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Abstract 21 

It is thought that modern wheat genotypes have lost their capacity to associate with soil microbes 22 

that would help them acquire nutrients from the soil. To test this hypothesis, ten ancestral and 23 

modern wheat genotypes were seeded in a field experiment under low fertilization conditions. The 24 

rhizosphere soil was collected, its DNA extracted and submitted to shotgun metagenomic 25 

sequencing. In contrast to our hypothesis, there was no significant difference in the global 26 

rhizosphere metagenomes of the different genotypes, and this held true when focusing the analyses 27 

on specific taxonomic or functional categories of genes. Some genes were significantly more 28 

abundant in the rhizosphere of one genotype or another, but they comprised only a small portion 29 

of the total genes identified and did not affect the global rhizosphere metagenomes. Our study 30 

shows for the first time that the rhizosphere metagenome of wheat is stable across a wide variety 31 

of genotypes when growing under nutrient poor conditions.  32 



Introduction 33 

Wheat breeding programs have been developed to increase productivity and agronomic 34 

performance under optimal fertilization and have been implemented without considering how this 35 

would alter the root-associated microbiome (Siciliano et al., 1998, Germida & Siciliano, 2001, 36 

Paterson et al., 2007). If breeding occurs in a high-input environment that obviates the need for 37 

plant or microbial-based ecosystem services that can provide nutrients from the soil, then the 38 

traits supporting beneficial rhizosphere interactions may be lost during selection (Emmett et al., 39 

2018). In this context, plant traits related to plant-microbe interactions, like exudation and nutrient 40 

trade-offs, can be drastically affected. Indeed, by changing exudation patterns and the nutrient 41 

trade-offs with microorganisms, which in turn shape the structure and activities of microbial 42 

communities, breeding programs might have adversely influenced plant growth when nutrients are 43 

scarce (Aira et al., 2010, Bakker et al., 2012, Bulgarelli et al., 2012, Lundberg et al., 2012). 44 

Although domestication has caused a strong decrease in the genetic diversity of crops 45 

(Pérez-Jaramillo et al., 2016), there are multiple reports that showed that different closely related 46 

plant genotypes harbor contrasting microbial communities. Among others, such patterns were 47 

found for maize (Schmidt et al., 2016), beans (Mendes et al., 2017), willows (Bell et al., 2014, 48 

Yergeau et al., 2018) and wheat (Germida & Siciliano, 2001, Okubara et al., 2004, Nelson A. G. 49 

et al., 2011, Donn et al., 2015, Mahoney et al., 2017, Azarbad et al., 2018, Azarbad et al., 2020, 50 

Valente et al., 2020, Yergeau et al., 2020). These differences are often explained by variations in 51 

root physiology e.g. rhizodeposition (Mahoney et al., 2017) or morphology, e.g. root biomass and 52 

structure (Okubara et al., 2004, Venter et al., 2004, Nelson et al., 2011, Azarbad et al., 2020). 53 

Germida &  Siciliano (2001), and Okubara et al. (2004) reported differences between wheat 54 

genotypes in the abundance, diversity and root colonization capacity of Pseudomonas fluorescens, 55 



Bacillus spp., Aureobacter spp. and Salmonella spp. Mahoney et al. (2017) found that 24 out of 56 

their 1305 most abundant operational taxonomical units (OTUs) varied in frequency in the 57 

rhizospheres of different wheat genotypes, some of which could provide beneficial services to the 58 

plants such as promoting plant growth (hormones production), and plant and soil health (antifungal 59 

and antibiotic metabolites) (Mahoney et al., 2017, Valente et al., 2020). 60 

Although there seems to be differences between the microbial communities of different 61 

wheat genotypes, it is difficult to conclude if these shifts result in changes in functions, especially 62 

those related to plant nutrition. Interestingly Yergeau et al., (2020) showed a significant difference 63 

in the abundance of genes encoding for the archaeal ammonia monooxygenase and for the nitrite 64 

reductase between two wheat genotypes, suggesting a difference in the competition for inorganic 65 

nitrogen, which was correlated to grain quality and yield. Additionally, Azarbad et al. (2018) 66 

reported that soil processes such as CO2 production and H2 oxidation were influenced by wheat 67 

genotype, in interaction with soil water stress history and soil water content. 68 

In this study, we sought to test the hypothesis that modern and ancestral wheat genotypes 69 

associate with functionally different microbial communities in their rhizosphere under low 70 

fertilization conditions. In order to do so, we performed shotgun metagenomic sequencing on DNA 71 

extracted from the rhizosphere of 10 different wheat genotypes (modern and ancestral) grown 72 

under low fertilization and assessed the changes in the abundance of genes related to nutrient 73 

acquisition and cycling.74 



Materials and methods 75 

Experimental design 76 

A field experiment was conducted in 2013 at the Nassar Crop Research Farm of the 77 

University of Saskatchewan, Saskatoon, Canada. This farm has been managed for more than 50 78 

years to conduct experiments under low fertilization conditions in breeding programs and genotype 79 

selection and is commonly used to evaluate wheat line performance. We selected 10 wheat 80 

genotypes (year of introduction): Red Fife (1845), Marquis (1911), CDC Teal (1991), AC Barrie 81 

(1994), Lillian (2003), CDC Kernen (2009) and CDC Stanley (2009) belonging to the Canada 82 

Western Red Spring (CWRS) class (Triticum aestivum or bread wheat) and Pelissier (1929), 83 

Strongfield (2004) and CDC Verona (2008) belonging to the Canada Western Amber Durum 84 

