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Abstract

Background: Mixed models are used to correct for confounding due to population stratification and hidden
relatedness in genome-wide association studies. This class of models includes linear mixed models and generalized
linear mixed models. Existing mixed model approaches to correct for population substructure have been previously
investigated with both continuous and case-control response variables. However, they have not been investigated in
the context of extreme phenotype sampling (EPS), where genetic covariates are only collected on samples having
extreme response variable values. In this work, we compare the performance of existing binary trait mixed model
approaches (GMMAT, LEAP and CARAT) on EPS data. Since linear mixed models are commonly used even with binary
traits, we also evaluate the performance of a popular linear mixed model implementation (GEMMA).

Results: We used simulation studies to estimate the type I error rate and power of all approaches assuming a
population with substructure. Our simulation results show that for a common candidate variant, both LEAP and
GMMAT control the type I error rate while CARAT’s rate remains inflated. We applied all methods to a real dataset from
a Québec, Canada, case-control study that is known to have population substructure. We observe similar type I error
control with the analysis on the Québec dataset. For rare variants, the false positive rate remains inflated even after
correction with mixed model approaches. For methods that control the type I error rate, the estimated power is
comparable.

Conclusions: The methods compared in this study differ in their type I error control. Therefore, when data are from
an EPS study, care should be taken to ensure that the models underlying the methodology are suitable to the
sampling strategy and to the minor allele frequency of the candidate SNPs.
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Background
In genetic studies involving human populations, resear-
chers are interested in determining how genetic vari-
ation contributes to disease. Genome-Wide Associa-
tion Studies (GWAS), which involve genotyping a large
number of individuals at hundreds of thousands of
genetic markers, have been useful for discovering rela-
tionships between common variants and complex dis-
eases. Recently, sequencing has been used to discover
rare variants associated with human traits [1]. Although
the cost of genetic association studies has decreased
over the years, some technologies, including sequenc-
ing, remain relatively expensive [2]. Therefore study
designs that reduce cost while maintaining power are
desirable.
An example of a cost saving design is extreme phe-

notype sampling (EPS), a design where genetic data are
collected only on individuals in the tails of the phenotype
distribution. The use of this study design was proposed
by Lander and Botstein [3] for linkage analysis. Extreme
phenotype sampling was later used for candidate gene
association studies. For example, the EPS design was used
to investigate associations between genetic variants in the
dopamine system genes and cognitive ability [4, 5]. This
study design has also been used in GWAS, for example
in Vermissen et al. [6] to identify genetic risk variants for
coronary heart disease. Recently, EPS has been shown to
be a powerful design to detect rare variants [2, 7–9].
As with all population-based genetic association

designs, extreme phenotype sampling is prone to con-
founding by population structure or stratification. Differ-
ences in allele frequencies among members of a strata or
subgroup in the population may lead to confounding if
there are also differences in the phenotype distribution
between the subgroups. Confounding is known to inflate
the type I error rate, which can lead to spurious asso-
ciations. Methods have been developed that can correct
for the effects of population stratification using genomic
data. The earliest approaches include Genomic Con-
trol [10] and STRUCTURE/STRAT [11]. Principal com-
ponents (PC)-based corrections have also been shown
to be sufficient for controlling the false positive rate
[12, 13].
Mixed model methods have recently become popular

due to their robustness in tackling other sources of con-
founding in the study, in particular cryptic relatedness
[14]. Since mixed model based approaches are compu-
tationally intensive, a number of exact and approximate
linear mixedmodel (LMM)methods have been developed
for use in genome-wide association studies (for exam-
ple, [15–17]). Each of these methods incorporate different
strategies to make the LMM-based analyses feasible at the
genome-wide level. Eu-ahsunthornwattana et al. [18] gives
a comparison of these methods.

In human genetic studies, the phenotype of interest is
often a binary trait, such as presence or absence of dis-
ease. To correct for population stratification, binary traits
are sometimes analysed using LMMs [19–21] even though
the response variable is not continuous. Pirinen et al. [22]
gives a justification of this approach by deriving a map-
ping between the effect size estimates from the linear to
the log-odds scale, which is the natural scale for binary
traits. Although widely applied to binary traits, the LMM
assumes a continuous phenotype with a constant resid-
ual variance. However, for binary traits in the presence of
covariates, this assumption does not hold. Therefore, fit-
ting a binary response with linear mixed models may fail
to correct the type I error rate [23] or result in a loss of
power [24].
Mixed model approaches that do not treat disease sta-

