russell, and A. Y. Ng, “Distance metric learning with ap-
plication to clustering with side-information,” in Advances in neural information processing
systems, 2003, pp. 521–528.

[50] A. Globerson and S. T. Roweis, “Metric learning by collapsing classes,” in Advances in neural
information processing systems, 2006, pp. 451–458.

[51] K. Q. Weinberger and L. K. Saul, “Distance metric learning for large margin nearest neighbor
classification,” Journal of Machine Learning Research, vol. 10, no. Feb, pp. 207–244, 2009.

[52] Y. Ying and P. Li, “Distance metric learning with eigenvalue optimization,” Journal of ma-
chine Learning research, vol. 13, no. Jan, pp. 1–26, 2012.

[53] S. Shalev-Shwartz, Y. Singer, and A. Y. Ng, “Online and batch learning of pseudo-metrics,”
in Proceedings of the twenty-first international conference on Machine learning. ACM, 2004,
p. 94.

[54] M. Schultz and T. Joachims, “Learning a distance metric from relative comparisons,” in
Advances in neural information processing systems, 2004, pp. 41–48.

[55] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon, “Information-theoretic metric learning,”
in Proceedings of the 24th international conference on Machine learning. ACM, 2007, pp.
209–216.

[56] B. Kulis, M. Sustik, and I. Dhillon, “Learning low-rank kernel matrices,” in Proceedings of
the 23rd international conference on Machine learning. ACM, 2006, pp. 505–512.

[57] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive predictive
coding,” arXiv preprint arXiv:1807.03748, 2018.

[58] Y. Tian, D. Krishnan, and P. Isola, “Contrastive multiview coding,” arXiv preprint
arXiv:1906.05849, 2019.

[59] G. R. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan, “Learning the
kernel matrix with semidefinite programming,” Journal of Machine learning research, vol. 5,
no. Jan, pp. 27–72, 2004.

[60] S. Pitis, H. Chan, K. Jamali, and J. Ba, “An inductive bias for distances: Neural nets that
respect the triangle inequality,” in International Conference on Learning Representations,
2020. [Online]. Available: https://openreview.net/forum?id=HJeiDpVFPr

[61] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric discriminatively, with
application to face verification,” in 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), vol. 1. IEEE, 2005, pp. 539–546.

[62] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face recogni-
tion and clustering,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 815–823.

[63] H. Shi, Y. Yang, X. Zhu, S. Liao, Z. Lei, W. Zheng, and S. Z. Li, “Embedding deep metric
for person re-identification: A study against large variations,” in European conference on
computer vision. Springer, 2016, pp. 732–748.

[64] C. Li, X. Ma, B. Jiang, X. Li, X. Zhang, X. Liu, Y. Cao, A. Kannan, and Z. Zhu, “Deep
speaker: an end-to-end neural speaker embedding system,” arXiv preprint arXiv:1705.02304,
2017.

https://openreview.net/forum?id=HJeiDpVFPr

BIBLIOGRAPHY 177

[65] C. Zhang, K. Koishida, and J. H. Hansen, “Text-independent speaker verification based on
triplet convolutional neural network embeddings,” IEEE/ACM Transactions on Audio, Speech
and Language Processing (TASLP), vol. 26, no. 9, pp. 1633–1644, 2018.

[66] M. Norouzi, D. J. Fleet, and R. R. Salakhutdinov, “Hamming distance metric learning,” in
Advances in neural information processing systems, 2012, pp. 1061–1069.

[67] N. Courty, R. Flamary, and M. Ducoffe, “Learning wasserstein embeddings,” in
International Conference on Learning Representations, 2018. [Online]. Available: https:
//openreview.net/forum?id=SJyEH91A-

[68] M. Nickel and D. Kiela, “Learning continuous hierarchies in the Lorentz model of hyperbolic
geometry,” in International Conference on Machine Learning, 2018, pp. 3776–3785.

[69] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http://www.
deeplearningbook.org.

[70] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling,” arXiv preprint arXiv:1803.01271, 2018.

[71] A. Hermans, L. Beyer, and B. Leibe, “In defense of the triplet loss for person re-identification,”
arXiv preprint arXiv:1703.07737, 2017.

[72] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner,
A. Senior, and K. Kavukcuoglu, “Wavenet: A generative model for raw audio,” arXiv preprint
arXiv:1609.03499, 2016.

[73] X. Wu, R. He, Z. Sun, and T. Tan, “A light cnn for deep face representation with noisy labels,”
IEEE Transactions on Information Forensics and Security, vol. 13, no. 11, pp. 2884–2896,
2018.

[74] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” arXiv preprint arXiv:1409.1556, 2014.

[75] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” arXiv
preprint arXiv:1503.02531, 2015.