(CWAD) class (T. turgidum L. ssp. durum or durum wheat) (https://grainscanada.gc.ca/en/grain-85 

quality/grain-grading/wheat-classes.html). The experiment was arranged in a randomized block 86 

design with three blocks, each consisting of ten 6.2 m2 plots to which the cultivars were randomly 87 

assigned. Each plot contained eight rows spaced at intervals of 20 cm. On May 25, 2013, all plots 88 

were seeded at 320 seeds m-2, which is typical of western Canadian wheat production systems. To 89 

minimize the effect of the seed source on plant performance, all cultivars were grown from seed 90 

in a common field in a previous year (under low fertilization) and harvested to be used in the 91 

present experiment. To obtain a good establishment of the plants in early spring, 15 kg ha-1 of 11-92 

55-0 (% N -% P2O5 -% K) fertilizer was added at seeding. This application of fertilizer was 93 

required to minimize any erroneous effect on productivity measurements due to poor seedling 94 

establishment.  95 

 96 

Wheat yields and harvest index measurements 97 



Time to maturity (days needed to reach maturity, Zadoks 90 growth stage), and height of 98 

each cultivar were measured in each plot.  At maturity, the grain yield was evaluated on four rows 99 

in each plot, whereas the harvest index was assessed from collecting all aboveground biomass 100 

from a 0.5 m2 quadrat and measuring total biomass weight (dry weight basis). The grains were 101 

separated from vegetative tissue to estimate the harvest index as grain weight (g)/total biomass 102 

weight (g) x 100.  Test weight (TWT: bulk density weight per volume measurement) and thousand 103 

kernel weight (TKW, weight of a 1000 seeds) were also measured. 104 

 105 

Rhizosphere soil sampling, DNA extraction and metagenomics sequencing  106 

Rhizosphere soil samples were collected on July 2, 2013. Five to eight plants were uprooted 107 

from three 13 by 13 cm regions within each plot. Each plant was vigorously shaken, and excess 108 

bulk soil was removed by hand from the roots of each plant, until only tightly adhering soil 109 

remained. The roots of the 5 to 8 different plants were cut from the rest of the plant and pooled in 110 

200 mL of sterile phosphate buffered saline. After shaking at 150 rpm at 22°C for 25 minutes the 111 

roots were removed, and the rhizosphere soil was recovered from the PBS by centrifugation at 112 

>2000 × g for 5 minutes. For each of the 30 samples (10 cultivars x 3 blocks), total DNA was 113 

extracted from 250 mg of rhizosphere soil using the Power Soil DNA kit (MoBio Laboratory, CA, 114 

USA). Libraries for metagenomic analyses were then generated using the Nextera XT DNA 115 

Library Prep kit (Illumina) according to the protocol described in the Illumina Nextera® XT DNA 116 

Prep Reference Guide (Part # 15031942 Rev. C). Each DNA sample was quantified by 117 

fluorescence detection (TECAN safire, Austria) using the kit Quanti-itTM PicoGreen (Invitrogen, 118 

ltd., UK) and libraries were pooled in equal volumes before sequencing. The libraries were 119 

submitted for sequencing on five lanes of Illumina HiSeq 2000 with a 2 × 100 configuration at the 120 



Centre d’expertise et de service Génome Québec (Montreal, QC, Canada). Raw data sets are 121 

available in the NCBI Sequence Read Archive (SRA) under the BioProject accession 122 

PRJNA643787.  123 

 124 

Bioinformatics  125 

Sequencing raw data (116 Gb) were processed as previously described (Tremblay et al., 126 

2017). The number of reads per sample after each key steps of the analyses is detailed in 127 

Supplementary Table 1. Briefly, sequencing adapters were removed from each read and bases at 128 

the end of reads having a quality score <30 were cut off (Trimmomatic v0.32) (Bolger et al., 2014) 129 

and scanned for sequencing adapters contaminants reads using DUK (unpublished - 130 

http://duk.sourceforge.net/) to generate quality controlled (QC) reads. Each QC-passed read from 131 

each sample was assembled into a large metagenome assembly using the Ray software v2.3.1 132 

(Boisvert et al., 2012) with a kmer size of 31. Gene prediction on the obtained contigs was 133 

performed by calling genes on each assembled contig using MetageneMark v1.0 (Tang & 134 

Borodovsky, 2015). Genes were annotated following the JGI’s guidelines (Huntemann et al., 135 

2016) using six different databases: 1) RPSBLAST (v2.2.29+) (Camacho et al., 2009) against 136 

COG database (v3.11); 2) RPSBLAST (v2.2.29+) against KOG database (v3.11); 3) HMMSCAN 137 

(v3.1b1) (Eddy, 2011) against PFAM-A v27.0 database (Finn et al., 2014); 4) TIGRFAM database 138 

v15.0; 5) BLASTP (v2.2.29+) against KEGG database (v71.0); and 6) BLASTN (v2.2.29+) 139 

against NCBI’s nucleotide (nt) database (Li & Durbin, 2009). Contigs (and not genes) sequences 140 

were also blasted against NCBI’s nt database for taxonomic assignment. For each of these database 141 

comparisons, the best hit having at least an e-value ≥ 0.01 was kept for each query. QC-passed 142 

reads were mapped (BWA mem v0.7.10) (Li & Durbin, 2010) against contigs to assess the quality 143 



of metagenome assembly and to obtain contig abundance profiles. Alignment files in bam format 144 

were sorted by read coordinates using SAMtools v1.1 (http://www.htslib.org/doc/samtools-145 

1.0.html) and only properly aligned read pairs were kept for downstream steps. Each bam file 146 

