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Abstract: Non-staggered triangular grids have many advantages in performing river or ocean model-
ing with the finite-volume method. However, horizontal divergence errors may occur, especially in
large-scale hydrostatic calculations with centrifugal acceleration. This paper proposes an unstruc-
tured finite-volume method with a filtered scheme to mitigate the divergence noise and avoid further
influencing the velocities and water elevation. In hydrostatic pressure calculations, we apply the
proposed method to three-dimensional curved channel flows. Approximations reduce the numerical
errors after filtering the horizontal divergence operator, and the approximation is second-order
accurate. Numerical results for the channel flow accurately calculate the velocity profile and surface
elevation at different Froude numbers. Moreover, secondary flow features such as the vortex pattern
and its movement along the channel sections are also well captured.

Keywords: non-staggered grids; horizontal divergence oscillations; curved channel flow; free surface;
hydrostatic pressure

1. Introduction

Non-staggered triangular grids have many advantages in river modeling with the
finite-volume method (FVM). They are flexible in making the domain with arbitrary geome-
tries discrete, such as simulations of flows in channel bends. Meanwhile, the discretization
stencils are relatively small, reducing the amount of communication in parallel computing.
Moreover, compared with the staggered grids, velocities and pressure variables are stored
in the center of each control volume, which will reduce the computational storage.

Regarding the staggered triangular C-grids, initially defined by Arakawa and Lamb. [1],
horizontal divergence errors may occur, especially in large-scale hydrostatic calculations
with centrifugal acceleration or nonlinear momentum advection [2]. These divergence
noises, shown as a checker-board patterns, were initially noticed in the numerical experi-
ments as an inherent feature of the staggered triangular C-grid [3]. This phenomenon is
significant when the model needs to solve external forces such as centrifugal force or other
nonlinear momentum terms. In this paper, we notice the inaccuracies in the approximation
of the divergence operator and instabilities due to spurious pressure modes associated with
the unstaggered arrangements that show similar behavior as the divergence noise.

There are several in-house efficient codes to discretize the calculated domain into
prisms, resulting in triangular grids in horizontal and z-level in the vertical direction [4–7].
In SUNTANS [4,5], the horizontal velocity calculation is different from the vertical velocity,
where the vertical velocity is calculated based on the horizontal divergence. However, in
NSMP3D [6,7], the velocities in the three directions are in the same situation and all are
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calculated using the projection method to decouple the pressure and velocities for non-
hydrostatic calculations. Zhang et al. [7] showed the possible influence of the divergence
error in the pressure and velocity approximation by considering the decaying Taylor
vortex case. Checkerboard errors are observed in the divergence approximation and
further influence the pressure field. Therefore, a filtered method is needed to eliminate the
checkerboard pattern and decrease the horizontal divergence values.

The laminar curved channel flow is a good case to demonstrate the filter’s perfor-
mance because the horizontal divergence noise should be mitigated to resolve secondary
flow features [2]. Horizontal divergence noise will be accentuated because instabilities
related to the advection term in the momentum equation are amplified. In the case of
small-scale calculations, the vertical acceleration is not negligible, which results in the
assumption of hydrostatic pressure no longer being valid. However, non-hydrostatic pres-
sure calculation is impractical and inadequate to remove horizontal divergence noise in
large-scale simulations. For shallow water channels, the ratio of vertical to horizontal scales
is small, the hydrostatic pressure assumption is usually used for simulations, and the flow
is primarily two-dimensional and studied by experiments or analytically [8–11]. Therefore,
it is necessary to perform three-dimensional hydrostatic simulation for the curved channel.

The free surface study in curved channels was firstly conducted by Ippen [12] by
experiments. The free-surface elevation will change the hydrostatic component of water
pressure and water depth [13]. Predictions of flow in curved channels with free-surface
elevation are mainly focused on one-dimensional and two-dimensional simulations using
depth-averaged equations or analytical solutions [8,14]. Hodskinson and Ferguson [15]
simulated flow separation in several sharply curved meandering channels, neglecting the
free surface effects for small Froude numbers. Thus, the rigid-lid assumption was applied
with reasonable accuracy in curved bends. Similar research has been conducted by Ramesh-
waran and Naden [16] and Kashyap et al. [17]. Both of them, along with Zeng et al. [18],
paid great attention to the evolution of scouring on the curved channel bed. Sin [19] focused
on elucidating the role of the free surface in curved channels and highlighted the drawbacks
of using rigid-lid assumptions in simulations [19] with various curvatures. Furthermore,
curved channel flows are characterized by a secondary flow in the form of a pair of counter-
rotating vortices. The primary flow is driven by a pressure gradient between the in- and
outflows. The centrifugal force generates the secondary flows, the friction on the channel
bottom, and the centripetal pressure gradient terms.