tus as a continuous random variable have recently been
developed. One such approach is based on the liability
threshold model, which assumes that there is an unob-
served normally distributed latent variable known as the
‘liability’ and that individuals having liability values above
a threshold are classified as cases. Liability threshold-
based methods have been implemented in the software
LEAP [25] and LTMLM [26]. These methods estimate
the latent liabilities and association is tested using these
estimated latent response values. The generalized lin-
ear mixed model (GLMM) can also be used to model
binary traits. For example, GMMAT [23] fits a logistic
mixed model to the binary data, while CARAT [27] fits a
retrospective model using a quasi-likelihood approach.
We have previously shown that the false positive

rates due to population stratification are substantially
inflated with EPS designs relative to random sampling
[28]. Therefore, for EPS designs it is very important
to include correction for population stratification. We
have shown that including the top principal compo-
nents in a logistic regression model adequately limits
the type I error rate when the candidate variant was
common; however, there was a slight inflation when
the candidate variant was rare [28]. The mixed model-
based approaches for correcting for population sub-
structure were developed assuming binary traits from
case-control type studies. In particular, the retrospective
and liability threshold approaches model the underly-
ing case-control ascertainment. However, the sampling
scheme used in EPS designs is different from true case-
control designs as both extremes of the phenotype dis-
tribution are included. Therefore, it is unclear whether
these approaches will adequately control the false posi-
tive rate under the EPS ascertainment scheme when there
is confounding due to population stratification. Given
the increasing popularity of mixed model approaches,
it is important to assess their performance in the EPS
setting.
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In this work, we aim to accomplish two goals. First,
we present an overview of the mixed model-based
approaches for correcting for population stratification
with a binary response variable; we focus on the recently
proposed algorithms LEAP, LTMLM, GMMAT and
CARAT. Second, we compare the performance of these
approaches and an LMM approach (GEMMA [17]) when
the binary data comes from an EPS design.We use simula-
tion to evaluate whether the type I error rate is adequately
controlled when the candidate variant is both common
and rare. We also examine the power of the methods
shown to control the type I error rate. Finally, we compare
these methods when applied to a real dataset collected
as part of a case-control study conducted in Québec,
Canada. The participants were collected from multiple
ethnic groups and therefore we expect confounding by
population stratification with this data.

Results
Evaluation of type I error - common variant
Table 1 shows the estimated type I error rates for the EPS
samples of size 1000, 2000 and 4000, which correspond to
full cohort sample sizes of 5000, 10,000 and 20,000 indi-
viduals. These results correspond to the simulations with
the ‘1’ allele frequency of p1 = 0.25 and p2 = 0.85 and
the phenotypic means of μ1 = 0.07 and μ2 = −0.07 for
subpopulations 1 and 2, respectively. LEAP and GMMAT
show well controlled type I error rates, indicating ade-
quate correction of the population structure in the data.
For both approaches, the estimated type I error rate for
all the sample sizes ranges between 0.041 − 0.052. All but
one of these estimates are slightly lower than the nominal
level of 0.05; however, these small deviations from the true
value can be explained by Monte Carlo sampling error.
The type I error rate for the PCA approach is also close to
the nominal value, though possibly slightly elevated; sim-
ilar results for the PCA based correction were observed
in our previous work [28]. CARAT shows higher type I
error rates than the nominal level of 0.05. The false posi-
tive proportion ranges from 0.089 to 0.102, which is higher
than can be explained by Monte Carlo simulation error
alone. We therefore conclude that CARAT is not able to
adequately correct for population stratification in the EPS
setting.

We also evaluated the LMM approach GEMMA, where
we coded the categorical phenotype as 0 and 1 for the two
extreme groups and treated the 0/1 values as a continu-
ous phenotype. Results in Table 1 show that the estimated
type I error rates were around 0.05, which indicates that
erroneously analysing as a continuous trait does not affect
the correction for population substructure.
Figure 1 shows the results when the ‘1’ allele frequency

of the candidate SNP in subpopulation 2 was varied from
0.5 to 0.9, in increments of 0.1. When p1 = p2 there is
no population stratification; as expected, under this case
the type I error rate of the three methods are all close to
the nominal value of 0.05. GMMAT and LEAP show no
increase in the estimated type I error rates as p2 increases;
the estimated value remains around 0.05. However, for
CARAT the type I error rates increases as the difference
in the allele frequency between the two subpopulations
increases, which again indicates inadequate correction for
population stratification.

Evaluation of type I error - rare variants
Table 2 shows the estimated type I error rates of the Bur-
den (SMMAT-B), SKAT (SMMAT-S), SKAT-O (SMMAT-
O) and Hybrid efficient (SMMAT-E) statistics from
SMMAT assuming a significance level of 0.05. The Bur-
den test had an estimated type I error rate closest to
the specified value (0.062 versus the expected 0.05). The
three other rare variant statistics (SMMAT-S, SMMAT-O,
SMMAT-E) have estimated type I error rates that range
from 0.088 to 0.103. The inflation of the test statistics can
also be seen in the QQ plot of the -log10 of the p-values
(Fig. 2); the results with the Burden statistic appear closest
to the identity line, which is what we would expect under
no association, but there is still evidence of inflated test
statistics. The deviations between the true and estimated
type I error rates cannot be explained by simulation error
alone; we conclude that under EPS, the type I error rate is
not controlled using these rare variant tests.

