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Abstract: Ricin is a toxin found in the castor seeds and listed as a chemical weapon by the Chemical
Weapons Convention (CWC) due to its high toxicity combined with the easiness of obtention and lack
of available antidotes. The relatively frequent episodes of usage or attempting to use ricin in terrorist
attacks reinforce the urge to develop an antidote for this toxin. In this sense, we selected in this
work the current RTA (ricin catalytic subunit) inhibitor with the best experimental performance, as a
reference molecule for virtual screening in the PubChem database. The selected molecules were then
evaluated through docking studies, followed by drug-likeness investigation, molecular dynamics
simulations and Molecular Mechanics Poisson–Boltzmann Surface Area (MM-PBSA) calculations.
In every step, the selection of molecules was mainly based on their ability to occupy both the active
and secondary sites of RTA, which are located right next to each other, but are not simultaneously
occupied by the current RTA inhibitors. Results show that the three PubChem compounds 18309602,
18498053, and 136023163 presented better overall results than the reference molecule itself, showing
up as new hits for the RTA inhibition, and encouraging further experimental evaluation.

Keywords: ricin; ricin inhibitors; molecular dynamics; ligand-based virtual screening; chemical/
biological warfare agents

Key Contribution: Ligand-based virtual screening combined to docking, molecular dynamics
simulations, and MM-PBSA calculations identified new molecules with great potential to inhibit RTA
in experimental tests. These molecules had even better in silico results than the reference molecule,
a known RTA inhibitor.
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1. Introduction

Ricin is a toxin found in the seeds of the castor plant (Ricinus communis), a widely spread plant in
tropical regions and against which there are still no antidotes. It is classified as a ribosome-inactivating
protein (RIP) due to its depurination role in the eukaryotic cells, which consist of the removal of a single
adenine located in the universally conserved GAGA-tetraloop structure of 28S ribosomal RNA (rRNA)
of eukaryotic cells. The removed adenine is the second nitrogenous base in the referred tetraloop,
which is underlined, and corresponds to adenine 4324 (A-4324) of rat 28S rRNA [1,2]. Since rRNA
is involved in protein synthesis and elongation, the cleavage of the glycosidic bond and consequent
removal of the adenine interrupts these processes and potentially leads to cell death [1,3].

Ricin is classified as a type 2 RIP since it is formed by two subunits, ricin toxin A (RTA) and ricin
toxin B (RTB), linked by a disulfide bridge between Cys259 of RTA and Cys4 of RTB [4,5]. RTB is a lectin
that promotes cell entrance due to interaction with galactose-containing glycolipids and glycoproteins
in the cell membrane. Once inside the cell, ricin is subjected to retrograde transport towards the
endoplasmic reticulum, where RTA and RTB are separated by the enzyme disulfide isomerase [4,5].
Then, RTA, the catalytic subunit, moves to the cytosol where it encounters the rRNA and removes the
aforementioned adenine, in a process called depurination. This process is very fast: RTA can inactivate
up to 1500 ribosomes per minute [2,6], explaining why ricin is so toxic. Although it is difficult to define
a number of castor seeds that can potentially kill a human due to plant variations, and it is estimated
that the ingestion of 8–20 castor seeds can be lethal for adults. Additionally, ingestion is not the only
route through which ricin can penetrate the human body. This can also happen through inhalation,
which is the most toxic way of exposure, and injection that is also an effective route of intoxication by
ricin [3,7].

Ricin is listed as a chemical weapon by the chemical Weapons Convention (CWC) [8] since it is not
only highly toxic, but also easy to obtain and soluble in water, characteristics that increase its potential
of being used in terrorist attacks. Many episodes of ricin usage were registered through the years and
the most well-known is the murder of the Bulgarian dissident Georgi Markov in 1978, in London, in the
so-called “umbrella murder” [9]. More recently, in September 2020, a letter addressed to the White
House was intercepted and the analysis confirmed the presence of ricin [10]. Additionally, the castor
oil, extracted from the castor plant, is a lubricant with many applications in the chemical industry,
so the accidental intoxication of workers involved in the oil extraction must also be considered. Animal
intoxication is also possible since the castor plant is naturally found in countries such as Brazil, China,
and India [11]. For all these reasons, the search for an antidote against ricin intoxication must continue.