(containing properly aligned paired-reads only) was analyzed for coverage of called genes and 147 

contigs using bedtools (v2.17.0) (Quinlan & Hall, 2010) using a custom bed file representing gene 148 

coordinates on each contig. Only paired-reads both overlapping their contigs or genes were 149 

considered for gene counts. Coverage profiles of each sample were merged to generate an 150 

abundance matrix (rows = contig, columns = samples) for which a corresponding CPM (Counts 151 

Per Million) abundance matrix (edgeR v3.10.2) (Robinson et al., 2010) was generated as well.  152 

Taxonomy of each contig was assigned using the NCBI taxonomy database (Benson et al., 153 

2009, Sayers et al., 2011) (ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz). GenInfo 154 

Identifier (GIs) resulting from BLASTN against nt was used to retrieve full taxonomic lineage 155 

(when available) from the NCBI taxonomy database. Taxonomic lineages were integrated to the 156 

contig abundance of read counts matrix to generate an OTU table format file (with contigs 157 

replacing OTUs as rows). Taxonomic summaries were performed using a combination of in-house 158 

Perl, R scripts and Qiime v.1.9.0 (Caporaso et al., 2010).  159 

 160 

Statistical analysis 161 

All statistical analyses were performed in R v.3.3.1 (R Development Core Team, 2010). 162 

Differences between genotypes for yield, harvest indices and the relative abundance of various 163 

gene categories were tested using one-way ANOVA and a posteriori comparisons using Tukey’s 164 

HSD test, using the “aov” and “HSD.test” functions from the “agricolae” package (Felipe de 165 

Mendiburu, 2016). Decreases in yield related to the effect of the low fertilization treatment were 166 

ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz


assessed by comparing the yields of the genotypes against expected yields under optimal 167 

fertilisation conditions, as stated in official genotype descriptions (Table 1). The similarity 168 

between samples due to the relative abundance of genes, contigs and bins data was visualized by 169 

principal coordinate analysis (“cmdscale” function ) based on Bray-Curtis dissimilarity matrices 170 

(“vegdist”) function of the “vegan” package (Oksanen et al., 2013). The effects of genotypes and 171 

blocks on the community composition was tested by permutational multivariate analysis of 172 

variance (PERMANOVA) using the “adonis” function of the “vegan” package. To correlate the 173 

relative abundance of genes implicated in the nitrogen and phosphorous cycles to yields, 174 

Spearman's ρ (rho) correlation analyses were performed using the "cor" function of the “stats” 175 

package. Associations between genes and a particular genotype were tested using the function 176 

“multipatt” from the “indicspecies” package (Cáceres & Legendre, 2009) by the analysis of 177 

ecological preferences based on correlation indices with 999 permutation, using confidence levels 178 

of 0.001. One-way ANOVA analyses were performed with the function “aov” to detect differences 179 

between genotypes regarding the relative abundance of functional genes. For ANOVA, Permanova 180 

and correlation analyses, P-values were corrected using the Bonferroni method when appropriate.   181 



Results 182 

Wheat yields and other agronomic parameters 183 

The average grain yields under low fertilization were significantly different between the 184 

genotypes tested (F = 12.95, P = 0.00066) (Table 1). Results showed that the durum genotypes 185 

Strongfield, CDC Verona and Pelissier had significantly higher yields, by up to 20%, than most 186 

bread wheat genotypes, with the notable exception of the Red Fife genotype. This latter genotype, 187 

the most ancient one, ranked third for yield, well above all other bread wheat genotypes. The other 188 

bread wheat genotypes, CDC Teal, Lillian, CDC Kernen, AC Barrie and CDC Stanley had similar, 189 

intermediate yields. Finally, the Marquis genotype had the lowest yield, 28% less than the 190 

Strongfield and CDC Verona genotypes (Table 1). As expected, grain yields were nearly 191 

significantly lower under the low fertilization conditions used here as compared to reference values 192 

(paired t-test, t= -1.96, P= 0.08076). Unexpectedly, the only exception was the Red Fife genotype 193 

which was 22% more productive under lower fertilization than under optimal. 194 

Other agronomic parameters such as plant height (HT), days to maturity (MAT), and 195 

quality test such as test weight (TWT) and thousand kernel weight (TKW) were also measured 196 

(Supplementary Table 2). All the parameters were significantly different between the genotypes 197 

(P<0.001) except for TWT. The most ancient cultivars Red fife, Pelissier and Marquis were taller, 198 

highlighting the selection for shorter plants less prone to lodging in more recent genotypes. 199 

Regarding the values of days to maturity (MAT), the oldest genotypes Red Fife and Pelissier 200 

showed longer times to maturity, with the newer genotypes showing medium to early maturity and 201 

Strongfield having the earliest maturity. Selection for early maturity is important for the regions 202 

where the growing season is short and late-maturing genotypes are often badly damaged due to 203 

frost (McCallum & DePauw, 2008). Thousand kernel weight values were higher for Pelissier, 204 



followed by Verona, Strongfield and Red Fife. Generally, the newer bread wheat genotypes 205 

showed lower values for TKW. Comparison with reference values under optimal fertilization 206 

showed significant differences for TWT (P=0.002), but not for HT, MAT, and TKW 207 

(Supplementary Table 2).  208 

 209 

Differences in the metagenomic community composition between genotypes 210 

We assembled 5,480,054 contigs containing a total of 5,996,993 genes that were classified 211 

in 288 genomic bins. Based on the taxonomic affiliation of the genes, the gene relative abundance 212 

table was separated into two subsets, one containing 1,515,515 bacterial genes and the other 25,362 213 

fungal genes, regardless of whether the gene was functionally annotated or not. The similarity 214 

between the 30 samples based on these subsets was visualized using principal coordinate analysis 215 