Evaluation of power
Table 3 shows the estimated power to detect a common
candidate variant when the phenotype also depends on
subpopulation membership. We assessed power only for
the methods with appropriate type I error control and we

Table 1 Estimated type I error rates for the three mixed model approaches for binary traits (LEAP, GMMAT and CARAT), the LMM
method (GEMMA) and logistic regression with principal component based correction (PCA)

Cohort Sample Size (N) Sub-sample Size (0.2N) LEAP GMMAT CARAT GEMMA PCA

5000 1000 0.0405 0.04135 0.102. 0.061 0.0575

10000 2000 0.0417 0.0475 0.089 0.046 0.0605

20000 4000 0.0450 0.0515 0.0945∗ 0.052 0.0555

*Based onm=1999 simulations



Onifade et al. BMC Genomics           (2022) 23:98 Page 4 of 12

Fig. 1 Type 1 error rates for the three mixed model methods (LEAP, GMMAT and CARAT). The allele frequency in population 1, p1, was fixed at 0.5.
The allele frequency in population 2, p2, ranged from 0.5 to 0.9. The x-axis corresponds to the p2 value. The orange line represents GMMAT, the blue
line represents LEAP, and the green line represents CARAT. The horizontal line indicates the alpha value of 0.05

evaluated two effect sizes. We note that overall power for
all methods will depend on the effect size and sample size;
therefore, we focus on comparing the estimates from each
method to each other rather than on determining if power
overall is high enough. At the larger effect size (β = 0.25),
no method clearly outperforms the others. The estimated
power for all four methods ranges from 0.48 to 0.52. LEAP
has the lowest power and GEMMA the highest. The same
pattern is seen with the lower effect size (β = 0.15); LEAP
is lowest and GEMMA is highest. At the smaller effect
size, GEMMA’s estimated power is about 10% higher than
the next lowest (PCA). If we perform a test of equality of
proportions estimated for GEMMA and PCA, we would
reject the hypothesis that they are equal.

Extreme BMI phenotype in the prostate cancer
case-control study
Figure 3 shows the QQ plots of − log10 of the p-va-
lues from LEAP, GMMAT, GEMMA and the uncor-
rected logistic regression implemented in PLINK for
the genome-wide association study using the extremes
of the BMI phenotype from the prostate cancer case-
control study. For reference purposes,Manhattan plots for

each method are provided in Supplementary Figures 1-4
(Additional files 1, 2, 3 and 4), respectively.
The results from LEAP, GEMMA, and GMMAT show

well controlled type 1 error rates; in Fig. 3, the majority
of p-values tend to fall close to the identity line although
again GMMAT may slightly over-correct. The correction
for relatedness does seem to alter the results; we can
see that the points for the methods that offer correction
(GMMAT, GEMMA and LEAP) are all below the points
for the method which doesn’t correct (PLINK).

Computational time andmemory usage
We compared the computational time and memory
requirements for LEAP, GMMAT, GEMMA and CARAT

Table 2 Estimated type I error rates for the rare variant mixed
model methods implemented in SMMAT

SMMATMethod Estimated Type I Error Rate

Burden (SMMAT-B) 0.0617

SKAT (SMMAT-S) 0.1039

SKAT-O (SMMAT-O) 0.1024

Efficient (SMMAT-E) 0.0883
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Fig. 2 Quantile-Quantile Plots of the − log10 of the p-values from the
four SMMAT rare variant association tests (Burden, SKAT, SKAT-0 and
Efficient)

on a dataset of n = 1000 individuals. With the excep-
tion of GMMAT, the methods included GRM calculation
as part of the algorithm. For GMMAT, we used the GRM
computed by GEMMA; this extra step increases the over-
all computational time. The average time (across simula-
tions) to complete an association test on a single candidate
SNP was approximately 22 seconds for GMMAT, 19 sec-
onds for GEMMA, and 13 seconds for LEAP. Although
the times are similar when analysing a single SNP, these
differences between run times would be quite noticeable
for a GWAS analysis. CARAT’s run time was significantly
longer at over 5 minutes per dataset; we therefore were
unable to complete the same number of simulations for
CARAT at the larger sample size (4000 samples from
the phenotype extremes). Memory usage was compara-
ble between methods, though LEAP’s usage was higher
(GMMAT: 3 GB, GEMMA: 2 GB; LEAP: 4.25 GB; CARAT
1.34 GB).