The summary of previous researches is shown in Table 1. Understanding the interaction
between the filtered method, hydrostatic pressure, free surface elevation, and secondary
flow remains an open problem. Therefore, it is interesting to investigate the composing
effect of these parameters in a three-dimensional curved channel.

This paper proposes a novel three-dimensional hydrostatic method for flows in a
curved channel based on an unstructured finite-volume method and a filtered scheme for
the case of non-staggered triangular grids to avoid the divergence noise and ensure mo-
mentum advection in both horizontal and vertical directions. Consequently, the divergence
error will not further influence the velocity fields and manifest the water elevation. We
appropriately approximated the surface elevation and secondary flow in channel bends.

The organization of the paper is as follows. First, the governing equations with hydro-
static pressure calculations are given in Section 2. Subsequently, the numerical discretization
scheme with second-order approximations in the cell face are presented. Then, divergence
noise issues are discussed by a case with an analytical solution in terms of noise control and
filtered method implementation, mitigating the triangular grid divergence noise. Finally,
the filtered method’s applicability is demonstrated by laminar curved channel flows using
unstructured grids to simulate the free surface and secondary flow in hydrostatic pressure
calculations.
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Table 1. The summary of the use of different models in the simulation of curved channel flows from
the previous studies.

Reference Method Dimension Curvature Surface

Ippen [12] Experiment 3D 22.5◦, 45◦ bends Free surface
de Vriend [14] Analytical 3D 180◦ bend Rigid surface

Steffler et al. [8] Analytical Experiment 2D 180◦ bend Free surface
Odgaard [9,10] Numerical 2D 60◦ bend Rigid surface

Jin and Steffler [11] Numerical 2D 90◦ bend Rigid surface
Hodskinson and Ferguson [15] Numerical Experiment 3D 60◦, 90◦ bends Rigid surface

Rameshwaran and Naden [16] Numerical (RANS) 3D 120◦ bend Free surface
Rigid surface

Zeng et al. [18] Numerical (RANS) Experiment 3D 120◦ bend Free surface
Kashyap et al. [17] Numerical (RANS) 3D 135◦ bend Rigid surface

Wolfram and Fringer [2] Numerical (DNS) 3D 180◦ bend Rigid surface
Sin [19] Numerical (RANS) 3D 60◦, 90◦, 120◦, 150◦ bends Free surface

Xu et al. [20] Numerical (RANS) Experiment 3D 180◦ bend Rigid surface
Present study Numerical (DNS) 3D 180◦ bend Free surface

2. Governing Equations

In this work, we present a second-order finite-volume method for the curved channel
flow using unstructured grids [7], governed by the non-dimensional hydrostatic Navier–
Stokes (N-S) equations:

∂w
∂z

= −∇H · uH , (1)

∂uH
∂t

+∇ · (uu) = − 1
Fr2

∂η

∂x
+

1
Re
∇2u, (2)

with the surface elevation simply computed from the vertical integration of the continuity
equation:

∂η

∂t
= −∇H ·

∫ η

−h
uHdz, (3)

where the subscript H on the operator means variables in the horizontal direction.
u = (u, v, w) represent the flow velocities in x = (x, y, z) Cartesian coordinates system,
Re is the Reynolds number, and t is the time. The hydrostatic pressure is defined by
ph = ρg(η − z), where η is the free surface, and g is the gravitational acceleration.

Non-dimensional equations use the velocity scale V, length scale L, time scale T = L/V,
and pressure scale ρV2. The Reynolds number is defined by Re = VL/ν. The Froude num-
ber, defined by Fr = V/

√
gL, is implicitly included in the total pressure term following

de Vriend’s treatment [14]. We consider a σ-transformation of the vertical coordinate to
compute the free-surface problem. This method will transform the physical domain into a
computational flat-fixed domain to capture the free surface. For more details, the reader is
referred to Zhang et al. [7].