The catalytic mechanism of RTA is well-known, and the residues involved in catalytic activity
or in substrate complexation were already identified. The catalytic residues, i.e., the ones directly
involved in breaking the adenine glycosidic bond, are Glu177 and Arg180. Other residues located
in the active site are responsible for the RTA-substrate complex stabilization, which are Tyr80, Val81,
Gly121, Tyr123, Asn209, and Trp211. In addition, it was observed that the guanine located right before
the adenine that is removed (corresponding to guanine 4323—G-4323—of rat rRNA), accommodates
inside a secondary pocket in RTA. In this secondary pocket, guanine forms hydrogen bonds (H-bonds)
with Asp75, Asn78, Asp96, and Asp100 [12,13].

The competitive RTA inhibitors currently reported in literature are able to inhibit it only at the
micromolar range [14–16]. This suggests that there is still room for the search of compounds capable of
achieving the nanomolar range necessary for an effective inhibition and consequent neutralization of
the RTA action inside the cell. To move on this direction, we started with the molecular structure of the
competitive inhibitor N-(N-(pterin-7-yl)carbonylglycyl)-L-tyrosine, called NNPT here, which showed
the smallest IC50 reported so far against ricin (6 µM) [15]. Through the application of the ligand-based
virtual screening (LBVS) technique on the PubChem database (https://pubchem.ncbi.nlm.nih.gov/) [17],
we found molecules similar to NNPT and evaluated them through molecular docking, molecular
dynamics (MD) simulations, and Molecular mechanics—Poisson–Boltzmann Surface Area (MM-PBSA)
calculations, in order to verify their behavior when bound to RTA. Similar computational methodologies

https://pubchem.ncbi.nlm.nih.gov/
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have been applied before and proven to lead to promising experimental results [18–21]. We postulated
that a ligand that is capable of simultaneously stablishing H-bonds with residues of the active site and
of the secondary site of RTA is more likely to show satisfactory inhibitory activity than the current
inhibitors that were already shown to occupy solely the active site [14–16]. Thus, our ligand selection
was primarily based on the analysis of H-bonds formed between the ligand and residues of the active
and secondary sites of RTA. NNPT was also submitted to docking and MD simulations in order to
provide reference parameters for comparison since it is known to show inhibitory activity against RTA
in experimental tests.

2. Results

2.1. Protein Preparation and Redocking Procedure

The spherical search space, defined to comprise both active and secondary binding pockets of
RTA, had center coordinates at x = 8.64; y = −24.68 and z = −8.78 and a radius of 10.0 Å. Figure 1a
indicates ricin complete structure (Protein Data Bank—PDB—code: 3RTI; the crystallized ligand was
removed for figure construction) and the location of these two binding pockets.
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Figure 1. (a) localization of RTA active and secondary sites with respect to ricin complete structure.
RTA surface is in yellow and RTB surface is in pink (PDB code: 3RTI); (b) best ranked pose, in red,
and experimental position, in cyan of NNPCP inside RTA, whose surface is yellow. All ligand hydrogens
are hidden for better clarity.

The redocking procedure performed in the Molegro Virtual Docker (MVD®) software [22],
resulted in a root-mean-square deviation (RMSD) of 0.77 Å between the best ranked pose and the
experimental position of the ligand N-(N-(pterin-7-yl)carbonylglycyl)-L-phenylalanine (called here
NNPCP) inside the PDB (https://www.rcsb.org/) structure 4HUO of RTA (Figure 1b). Since this RMSD
value is smaller than 2.0 Å, the docking procedure was considered valid according to the literature
recommendation [23]. As expected, the co-crystallized ligand is located inside the active site since it is
a competitive inhibitor; and it is clear that the secondary site is empty. The absence of interactions on
this site may explain the relatively high IC50 value of 20 µM observed for this ligand [15].

2.2. LBVS, Ligand Preparation, and Target Prediction

The competitive inhibitor used as the reference compound for LBVS is NNPT, which showed an
IC50 of 6 µM [15] (Figure 2).