Table 3 Estimated power for detecting a causal variant of two
different effect sizes (β = 0.15 and β = 0.25) in the presence of
population stratification

Method
Estimated Power

β=0.15 β=0.25

LEAP 0.31 0.48

GMMAT 0.34 0.51

GEMMA 0.44 0.52

PCA 0.35 0.49

Fig. 3 Quantile-Quantile plot of population stratification adjusted
GMMAT, LEAP, GEMMA and uncorrected PLINK in the GWAS analysis
of the case-control dataset

Discussion
In this work, we compared the performance under an EPS
design of several mixed model-based association methods
for binary phenotypes. We estimated the type I error rate
for all methods under both a common variant and a rare
variant scenario. We evaluated power for those methods
with appropriate type I error control and we compared
the computational requirements of the methods. We also
applied the methods to a real dataset that was known to
have population substructure.
For common variants, our simulations showed that

methods based on the generalized linear mixed model
(GMMAT), the LMM (GEMMA) and the liability thresh-
old model in conjunction with an LMM (LEAP) all have
a type 1 error rate that is close to, or at least not higher
than, the specified value. Although, Chen et al. [23] note
that the liability threshold mixed models may fail to con-
trol the type 1 error rates in the presence of moderate
to strong population stratification, we did not observe
such inflation in our simulations even when confounding
due to population stratification would have been severe.
On the other hand, we found that CARAT, which uses
a retrospective model and a quasi-likelihood framework,
did not adequately control the type 1 error rate. The
CARAT method is based on a retrospective approach
where the case-control ascertainment is modeled [24].
Though this is an appropriate approach for a true case-
control design, extreme sampling represents a different
type of ascertainment and therefore the retrospective
model may not be appropriate in this case.
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For rare variants, the type 1 error rate was inflated rel-
ative to the specified level for all statistics implemented
in the GLMM-based approach SMMAT. The burden test
had type 1 error closest to the nominal value of 0.05, which
may be explained by the lower power of the burden test
overall relative to the optimized variance component tests
like SKAT-O [29] (SMMAT-O). Under population strat-
ification there is a true difference between the genotype
distributions in the two extreme groups, though this dif-
ference is not due to a causal association between the
genetic variant and the phenotype. Therefore, methods
that have higher power overall, like SKAT-O, will be more
likely to detect this false association. Studies have shown
that the inflation due to population stratification is higher
with rare variants than with common variants (for exam-
ple, [30]). Using a SKAT-type method incorporating a
mixed model-based correction with common variants has
been shown to adequately control the type 1 error under
random sampling [31]. However, EPS inflates the effects
of population stratification to a greater extent than ran-
dom sampling [28]; therefore, conclusions drawn about
corrections with rare variant approaches under random
sampling scenarios may not apply to the EPS setting. In
addition, the SNPs we simulated for the GRM calculations
were all common. It is possible that in the context of EPS, a
mixture of rare and common variants for capturing ances-
try might have better type 1 error control since it was
shown to be slightly conservative in the random sampling
setting [31].
We also investigated the performance of LEAP,

GMMAT and GEMMA for detecting genetic variants
associated with the extremes of BMI in the prostate can-
cer case-control study. Although we do not know whether
there are true associations in this dataset, we note that
LEAP, GMMAT and GEMMA all have different genome-
wide p-value distributions than the uncorrected results
(logistic regression with PLINK), and that the corrected
distributions appear to have less overall inflation of the
test statistics. However, the results for GMMAT indicate
a slight over-correction. In our common candidate vari-
ant simulations, we also observe some over-correction
with both GMMAT and LEAP at the smaller sample sizes.
Therefore, it is possible that the over-correction can be
explained by the small sample size of the BMI EPS dataset.
The use of LMMs for binary traits has been discour-

aged due to the fact that this approach ignores the mean-
variance relationship of the binary model and instead
assumes a constant relationship [23]. Chen et al. [23]
demonstrate both an increase and decrease in false pos-
itives with an LMM approach on a stratified asthma
dataset by separating cases where the variance of theMAF
was higher/lower in one ethnic group relative to remain-
ing groups. In our simulations, GEMMA’s LMM approach
did not have an inflated false positive rate even under

moderate to strong population stratification; though we
note that our simulations were not designed to inves-
tigate this thoroughly. For example, in our simulations
we did not vary the proportion of the full cohort from
each subpopulation. In addition, in the real data anal-
ysis of the BMI phenotype, the results from GEMMA
were actually closest to what would be expected if there
were no true associations. Therefore, for both the simu-
lated and real data, GEMMA had very good correction
of the false positive rate when compared to the other
methods.
A weakness of our simulation is the use of the Bald-