[76] D. A. Reynolds, “An overview of automatic speaker recognition technology,” in 2002 IEEE
International Conference on Acoustics, Speech, and Signal Processing, vol. 4. IEEE, 2002,
pp. IV–4072.

[77] H. Zhu, M. Long, J. Wang, and Y. Cao, “Deep hashing network for efficient similarity re-
trieval,” in Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[78] C.-Y. Wu, R. Manmatha, A. J. Smola, and P. Krahenbuhl, “Sampling matters in deep em-
bedding learning,” in Proceedings of the IEEE International Conference on Computer Vision,
2017, pp. 2840–2848.

[79] P. Kenny, T. Stafylakis, P. Ouellet, M. J. Alam, and P. Dumouchel, “PLDA for speaker
verification with utterances of arbitrary duration,” in 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing. IEEE, 2013, pp. 7649–7653.

[80] M. Nickel and D. Kiela, “Poincaré embeddings for learning hierarchical representations,” in
Advances in neural information processing systems, 2017, pp. 6338–6347.

[81] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception archi-
tecture for computer vision,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 2818–2826.

[82] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: A large-scale speaker identification
dataset,” Proc. Interspeech 2017, pp. 2616–2620, 2017.

https://openreview.net/forum?id=SJyEH91A-
https://openreview.net/forum?id=SJyEH91A-
http://www.deeplearningbook.org
http://www.deeplearningbook.org

178

[83] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot learning,” in Advances
in neural information processing systems, 2017, pp. 4077–4087.

[84] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for one-shot image
recognition,” in ICML deep learning workshop, vol. 2. Lille, 2015.

[85] N. Garcia and G. Vogiatzis, “Learning non-metric visual similarity for image retrieval,” Image
and Vision Computing, vol. 82, pp. 18–25, 2019.

[86] J. Monteiro, I. Albuquerque, J. Alam, R. D. Hjelm, and T. Falk, “An end-to-end approach for
the verification problem: learning the right distance,” in International Conference on Machine
Learning, 2020.

[87] R. Auckenthaler, M. Carey, and H. Lloyd-Thomas, “Score normalization for text-independent
speaker verification systems,” Digital Signal Processing, vol. 10, no. 1-3, pp. 42–54, 2000.

[88] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,” ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, vol. 2, 2010.

[89] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny images,” 2009.

[90] D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales, “Deeper, broader and artier domain
generalization,” in Proceedings of the IEEE international conference on computer vision, 2017,
pp. 5542–5550.

[91] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3d object representations for fine-grained catego-
rization,” in Proceedings of the IEEE international conference on computer vision workshops,
2013, pp. 554–561.

[92] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The caltech-ucsd birds-200-
2011 dataset,” 2011.

[93] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching networks for one shot
learning,” in Advances in neural information processing systems, 2016, pp. 3630–3638.

[94] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-Scale
Hierarchical Image Database,” in CVPR09, 2009.

[95] I. Albuquerque, J. Monteiro, M. Darvishi, T. H. Falk, and I. Mitliagkas, “Generalizing to
unseen domains via distribution matching,” arXiv preprint arXiv:1911.00804, 2019.

[96] J. Monteiro, X. Gibert, J. Feng, V. Dumoulin, and D.-S. Lee, “Domain conditional predictors
for domain adaptation,” Pre-registration workshop, NeurIPS 2020, 2020.

[97] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus,
“Intriguing properties of neural networks,” arXiv preprint arXiv:1312.6199, 2013.

[98] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,”
arXiv preprint arXiv:1412.6572, 2014.

[99] Z. Wu, T. Kinnunen, E. S. Chng, H. Li, and E. Ambikairajah, “A study on spoofing attack in
state-of-the-art speaker verification: the telephone speech case,” in Proceedings of The 2012
Asia Pacific Signal and Information Processing Association Annual Summit and Conference.
IEEE, 2012, pp. 1–5.

[100] M. Sahidullah, T. Kinnunen, and C. Hanilçi, “A comparison of features for synthetic speech
detection,” in Sixteenth Annual Conference of the International Speech Communication As-
sociation, 2015.

[101] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Rad-
ford, J. Wu, and D. Amodei, “Scaling laws for neural language models,” arXiv preprint
arXiv:2001.08361, 2020.

BIBLIOGRAPHY 179

[102] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot learners,” arXiv preprint
arXiv:2005.14165, 2020.

[103] J. Hestness, S. Narang, N. Ardalani, G. Diamos, H. Jun, H. Kianinejad, M. Patwary, M. Ali,
Y. Yang, and Y. Zhou, “Deep learning scaling is predictable, empirically,” arXiv preprint
arXiv:1712.00409, 2017.