The search for molecules that are at least 80% similar to NNPT at PubChem data base https:
//pubchem.ncbi.nlm.nih.gov/) [17] resulted in 1252 Simplified Molecular-Input Line-Entry System
(SMILES) codes. After submission of all those SMILES codes to LigPrep for 3D structure generation

https://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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and optimization, a set containing 2528 molecules was obtained. The expansion of the molecules set
occurred due to the generation of estereoisomers and protonated/deprotonated species at pH 7.4.Toxins 2020, 12, x FOR PEER REVIEW 4 of 15 
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Figure 2. Structure of N-(N-(pterin-7-yl)carbonylglycyl)-L-tyrosine (NNPT).

The ligands were submitted to the HitPick web server (https://mips.helmholtz-muenchen.de/

hitpick/cgi-bin/index.cgi?content=targetPrediction.html) for target prediction and the results are
shown in Table S1. Since HitPick deals with SMILES codes as inputs, the original set containing the
1252 SMILES codes was submitted to this web server for target prediction. Nearly 100 molecules
presented prediction precision greater than 80%, indicating that only ~8% of the molecules has a
relatively high probability of binding other proteins and not RTA. Thus, none of the molecules was
eliminated from the original set.

2.3. Molecular Docking

Docking results using the Protein-Ligand ANT System (PLANTS) docking algorithm at the
Cheminformatic Tools and Databases for Pharmacology (Chemoinfo) (https://chemoinfo.ipmc.cnrs.
fr/) [24,25] to evaluate all 2528 molecules were analyzed and the top 100 molecules, which had a
PLANTS [25] score at least 80% of the best PLANTS [25] score, were retrieved for further studies.

The further submission of those 100 molecules to MVD® [22] and analysis of poses of ligands
that interacted simultaneously with at least one catalytic residue (Glu177 and/or Arg180) [12] and one
residue of the secondary site (Asp75, Asn78, Asp96, and/or Asp100) [13], resulted in 29 ligands whose
best poses met those criteria. After the selection of the best pose per ligand according to criteria listed
in Table 1, the ligands were divided into five groups, being clustered according to their structural
characteristics (Figure S1).

Table 1. Pose ranking criteria.

Order Criterion

First criterion Largest number of catalytic residues interacting with the pose
(Glu177 and Arg180)

Second criterion Largest number of residues located in the secondary pocket interacting with the pose
(Asp75, Asn78, Asp96, and Asp100)

Third criterion Largest number of residues involved in substrate complexation interacting with the pose
(Tyr80, Val81, Gly121, Tyr123, Asn209, Trp211)

Fourth criterion Lowest MolDock score

In each group, Table 1 criteria were applied one more time to rank the selected pose of each ligand
and then compare docking performances of different ligands (Table S2). The best ranked ligand of
each group was then selected for further MD simulations (Table 2 and Figure 3). In Table 2, catalytic
residues are marked in blue; residues of the secondary site are in green and other residues involved in
substrate complexation are in yellow. Residues with no color filling are not known to participate in
RTA catalytic activity.

In Figure 3, compound identifier (CID) numbers correspond to the PubChem (https://pubchem.
ncbi.nlm.nih.gov/) identification of each molecule; and the number of the ligand is the same number
of the group they belong to (i.e., Ligand 1 is the representative molecule of Group 1). All molecules
are already in the protonation state previously defined by LigPrep [26]. NNPT (Figure 2) was also
submitted to MD simulations in order to provide reference parameters for comparison.

https://mips.helmholtz-muenchen.de/hitpick/cgi-bin/index.cgi?content=targetPrediction.html
https://mips.helmholtz-muenchen.de/hitpick/cgi-bin/index.cgi?content=targetPrediction.html
https://chemoinfo.ipmc.cnrs.fr/
https://chemoinfo.ipmc.cnrs.fr/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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Table 2. MVD® [22] docking results of the poses selected for MD simulations.