ing Nichol’s model in simulating genotype data for GRM
estimation. The Balding’s Nichols’s model allows the allele
frequencies to differ between the subpopulations and
guarantees a specific Fst value. However, for a given SNP,
the actual allele frequency difference between the two
subpopulations is small. In real data, some SNPs are highly
differentiated between subpopulations [32]; these types of
SNPs would not be simulated under this model.
In this study, we model the extreme phenotypes as

binary and use methods suitable for analysing case-
control or binary data. However, Barnett et al. [33] point
out that analysing extremes as a binary phenotype rather
than using the quantitative values might lead to a reduc-
tion in power to detect genotype-phenotype associa-
tions. However, if using the quantitative phenotype values,
the extreme sampling mechanism must be modeled. For
example, Lin et al. [34] showed that parameter estimates
from the linear model are biased when the quantita-
tive phenotypes are naively analysed without account-
ing for the sampling. Linear model-based methods that
model the quantitative phenotype while accounting for
the extreme sampling scheme have been developed [34,
35]. However, no such approach currently exists for the
linear mixed model; this is therefore a topic for further
research.

Conclusions
The mixed model-based methods for population stratifi-
cation correction compared in this study do not all per-
form equally well when the data is taken from an extreme
sampling design. For common variants, LEAP, GMMAT
and GEMMA all had good type I error rates and power;
however, CARAT did not adequately control the type I
error rate. In addition, none of the available mixed model
approaches for rare variants controlled the type 1 error
rate. Therefore, when the data are from an EPS study,
care should be taken to ensure that the underlying models
used in the methods are suitable to the sampling strat-
egy and to the minor allele frequency of the candidate
SNPs. Our study highlights the need for the development
of mixed model-based approaches for population strat-
ification correction that model the underlying sampling
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structure of the EPS design and are applicable to variants
of all frequencies.

Methods
Overview of mixedmodel-based approaches for correcting
for population stratification
In this section, we give a brief overview of mixed mod-
els and implementations that incorporate these models to
correct for population structure. We focus on approaches
that are suitable for binary response variables.

The linearmixedmodel and the generalized linearmixed
model
A linear mixed model (LMM) to account for population
substructure and/or hidden relatedness is given by:

Y = Xβ + Zb + ε (1)

where Y is the vector of phenotype values, X is the design
matrix of genetic and non-genetic fixed-effect covariates
including a column vector of 1, β is the vector of regres-
sion coefficients including the intercept, Z is a known
design matrix corresponding to clustering that is the
identity matrix in the simplest case and b is the vec-
tor of random effects. We assume the random effects, b,
are N(0, σ 2

aG) distributed, where G is the known rela-
tionship matrix and σ 2

a is the additive genetic variance,
and ε ∼ N(0, σ 2

e I), where σ 2
e is the error variance

and I is the identity matrix. Therefore, the distribution
of Y is:

Y ∼ N
(
Xβ + Zb, σ 2

aG + σ 2
e I

)
(2)

We can infer from (2) that the matrix G imposes struc-
ture on the covariance matrix of Y ; this forms the basis of
using LMMs to correct for hidden relatedness in GWAS.
With population-based samples, the relationshipmatrixG
is estimated using genome-wide data.
Model (2) can be generalized to handle non-normal

response variables. Given a vector of random effects b, the
response variable Y is assumed to be from a distribution
in the exponential family. That is, for the ith response,

fi(yi|b) = exp
{
yiϕ − b∗(ϕ)

ai(φ)
+ ci(yi,φ)

}

where b∗(.), ai(.), ci(., .) are known functions that depend
on the underlying distribution of Y, ϕ is a parameter that is
associated with the conditional mean μi = E(Yi|b), and φ

is a dispersion parameter whichmay ormay not be known.
The linear predictor is ηi = xiβ + zib, where xi and zi
are the covariates for the ith individual and β and b are as
previously defined. Themean for individual i,μi, is related
to the linear predictor via a link function:

g(μi) = ηi.

In particular, the mixed logistic model for a binary
response variable is given by

logit(pi) = xiβ + zib, (3)

where pi = Pr(Yi = 1|b) and xi, zi and b are as defined
above.