(PCoA) ordinations based on Bray-Curtis dissimilarity (Figure 1). There was no clear grouping of 216 

genotypes, both for the bacterial and the fungal datasets, with a large variability between samples 217 

from different experimental blocks. Permanova confirmed this visual interpretation, with a lack of 218 

significant differences in the bacterial and fungal related gene relative abundance patterns between 219 

the genotypes, and a significant block effect. Proteobacteria, Actinobacteria and Bacteroidetes 220 

were the dominant bacterial phyla whereas the phylum Ascomycota dominated among the fungal 221 

genes. 222 

 223 

Differences in the relative abundance of specific functional genes between genotypes 224 

We searched the annotation of genes for pathways related to macronutrient (N, P, and K) 225 

and to plant-microbe interactions. We kept all genes, even if some had an annotation pointing 226 

toward two or more different pathways. In total, 217,883 genes (3.63 % of all genes) were assigned 227 



to nitrogen cycling related pathways (KEGG orthology reference pathways ko00910, ko00250, 228 

ko00680, ko00630, ko00380, ko02020, ko00071, ko00627, ko00360, ko00340, ko00260, 229 

ko00020, ko00010, ko00380, ko00330, ko00270): most of these pathways were related to two 230 

component systems (sensor-response regulation) and amino acid metabolism, such as glutamate, 231 

glutamine, tryptophan, histidine, cysteine, alanine and GABA. For phosphorus, 4,363 genes were 232 

assigned to the P starvation pathway ko02020 (K07636, K07768) corresponding also to two 233 

component regulation systems PhoR-PhoB and SenX3-RegX3, and 12,518 genes were assigned to 234 

P assimilation pathways (ko00627, ko00030) coding for alkaline/acid phosphatase and 235 

quinoprotein glucose dehydrogenase, respectively. For potassium, 490 genes were assigned to the 236 

K+ transport pathway ko02020 (K01546, K01547, K01548, K01545) corresponding to two 237 

component systems of ATPases, namely, kdpA, kdpB, kdpC and kdpF. For pathways related to 238 

plant-microbe interactions, 25 genes were designated for 3-Indol Acetic Acid (IAA) pathways, 12 239 

of them assigned to tryptophan metabolism, ko00380 (K00466), related to hypothetical or several 240 

gene affiliations, and the remaining 13 were assigned to the pathway K12940, specific to the gene 241 

abgA which codes for the utilization of aminobenzoyl-glutamate. Finally, 161 genes were related 242 

to the ACC deaminase pathway, ko00640 (K01505), coding for the enzyme ACC deaminase.  243 

The genes mentioned above were grouped into nine categories, for which significance of 244 

genotype effect was tested using two complementary approaches. First, the effect of wheat 245 

genotypes on the sum of the relative abundance for all genes within a category was tested using 246 

ANOVA. Although there were some variations between genotypes (Figure 2), these variations 247 

were not significant in ANOVA tests. Secondly, the effect of genotypes on the structure of the 248 

gene table containing all the genes in a category was tested using Permanova based on Bray-Curtis 249 

dissimilarity. This analysis also revealed no significant differences between the genotypes.  250 



Similarly, when looking at the genes individually and testing the effect of genotypes on 251 

their relative abundance using ANOVA, very few genes showed significant patterns. For the genes 252 

related to K, the only gene significantly different among genotypes was a K+ transporting ATPase 253 

(kdp sub-unit C) for which the taxonomy was unresolved. For N, only one gene, a nitrogenase 254 

component 1 type oxidoreductase (nifK) affiliated with the Rhodocyclaceae, was identified as 255 

varying significantly between genotypes. All the other genes from the categories mentioned above 256 

were not significantly different between the genotypes. 257 

 258 

Differences in the relative abundance of all genes between genotypes 259 

In addition to the selected functional genes involved in nutrient cycling or plant-microbe 260 

interactions, we also used the entire gene dataset to 1) identify genes that were significantly 261 

affected by the wheat genotypes using ANOVA, and 2) identify genes strongly associated with 262 

one or the other wheat genotype using indicator “species” analysis. ANOVA revealed 57 genes 263 

being highly significantly affected by genotypes (at a Bonferroni corrected αB=8.33E-09) 264 

(Supplementary Table 3). For more than half of these genes, function and taxonomic affiliations 265 

were unknown. To identify associations between single genotype and specific genes, indicator 266 

“species” analysis was carried out on the subsets of genes affiliated to bacteria and fungi. There 267 

were more significant indicator genes for bacteria than for fungi, and significance was generally 268 

much higher. For instance, 100 bacterial genes were significant indicators for one or the other 269 

genotype at a P< 0.001, whereas only two fungal genes were significant at this level. The genotypes 270 

AC Barrie, Strongfield and CDC Teal had the highest number of bacterial gene indicators (Table 271 

2). The indicator genes belonged to a wide variety of bacteria, some of which, such as 272 

Sinorhizobium (CDC Teal), Azospirillum (CDC Teal), Mesorhizobium (Strongfield), 273 



Nitrosomonas (Strongfield), Frankia (Red Fife), Natronococcus (Red Fife), and Nitrospira (AC 274 

Barrie) are involved in the nitrogen cycle (Table 2). In terms of function, many indicator genes 275 

could not be identified through our homology search in all major databases (Table 2). The indicator 276 

genes that could be identified were related to various functions, some of which could be related to 277 

nutrient cycling or life in the rhizosphere, such as the sulfur cycle (Marquis), amino acid 278 

metabolism (many genotypes), resistance to antibiotics (Pelissier and CDC Teal), synthesis of 279 

osmoprotectants (Strongfield and CDC Teal) and vitamin biosynthesis (CDC Kernen and AC 280 