3. Hydrostatic Calculations on Unstructured Prism Grids

The domain is discretized into triangular prism cells, as shown in Figure 1a. A
well-known issue of using traditional non-staggered unstructured grids is that unrealistic
pressure oscillations may arise due to the pressure–velocity coupling. This is because all
the velocity components u and pressure p are defined at the cell-centers. In this paper,
the momentum interpolation method proposed by Kim and Choi [21] is adopted to avoid
oscillation. This method defines a face-normal velocity at the center of each cell face as:

U f = u f · n, (4)
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and it is also simple to implement, especially for 3D flows. Here, u f and n represent the
velocity and outward-normal unit vector at the center on each face of the control volume,
respectively.

Figure 1. (a) Variables defined in the cell-centers for non-staggered grids in each control volume; (b)
Prism grids projected into two dimensions.

If the pressure field is hydrostatic, ∂ph/∂z = −ρg. There is no need to solve the
momentum equation in the vertical direction. The horizontal velocities are solved in the
momentum Equation (2), which is explicitly approximated as the following:

un+1 − un

∆t
= −∇ · (unun) +

1
Re
∇2un, (5)

where superscript n represents time at tn, and ∆t is the time step.
The vertical velocity is calculated by the continuity equation as wk+1 = wk −∇H(U∆z)k,

where k is the vertical water layer [5]. In addition, it starts with w1 = 0 at the lower
boundary layer. The free surface elevation is obtained from the depth-integral continuity
Equation (3). The updated velocity is calculated by Un+1

f = un+1
f · n. The calculation of the

face-normal variables are extra work in hydrostatic cases.
For the time-advancement scheme, we consider a second-order Adams–Bashforth

method, which is successfully applied to a variety of incompressible flows. The numerical
stability of the present formulation is limited by the explicit discretization of the convection
and diffusion terms. The Courant–Friedrichs–Lewy (CFL) number is specified according to
the original definition given by Kim and Choi [21] as follows:

CFL =
∆t
2

∮
S
|U| dS. (6)

In this work, the numerical simulations are performed by the in-house FORTRAN 90
code NSMP3D. We use the solver SOR, previously shown by [22], with relaxation parameter
as 1.0 and tolerance as 10−5. The numerical discretization in the code is given in the next
section.

4. Numerical Discretization

This section will introduce the discretization of N-S equations on the unstructured
prism grids, including the integral form of the equations and interpolation of face-normal
velocities.
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4.1. Integral Form of Equations

A second-order unstructured finite-volume method is chosen to discretize the momen-
tum Equation (5) in each triangular prism V. The governing equations are integrated over
a control volume V. The integral form is given by:∫

V

(
−∇ · (uu) +

1
Re
∇2u

)
dV =

∮
S

(
−uiU f +

1
Re

∂ui
∂n

)
dS, (7)

where S denotes the cell face.

4.2. Integral Approximation of the Momentum Equation

In integrating the N-S equations over a control volume, we did not introduce any
approximation in space. Here, the mid-point rule integral approximation is applied at
five faces (k = 1, 5) in the prism-shaped volume. Thus, a second-order accuracy of the
cell-centered velocities is obtained, given by:

un+1 ≈ un +
∆t
mV

5

∑
k=1

mSk

(
−un

f Un
f +

1
Re

∂un

∂n f

)
k
, (8)

where Sk represents the face of the prism volume, mV is the control volume, and mS is the
face area.

The divergence of the velocity is approximated using the interpolation of the known
cell-centered velocities u∗f by:

∫
V

∂un

∂xi
dV ≈

5

∑
k=1

mSk (u
n
f · n)k. (9)

4.3. Interpolation of Face-Normal Velocities

The face-normal variables, including velocities, velocity derivatives, and pressure as
shown Figure 1b are interpolated from neighboring cell-centers and vertices. xI and xJ
are the cell-centers of the two neighbor cells, xO is the intersection between the shared
face and the cell-centers-overgoing line, and x f is the center on each face. In this paper,
any flow variable at the center of the cell face φ f is obtained using a second-order upwind
interpolation scheme as follows:

φ f =

{
φI + ψI∇φI · (x f − xI), U f ≥ 0,

φJ + ψJ∇φJ · (x f − xJ), U f < 0,
(10)

where flux limiters ψI and ψJ are introduced to eliminate non-desirable oscillations using
the Local Extremum Diminishing (LED) technique, as described in Vidović et al. [23]. The
gradient∇φI and∇φJ at the cell-center is calculated using the Least Squares Method (LSM),
presented by Davidson [24].