Summary ofmixedmodel implementations
Recently, several mixed model approaches for binary
traits have been developed. In this section, we summa-
rize the different approaches that have been implemented,
which we classify as (i) approaches using the LMM, (ii)
approaches using liability threshold models in conjunc-
tion with the LMM, and (iii) GLMM-based approaches.
We provide more detail on the liability threshold (ii)
and GLMM (iii) approaches since the LMM implementa-
tions (i) have been compared and summarized elsewhere
[18, 36].
(i) Linear Mixed Model approaches
As previously mentioned, LMMs are used with binary

traits even though the response variable is neither normal
nor continuous. In order to fit LMMs in the GWAS con-
text, large sample sizes are required to achieve sufficient
statistical power. Unfortunately, the computational com-
plexity associated with fitting LMMs increases cubicly
with the number of individuals in the model [37]. This
motivated the development of several variations of the
LMMapproach designed to increase computational speed
and in turn make large scale GWAS feasible. Existing
methods include EMMA [15], EMMAX [38], FASTLMM
[16], BOLT-LMM [39, 40], GCTA [41], and GEMMA [17].
Some of these approaches have been designed to handle
some specific forms of binary data. For example, BOLT-
LMM is able to analyse balanced case-control data at large
sample sizes [40].
(ii) Liability threshold models in conjunction with the

LMM
In case-control studies, cases are over-sampled relative

to the disease prevalence. The liability threshold model
(LTM) assumes an underlying but unobserved latent trait
that is normally distributed [42, 43]. Individuals with
latent trait values beyond a threshold, t, are classified as
cases (Y = 1) and all others are classified as controls
(Y = 0). Hence the binary response variable for individual
i, can be written as:

Yi =
{
1 if zi > t
0 otherwise (4)

where Yi is the observed binary trait and zi is the unob-
served liability score, which is assumed to be N(0, 1).
Since the liability scores are not observed, using the lia-
bility threshold model requires first estimating liability
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scores for each individual. We now describe two imple-
mentations which differ in how the liability scores are
estimated.
In the algorithm LEAP [25], the liability for individual

i is assumed to be a sum of genetic and environmental
components, zi = gi + ei, where gi = Xt

iβg , Xt
i is the vec-

tor of genotype data and ei ∼ N(0, σ 2
e ). Estimation of zi

is achieved by first fitting a regularized probit model to
estimate the parameters βg . These are estimated with the
maximum a posteriori estimate (MAP), also known as the
posterior mode estimator. The liabilities are estimated by
ẑi = Xt

i β̂g ; these values are then used as the phenotype
values for each individual. Tests for association are per-
formed using a linear mixed model since the liabilities are
assumed to be normally distributed.
LTMLM [26] is similar to LEAP in that it models the

retrospective sampling and uses imputed liability scores;
however, the liabilities are estimated using the posterior
mean of the multivariate liability distribution (PMLs). A
Gibbs sampler is used to sample from this distribution
and the posterior mean is estimated by averaging over the
Monte Carlo iterations. A score statistic is used to test
for association between a candidate SNP and the imputed
liabilities assuming a linear mixed model.
A comparison of the estimators used by LEAP and

LTMLM showed that in the presence of population struc-
ture, theMAP yieldsmore accurate liability estimates than
the PML, often at a lower computational cost compared
to the posterior mean estimator [25].
(iii) GLMM-based approaches
The logistic mixed model is a special case of the GLMM

that can be used to analyse binary traits while accounting
for population structure and hidden relatedness. How-
ever, this model has not been widely used for GWAS
due to the computational complexity involved in fitting
logistic mixed models for a large number of genetic vari-
ants. Chen et al. [23] developed GMMAT, a logistic mixed
model that is computationally efficient enough to han-
dle genome-wide data. GMMAT first fits a null logistic
mixed model including fixed effects for any covariates
and random effects for residual population stratification
and relatedness. This fitted null model, which is the same
for all genetic variants in the study, is then used to test
for the association between a genetic variant and pheno-
type using a score test. The use of just one null model
for testing all genetic variants greatly simplifies the model
compared to fitting a full logistic mixed model for a large
GWAS.
CARAT (Case control Retrospective Association Test)

[27] is another mixed model approach for binary traits
where the response variable is modeled using a mixed
effects quasi-likelihood approach. In particular, only the
conditional mean and covariance of the response variable
given the genotypes and other covariates are specified.

The conditional mean is selected to be the same as for the
logistic model. The conditional covariance incorporates
features of the logistic model and accounts for popula-
tion substructure through the genetic relationship matrix.
Like LTMLM, CARAT uses a retrospective model where
the genotypes are treated as random and the association
is performed conditional on the phenotypes and non-
genetic covariates. However, unlike LTMLM, CARAT
does not require the knowledge of disease prevalence. Like
LTMLM, a score test is used to handle genome-wide data.

Simulations to evaluate type I error
In this section, we describe the simulation studies used to
estimate the type I error rates of themixedmodel software
implementations that handle binary data. In particular, we
focus on LEAP, GMMAT, CARAT and GEMMA as a rep-
resentative LMM approach. We excluded LTMLM as we
found that it took much longer to run than LEAP, which
uses a similar liability threshold model.