Barrie). However, the 57 genes identified by ANOVA and the 102 genes identified by indicator 281 

species analysis made up an insignificant portion of the entire gene dataset (5,996,993 genes). 282 

 283 

Correlation between yields and functional genes 284 

Using Bonferroni correction for multiple testing, we could not find any significant 285 

correlations between the relative abundance of functional genes involved in nutrient cycling and 286 

plant-microbe interactions and the wheat yields.  287 

  288 



Discussion 289 

Many authors have hypothesized that breeding of wheat genotypes under high nutrient 290 

inputs would result in a lowered capacity to recruit and maintain association with rhizosphere 291 

microorganisms involved in the cycling of nutrients (Siciliano et al., 1998, Germida & Siciliano, 292 

2001, Paterson et al., 2007). Since most breeding programs for grain crops have not specifically 293 

targeted belowground traits, the agroecological context in which and for which genotypes are bred 294 

is thought to determine the selection pressure on these traits (Schmidt et al., 2016). In the 295 

rhizosphere, positive species interactions are more likely to emerge and be maintained in nutrient-296 

poor environments as nutrient enrichment has the potential to reduce the nutrient limitations that 297 

make mutualists beneficial (Verbruggen & Toby Kiers, 2010, Emmett et al., 2018). Fertilizer 298 

inputs can make microbial interactions costly and even parasitic for crops under field conditions, 299 

as it was shown in the case of mycorrhizal fungi (Kiers et al., 2002, Ryan et al., 2005, Kiers & 300 

Denison, 2008). When exposed to high nutrient levels, plants may severely decrease or cease the 301 

resource allocation to their roots, thus to their microbial partners, resulting in microbial community 302 

shifts as competition for limited carbon resources increases (Verbruggen &  Kiers, 2010). This 303 

would ultimately result in assembly patterns mainly driven by soil type and climatic conditions 304 

(Kiers & Denison, 2008). As such, the continuous selection for yields under variable 305 

environmental conditions and under optimal fertilization regimes imposes general patterns of root 306 

activity and rhizosphere C flows that do not allow rhizosphere microbial communities to diverge. 307 

It would therefore be expected that modern high-yield genotypes would show similar microbial 308 

associations, different from the ancestral genotypes, which would mainly be driven by 309 

environmental factors, and that they would be much less productive in soils with lower nutrient 310 

concentrations.  311 



Under low fertilizer inputs, our results did show a significant decrease in yields for almost 312 

all genotypes as compared to reference values, except for the most ancient bread wheat genotype, 313 

Red Fife. However, the trends in the yield losses under low nutrient conditions were not reflected 314 

in the rhizosphere metagenome. Indeed, we did not find any significant differences between the 315 

genotypes in the general gene community structure, with some significant shifts for a minority of 316 

genes. In our study, the metagenome of the rhizosphere was strongly affected by variation in the 317 

soil across the field, as confirmed by the strong block effect observed for many parameters. Our 318 

results are in sharp contrast with recent publications that highlighted that different closely related 319 

wheat genotypes have contrasting microbial communities and functional gene abundance in their 320 

rhizosphere. A recent field experiment showed that two modern genotypes of wheat harbored 321 

significantly different abundance of functional genes related to the N-cycle (based on qPCR), 322 

across fertilization treatments that ranged from 0 to 120 NH4NO3 kg/ha (Yergeau et al., 2020). 323 

These differences were mirrored in the contrasting grain yields and quality between the two 324 

genotypes (Yergeau et al., 2020). However, the differences between the genotypes were often 325 

dwarfed by the variation between the two fields sampled (Yergeau et al., 2020). Similarly, a pot 326 

experiment has shown that four modern wheat genotypes harbored significantly different microbial 327 

communities (based on 16S rRNA gene and ITS region amplicon sequencing), but that this effect 328 

was stronger inside the roots and leaves than in the rhizosphere, and, in all cases, a distant second 329 

to the effect of soil water stress history (Azarbad et al., 2020). Furthermore, in the same pot 330 

experiment, it was also shown that microbial-driven processes and bacterial and fungal abundance 331 

in the rhizosphere of wheat were significantly influenced by genotype (Azarbad et al., 2018). 332 

Taken together, these studies indicated that different plant genotypes do harbor significantly 333 



different microbial communities, which results in different activities and process rates, but that 334 

this effect is often rather subtle and varies with soil type and plant compartment. 335 

In contrast to our results, differences between genotypes were previously reported for other 336 

plants. For instance, in a field study using willows, the genotype was shown to significantly 337 

influence the rhizosphere microbial communities, but only for fungi and when willows were 338 

growing under high contaminant stress (Bell et al., 2014). Similarly, in the same field study, the 339 

willow genotypes that were the least tolerant to soil contaminant stress also showed the largest 340 

shifts in the metatranscriptome of their rhizosphere following contamination (Yergeau et al., 341 