Group Molecule 1 MolDock Score
(kcal mol−1)

Residues Forming H-bonds with the Pose 3

— NNPT 2 −138.40 Arg180 Asn78 Tyr80 Val81

Group 1 19953215 −160.63 Glu177 Arg180 Asp75 Asp96 Asp100 Tyr123 Trp211 Asn122 Gly212 Arg258 Glu208

Group 2 18309602 −152.14 Glu177 Arg180 Asp75 Asp96 Asp100 Tyr123 Asn209 Asn122 Asp124 Glu208

Group 3 18498053 −161.20 Glu177 Arg180 Asn78 Asp96 Asp100 Val81 Asn122 Ser176 Glu208 Arg258

Group 4 136023163 −203.93 Arg180 Asn78 Asp96 Asp100 Tyr80 Val81 Gly121 Tyr123 Arg56 Thr77 Arg258

Group 5 136232876 −157.66 Arg180 Asn78 Asp96 Asp100 Trp211 Thr77 Asn122 Glu208 Gly212

1 For all molecules except NNPT, the number in this column corresponds to the PubChem compound identifier
(CID). 2 NNPT docking results shown as reference. 3 Catalytic residues are lighted in blue; residues of the secondary
site are in green, and other residues involved in substrate complexation are in yellow.
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2.4. Drug-Likeness Studies

All 29 molecules selected after docking studies using PLANTS [25] and MVD® [22] programs
were tested regarding their potential to be transformed in drugs. Although the results (Table 3) show
that the ligands do not strictly follow all the rules, the drug-likeness results were not considered enough
to eliminate any of those molecules at this stage of RTA inhibitors search since many approved drugs
do not fall within the stablished ranges and have proven to be effective nevertheless, like LipitorTM,
AtorvastatinTM, and natural products [27,28]. Instead, those parameters can be useful to guide further
improvements of the hits in this search. Additionally, the drug-likeness parameters are most suitable
for drugs that are orally administered, which is not the mandatory uptake route for a ricin inhibitor.
Actually, a ricin intoxication is an emergency situation that must be treated rapidly in order to minimize
its effects on the human body, so a route of administration that provides a faster drug availability,
such as an intravenous injection, would probably be a more suitable administration route for a ricin
inhibitor then an oral uptake [29].

2.5. Molecular Dynamics Simulations

Plots of total and mean energy of each protein-ligand complex over time (Figure S2) point to complex
stabilization of all studied systems at the beginning of the MD simulation. Figure 4 shows a bar chart



Toxins 2020, 12, 746 6 of 14

containing mean and standard deviation values of the complex energies. The low standard deviations
and the similarity to the energy of the complex RTA/NNPT confirm stabilities of the complexes.

Table 3. Drug-likeness results.

Group Molecule
CID Mut 1 Tumor Irr cLogP Sol Mol.

Weight
Drug
Score

H
Donor

H
Acceptor

— NNPT N N N −2.16 −2.04 427 0.42 6 9
1 19953215 N N N −6.85 −2.74 602 0.29 10 10
1 18305509 N N N −6.85 −2.74 602 0.29 10 10
1 18493267 N N N −6.85 −2.74 602 0.29 10 10
1 18243472 N N N −5.52 −1.99 531 0.34 9 9
1 67312445 N N N −5.52 −1.99 531 0.34 9 9
2 18309602 N N N −5.77 −2.03 517 0.35 8 9
2 18309609 N N N −6.13 −1.65 503 0.37 8 9
2 18499956 N N N −6.13 −1.65 503 0.37 8 9
2 18305842 N N N −7.46 −2.41 574 0.31 9 10
2 18500025 N N N −5.77 −2.03 517 0.35 8 9
2 18306834 N N N −7.46 −2.41 574 0.31 9 10
2 19953410 N N N −6.13 −1.65 503 0.37 8 9
2 22659428 N N N −6.99 −1.85 560 0.33 9 10
2 19953311 N N N −5.20 −1.37 503 0.37 8 9
2 19953235 N N N −6.99 −1.85 560 0.33 9 10
2 18309613 N N N −7.46 −2.41 574 0.31 9 10
3 18498053 N N N −4.33 −3.17 593 0.29 8 9
3 18500076 N N N −4.33 −3.17 593 0.29 8 9
3 18500176 N N N −4.67 −2.87 609 0.29 9 10
3 20044260 N N N −4.33 −3.17 593 0.29 8 9
3 18492007 N N N −3.00 −2.41 522 0.35 7 8
3 18500043 N N N −4.67 −2.87 609 0.29 9 10
3 18499958 N N N −3.00 −2.41 522 0.35 7 8
4 136023163 N N N −2.59 −5.69 856 0.27 8 13
4 135977982 N N N −3.36 −3.97 622 0.30 8 14
4 136149436 N N N −4.02 −4.67 730 0.32 8 13
4 136132835 N N N −2.92 −4.98 748 0.23 8 14
5 136232876 S N N 0.09 −4.35 666 0.14 7 9