[104] Y. Bahri, E. Dyer, J. Kaplan, J. Lee, and U. Sharma, “Explaining neural scaling laws,” arXiv
preprint arXiv:2102.06701, 2021.

[105] S. Ioffe, “Probabilistic linear discriminant analysis,” in European Conference on Computer
Vision. Springer, 2006, pp. 531–542.

[106] S. J. Prince and J. H. Elder, “Probabilistic linear discriminant analysis for inferences about
identity,” in IEEE 11th International Conference on Computer Vision (ICCV), 2007, pp. 1–8.

[107] L. Li, Y. Chen, Y. Shi, Z. Tang, and D. Wang, “Deep Speaker Feature Learning for Text-
independent Speaker Verification,” ArXiv e-prints, May 2017.

[108] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang, “Phoneme recognition using
time-delay neural networks,” IEEE transactions on acoustics, speech, and signal processing,
vol. 37, no. 3, pp. 328–339, 1989.

[109] S. Yadav and A. Rai, “Learning discriminative features for speaker identification and verifi-
cation,” Proc. Interspeech 2018, pp. 2237–2241, 2018.

[110] N. Le and J.-M. Odobez, “Robust and discriminative speaker embedding via intra-class dis-
tance variance regularization,” Proc. Interspeech 2018, pp. 2257–2261, 2018.

[111] N. Li, D. Tuo, D. Su, Z. Li, D. Yu, and A. Tencent, “Deep discriminative embeddings for
duration robust speaker verification,” Proc. Interspeech 2018, pp. 2262–2266, 2018.

[112] C. Li, X. Ma, B. Jiang, X. Li, X. Zhang, X. Liu, Y. Cao, A. Kannan, and Z. Zhu, “Deep
Speaker: an End-to-End Neural Speaker Embedding System,” ArXiv e-prints, May 2017.

[113] F. Wang, J. Cheng, W. Liu, and H. Liu, “Additive margin softmax for face verification,” IEEE
Signal Processing Letters, vol. 25, no. 7, pp. 926–930, 2018.

[114] M. Todisco, H. Delgado, and N. Evans, “A new feature for automatic speaker verification
anti-spoofing: Constant q cepstral coefficients,” in Speaker Odyssey Workshop, Bilbao, Spain,
vol. 25, 2016, pp. 249–252.

[115] J. Alam and P. Kenny, “Spoofing detection employing infinite impulse response—constant q
transform-based feature representations,” in 2017 25th European Signal Processing Conference
(EUSIPCO), 2017, pp. 101–105.

[116] M. J. Alam, P. Kenny, V. Gupta, and T. Stafylakis, “Spoofing detection on the asvspoof2015
challenge corpus employing deep neural networks,” in Proc. Odyssey, 2016, pp. 270–276.

[117] M. J. Alam, P. Kenny, G. Bhattacharya, and T. Stafylakis, “Development of crim system for
the automatic speaker verification spoofing and countermeasures challenge 2015,” in Sixteenth
Annual Conference of the International Speech Communication Association, 2015.

[118] T. B. Patel and H. A. Patil, “Combining evidences from mel cepstral, cochlear filter cepstral
and instantaneous frequency features for detection of natural vs. spoofed speech,” in Sixteenth
Annual Conference of the International Speech Communication Association, 2015.

[119] ——, “Effectiveness of fundamental frequency (f 0) and strength of excitation (soe) for spoofed
speech detection,” in 2016 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2016, pp. 5105–5109.

180

[120] G. Suthokumar, K. Sriskandaraja, V. Sethu, C. Wijenayake, and E. Ambikairajah, “An inves-
tigation about the scalability of the spoofing detection system,” in 2018 IEEE International
Conference on Information and Automation for Sustainability (ICIAfS), 2018, pp. 1–5.

[121] N. Chen, Y. Qian, H. Dinkel, B. Chen, and K. Yu, “Robust deep feature for spoofing
detection—the sjtu system for asvspoof 2015 challenge,” in Sixteenth Annual Conference of
the International Speech Communication Association, 2015.

[122] X. Xiao, X. Tian, S. Du, H. Xu, E. S. Chng, and H. Li, “Spoofing speech detection using high
dimensional magnitude and phase features: The ntu approach for asvspoof 2015 challenge,” in
Sixteenth Annual Conference of the International Speech Communication Association, 2015.

[123] X. Tian, Z. Wu, X. Xiao, E. S. Chng, and H. Li, “Spoofing detection from a feature represen-
tation perspective,” in 2016 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2016, pp. 2119–2123.

[124] H. Zeinali, L. Burget, J. Rohdin, T. Stafylakis, and J. H. Cernocky, “How to improve your
speaker embeddings extractor in generic toolkits,” in ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 6141–
6145.