2018). These results are difficult to compare to our study, as stress appeared to strengthen the 342 

genotype effect on soil microbial communities and the nutrient limitation imposed here was 343 

probably not as stressful as the presence of contaminants. Some studies have shown significant 344 

differences between the microbial communities associated with wild and domesticated genotypes 345 

of beans (Pérez-Jaramillo et al., 2017, Pérez-Jaramillo et al., 2019), barley (Bulgarelli et al., 2015), 346 

sunflower (Leff et al., 2017) and sugar beets (Zachow et al., 2014). Other studies have shown that 347 

the geographical origin of the genotype had an influence on the capacity to associate with particular 348 

soil fungi (Bell et al., 2014). However, here, our genotypic gradient was relatively short, spanning 349 

only approximately 100 years of wheat breeding in Canada for two major lines, and we did not 350 

include wild or foreign representatives in the comparison. Alternatively, the use of shotgun 351 

metagenomics could explain part of the discrepancies between our study and previous work.  352 

Indeed, the taxonomic shifts observed in previous studies using amplicon sequencing will not 353 

necessarily result in functional shifts when using shotgun metagenomics, as previously shown for 354 

plant associated microbial communities (Louca et al., 2016). This is probably caused by the high 355 

functional redundancy among soil microorganisms. Soil shotgun metagenomics reads are also 356 



widely dominated by bacteria, and only a minor part of the reads is normally associated with fungi, 357 

which reduces the resolution. As fungi are often more sensitive to a genotype effect (Bell et al., 358 

2014, Azarbad et al., 2020, Yergeau et al., 2020), this limitation of shotgun metagenomics could 359 

partly explain the lack of significance of the genotype effect. 360 

Nonetheless, some genes were identified as particularly linked to certain genotypes using 361 

indicator “species” analysis. Although some of these genes were annotated as encoding for 362 

proteins potentially important in nutrient cycling and in plant-microbe interaction, no clear trend 363 

emerged regarding a difference between ancient vs. modern genotypes. The genotypes with the 364 

most indicator genes were modern genotypes (Strongfield, AC Barrie and CDC Teal), suggesting 365 

that modern genotypes might associate with a more unique set of microorganisms and associated 366 

functional genes than ancestral genotypes.  In all cases, the small and subtle differences found 367 

between genotypes were too small to cause significant shifts in the rhizosphere metagenome when 368 

taken in its entirety. However, it is an open question as to whether these small changes would result 369 

in significant effects on wheat nutrient acquisition. 370 

In summary, using shotgun metagenomics we have found only a handful of significant 371 

differences between modern and ancestral wheat genotypes grown in the same field under limiting 372 

nutrient conditions. We cannot therefore reject the null hypothesis that 100+ years of Canadian 373 

wheat breeding has not changed the rhizosphere microbial functional potential. This is the first 374 

time that this hypothesis was tested using a shotgun metagenomic approach, and it was in sharp 375 

contrast to previous culture-based and amplicon sequencing studies. In view of the enormous soil 376 

microbial diversity and its functional redundancy, it is not unlikely that taxonomic shifts could 377 

occur without concomitant shifts in the overall functions. 378 

 379 
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Figure legends 539 

Figure 1. Microbial community composition. Principal coordinate analysis based on Bray-Curtis 540 

dissimilarity of gene relative abundances for A) genes affiliated with fungi, and B) genes affiliated 541 

with bacteria. Colors represent the genotypes, and blocks are identified by shapes.  542 

Figure 2. Summed relative abundances of the functional genes related to A) phytohormones and 543 

B) N and P cycling. Error bars represent the standard error. 544 



Table 1. Yields of the ten wheat genotypes under low fertilization regime, compared to reference values under optimal fertilization 545 
levels.      546 

Genotype 

(Release year) 

Yield (kg ha-1) Performance 

change 

% 

Source data Low fertilization (2013) 

Average ±std. dev. 

Optimal fertilization 

 

Strongfield (2004) 2460 ± 208 a 4030 -39 (Clarke et al., 2005) 

CDC Verona (2008) 2456 ± 280 a 3840 -36 (Pozniak et al., 2009) 

Red Fife (1845) 2310 ± 193 ab 1877 +22 (Cornell University, 2016) 

Pelissier (1929) 2289 ± 322 ab N/A -  

CDC Teal (1991) 1990 ± 160 bc 3004 -34 

(Hughes & Hucl, 1993, 

Saskatchewan Crop Insurance 

Corporation, 2018) 

Lillian (2003) 1984 ±  300 bc 3594 -45 (DePauw et al., 2005) 

CDC Kernen (2009) 1969  ±  379 bc 4731 -58 (Cuthbert et al., 2017) 

AC Barrie (1994) 1931 ±  354 bc 3509 -45 (DePauw et al., 2005) 

CDC Stanley (2009) 1907 ± 223 bc 3684 -48 

(Slinkard, 1995, Saskatchewan 

Crop Insurance Corporation, 2018) 

Marquis (1911)        1773 ±  242 c 2289 -23 (Cornell University, 2016) 

Different letters indicate significant differences at α<0.05 according Tukey Honestly Significant Difference post-hoc test.   547 



Table 2. Functional and taxonomic affiliation of significant (P<0.001) bacterial genes identified by indicator species analysis.  

gene_id KEGG ID Function Stat Species 

AC Barrie (33)     

Gene ID 3999372 NULL NULL 0.830 Unknown 

Gene ID 2035590 K00936 NULL 0.803 Desulfurispirillum indicum 

Gene ID 3251592 K02988 Ribosome, bacteria==Ribosome, 

archaea 

0.798 Mycobacterium sp. JDM601 

Gene ID 5786201 NULL NULL 0.762 Bordetella bronchiseptica 

Gene ID 2251928 NULL NULL 0.750 uncultured bacterium 

Gene ID 284465 K02004 Putative ABC transport system 0.741 uncultured bacterium contig00351 