The outward-normal derivatives in Equation (8) are approximated as proposed by
Xue and Barton [25] for high skewness grids:

∂φ

∂n f
=

(φJ +∇φJ · ε)− (φI +∇φI · ε)
δI J

+
φv2 − φv1

δv1v2

tan(θ), (11)

where δI J is the normal distances between xI and xJ ; δv1v2 is the distance between the vertex
xv1 and xv2 ; (ε = xO − x f ); and θ is the angle between Line xI − xJ and the normal vector
n. The distance-weighted averaged value φv is given by:

φv =
∑
m

φm/Lm

∑
m

1/Lm
, (12)
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where Lm is the distance between the vertex and the mth neighboring cell-center.

5. Divergence Noise Analysis

The divergence operator, div(uH), applies the Gauss theorem on each triangular
control volume to approximate the spatially averaged divergence over that cell. It is
usually involved in the discretization of the Navier–Stokes (N-S) equation to achieve mass
conservation. Take a horizontal generic vector field, uH , in triangular grids, for example.
The cell average operator and discrete divergence operator over a cell A are as follows:

∇ · uH =
1

mA

∫
A

(
∂u
∂x

+
∂v
∂y

)
dS =

1
mA

3

∑
k=1

[∫
L
(uini)dl

]
k
, (13)

and

div(uH) =
1

mA

3

∑
k=1

[∆l (ui) f ni]k =
1

mA

3

∑
k=1

(∆l U f )k, (14)

respectively, where mA stands for the cell area and ∆l is the length of the cell edge L.
Let us consider an equilateral triangular grid, for example. The truncation error on this

kind of grid shows the checkerboard error patterns of the divergence operator (∆l = ∆x) as
presented by Wan et al. [3]:

div(uH) = ∇ · uH + (−1)δ∆lH(v)c −
∆l2

96
(∇2(∇ · uH))c + O(∆l3), (15)

where the subscript ()c represents the variable in the cell center, δ is assigned to each
triangle cell to denote its orientation, with 0 and 1 for upward- and downward-pointing
triangles, respectively. The functions H reads:

H(v) =
√

3
24

(
2

∂2u
∂x∂y

+
∂2v
∂x2 −

∂2v
∂y2

)
. (16)

It can be seen from Equation (15), div(uH) is a first-order approximation of both
∇ · uH and (∇ · uH)c. The first-order error term presents the approximation of the cell
average in an equilateral triangle. Furthermore, it can be seen from the second term that
the sign changes from an upward-pointing triangle to a downward-pointing one, which
results in a so-called checkerboard error pattern.

5.1. Divergence Noise Control and Implementation

The divergence noise can be eliminated by applying filtered operations [2]. In this
work, we improve the performance of the estimation of the divergence operator by using
three vertex values in a cell:

F [div(uH)](xc) =
1
3

3

∑
j=1

div(uH)(xvj), (17)

where div(uH)(xvj) in the vertex is calculated by Equation (12). This is, in a sense, equiva-
lent to a Shapiro first-order implicit nodal filter proposed by Wolfram and Fringer [2] using
node downsampling and upsampling. In equilateral grids, the filter stencil is enlarged to
all cells sharing a vertex, including 13 cell-centers, see Figure 2. The pressure and velocity
components are calculated separately in the proposed hydrostatic formulation. Vertical
velocities are calculated from horizontal divergences, resulting in divergence errors and
further influence elevation, similar to the classic staggered approach [5,26].
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xV1

xV2

xV3

xc

Figure 2. Schematic filtered stencils shown in the equilateral triangular grids: + represents divergence
in the cell center, • represents vertex approximated using Equation (12), and ◦ represents the filtered
values in Equation (17).

In the proposed hydrostatic formulation, the pressure and the velocity components
are calculated separately. Vertical velocities are calculated from horizontal divergences,
resulting in divergence errors and further influence elevation, similar to the classic stag-
gered approach [5,26]. To better understand the divergence in solving the N-S equation
steps and to implement the filtered technique, Table 2 summarizes the steps concerning the
hydrostatic calculations involved with a free surface. They follow the divergence div(u)
displayed in the order in the program.

Table 2. The diagram of divergence, div(u), sequence in hydrostatic calculations.