1 Mut: mutagenic; Tumor: tumorigenic; Irr: irritant; Sol: solubility; Mol. Weight: molecular weight; H donor/
acceptor: hydrogen donor/acceptor.

RMSD values were also analyzed to verify the stability of protein and ligand in each complex.
A bar chart showing the mean and standard deviation of the RMSD values between 20 ns and 50 ns of
simulation is shown in Figure 5.

Since the first 20 ns of MD simulation were considered to be enough for protein and ligand
stabilization, the RMSD average and standard deviation values shown in Figure 5 are expected to
be small. As can be seen, most systems behave well, showing low RMSD values; the exception was
Ligand 1, which does not seem to stabilize so well in the protein pockets compared to the others.
Ligand 2 behaved even better than the reference molecule, NNPT, showing an excellent stability
inside RTA. Although Ligand 4 had a larger value of average RMSD, the standard deviation was
quite low, also pointing to a good stabilization inside RTA. Ligands 3 and 5 behaved very similarly to
NNPT; this suggests that, regarding the RMSD analysis, they may show similar performances to the
reference molecule.

Root-mean-square fluctuations (RMSF) of RTA residues and radius of gyration of the protein over
the simulation time were also analyzed and are shown in Figures S3 and S4, respectively. As expected,
RMSF values indicate that the residues interacting with the protein fluctuate less and are, in most cases,
the important residues listed in Table 1. The bar chart of the RTA radius of gyration during the MD
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simulations, in Figure S4, also points to protein stability once the low values observed indicate the
protein compactness.Toxins 2020, 12, x FOR PEER REVIEW 7 of 15 
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The analysis of H-bond interactions between each ligand and RTA was also conducted, and the
results are shown in Figure 6. As can be seen, Ligands 2 and 3 are the most promising ones, since they
interacted strongly with catalytic residues (shown in blue) and with secondary site residues (shown
in green) during most of the simulation time, pointing to a good occupation of RTA both active and
secondary sites. Although being structurally similar to Ligand 2 (Figure 3), Ligand 1 did not behave the
same way and formed much less H-bonds with active site residues, which points to a lower potential of
this ligand to inhibit RTA in experimental tests when compared to Ligand 2. Ligands 1 and 5 seem to be
the least promising ones, since they interacted mostly with secondary site residues, leaving the active
site free. Regarding Ligand 5, this is not unexpected since this ligand has a guanine ring, the very same
nitrogenous base of rRNA that binds preferentially to the RTA secondary site. An analogous argument
applies for Ligand 4, which showed little or no interactions with secondary site residues: this ligand
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has a pterin ring that is also present in the reference molecule NNPT (Figure 2) and is known to behave
similarly to an adenine ring [14–16,30], the natural substrate of RTA inside the cell. Hence, although
Ligand 4 appears to be long enough to bind residues of both pockets according to the docking studies,
its high affinity for the active site contributes for the occupation of this site only and this is probably
the reason why it interacted mainly with residues of the active site. The reference molecule, NNPT,
formed H-bonds with catalytic residues until halfway of the MD simulation and, during the whole
time, it interacted strongly with residues that are involved with substrate complexation (in orange
in Figure 6). These results show that NNPT is more effective only than Ligand 1, to form and keep
H-bonds with the key residues inside RTA. This reinforces our hypotheses that our ligands can bind
more strongly and, therefore, be more efficient ricin inhibitors.
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2.6. MM-PBSA Calculations