[125] L. You, W. Guo, L.-R. Dai, and J. Du, “Deep neural network embeddings with gating mecha-
nisms for text-independent speaker verification,” Proc. Interspeech 2019, pp. 1168–1172, 2019.

[126] K. Okabe, T. Koshinaka, and K. Shinoda, “Attentive statistics pooling for deep speaker
embedding,” Proc. Interspeech 2018, pp. 2252–2256, 2018.

[127] S. Wang, Y. Yang, Y. Qian, and K. Yu, “Revisiting the statistics pooling layer in deep speaker
embedding learning,” in 2021 12th International Symposium on Chinese Spoken Language
Processing (ISCSLP). IEEE, 2021, pp. 1–5.

[128] Y. Tang, G. Ding, J. Huang, X. He, and B. Zhou, “Deep speaker embedding learning with
multi-level pooling for text-independent speaker verification,” in ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2019, pp. 6116–6120.

[129] V. Balntas, E. Riba, D. Ponsa, and K. Mikolajczyk, “Learning local feature descriptors with
triplets and shallow convolutional neural networks.” in BMVC, vol. 1, no. 2, 2016, p. 3.

[130] S. O. Sadjadi, T. Kheyrkhah, A. Tong, C. S. Greenberg, D. A. Reynolds, E. Singer, L. P. Ma-
son, and J. Hernandez-Cordero, “The 2016 nist speaker recognition evaluation.” in Interspeech,
2017, pp. 1353–1357.

[131] N. Brummer, A. Swart, J. Jorrın-Prieto, P. Garcıa, L. Buera, P. Matejka, O. Plchot, M. Diez,
A. Silnova, X. Jiang et al., “Abc nist sre 2016 system description,” in Proc. of the NIST SRE
2016 workshop, 2016.

[132] J. Alam, N. Brummer, L. Burget, M. Diez, O. Glembek, P. Kenny, M. Klco, F. Landini,
A. Lozano-Diez, P. Matejka et al., “Abc nist sre 2018 system description,” in Proc. of the
NIST SRE 2018 workshop, 2018.

[133] J. Monteiro, J. Alam, and T. H. Falk, “Residual convolutional neural network with attentive
feature pooling for end-to-end language identification from short-duration speech,” Computer
Speech & Language, vol. 58, pp. 364–376, 2019.

[134] ——, “Combining speaker recognition and metric learning for speaker-dependent representa-
tion learning,” Proc. Interspeech 2019, pp. 4015–4019, 2019.

[135] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a running average
of its recent magnitude,” COURSERA: Neural networks for machine learning, vol. 4, no. 2,
pp. 26–31, 2012.

BIBLIOGRAPHY 181

[136] D. Snyder, G. Chen, and D. Povey, “MUSAN: A Music, Speech, and Noise Corpus,” 2015,
arXiv:1510.08484v1.

[137] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of Machine Learning
Research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[138] Z. Tang, D. Wang, Y. Chen, and Q. Chen, “Ap17-olr challenge: Data, plan, and baseline,” in
Asia-Pacific Signal and Information Processing Association Annual Summit and Conference
(APSIPA ASC), 2017. IEEE, 2017, pp. 749–753.

[139] M. J. Alam, P. Kenny, and V. Gupta, “Tandem features for text-dependent speaker verification
on the reddots corpus.” in INTERSPEECH, 2016, pp. 420–424.

[140] Z. Z. Dong Wang, Xuewei Zhang, “Thchs-30 : A free chinese speech corpus,” 2015. [Online].
Available: http://arxiv.org/abs/1512.01882

[141] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural net-
works.” ICML (3), vol. 28, pp. 1310–1318, 2013.

[142] A. Sablayrolles, M. Douze, C. Schmid, and H. Jégou, “Spreading vectors for similarity search,”
arXiv preprint arXiv:1806.03198, 2018.

[143] J. Beirlant, E. J. Dudewicz, L. Györfi, and E. C. Van der Meulen, “Nonparametric entropy
estimation: An overview,” International Journal of Mathematical and Statistical Sciences,
vol. 6, no. 1, pp. 17–39, 1997.

[144] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” in NIPS-W, 2017.

[145] D. Garcia-Romero, A. McCree, S. Shum, N. Brummer, and C. Vaquero, “Unsupervised domain
adaptation for i-vector speaker recognition,” in Proceedings of Odyssey: The Speaker and
Language Recognition Workshop, 2014.

[146] J. Alam, G. Bhattacharya, and P. Kenny, “Speaker verification in mismatched conditions with
frustratingly easy domain adaptation,” in Proc. Odyssey 2018 The Speaker and Language
Recognition Workshop, 2018, pp. 176–180.