Hydrostatic Calculations

(0) Un
f = un

f · n;
(1) Calculate un+1 and vn+1 based on Un

f ; Calculate Un+1
f = un+1

f · n;
(2) Calculate div(un+1

H ) based on Un+1
f ;

(3) wn+1
k+1 based on wn+1

k and div(un+1
H ); ηn+1 based on div(un+1

H )

(4) pn+1
h = ρg(ηn+1 − z) and go to step 1

5.2. An Example of the Divergence Noise Control

The following is an example to show the truncation error pattern with or without the
filtered technique. The order and checker-board behavior are studied by the vector field

u =
1

2
√

2π

(√
105
2

cos(2x) cos2(y) sin(y), −
√

15 cos(x) cos(y) sin(y)

)
,

and the analytical divergence solution

∇ · u = − 1
2
√

2π

(√
105 sin(2x) cos2(y) sin(y) +

√
15 cos(x) cos(2y)

)
,

over the computational domain [0, 2π] × [−π
2 , π

2 ]. The discrete divergence, div(uH), is
gained by applying the divergence operator (14). The numerical solution is compared
with the cell-centers’ divergence, (∇ · u)c with grid resolution ∆x = 0.2. The numerical
error, shown in Figure 3a,c, confirms that the divergence operator yields a first-order
checkerboard error pattern, as presented by Wan et al. [3]. Figure 3b,d present the numerical
solution and errors using the filtered scheme. The numerical error is computed concerning
the cell average. Clearly, the checkerboard errors are already eliminated. In addition, the
method now shows a second-order accuracy as in Figure 4.
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Figure 3. The numerical solution and divergence error of the velocity field calculated by different
triangular grids without and with filtering.

The checker-board errors before and after the filtered scheme (17) in the right-angled
grids case are shown in Figure 3e,f, respectively. The divergence noise is mitigated after
filtering. Figure 3g presents a similar checkerboard pattern for fully unstructured grids
as the equilateral case. Moreover, as Figure 3h shows, the filtered scheme (17) eliminates
the error even for unstructured grids. The largest errors are noticed close to the boundary,
which is expected because fewer neighbor cells are available for the vertex calculation.
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Figure 4. Convergence of the divergence operator without and with filtering.

6. Numerical Results

Flows in the curved channel calculated by hydrostatic pressure are selected to illustrate
our model. The geometry and profile of the primary and secondary flows in the axisymmet-
ric curved channel are shown in Figure 5. In the streamwise direction, the non-dimensional
coordinate and velocity are θ and uθ , respectively. In the spanwise direction, the trans-
verse and vertical velocities ur and uz correspond to the r and z directions, composing the
secondary circulations.

The physical problem can be described in terms of four-dimensional numbers: W, d,
Rc, and U. Water depth d is chosen to be the scale L in the non-dimensional equations.
Thus, the above dimensional variables can be uniquely prescribed in terms of the Reynolds
number Re = Ud/ν, the Deans number Dn = Re

√
ε with a curvature aspect ratio ε = d/Rc,

and the aspect ratio δ = d/W. In the following simulations, we compare the present results
with the analytical solutions provided by de Vriend [14] with a 180◦ sharp bend. Parameters
δ = 0.1, ε = 0.04, and Dn = 25 corresponding to Re = 125 are chosen in this paper. All
quantities hereafter are in non-dimensional units (star notation is omitted for clarity).

Figure 5. Curved channel flow with secondary flow circulations. Rc represents the radius of curvature
to the channel centerline, W is the channel width, and d is the channel depth.
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It is also necessary to set our results in cylindrical coordinates (θ, r), for which the
transformation is given by:

uθ = −u sin θ + v cos θ, ur = u cos θ + v sin θ, (18)

where (u, v) and (uθ , ur) are the horizontal velocity components in Cartesian and cylindrical
coordinates, respectively. Finally, the curved channel flow in the cylindrical coordinate is
normalized by:

uθ = Vũθ , ur = εVũr, uz = εVũz, (19)

where V is the velocity scale, ε is the curvature aspect ratio, and (ũr, ũθ , ũz) represents the
non-dimensional velocity for the direct framework, as in Figure 5.

The horizontal triangular grid is shown in Figure 6. A− A
′

(θ = 120◦) is selected as
a typical section to compare with analytical solutions from de Vriend [14]. A total of 32
layers are used because w is iterated explicitly from the bottom to the top. There are a total
of 602, 016 cells, which is more than the 528, 260 in Wolfram and Fringer [2]. To precisely
show the secondary velocities with rapid change close to the channel wall in the transverse
direction, grids are set finer close to the wall boundary with ∆rmin = 0.2d and ∆rmax = 0.6d,
as d = L is used for scale. The non-dimensional value is Umax∆t/∆rmin = 0.24, which is
smaller than 1.