The values of mean and standard deviation of the binding energy between RTA and each ligand
obtained through MM-PBSA calculations (Figure 7) are aligned with the previous docking and MD
simulation results, since all ligands behave better than NNPT, showing more negative binding energies.
Ligands 2 and 4 had the best results in terms of MM-PBSA binding energy, once again suggesting that
these molecules are likely to be good hits in the discovery of RTA competitive inhibitors.
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3. Discussion

Computational methods applied to toxicology have been proved, over the years, and through
numerous works, as powerful methods in guiding the drug discovery of molecules capable of efficiently
binding to biological targets, like proteins. These interactions can be exploited towards the discovery
of antidotes to toxic proteins, drugs against pathogens, or modulators in the human body [19,31–33].
It is also possible to use cheminformatics aiming clarification and explanation of obtained or existing
experimental results [15,34,35]. The application of these studies towards the development of toxin
inhibitors has the additional advantage regarding safety, since they have the potential to diminish
the need of dealing with toxic substances in early research stages. Our results are in line with this
approach and suggest that the selected molecules have a high potential of showing inhibitory activity
over RTA in experimental tests.

PLANTS [25] docking results showed that 100 molecules out of nearly 2500 had the top 80% best
results, and this number of selected molecules lowered after MVD® [22] docking analysis. After these
two procedures, 29 molecules, representing approximately 1.1% of the initial set, met the defined
criteria showed in Table 1. Although the number of selected molecules was small, their results were
very promising in terms of potential to show RTA inhibitory activity. MVD® [22] docking results
shown in Table S2 showed several molecules with a lower MolDock score than the reference molecule,
NNPT. This points to the formation of complexes with lower energy, and thus more stable, between
those molecules and RTA. Additionally, all Ligands in Table 2 presented lower MolDock Scores than
NNPT, so the representative molecule of each group is very promising to be an RTA inhibitor according
to MVD® [22] docking results.

MD simulations confirmed the docking studies since all tested molecules tended to stay bound
to RTA. Once again, some molecules presented even better results than the reference molecule.
Ligands 2, 3, and 4 (corresponding to PubChem (https://pubchem.ncbi.nlm.nih.gov/) CID 18309602,
18498053, and 136023163, respectively) were the ones with the best results in MD simulations and
MM-PBSA calculations, indicating the potential of superior inhibition performances of these ligands
in experimental tests when compared to NNPT, which is, currently, the compound holding the best
experimental result against RTA in terms of IC50 values [15].

4. Conclusions

Computational techniques can be very useful in the discovery of new drug candidates, being an
important technique to filter compound libraries and thus saving resources in experimental tests.
In this work, an in silico approach was used aiming the identification of novel RTA inhibitors, in order
to contribute to the process of drug discovery of new antidotes against ricin intoxication. Analysis of
docking and MD simulations together with MM-PBSA calculations led to the selection of the three
PubChem (https://pubchem.ncbi.nlm.nih.gov/) molecules CID 18309602, 18498053 and 136023163,
as promising candidates for ricin antidotes, with the potential to be even more effective than NNPT
(the current most effective in vitro inhibitor of RTA). Our theoretical results suggest that these three
compounds worth being submitted to immediate experimental evaluation.

5. Materials and Methods

5.1. Protein Preparation and Redocking Procedure

The three-dimensional structure of RTA in complex with the inhibitor N-(N-(pterin-7-
yl)carbonylglycyl)-L-phenylalanine was downloaded from Protein Data Bank (https://www.rcsb.org/)
under the code 4HUO. Water molecules were removed of the structure prior to any docking or MD
simulation and only RTA and the inhibitor remained for further computational work. Then, the cavity
prediction tool of MVD® [22] was used to detect the RTA cavities and to identify the active and the
secondary sites of the protein, which was possible due to the knowledge about residues present in

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://www.rcsb.org/
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both pockets. The spherical search space was then defined, and its center and radius were chosen in a
way that the search space could comprise both pockets.