Common candidate variant
We assumed a cohort consisting of two subpopulations
of equal proportion. The total cohort size, N, was set to
5000, 10, 000 or 20,000. The Fst value between the two
populations - a measure of genetic population differen-
tiation - was set to 0.01; this value is higher than would
be expected between typical European populations but it
ensures substantial substructure [28].
Genetic data was simulated using the Balding-Nichols

method [14, 44] as previously described [28]. For each
individual, we simulated a total of p = 5000 bi-allelic
SNPs. Though true genome-wide data would consist of
much larger numbers of SNPs, our previous work with
data simulated using this model has shown that this
number of SNPs is sufficient to correct for population
stratification [28]. We label the two alleles at each SNP
as either ‘0’ or ‘1’. For each SNP, the generating allele
frequency, p, for the ‘1’ allele was first sampled from a
uniform [ 0.1, 0.9] distribution. To mimic population dif-
ferentiation, the ‘1’ allele frequency within each of the two
populations, p1 and p2, was then sampled from a Beta
distribution with shape and scale parameters p(1−Fst)

Fst and
(1−p)(1−Fst)

Fst , respectively. This approach has been shown
to generate genotype data having the desired Fst level
[44]. Using the allele frequencies generated for each pop-
ulation, the genotype data was sampled assuming Hardy
Weinberg equilibrium. The genotype data was coded as 0,
1 or 2 for genotypes 00, 01, and 11, respectively.
We simulated a candidate SNP separately. We first

assumed that the ‘1’ allele frequency for the candidate
SNP was p1 = 0.25 in the first subpopulation and p2 =
0.85 in the second subpopulation. Although this allele fre-
quency difference is probably not realistic in practice, it
was chosen to reflect a ‘worst case’ scenario of a candidate
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SNP showing extreme population differentiation. We also
included a smaller simulation where we varied the ‘1’ allele
frequency difference between the populations; in particular,
we set p2 to range from 0.5 − 0.9 while fixing p1 at 0.5.
In order to obtain the EPS sample, we simulated pheno-

types from a normal distribution with mean values μ1 =
0.07 and μ2 = −0.07 for subpopulation 1 and 2, respec-
tively, and a common variance of σ 2 = 1. We note here
that the genotypes and phenotypes have been simulated
independently, which implies that the genotype at the can-
didate SNP is not causally associated with the phenotype.
The EPS sample was then selected as the individuals in the
upper and lower 10th percentile of the phenotype distri-
bution. For the EPS sample, the binary response variable
is membership in the upper or lower group; in practice,
these are sometimes labelled as cases and controls, though
it should be noted that there is no true control group in
this design.
For methods requiring a GRM, the genetic data on the

p = 5000 SNPs simulated under the Balding-Nichols
method was used to compute the GRM; the candidate
SNP for the association test was not included in the GRM
calculation. LEAP and GEMMA compute the GRM as
part of the algorithm. For GMMAT, the GRM must be
computed externally and then passed to the program; we
used the standardized GRM computed by GEMMA.
We simulated m = 3000 datasets under the scenario

where the candidate variant ‘1’ allele frequency was p1 =
0.25 and p2 = 0.85 in subpopulation 1 and 2, respectively.
The computational time for CARAT is significantly longer
than the other methods, particularly for the large sample
sizes. Therefore, we were only able to complete CARAT
analysis ofm = 1999 simulated datasets for the simulation
with full cohort size of N = 10, 000. Due to limited com-
putational time, we only performedm = 1000 simulations
for each setting under the scenario where p1 = 0.5 and
p2 varied. For these simulations, we chose to focus on the
trend in the rate as p2 varied for each method separately.
GMMAT is available as an R package [23]. LEAP,

GEMMA and CARAT are stand-alone software packages
that can be run at the command line on a Unix operat-
ing system. We used default settings for all packages. For
comparison purposes, we also included a PC-based cor-
rection by including the top 5 principal components in a
logistic regressionmodel; this was also done in R. For each
method, the type I error rate was estimated by the propor-
tion of the simulated datasets where the null hypothesis
was rejected at level α = 0.05. Simulations were run in
a cluster computing environment (CAC-FRONTENAC)
and all analysis of the results was done in R [45].