Gene ID 3843697 K11690 NULL 0.733 uncultured marine bacterium 

HF10_25F10 

Gene ID 5704810 K03695 NULL 0.729 Burkholderia sp. YI23 

Gene ID 3992123 K03924 NULL 0.725 Candidatus Nitrospira defluvii 

Gene ID 234626 K01434 NULL 0.707 Burkholderia mallei 

Gene ID 2561106 NULL NULL 0.703 Pleurocapsa minor 

Gene ID 3660176 K00937 NULL 0.703 Bartonella clarridgeiae 

Gene ID 4802338 K03518 NULL 0.693 Thermanaerovibrio acidaminovorans 

Gene ID 2129591 NULL NULL 0.693 Collimonas sp. MPS11E8 

Gene ID 4504727 K00540 NULL 0.685 uncultured bacterium contig00184 

Gene ID 5227558 K09930 NULL 0.681 Unknown 

Gene ID 842716 K08884 NULL 0.678 Unknown 

Gene ID 1426909 K02014 NULL 0.675 Gemmatimonas aurantiaca 

Gene ID 1881505 K10947 NULL 0.674 uncultured bacterium contig00449 

Gene ID 5836336 K08884 NULL 0.669 Unknown 

Gene ID 679771 K03296 NULL 0.657 uncultured bacterium contig00128 

Gene ID 3242231 NULL NULL 0.650 Streptomyces tendae 

Gene ID 2368097 K15923 NULL 0.647 Unknown 



Gene ID 2624689 K11690 NULL 0.646 Leptothrix cholodnii 

Gene ID 2320612 NULL NULL 0.633 Unknown 

Gene ID 2623136 K07714 AtoS-AtoC (cPHB biosynthesis) two-

component regulatory system 

0.629 Acidiphilium multivorum 

Gene ID 4919969 K02291 beta-Carotene biosynthesis, GGAP => 

beta-carotene 

0.627 uncultured bacterium 

Gene ID 5836775 K02470 NULL 0.615 Amycolatopsis pretoriensis 

Gene ID 2723931 K02014 NULL 0.604 Corallococcus coralloides 

Gene ID 5511188 NULL NULL 0.597 uncultured bacterium contig00095 

Gene ID 4538019 K01950 NAD biosynthesis, aspartate => NAD 0.588 Methylibium petroleiphilum 

Gene ID 3734199 K01999 Branched-chain amino acid transport 

system 

0.551 Syntrophobacter fumaroxidans 

Gene ID 3670026 K09810 Lipoprotein-releasing system 0.541 Agrobacterium sp. H13-3 

CDC Kernen (11)     

Gene ID 2653112 K02004 Putative ABC transport system 0.772 Unknown 

Gene ID 1630857 K15670 NULL 0.773 Sorangium cellulosum 

Gene ID 722943 NULL NULL 0.774 [Cellvibrio] gilvus 

Gene ID 4937480 NULL NULL 0.775 Sphingobium japonicum 

Gene ID 3067392 K03529 NULL 0.776 Catenulispora acidiphila 

Gene ID 1129186 K08884 NULL 0.777 Rhodobacter sphaeroides 

Gene ID 3709603 K13641 NULL 0.778 Unknown 

Gene ID 942139 K00928 Lysine biosynthesis, succinyl-DAP 

pathway, aspartate => 

lysine==Methionine biosynthesis. 

0.779 Ramlibacter tataouinensis 

Gene ID 5103385 K00344 NULL 0.780 Serratia marcescens 

Gene ID 536020 K02529 NULL 0.781 Saccharomonospora viridis 

Gene ID 191875 K00798 Cobalamin biosynthesis, cobinamide => 

cobalamin 

0.782 Methylobacterium extorquens 

CDC Stanley (3)     



Gene ID 5906598 K03724 NULL 0.739 Burkholderia sp. KJ006 

Gene ID 4279595 K02051 NitT/TauT family transport system 0.585 Pseudomonas fluorescens 

Gene ID 3926067 K00024 Citrate cycle (TCA cycle, Krebs 

cycle)==Dicarboxylate-

hydroxybutyrate cycle 

0.581 Rhodothermus marinus 

CDC Teal (18)     

Gene ID 4227965 K04761 NULL 0.846 Burkholderia sp. YI23 

Gene ID 1299618 K10943 FlrB-FlrC (polar flagellar synthesis) 

two-component regulatory system 

0.815 Pseudovibrio sp. FO-BEG1 

Gene ID 1529777 K07690 EvgS-EvgA (acid and drug tolerance) 

two-component regulatory system 

0.776 Edwardsiella tarda 

Gene ID 1273055 K03501 NULL 0.756 Unknown 

Gene ID 5425221 NULL NULL 0.735 Unknown 

Gene ID 2884903 NULL NULL 0.715 Corynebacterium jeikeium 

Gene ID 5512026 K02952 Ribosome, bacteria==Ribosome, 

archaea 

0.708 Brevundimonas subvibrioides 

Gene ID 5560261 K13950 NULL 0.701 Sinorhizobium medicae 

Gene ID 975665 K00099 C5 isoprenoid biosynthesis, non-

mevalonate pathway 

0.698 Sodalis glossinidius 

Gene ID 5082960 K01784 Nucleotide sugar biosynthesis, 

eukaryotes. Leloir pathway, galactose 

=> alpha-D-glucose-1P 

0.666 Desulfotomaculum kuznetsovii 

Gene ID 4607043 K00145 Ornithine biosynthesis, glutamate => 

ornithine 

0.664 uncultured Acidobacteria bacterium 

cosmid p2H8 

Gene ID 1603508 K03272 ADP-L-glycero-D-manno-heptose 

biosynthesis 

0.655 Streptomyces verticillus 

Gene ID 5283033 K01090 NULL 0.606 Salinispora arenicola 

Gene ID 399606 K08884 NULL 0.606 Microbacterium testaceum 

Gene ID 948818 K00333 NADH:quinone oxidoreductase, 

prokaryotes 

0.566 Salinispora arenicola 



Gene ID 4341080 K02779 PTS system, glucose-specific II 

component 

0.564 Azospirillum lipoferum 

Gene ID 1190455 K03296 NULL 0.519 Candidatus Solibacter usitatus 

     