The boundary conditions are also shown in Figure 6, a prescribed inflow velocity and
zero-pressure at the outflow with sufficiently long inlets and outlets are set to allow the full
development of flow in the curved channel. The kinematic free surface condition is used.
The elevation is set as the Neumann boundary in the inlet and set to be zero in the outlet.

Figure 6. Simulation geometry and horizontal mesh information in the curved channel flow.

6.1. Velocity Profiles

To validate our results, we compare the velocity profiles with the analytical solutions
from de Vriend [14] and the numerical model from Wolfram and Fringer [2]. Note that
four flow profiles are close to the analytical results for calculations with filter scheme, as
shown in Figure 7. The absence of the filtered technique results in a solution with reduced
precision. However, the results are still close to the analytical solution. As expected, the
filtered technique improves the numerical solution. It is worth noting that the proposed
method with or without the filter gives more accurate results than the ones by Wolfram
and Fringer [2]. There are considerable oscillations and even an opposite peak velocity at
the outer border if the filtered method was not applied in Wolfram and Fringer [2], so they
concluded that filtering is important for hydrostatic calculations with rigid surfaces. Our
simulations have no significant oscillations, even for non-filtered hydrostatic calculations
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with the free surface. Furthermore, whether a filter is applied does not change the peak
qualitatively, and the peak sign is the same as the analytical solution.

0 0.2 0.4 0.6 0.8 1
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2
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(z
=
0
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streamwise flow, u (r,z = 0)

0 0.5 1 1.5

u (r =0.5)
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streamwise flow, u (r = 0.5,z)
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(z

=
-0

.4
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z
(r,z = -0.45)
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u
r
(r = 0.77)

-1

-0.8

-0.6

-0.4

-0.2

0

z

Vertical profile of secondary

transverse flow, u
r
(r = 0.77,z)

HS without filter HS with filter HS in analytical solutionWolfram and Fringer (2013)

(b)

(c) (d)

(a)

Figure 7. Comparison of velocity profiles along section A − A
′

without and with filtered tech-
nique, non-filtered hydrostatic case from Wolfram and Fringer [2], and analytical solution from
de Vriend [14].

Figure 8 illustrates a two-dimensional view of the vertical velocity w(r, θ, z = −0.5)
for the different formulations presented in this paper. The results are smooth for filtered
calculations. However, for non-filtered approximation, the vertical velocity has some
oscillations. This behavior indicates that although it is not necessary, the filtered method is
highly recommended in hydrostatic calculations.

Figure 8. Comparison of vertical velocity fields w(r, θ, z = −0.5) between the non-filtered and filtered
hydrostatic case.

6.2. Water Surface Elevations

This section further analyzes the filtered method by presenting the water surface
approximation. The water surface slope points from the outer (concave) bank to the inner
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(convex) bank in the curved channel due to the centrifugal force. The transversal water
slope will increase with the primary flow velocity and the inverse radius of curvature. At
the bend entrance (θ = 0◦), the water surface forms a lateral slope, and the maximum
lateral slope appears at the section slightly upstream of the mid-point of the bend (θ = 90◦).
The superelevation refers to the height difference of the lateral water surface. The classical
relationship between the superelevation and the Froude number is first proposed by
Ippen [12] as:

∆h ∝ Fr2, (20)

where ∆h is the superelevation. The increasing Froude number will raise the superelevation.
Figure 9a displays the transverse surface elevation across different channel sections. It

can be seen that superelevation is mainly distributed at the outer bank, and the depression
is near the inner bank, as expected. The water superelevation at 0◦, 90◦, and 180◦ channel
cross-sections are 0.002, 0.004, and 0.0025, respectively. The surface increases suddenly from
0◦ to 15◦ when the water begins to come into the curved part. Symmetrically, the surface
decreased suddenly from 165◦ to 180◦ when the water goes outside of the curved part.
This phenomenon is similar to the results from Drinker [27]. Figure 9b shows the water
surface elevation for Fr = 0.1. The elevation decreases along the longitudinal direction.
Simultaneously, the elevation in the outer part is higher than that in the inner part. The
lateral superelevation is independent of the radial distribution of the flow velocity.

Figure 9. (a) Transverse water superelevation across different channel sections; (b) Surface elevation
distribution along the curved channel at Fr = 0.1.

Table 3 presents the water surface elevation for different Froude numbers. We find that
when the Froude number increases (Fr/Fr1)

2 times, the superelevation increases ∆h/∆h1
times in our calculations, in agreement with Equation (20). Here, Fr1 and ∆h1 correspond
to the values of the first line of Table 3.