[147] A. F. Martin and C. S. Greenberg, “The nist 2010 speaker recognition evaluation,” in Eleventh
Annual Conference of the International Speech Communication Association, 2010.

[148] D. Snyder, D. Garcia-Romero, D. Povey, and S. Khudanpur, “Deep neural network embed-
dings for text-independent speaker verification.” in Interspeech, 2017, pp. 999–1003.

[149] Z. Lin, M. Feng, C. N. d. Santos, M. Yu, B. Xiang, B. Zhou, and Y. Bengio, “A structured
self-attentive sentence embedding,” arXiv preprint arXiv:1703.03130, 2017.

[150] Y. Zhu, T. Ko, D. Snyder, B. Mak, and D. Povey, “Self-attentive speaker embeddings for
text-independent speaker verification,” in Proc. Interspeech, 2018, pp. 3573–3577.

[151] J. Monteiro, J. Alam, and T. H. Falk, “A multi-condition training strategy for countermeasures
against spoofing attacks to speaker recognizers,” in Proceedings of the Odyssey Speaker and
Language Recognition Workshop, Tokyo, Japan, 2020, pp. 1–5.

[152] ——, “Generalized end-to-end detection of spoofing attacks to automatic speaker recognizers,”
Computer Speech & Language, vol. 63, p. 101096, 2020.

[153] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and Harnessing Adversarial Exam-
ples,” ArXiv e-prints, Dec. 2014.

[154] N. Carlini and D. Wagner, “Audio Adversarial Examples: Targeted Attacks on Speech-to-
Text,” ArXiv e-prints, Jan. 2018.

http://arxiv.org/abs/1512.01882

182

[155] F. Kreuk, Y. Adi, M. Cisse, and J. Keshet, “Fooling End-to-end Speaker Verification by
Adversarial Examples,” ArXiv e-prints, Jan. 2018.

[156] D. Zhu and K. K. Paliwal, “Product of power spectrum and group delay function for speech
recognition,” in 2004 IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing, vol. 1. IEEE, 2004, pp. I–125.

[157] M. J. Alam, G. Bhattacharya, and P. Kenny, “Boosting the performance of spoofing detection
systems on replay attacks using q-logarithm domain feature normalization,” in Proc. Odyssey
2018 The Speaker and Language Recognition Workshop, 2018, pp. 393–398.

[158] M. Todisco, H. Delgado, and N. Evans, “Constant q cepstral coefficients: A spoofing coun-
termeasure for automatic speaker verification,” Computer Speech & Language, vol. 45, pp.
516–535, 2017.

[159] T. Kinnunen et al., “t-dcf: a detection cost function for the tandem assessment of spoofing
countermeasures and automatic speaker verification,” arXiv preprint arXiv:1804.09618, 2018.

[160] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing
internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[161] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Hannemann,
P. Motlicek, Y. Qian, P. Schwarz et al., “The kaldi speech recognition toolkit,” in IEEE
2011 workshop on automatic speech recognition and understanding, no. CONF. IEEE Signal
Processing Society, 2011.

[162] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[163] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Transactions on knowledge
and data engineering, vol. 21, no. 9, pp. 1263–1284, 2009.

[164] Z. Wu, E. S. Chng, and H. Li, “Detecting converted speech and natural speech for anti-
spoofing attack in speaker recognition,” in Thirteenth Annual Conference of the International
Speech Communication Association, 2012.

[165] J. Monteiro, J. Alam, and T. H. Falk, “Multi-level self-attentive tdnn: A general and efficient
approach to summarize speech into discriminative utterance-level representations,” Speech
Communication (Under review), vol. 1, pp. 1–1, 2021.

[166] J. Monteiro, M. J. Alam, and T. Falk, “On the performance of time-pooling strategies for
end-to-end spoken language identification,” in Proceedings of the 12th Language Resources
and Evaluation Conference, 2020, pp. 3566–3572.

[167] W. Xie, A. Nagrani, J. S. Chung, and A. Zisserman, “Utterance-level aggregation for speaker
recognition in the wild,” in ICASSP 2019-2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 5791–5795.

[168] A. Hajavi and A. Etemad, “A deep neural network for short-segment speaker recognition,”
Proc. Interspeech 2019, pp. 2878–2882, 2019.

[169] X. Xiang, S. Wang, H. Huang, Y. Qian, and K. Yu, “Margin matters: Towards more
discriminative deep neural network embeddings for speaker recognition,” arXiv preprint
arXiv:1906.07317, 2019.

[170] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature verification using a
siamese time delay neural network,” in Advances in neural information processing systems,
1994, pp. 737–744.