Rare candidate variants
We also investigated the performance with a candidate
region having rare variants. To simulate data for the

candidate region, we simulated haplotype data in a 30kb
region using the coalescent-based simulation programms
[46]. We simulated a total of 10,000 haplotypes assuming
an effective population size of Ne = 100, 000, a per-site
mutation rate of μ = 10−8 and a per-adjacent site recom-
bination rate of ρ = 10−8. To incorporate population
structure, we again assumed two subpopulations of equal
size (i.e. 5000 haplotypes from each subpopulation) and
a migration parameter M = 10, which is representative
of the population differentiation parameter Fst = 0.01 in
the case of a common variant [30]. To create genotypes
in the candidate region for N = 5, 000 individuals, the
10,000 haplotypes were randomly paired within subpopu-
lation. The continuous phenotype values and genetic data
at 5000 non-candidate SNPs (for GRM estimation) were
generated as previously described for the common variant
simulation study.
To test for association with rare variants while account-

ing for population structure, only the generalized linear
model approach had software available. We used SMMAT
(variant set mixed model association test) [47], which is
a function available in the GMMAT package to perform
several popular rare variant tests (burden test [48], SKAT
[1], SKAT-O [49], and an efficient hybrid test that com-
bines the burden and SKAT tests [47]) in the binary mixed
model framework. We used the default values set in the
software for all tests. As with the common variant scenar-
ios, we estimated the type I error by the proportion of tests
rejected at level α = 0.05.

Simulation to investigate power
For methods that adequately controlled the type I error
rate (LEAP, GMMAT, GEMMA, PCA), we conducted
additional simulations in order to compare their perfor-
mance with respect to power. We did not include a rare
variant power simulation since none of the methods we
tested adequately controlled the type I error rate.
For the power simulations, the genetic data for estimat-

ing ancestry was simulated using the same procedure as
described for the type I error simulations. In particular, we
continue to assume that there is hidden population sub-
division. To simulate the candidate SNP, we assumed no
differences in allele frequency between the two popula-
tions and an allele frequency of 0.2 for the causal allele.
The genotypes were sampled assuming Hardy-Weinberg
equilibrium. The phenotype was again simulated assum-
ing a normal distribution, with variance 1 and mean μi +
βGij where μi, the subpopulation means, are the same as
for the type I error simulations,Gij is the genotype of indi-
vidual j in subpopulation i, and β is the effect size of the
causal allele (β = 0.15 and β = 0.25). We simulated a full
cohort size of N = 10, 000 which gives us an EPS subsam-
ple of n = 2000 when we select the top and bottom 10%.
The number of simulations for power estimation was set
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to m = 3000 and power was estimated by the proportion
of tests rejected at level α = 0.05.

Analysis of BMI phenotype from a prostate cancer
case-control study
We evaluated the mixed model methods for common
variants on data collected from a population-based case-
control study, conducted in Montréal, Canada. The study
has been described elsewhere (e.g. [50]). Briefly, cases
were men aged 76 and under who were newly diagnosed
with prostate cancer between 2005-2009; age-matched
controls (in 5 year age groups) were randomly recruited
from the electoral list of men in the same districts as cases.
Overall, 1933 cases and 1994 controls were recruited into
the study. Genome-wide genotyping was done using the
Illumina OmniExpress 12 platform. We performed qual-
ity control which included removing SNPs and individuals
with a missingness level above 0.02, minor allele fre-
quency (MAF) below 0.05 and those that deviated from
the Hardy-Weinberg equilibrium at a p-value of 10−6. We
also checked that all the SNPs used were autosomal (i.e on
chromosomes 1-22) and that all reported male individuals
had an F value (based on the X chromosome inbreeding
estimate) above 0.8. After quality control, genotype data
was available on 574,885 SNPs and for 1295 cases and
1248 controls.
Data was collected on several continuous variables

within this study. We found that body mass index (BMI)
was not associated with prostate cancer status in this
study (P-value=0.48); we therefore used this as our con-
tinuous phenotype and pooled the cases and controls.
We selected those in the top and bottom 15% of BMI
in our extreme sampling design. After data cleaning, we
observed that 2520 of the men with complete genotype
data also had BMI data. With these numbers, the sample
size of the final EPS sample was about 756.
The study includes men from different ethnic back-

grounds. About 77 of the men were Black, 28 were Asian,
1199 were European and 71 were of other nationalities.
The ethnicity of 14 of the total sample collected could
not be ascertained and therefore was marked as missing.
As we are interested in methods for correcting for pop-
ulation stratification, we did not stratify our analysis by
ethnicity.
We performed a GWAS comparing the methods

GMMAT, LEAP and GEMMA. We excluded CARAT
since we found that it had poor false positive rate cor-
rection in our simulations. Since this is a real dataset,
we do not know whether there are true associations
and whether population stratification is truly a prob-
lem. For this reason, we also used PLINK [51] to assess
genome-wide association with no population stratifi-
cation correction as a baseline comparison. For each
method, we compute p-values of association for all

available SNPs. We summarize the association results
with Manhattan plots and we use QQ-plots of − log10
of the p-values to visually assess the inflation of test
statistics. Both plots were created using the qqman
R package [52].
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