In order to validate the docking procedure, the native ligand was submitted to redocking
simulations in MVD® [22], using the MolDock docking algorithm [22]. The best ranked pose according
to the MolDock score was compared with the experimental position of this ligand in the PDB structure
4HUO through the RMSD value between these two positions.

5.2. Selection of the Reference Ligand, LBVS and Ligand Preparation, and Target Prediction

Our study started with the selection of the RTA competitive inhibitor with the lowest IC50 value
found in the literature. The selected molecule was considered the reference structure and was given as
input at PubChem database (https://pubchem.ncbi.nlm.nih.gov/) [17], where we performed a LBVS
and selected all molecules that were at least 80% similar to the reference structure, according to
the PubChem (https://pubchem.ncbi.nlm.nih.gov/) search method, which is based on the Tanimoto
index [36,37]. All the selected molecules had their SMILES codes downloaded from PubChem website
(https://pubchem.ncbi.nlm.nih.gov/), and those codes were submitted to LigPrep [26], where the
three-dimensional structure of the molecules were generated using the Optimized Potentials for
Liquid Simulations—all atoms (OPLS/AA) forcefield [38]. Additionally, LigPrep generated the
protonated/deprotonated species of each molecule at pH 7.4 to simulate physiological conditions and
estereoisomers where it was not previously defined.

Prior to docking simulations, the SMILES codes forming the library of ligands that are similar to
the reference compound were submitted to HitPick web server (https://mips.helmholtz-muenchen.de/

hitpick/cgi-bin/index.cgi?content=targetPrediction.html) in order to conduct an investigation regarding
the predicted target of the aforementioned molecules. The predicted targets of the molecules were
analyzed regarding the frequency that a specific target appeared and the precision of the algorithm to
correctly predict the target of each molecule.

5.3. Molecular Docking

Two docking programs were used to refine results. Firstly, the PLANTS docking algorithm [25]
available at Chemoinfo [24] was used because it is faster and a little less accurate, being suitable for
early screenings of big sets of molecules. The inputs were the library formed after ligand preparation
step, the protein structure with no ligands, and the center coordinates and radius of the search space.
The best docking results were then retrieved by selecting the molecules that had PLANTS [25] score
higher than 80% of the best PLANTS [25] score. Afterwards, those results were evaluated using
MVD® [22].

In MVD® [22], 10 docking runs were carried out for each molecule selected in the previous step,
with 10 poses returned per drug. All those poses were analyzed and the ones having positive MolDock
score were excluded. Next, the poses were analyzed regarding the H-bonds they formed with RTA
residues and poses that did not form H-bonds with at least one catalytic residue (Glu177, Arg180) and
one residue from the secondary pocket (Asp75, Asn78, Asp96, Asp100) were also excluded. For each
ligand, the remaining poses were ranked according to the criteria presented in Table 1. The best ranked
pose of each ligand was then selected as the representative pose of that ligand.

Since the molecules were selected in PubChem (https://pubchem.ncbi.nlm.nih.gov/) by LBVS,
many of them shared structural characteristics and were very similar to each other. Thereby, the ligands
were separated into groups according to common features. In each group, the criteria of Table 1 were
used again to rank the chosen pose of each ligand forming that group. The best ranked ligand of each
group was selected for further MD simulations. NNPT, the reference molecule, was also submitted to
docking simulations in MVD® [22] in order to provide reference parameters for comparison.

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://mips.helmholtz-muenchen.de/hitpick/cgi-bin/index.cgi?content=targetPrediction.html
https://mips.helmholtz-muenchen.de/hitpick/cgi-bin/index.cgi?content=targetPrediction.html
https://pubchem.ncbi.nlm.nih.gov/
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5.4. Drug-Likeness Studies

All molecules selected after docking studies were analyzed regarding drug-likeness parameters
using the software OSIRIS Property Explorer (https://www.organic-chemistry.org/prog/peo/).
The parameters for drug-likeness evaluation were the molecule potential to cause mutagenic,
tumorigenic, and/or irritant effects on the human body, as well as quantification of the calculated
logarithm of partition coefficient (cLogP), solubility, molecular weight and number of hydrogen donors
and acceptors in accordance with the Lipinski Rule of Five [39]. The reference values are shown in
Table 4.