[171] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman, A. Trischler, and
Y. Bengio, “Learning deep representations by mutual information estimation and maximiza-
tion,” arXiv preprint arXiv:1808.06670, 2018.

BIBLIOGRAPHY 183

[172] M. Gutmann and A. Hyvärinen, “Noise-contrastive estimation: A new estimation principle
for unnormalized statistical models,” in Proceedings of the thirteenth international conference
on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 2010,
pp. 297–304.

[173] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio, “Generative adversarial nets,” in Advances in neural information processing
systems, 2014, pp. 2672–2680.

[174] D. Snyder, D. Garcia-Romero, A. McCree, G. Sell, D. Povey, and S. Khudanpur, “Spoken
language recognition using x-vectors.” in Odyssey, 2018, pp. 105–111.

[175] W. Cai, J. Chen, and M. Li, “Exploring the encoding layer and loss function in
end-to-end speaker and language recognition system,” in Proc. Odyssey 2018 The
Speaker and Language Recognition Workshop, 2018, pp. 74–81. [Online]. Available:
http://dx.doi.org/10.21437/Odyssey.2018-11

[176] M. Hajibabaei and D. Dai, “Unified hypersphere embedding for speaker recognition,” arXiv
preprint arXiv:1807.08312, 2018.

[177] M. Ravanelli and Y. Bengio, “Learning speaker representations with mutual information,”
Proc. Interspeech 2019, pp. 1153–1157, 2019.

[178] T. Ko, V. Peddinti, D. Povey, M. L. Seltzer, and S. Khudanpur, “A study on data aug-
mentation of reverberant speech for robust speech recognition,” in 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017, pp. 5220–
5224.

[179] J. Monteiro, I. Albuquerque, J. Alam, and T. H. Falk, “Temple: defining versatile template
learners via prototypical classifiers with learned similarities,” Journal of machine Learning
Research (Under review), vol. 1, pp. 1–1, 2021.

[180] K. Cilingir, R. Manzelli, and B. Kulis, “Deep divergence learning,” in International Conference
on Machine Learning, 2020.

[181] L. Wenliang, D. Sutherland, H. Strathmann, and A. Gretton, “Learning deep kernels
for exponential family densities,” in Proceedings of the 36th International Conference on
Machine Learning, ser. Proceedings of Machine Learning Research, K. Chaudhuri and
R. Salakhutdinov, Eds., vol. 97. Long Beach, California, USA: PMLR, 09–15 Jun 2019, pp.
6737–6746. [Online]. Available: http://proceedings.mlr.press/v97/wenliang19a.html

[182] F. Liu, W. Xu, J. Lu, G. Zhang, A. Gretton, and D. J. Sutherland, “Learning deep kernels for
non-parametric two-sample tests,” in International Conference on Machine Learning, 2020.

[183] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola, “A kernel two-sample
test,” The Journal of Machine Learning Research, vol. 13, no. 1, pp. 723–773, 2012.

[184] L. Zimmer, M. Lindauer, and F. Hutter, “Auto-pytorch tabular: Multi-fidelity metalearning
for efficient and robust autodl,” arXiv preprint arXiv:2006.13799, 2020.

[185] A. Jaegle, F. Gimeno, A. Brock, A. Zisserman, O. Vinyals, and J. Carreira, “Perceiver: Gen-
eral perception with iterative attention,” arXiv preprint arXiv:2103.03206, 2021.

[186] A. Jaegle, S. Borgeaud, J.-B. Alayrac, C. Doersch, C. Ionescu, D. Ding, S. Koppula, D. Zoran,
A. Brock, E. Shelhamer et al., “Perceiver io: A general architecture for structured inputs &
outputs,” arXiv preprint arXiv:2107.14795, 2021.

[187] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models
resistant to adversarial attacks,” arXiv preprint arXiv:1706.06083, 2017.

http://dx.doi.org/10.21437/Odyssey.2018-11
http://proceedings.mlr.press/v97/wenliang19a.html

184

[188] H. Kannan, A. Kurakin, and I. Goodfellow, “Adversarial logit pairing,” arXiv preprint
arXiv:1803.06373, 2018.

[189] C. Mao, Z. Zhong, J. Yang, C. Vondrick, and B. Ray, “Metric learning for adversarial robust-
ness,” in Advances in Neural Information Processing Systems, 2019, pp. 480–491.

[190] H. Zhang, Y. Yu, J. Jiao, E. Xing, L. El Ghaoui, and M. Jordan, “Theoretically principled
trade-off between robustness and accuracy,” in International Conference on Machine Learning,
2019, pp. 7472–7482.

[191] Q. Dou, D. C. de Castro, K. Kamnitsas, and B. Glocker, “Domain generalization via model-
agnostic learning of semantic features,” in Advances in Neural Information Processing Systems,
2019, pp. 6450–6461.