CDC Verona (1)     

Gene ID 2974755 K01697 Methionine degradation==Cysteine 

biosynthesis, homocysteine + serine => 

cysteine 

0.643 Variovorax paradoxus 

Lilian (1)     

Gene ID 4087572 K15975 NULL 0.626 Symbiobacterium thermophilum 

Marquis (9)     

Gene ID 3898574 K02004 Putative ABC transport system 0.863 Unknown 

Gene ID 2708209 K02048 Sulfate transport system  0.751 Unknown 

Gene ID 915210 NULL NULL 0.713 Unknown 

Gene ID 177898 K01999 Branched-chain amino acid transport 

system 

0.669 Rhodoferax ferrireducens 

Gene ID 4402551 K07807 NULL  0.650 Deinococcus radiodurans 

Gene ID 5990271 K01797 NULL 0.615 Ralstonia syzygii 

Gene ID 1881382 K02479 NULL  0.599 Unknown 

Gene ID 3559744 K13924 CheA-CheYBV (chemotaxis) two-

component regulatory system 

0.570 Unknown 

Gene ID 5662970 K06951 NULL 0.542 Niastella koreensis 

Pelissier (6)     

Gene ID 3975373 K01262 NULL  0.777 Streptomyces lavendulae 

Gene ID 1835174 K13893 Microcin C transport system 0.734 Rhodopseudomonas palustris 

Gene ID 5746516 K10001 Glutamate/aspartate transport system  0.721 Unknown 

Gene ID 4987075 NULL NULL 0.696 Gramella forsetii 

Gene ID 5442032 K07147 NULL  0.611 Pelagibacterium halotolerans 



Gene ID 831402 K01768 NULL 0.477 Pseudonocardia dioxanivorans 

Red Fife (3)     

Gene ID 4626467 K03092 NULL 0.664 Pirellula staleyi 

Gene ID 1920270 K04091 NULL 0.611 Frankia sp. EAN1pec 

Gene ID 2700809 K01848 Hydroxypropionate-hydroxybutylate 

cycle==3-Hydroxypropionate bi-cycle 

0.510 Natronococcus occultus 

Strongfield (25)     

Gene ID 1463806 K13924 CheA-CheYBV (chemotaxis) two-

component regulatory system 

0.75 Unknown 

Gene ID 3789738 K09458 Fatty acid biosynthesis, 

elongation==Pimeloyl-ACP 

biosynthesis, BioC-BioH pathway, 

malonyl-ACP => pimeloyl-ACP 

0.73 Geobacillus thermoleovorans 

Gene ID 3240233 K07397 NULL 0.72 Sphingobium chlorophenolicum 

Gene ID 3160721 K02968 Ribosome, bacteria 0.71 Unknown 

Gene ID 4432120 K00294 NULL 0.71 Burkholderia sp. YI23 

Gene ID 5561172 K01772 Heme biosynthesis, glutamate => 

protoheme/siroheme 

0.71 Anaeromyxobacter dehalogenans 

Gene ID 1241594 K00641 NULL 0.70 Variovorax paradoxus 

Gene ID 5470347 K01998 Branched-chain amino acid transport 

system 

0.70 Variovorax paradoxus 

Gene ID 106891 K03391 NULL 0.70 Burkholderia sp. YI23 

Gene ID 1983603 K01142 NULL 0.68 Nitrosomonas europaea 

Gene ID 760709 K00924 NULL 0.67 Weeksella virosa 

Gene ID 439292 K07485 NULL 0.66 uncultured bacterium contig00155 

Gene ID 5821176 K02480 NULL 0.66 uncultured Acidobacteria bacterium 

Gene ID 907933 K01283 NULL 0.66 Anaeromyxobacter sp. Fw109-5 

Gene ID 4848490 K07093 NULL 0.66 uncultured bacterium 

Gene ID 3875585 K02004 Putative ABC transport system 0.64 Unknown 



Gene ID 2688963 K17879 NULL 0.62 Propionibacterium freudenreichii 

Gene ID 2781511 K02835 NULL 0.62 Gemmatimonas aurantiaca 

Gene ID 5230296 K00939 Adenine ribonucleotide biosynthesis, 

IMP => ADP,ATP 

0.62 Burkholderia ambifaria 

Gene ID 2987209 K00975 Trehalose biosynthesis, D-glucose 1P 

=> trehalose 

0.60 Thioalkalivibrio sulfidiphilus 

Gene ID 4224518 K07712 GlnL-GlnG (nitrogen regulation) two-

component regulatory system 

0.59 Pantoea vagans 

Gene ID 804818 K02863 Ribosome, bacteria==Ribosome, 

archaea 

0.58 Slackia heliotrinireducens 

Gene ID 912294 K01322 NULL 0.57 Shewanella loihica 

Gene ID 1369058 K01684 D-galactonate degradation, De Ley-

Doudoroff pathway, D-galactonate => 

glycerate-3P 

0.57 Mesorhizobium opportunistum 

Gene ID 1547139 K02004 Putative ABC transport system 0.55 Unknown 
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