Table 3. Water superelevations versus Froude numbers (Fr1 and ∆h1 correspond to the case: Fr = 0.1).

Fr ηinner ηouter ∆h (Fr/Fr1)2 ∆h/∆h1

0.1 0.0254 0.03175 0.00635 - -
0.2 0.1290 0.1575 0.0285 4 4.4
0.3 0.4133 0.4800 0.0667 9 10.5
0.4 0.9210 1.0297 0.1087 16 17.1
0.6 2.1498 2.3752 0.2254 36 35.5

6.3. Secondary Flow Effects

Figure 10 shows the three-dimensional streamlines in the curved channel at Fr = 0.4.
The primary streamlines are chosen at (x = 0; y = 28), located from the bottom to top at the
90◦ cross-section with the red line above the blue line. The streamlines mix with red lines
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to the outer part and blue lines to the bends’ inner part. We can also notice the streamlines
change in the five typical cross-sections. Details about the secondary flow results in filtered
calculations can be found in Figures11 and 12. The main transverse flow directs from the
outer to the inner bank in the near-bed region and opposite at the free surface. A separate
transverse flow directs from the outer to the inner bank at the free surface near the outer
part. This will generate a superelevation at the outer bank. Finally, the transverse flow
forms secondary flow patterns [28,29]. The simulation results are in full agreement with
the mechanisms responsible for the meandering of rivers. The following discusses the
secondary flows in detail.

Figure 10. Three-dimensional streamlines in the curved channel at Fr = 0.4. Red and blue lines
represent primary flow and black lines represent secondary flows.

Figure 11 compares the streamlines at six cross-sections between calculations with
the free surface at Fr = 0.1 and Fr = 0.2. The secondary flow center quickly moves to the
outer part of the channel from 0◦ to 90◦ and keeps its position at the convex bank until
180◦. The primary vortex splits into two in 60◦, and then the vortex merges to be one until
the outflow boundary. The surface elevation is very small, ∆η/h = 0.07. The track of the
vortex core is the same as Fr = 0.1. With the increase in the Froude numbers up to Fr = 0.3,
the longitudinal elevation increases to be ∆η/h = 0.75. There is only one primary vortex
remaining in all the cross-sections up to Fr = 0.3. The vortex changes its path compared to
cases with smaller Froude numbers. At 30◦, the core moves close to the outer boundary
and slightly moves forward and downward at the convex bank. At 60◦, the primary vortex
does not split into two compared with the cases of smaller Froude numbers. The size of the
vortex also increases to adjust the surface elevation.

As shown in Figure 12, the vortex number increases when the Froude number is up
to Fr = 0.6. There is only one primary vortex (Vm) when Fr = 0.4 at 30◦ and 60◦. Then,
the vortex splits into four vortices (V1, V2, V3, V4) in the 90◦ and 120◦ sections. Two
vortices (V1, V2) merge to be one vortex (Vm1), occupying most of the section, located in
the inner part. At 90◦, there is a transition section forming the vortex (V3 and V4). They
move to the convex bank side by side in the vertical direction. The distribution of the
vortex is more complex when Fr = 0.6. Generally, the vortex pattern is similar to the case
Fr = 0.4. The flow quickly forms two vortices (Vm and V3) at 30◦ and comes to be the same
pattern as Fr = 0.4 at 180◦. Between these two sections, in the inner part of the channel,
the vortex (Vm) also splits in two (V1 and V2) side by side due to the high water depth.
Simultaneously, the lower transverse surface elevation will meet the boundary condition
(η = 0) at the outflow. The longitudinal elevations are ∆η/h = 1.4 and ∆η/h = 3.4,
respectively.
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Figure 11. Comparison of streamlines at 30◦, 60◦, 90◦, 120◦, 150◦, and 180◦ cross-sections in filtered
hydrostatic calculations between Fr = 0.1 and Fr = 0.2.

Figure 12. Comparison of streamlines at 30◦, 60◦, 90◦, 120◦, 150◦, and 180◦ cross-sections in filtered
hydrostatic calculations between Fr = 0.3, Fr = 0.4, and Fr = 0.6.