[192] P. Chattopadhyay, Y. Balaji, and J. Hoffman, “Learning to balance specificity and invariance
for in and out of domain generalization,” arXiv preprint arXiv:2008.12839, 2020.

[193] I. Gulrajani and D. Lopez-Paz, “In search of lost domain generalization,” arXiv preprint
arXiv:2007.01434, 2020.

[194] H. Oh Song, Y. Xiang, S. Jegelka, and S. Savarese, “Deep metric learning via lifted structured
feature embedding,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 4004–4012.

[195] A. Sanakoyeu, V. Tschernezki, U. Buchler, and B. Ommer, “Divide and conquer the embedding
space for metric learning,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 471–480.

[196] H. O. Song, S. Jegelka, V. Rathod, and K. Murphy, “Learnable structured clustering frame-
work for deep metric learning,” arXiv preprint arXiv:1612.01213, vol. 1, no. 2, p. 8, 2016.

[197] K. Sohn, “Improved deep metric learning with multi-class n-pair loss objective,” in Advances
in neural information processing systems, 2016, pp. 1857–1865.

[198] Y. Yuan, K. Yang, and C. Zhang, “Hard-aware deeply cascaded embedding,” in Proceedings
of the IEEE international conference on computer vision, 2017, pp. 814–823.

[199] K. Roth, B. Brattoli, and B. Ommer, “Mic: Mining interclass characteristics for improved
metric learning,” in Proceedings of the IEEE International Conference on Computer Vision,
2019, pp. 8000–8009.

[200] E. Ustinova and V. Lempitsky, “Learning deep embeddings with histogram loss,” in Advances
in Neural Information Processing Systems, 2016, pp. 4170–4178.

[201] S. Ravi and H. Larochelle, “Optimization as a model for few-shot learning,” 2016.

[202] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel, “A simple neural attentive meta-learner,”
in International Conference on Learning Representations, 2018.

[203] T. Munkhdalai, X. Yuan, S. Mehri, and A. Trischler, “Rapid adaptation with conditionally
shifted neurons,” in International Conference on Machine Learning. PMLR, 2018, pp. 3664–
3673.

[204] B. Oreshkin, P. R. López, and A. Lacoste, “Tadam: Task dependent adaptive metric for
improved few-shot learning,” in Advances in Neural Information Processing Systems, 2018,
pp. 721–731.

[205] K. Lee, S. Maji, A. Ravichandran, and S. Soatto, “Meta-learning with differentiable con-
vex optimization,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 10 657–10 665.

BIBLIOGRAPHY 185

[206] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and J. C. Platt, “Support
vector method for novelty detection,” in Advances in neural information processing systems,
2000, pp. 582–588.

[207] C. M. Bishop, “Pattern recognition,” Machine learning, vol. 128, no. 9, 2006.

[208] E. Conrad, S. Misenar, and J. Feldman, “Chapter 2 - domain 1: Access control,”
in CISSP Study Guide (Second Edition), second edition ed., E. Conrad, S. Misenar,
and J. Feldman, Eds. Boston: Syngress, 2012, pp. 9–62. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B9781597499613000029

[209] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine learning. MIT press,
2018.

[210] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan, “A theory
of learning from different domains,” Machine learning, vol. 79, no. 1, pp. 151–175, 2010.

[211] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory to algo-
rithms. Cambridge university press, 2014.

https://www.sciencedirect.com/science/article/pii/B9781597499613000029

Appendix A

Background content

In what follows, we list, for each chapter, references to topics that are assumed to be known by

the reader. References to both content reported in our background section in Chapter 1 as well as

external references are included.

A.1 Chapter 2

1. Gaussian mixture models: [207]

2. Universal background models: [14]

3. i-vector: [1, 21]

4. x-vector: [3]

5. ResNets: [4], Sec. 1.2.2.2

6. Metric Learning: [49], [61], Sec. 1.2.3

7. Equal error rate: [208]

8. Linear discriminant analysis: [207]

9. Probabilistic linear discriminant analysis: [105, 106]

188

A.2 Chapter 3

1. Product spectrum: [156]

2. Gaussian mixture models: [207]

3. LCNNs: [73]

4. Equal error rate: [208]

5. Detection cost function: [9]

A.3 Chapter 4

1. Self-attention: [48], https://jalammar.github.io/illustrated-transformer/

2. TDNN: [3]

3. Equal error rate: [208]

A.4 Chapter 5

1. Metric Learning: [49], [61], Sec. 1.2.3

2. (Noise) Contrastive estimation: [172]