Table 4. Reference values for drug-likeness results.

Mut 1 Tumor Irr cLogP Sol Mol. Weight Drug Score H Donor H Acceptor

Reference
values N N N <5 >−4 <500 Close to 1 <5 <10

1 Mut: mutagenic; Tumor: tumorigenic; Irr: irritant; Sol: solubility; Mol. Weight: molecular weight; H donor/
acceptor: hydrogen donor/acceptor.

5.5. MD Simulations

MD simulations were carried out using GROMACS version 2019.4 [40]. Each molecule selected to
MD simulations was first reparametrized using the software AnteChamber PYthon Parser interfacE
(ACPYPE) [41] and MKTOP [42] in order to generate the topology and coordinate files that GROMACS
with OPLS/AA forcefield [38] can recognize, since OPLS/AA itself has no parameters for the studied
ligands. Topology and coordinate files of the protein were also generated using GROMACS with
the same forcefield and then each ligand file was merged with the respective protein file in order to
create coordinate and topology files for the protein–ligand system. The system was confined and
centered in a dodecahedral box under periodic boundary conditions. The box type was chosen aiming
calculation-time optimization, since the volume of a dodecahedral box is nearly 30% smaller than the
volume of a cubic box with the same image distance, consequently reducing MD simulation time [43].
The minimum solute-box distance was set to 1.5 nm in order to guarantee a distance of at least 3.0 nm
between the protein and its periodic image, avoiding artifacts during MD simulations and resulting in
a box volume of 721 nm3. The box was filled with approximately 22,500 TIP4P water molecules [44] to
reproduce solvent effects, and counterions were added to neutralize system charge.

MD simulations started with two 100-ps energy minimization (EM) steps conducted in sequence.
The first EM was carried out with position restraint (PR) of protein and ligand so the water molecules
could accommodate inside the box. Then, a second EM step was performed with no PR to reach a local
minimum in the system potential energy surface. Both EM steps were conducted using steepest descent
algorithm and the maximum force was set to 100.0 kJ mol-1 nm-1 as convergence criterion. In sequence,
temperature and pressure equilibration were achieved by performing two 100-ps equilibration steps,
first under an isothermal-isochoric (NVT) ensemble and, after, under an isothermal-isobaric (NPT)
ensemble, to bring the system to 310 K temperature and 1 bar pressure. Both temperature and
pressure were maintained using the Velocity-rescale thermostat [45] and Parrinello–Rahman pressure
coupling methods [46], respectively. Finally, a 50 ns MD production step was conducted at 310 K and
1 bar using 2 fs as integration time, a cutoff of 1.2 nm for short-range (Lennard–Jones and Coulomb)
interactions, and the leap-frog integrator algorithm; the coordinates of the complexes were stored
every 10 ps. MD simulations were analyzed using the Visual Molecular Dynamics (VMD) [47] and
Grace software [48].

5.6. MM-PBSA Calculations

The binding free energy of each protein–ligand complex submitted to MD simulations was
estimated through MM-PBSA calculations in order to support the former results. The binding free
energy was calculated by taking into account the vacuum potential energy, which includes both bonded

https://www.organic-chemistry.org/prog/peo/
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and nonbonded interactions, as well as the free energy of solvation, which considers both polar and
nonpolar terms. The polar solvation energy term is estimated by solving the Poisson–Boltzmann
equation, and the nonpolar solvation energy term was calculated through the solvent accessible surface
area (SASA) method [49–52]. MM-PBSA calculations were performed using the g_mmpbsa tool,
compatible with the GROMACS software [53].

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/12/12/746/s1,
Table S1. Target prediction of the analyzed molecules; Figure S1. Groups of molecules formed after docking
simulations and filtering; Table S2. MVD docking results of all selected molecules after docking simulations;
Table S3. IUPAC names of the molecules of Table S2; Figure S2. Total and mean values of each complex energy;
Figure S3. RMSF values of RTA residues when in complex with each ligand; Figure S4. Mean and standard
deviation values of RTA radius of gyration when in complex with each ligand.
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