From a mathematical perspective, the changes mentioned earlier in the secondary
flow state can be explained by Dean numbers. This is named after Dean, who was the
first researcher to confirm the existence of a pair of counter-rotating vortices as secondary
circulations in the fully developed curved pipe flow [30]. Here, we have one vortex in the
open channel. The Dean number Dn = Re

√
ε is composed by the Reynolds number and

the curvature aspect ratio ε = d/Rc. In our simulations, the Reynolds numbers are the
same for all cases. Due to the elevation in the longitudinal and transverse direction, the
water depth d changes accordingly and influences the curvature aspect ratio ε. In another
aspect, in the whole channel domain for Case 1 and Case 3, Dn acts accordingly from 25 to
50, which is relatively small. Ligrani et al. [31] and Nivedita et al. [32] also pointed out that
when the Dean number exceeds a critical value, a transition from laminar is observed with
the development of the secondary flow near the outer wall. This will eventually generate
arrays of counter-rotating Dean vortex pairs downstream for closed curved channel flow.
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7. Discussion

In this paper, we notice the inaccuracies in the approximation of the divergence opera-
tor in solving N-S equations and instabilities due to spurious pressure modes associated
with the unstaggered arrangements that show similar behavior as the divergence noise
presented by [2] with staggered grids. Therefore, a novel filtered method (Equation (17)) is
proposed to avoid these inaccuracies.

In Section 5, the filtered effect is demonstrated by an example with an analytical
solution. In the aspect of the filtered effect on different grids, we notice that there will be
horizontal divergence noise in both structured equilateral and right-angled grids. Only the
error pattern is different. The maximum error from the right-angled grids is even more
significant than the unstructured grids. These results conclude that adopting a structured
grid will not improve the divergence noise. In the aspect of the divergence operator
accuracy, the numerical error analysis confirms that it yields a first-order checkerboard
error pattern. After filtering, the errors are eliminated in three different grids. Numerical
results show a second-order accuracy after this filtered technique.

In the aspect of the composing effect of the filtered method, hydrostatic pressure, free
surface elevation, and secondary flows in the curved channel flow, Section 6 provides the
velocities compared with [2]. The velocity profiles in filtered and non-filtered calculations
show that the absence of the filtered technique results in an oscillatory vertical velocity
with reduced accuracy. Our non-filtered hydrostatic results are, in a sense, better than those
by Wolfram and Fringer [2] with an opposite peak, qualitatively. The filtered method is
highly recommended in hydrostatic calculations.

Furthermore, with the calculation of this filtered method, we find that there are eleva-
tions in both the longitudinal and transverse directions. The surface increases suddenly
when the water begins to come into the curved part and decreases suddenly when the
water goes outside. The superelevation is proportional to the Froude numbers. The free
surface elevations influence the water depth and further affect the secondary flow status.
With the increase in the Fr number, the vortex pattern and vortex number are changed in
the cross-section of the curved channel, which can be explained by the Dean number [30].

This study focuses on the sharply curved channel with a 180◦ bend at Re = 125.
Concerning the future work of the present paper, we expect that our work will provide a
useful guide for scientists in charge of similar simulations of hydrostatic curved channel
flow. As the unstructured mesh is flexible to discrete the domain with arbitrary geometries,
we can apply the filtered method to analyze the physical behavior of the curved channel
with other curvatures, such as kinoshita curves in [33] and the confluence in [34].

8. Conclusions

This paper proposes a novel three-dimensional hydrostatic method for flows in a
curved channel based on an unstructured finite-volume method and a filtering technique
with non-staggered triangular grids. First, teh numerical results confirm that a filtered
approximation of the divergence operator eliminates the checkerboard error pattern and
yields an accurate second-order method. Next, we analyze the method’s performance in
terms of the divergence approximation velocity and water elevations for a 180◦ curved
channel. As expected, although the numerical results with or without filtering are close
to the analytical solution, the filtered technique significantly improves the numerical
solution. Moreover, the present formulation results in more accurate results than those
presented by [2]. Numerical results also show that the method correctly approximates the
water surface elevations: The superelevation is mainly distributed at the outer bank, the
depression is near the inner bank, and the elevations agree with the Ippen formula [12]. For
the velocity field, the streamlines change at different cross-sections of the curved channel,
and their behavior is directly related to the Froude number. The streamline centers keep
the same track when Fr is smaller than 0.1. However, the path changes when the Fr is up
to 0.3, keeping the same number of vortices. When Fr is higher, the water surfaces increase,
and the primary vortex splits into four at several cross-sections. Finally, future work will
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focus on applying the proposed numerical method to analyze curved channels with other
curvatures, turbulent flows, and scour development.
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