3. Generative adversarial networks: [173]

4. Reproducing kernel Hilbert spaces: [209]

A.5 Chapter 6

1. Prototypical classifiers: [83]

2. Retrieval: [78]

3. Adversarial perturbations: [98], https://github.com/bethgelab/foolbox

4. Out-of-distribution generalization: [210], [211]

https://jalammar.github.io/illustrated-transformer/
https://github.com/bethgelab/foolbox

	Acknowledgements
	Abstract
	Résumé
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Synopsis
	Introduction
	Contexte et travaux connexes
	Le problème de vérification
	Le problème de vérification pour le cas de la biométrie vocale
	Identification de la langue parlée
	Détection d'usurpation d'identité

	Architectures de modèles
	Time delay neural networks (TDNN)
	Architectures résiduelles
	Mécanismes d'attention

	Apprentissage des métriques

	Organisation de la thèse
	Chapitre 2: Améliorement de l'entraînement des réseaux neuronaux pour l'apprentissage de la représentation au niveau de la phrase
	Mise en place experimentale
	Discussion

	Chapitre 3: Détection des menaces comme moyen d'obtenir une biométrie vocale robuste
	Mise en place experimentale
	Discussion

	Chapitre 4: TDNN auto-attentif à plusieurs niveaux: une approche générale et efficace pour résumer la parole en représentations discriminantes au niveau de la phrase
	Mise en place experimentale
	Discussion

	Chapitre 5: Apprentissage des (pseudo) espaces métriques pour la vérification discriminatif
	Mise en place experimentale
	Discussion

	Chapitre 6: Apprentissage des partitions pour définir des modèles d'apprentissage polyvalents
	Mise en place experimentale
	Discussion

	Conclusions

	Introduction
	Objectives
	Background and related work
	Problem definition
	The verification problem
	The verification problem for the case of voice biometrics
	Language identification
	Spoofing detection

	Model architectures
	Time delay neural networks (TDNN)
	Residual architectures
	Attention mechanisms

	Metric Learning
	Datasets
	Speaker verification
	Language identification
	Detecting spoofing attacks
	Standard image benchmarks

	Summary of contributions
	Publications
	Open-source code
	Open-source code implementing experiments included in the thesis
	Other open-source code

	Thesis organization

	Improving neural network training for utterance-level representation learning
	Preamble
	Introduction
	Application to language identification
	Model used for evaluation of the proposed training scheme
	Training details
	Evaluation details, results, and discussion

	Application to speaker verification
	Training loss
	Mini-batch construction and triplets selection
	Maximum Entropy Regularization
	Other training details
	Evaluation and Discussion

	Conclusion

	Detecting threats as a means for robust voice biometrics
	Preamble
	Introduction
	An end-to-end setting for spoofing detection
	Model and training
	Speech representation
	Extraction of local descriptors
	Training

	Evaluation

	Scaling end-to-end detection to larger models via artifact-preserving data augmentations
	Augmentation approach
	Model description
	Training details
	Evaluation

	Attack-agnostic strategy to detect both logical and replay attacks
	Proposed Model
	Training
	Experimental Setup and Evaluation
	Evaluating single models trained on pooled data
	Selecting the best approach to model the mixture coefficient
	Evaluation of the proposed approach

	Conclusion

	Multi-level self-attentive TDNN
	Preamble
	Introduction
	Proposed Model
	Experimental Setup
	Experimental Results and Discussion
	Detecting spoofing attacks
	Spoken language identification
	Speaker Verification

	Conclusion

	Learning (pseudo) metric spaces for discriminative verification
	Preamble
	Introduction
	The verification problem
	Learning pseudo metric spaces
	Different interpretations for the distance model
	Training

	Evaluation
	Proof-of-concept evaluation on CIFAR-10 and MiniImageNet
	Large-scale verification with VoxCeleb
	Extra experiments
	Speaker verification under domain shift
	Checking for distance properties in trained models
	Varying the depth of the distance model for verification on ImageNet

	Implementation details
	Architecture of the distance model
	CIFAR-10 and MiniImageNet
	Hyperparameters

	Voxceleb
	Encoder architecture
	Data augmentation and feature extraction
	Mini-batch construction
	Hyperparameters

	Conclusion

	Learning partitions to define versatile learning templates
	Preamble
	Introduction
	Background
	Defining learning templates via trainable similarity measures
	Model components
	Training
	Testing

	Evaluation
	ASV experiments on VoxCeleb
	Experiments on image benchmarks
	Robustness against adversaries
	Robustness under domain shift
	Image retrieval
	Few-shot classification
	Ablation study

	Implementation details

	Conclusion

	Conclusions and Future Research Directions
	Conclusions
	Applied contributions
	Fundamental contributions

	Future work

	Bibliography
	Appendix Background content
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6

